
Logic and Proof
Computer Science Tripos Part IB

Michaelmas Term

Lawrence C Paulson
Computer Laboratory

University of Cambridge

lp15@cam.ac.uk

Copyright c© 2011 by Lawrence C. Paulson

Contents
1 Introduction and Learning Guide 1

2 Propositional Logic 2

3 Proof Systems for Propositional Logic 8

4 First-order Logic 12

5 Formal Reasoning in First-Order Logic 16

6 Clause Methods for Propositional Logic 19

7 Skolem Functions and Herbrand’s Theorem 24

8 Unification 29

9 First-Order Resolution and Prolog 34

10 BDDs, or Binary Decision Diagrams 38

11 Modal Logics 40

12 Tableaux-Based Methods 43

i

1 INTRODUCTION AND LEARNING GUIDE 1

1 Introduction and Learning Guide
This course gives a brief introduction to logic, including the resolution method of theorem-proving and its relation to the
programming language Prolog. Formal logic is used for specifying and verifying computer systems and (sometimes) for
representing knowledge in Artificial Intelligence programs.

The course should help you to understand the Prolog language, and its treatment of logic should be helpful for un-
derstanding other theoretical courses. Try to avoid getting bogged down in the details of how the various proof methods
work, since you must also acquire an intuitive feel for logical reasoning.

The most suitable course text is this book:

Michael Huth and Mark Ryan, Logic in Computer Science: Modelling and Reasoning about Systems, 2nd
edition (CUP, 2004)

It costs £35. It covers most aspects of this course with the exception of resolution theorem proving. It includes material
(symbolic model checking) that should be useful for Specification and Verification II next year.

The following book may be a useful supplement to Huth and Ryan. It covers resolution, as well as much else relevant
to Logic and Proof. The current Amazon price is £24.50.

Mordechai Ben-Ari, Mathematical Logic for Computer Science, 2nd edition (Springer, 2001)

Quite a few books on logic can be found in the Mathematics section of any academic bookshop. They tend to focus
more on results such as the completeness theorem rather than on algorithms for proving theorems by machine. A typical
example is

Dirk van Dalen, Logic and Structure (Springer, 1994).

The following book is nearly 600 pages long and proceeds at a very slow pace. At £41, it is not cheap.

Jon Barwise and John Etchemendy, Language Proof and Logic, 2nd edition (University of Chicago Press,
2003)

It briefly covers some course topics (resolution and unification) but omits many others (BDDs, the DPLL method, modal
logic). Formal proofs are done in the Fitch style instead of using the sequent calculus. The book comes with a CD-ROM
(for Macintosh and Windows) containing software to support the text. You may find it useful if you find these course
notes too concise.

Also relevant is

Melvin Fitting, First-Order Logic and Automated Theorem Proving (Springer, 1996)

The following book provides a different perspective on modal logic, and it develops propositional logic carefully.
However, you may be reluctant to spend £50 (!) for a book that covers only a few course lectures.

Sally Popkorn, First Steps in Modal Logic (CUP, 1994)

Other useful books are out of print but may be found in College libraries:

C.-L. Chang and R. C.-T. Lee, Symbolic Logic and Mechanical Theorem Proving (Academic Press, 1973)

Antony Galton, Logic for Information Technology (Wiley, 1990)

Steve Reeves and Michael Clarke, Logic for Computer Science (Addison-Wesley, 1990)

There are numerous exercises in these notes, and they are suitable for supervision purposes. Old examination questions
for Foundations of Logic Programming (the former name of this course) are still relevant:

• 2010 Paper 5 Question 5: BDDs and models

• 2010 Paper 6 Question 6: sequent or tableau calculus, DPLL. Note: the formula in the first part of this question should be
(∃x P(x)→ Q)→ ∀x (P(x)→ Q).

