
Functional and Imperative Programming

Languages can be classified in many different
ways. This course started by distinguishing be-
tween the labels functional and imperative. In
fact, functional languages are a subclass of what
are called declarative languages.

Declarative languages specify what should be
done but not necessarily how it should be
done. They are composed of declarations
(statements that hold true at all times);

Imperative languages specify exactly how some-
thing should be done.

There are some languages that are purely
declarative—often these languages are database-
related. An example can be found in an SQL SE-
LECT statement which looks like

SELECT fname,lname from namesdatabase;

This perhaps gets a list of (first name, last name)
pairs from a database. But note how we haven’t
said how this should be done: the statement is
purely declarative.

You’d be forgiven for feeling a little confused
with regards ML—there you wrote out a series of
things to do in each function so surely you speci-
fied both what and how? The key is that a func-
tional compiler is free to look at your function and
decide to do something completely different at a
low level, so long as it achieves the same result.
The entire function is taken as declarative—if you
like, you provided an illustrative example of what
needs to happen, but the compiler can do some-
thing else that gets the same result.

For example, you might specify a function
f(x) = x+x+x+x;.A functional compiler would
view this as telling it what to do by giving one
particular example of how to do it. At a low level,
it may decide instead to do a single multiplication:
4*x.

A purely imperative compiler, however, would
follow your instructions to the letter—performing
three additions in sequence. So you can consider
a imperative compiler to be more dumb—it does
exactly what you tell it to. This has the advantage

that you can easily map your code to what goes
on in the machine code.

In principle the functional approach is very
nice—you can imagine an inexperienced program-
mer writing sub-optimal code and the compiler
magically improving it. But think what would
need to go into such a compiler—all the possible
permutations of code and fixes become incredibly
complex very fast. So functional languages limit
what you can do—specifically with regards func-
tions. Take this piece of imperative code:

int globalvar=5;
int multiply(int x) {
globalvar=globalvar+1;
return globalvar*x;

};

This is a procedure with clear side-effects
(globalvar is altered). Ask yourself what this func-
tion does. What if some other function changed
globalvar between calls as well? Hopefully you can
see that modelling this function as a black box
with a single output can’t work. So pure func-
tional languages do not allow side-effects.
i.e. they only use proper functions.

Note, however, that real language implementa-
tions are not purely functional or imperative. ML
contains some imperative features (references pro-
duce side-effects, and you have to actually start
your program by running a function!) and Java
often performs some small optimisations to code
during compilation (albeit rarely entire functions).
We think of ML as functional and Java as imper-
ative because these are the dominant paradigms
employed. But really things are not so black-and-
white.