• 2008 Paper 3 Question 6: BDDs, DPLL, sequent calculus

• 2008 Paper 4 Question 5: proving or disproving first-order formulas, resolution

• 2009 Paper 6 Question 7: modal logic (Lect. 11)

• 2009 Paper 6 Question 8: resolution, tableau calculi (Lect. 3–12)

• 2007 Paper 5 Question 9: propositional methods, resolution, modal logic (Lect. 2–11)

• 2007 Paper 6 Question 9: proving or disproving first-order formulas

• 2006 Paper 5 Question 9: proof and disproof in FOL and modal logic

• 2006 Paper 6 Question 9: BDDs, Herbrand models, resolution (Lect. 7–10)

• 2005 Paper 5 Question 9: resolution (Lect. 6, 8, 9)

• 2005 Paper 6 Question 9: DPLL, BDDs, tableaux (Lect. 6, 10, 12)

• 2004 Paper 5 Question 9: semantics and proof in FOL (Lect. 4, 5)

• 2004 Paper 6 Question 9: ten true or false questions

• 2003 Paper 5 Question 9: BDDs; clause-based proof methods (Lect. 6, 10)

• 2003 Paper 6 Question 9: sequent calculus (Lect. 5)

• 2002 Paper 5 Question 11: semantics of propositional and first-order logic (Lect. 2, 4)

• 2002 Paper 6 Question 11: resolution; proof systems (Lect. 5, 6, 9, 11)

• 2001 Paper 5 Question 11: satisfaction relation; logical equivalences

• 2001 Paper 6 Question 11: clause-based proof methods; ordered ternary decision diagrams (Lect. 6, 10)

• 2000 Paper 5 Question 11: tautology checking; propositional sequent calculus (Lect. 2, 3, 10)

• 2000 Paper 6 Question 11: unification and resolution (Lect. 8, 9)

• 1999 Paper 5 Question 10: Prolog resolution versus general resolution

• 1999 Paper 6 Question 10: Herbrand models and clause form

• 1998 Paper 5 Question 10: BDDs, sequent calculus, etc. (Lect. 3, 10)

• 1998 Paper 6 Question 10: modal logic (Lect. 11); resolution (Lect. 9)

• 1997 Paper 5 Question 10: first-order logic (Lect. 4)

• 1997 Paper 6 Question 10: sequent rules for quantifiers (Lect. 5)

• 1996 Paper 5 Question 10: sequent calculus (Lect. 3, 5, 10)

• 1996 Paper 6 Question 10: DPLL versus Resolution (Lect. 9)

• 1995 Paper 5 Question 9: BDDs (Lect. 10)

• 1995 Paper 6 Question 9: outline logics; sequent calculus (Lect. 3, 5, 11)

• 1994 Paper 5 Question 9: Resolution versus Prolog (Lect. 9)

• 1994 Paper 6 Question 9: Herbrand models (Lect. 7)

• 1994 Paper 6 Question 9: Most general unifiers and resolution (Lect. 9)

• 1993 Paper 3 Question 3: Resolution and Prolog (Lect. 9)

Acknowledgements. Chloë Brown, Jonathan Davies and Reuben Thomas pointed out numerous errors in these notes.
David Richerby and Ross Younger made detailed suggestions. Thanks also to Thomas Forster, Simon Frankau, Adam
Hall, Ximin Luo, Steve Payne, Tom Puverle, Tjark Weber and John Wickerson.

2 Propositional Logic
Propositional logic deals with truth values and the logical connectives ‘and,’ ‘or,’ ‘not,’ etc. It has no variables of any kind
and is unable to express anything but the simplest mathematical statements. It is studied because it is simple and because
it is the basis of more powerful logics. Most of the concepts in propositional logic have counterparts in first-order logic.
Here are the most important concepts, which are the basis of logic.

Syntax refers to the formal notation for writing assertions. It also refers to the data structures that represent assertions in
a computer. At the level of syntax, 1 + 2 is a string of three symbols, or a tree with a node labelled + and having
two children labelled 1 and 2.

Semantics expresses the meaning of a formula in terms of mathematical or real-world entities. While 1+ 2 and 2+ 1 are
syntactically distinct, they have the same semantics, namely 3. The semantics of a logical statement will typically
be true or false.

Proof theory concerns ways of proving statements, at least the true ones. Typically we begin with axioms and arrive at
other true statements using inference rules. Formal proofs are typically finite and mechanical: their correctness can
be checked without understanding anything about the subject matter.

Syntax can be represented in a computer. Proof methods are syntactic, so they can be performed by computer. On the
other hand, as semantics is concerned with meaning, it exists only inside people’s heads. This is analogous to the way
computers handle digital photos: the computer has no conception of what your photos mean to you, and internally they
are nothing but bits.

2

2 PROPOSITIONAL LOGIC 3

2.1 Syntax of propositional logic
We take for granted a set of propositional symbols P , Q, R, . . ., including the truth values t and f. A formula consisting
of a propositional symbol is called atomic.

Formulæ are constructed from atomic formulæ using the logical connectives

¬ (not)
∧ (and)
∨ (or)
→ (implies)
↔ (if and only if)

These are listed in order of precedence; ¬ is highest. We shall suppress needless parentheses, writing, for example,

(((¬P) ∧ Q) ∨ R)→ ((¬P) ∨ Q) as ¬P ∧ Q ∨ R→ ¬P ∨ Q.

In the ‘metalanguage’ (these notes), the letters A, B, C , . . . stand for arbitrary formulæ. The letters P , Q, R, . . . stand
for atomic formulæ.

Some authors use ⊃ for the implies symbol and ≡ for if-and-only-if.

2.2 Semantics
Propositional Logic is a formal language. Each formula has a meaning (or semantics) — either t or f — relative to the
meaning of the propositional symbols it contains. The meaning can be calculated using the standard truth tables.

A B ¬A A ∧ B A ∨ B A→ B A↔ B
t t f t t t t
t f f f t f f
f t t f t t f
f f t f f t t

By inspecting the table, we can see that A→ B is equivalent to¬A∨B and that A↔ B is equivalent to (A→ B)∧(B →
A). (The latter is also equivalent to ¬(A ⊕ B), where ⊕ is exclusive or.)

Note that we are using t and f in two distinct ways: as symbols on the printed page, and as the truth values themselves.
In this simple case, there should be no confusion. When it comes to first-order logic, we shall spend some time on the
distinction between symbols and their meanings.

We now make some definitions that will be needed throughout the course.

Definition 1 An interpretation, or truth assignment, for a set of formulæ is a function from its set of propositional symbols
to {t, f}.

An interpretation satisfies a formula if the formula evaluates to t under the interpretation.
A set S of formulæ is valid (or a tautology) if every interpretation for S satisfies every formula in S.
A set S of formulæ is satisfiable (or consistent) if there is some interpretation for S that satisfies every formula in S.
A set S of formulæ is unsatisfiable (or inconsistent) if it is not satisfiable.
A set S of formulæ entails A if every interpretation that satisfies all elements of S, also satisfies A. Write S |H A.
Formulæ A and B are equivalent, A ' B, provided A |H B and B |H A.

It is usual to write A |H B instead of {A} |H B. We may similarly identify a one-element set with a formula in the
other definitions.

Note that |H and ' are not logical connectives but relations between formulæ. They belong not to the logic but to
the metalanguage: they are symbols we use to discuss the logic. They therefore have lower precedence than the logical
connectives. No parentheses are needed in A ∧ A ' A because the only possible reading is (A ∧ A) ' A. We may not
write A ∧ (A ' A) because A ' A is not a formula.

In propositional logic, a valid formula is also called a tautology. Here are some examples of these definitions.

• The formulæ A→ A and ¬(A ∧ ¬A) are valid for every formula A.

• The formulæ P and P ∧ (P → Q) are satisfiable: they are both true under the interpretation that maps P and Q to
t. But they are not valid: they are both false under the interpretation that maps P and Q to f.

• The formula ¬A is unsatisfiable for every valid formula A. This set of formulæ is unsatisfiable: {P, Q,¬P ∨¬Q}

Exercise 1 Is the formula P → ¬P satisfiable? Is it valid?

2.3 Applications of propositional logic
Hardware design is the obvious example. Propositional logic is used to minimize the number of gates in a circuit, and
to show the equivalence of combinational circuits. There now exist highly efficient tautology checkers, such as BDDs
(Ordered Binary Decision Diagrams), which have been used to verify complex combinational circuits. This is an important
branch of hardware verification.

Chemical synthesis is a more offbeat example.1 Under suitable conditions, the following chemical reactions are
possible:

HCl+ NaOH→ NaCl+ H2O
C+ O2 → CO2

CO2 + H2O→ H2CO3

Show we can make H2CO3 given supplies of HCl, NaOH, O2, and C.
Chang and Lee formalize the supplies of chemicals as four axioms and prove that H2CO3 logically follows. The idea

is to formalize each compound as a propositional symbol and express the reactions as implications:

HCl ∧ NaOH→ NaCl ∧ H2O
C ∧ O2 → CO2

CO2 ∧ H2O→ H2CO3

Note that this involves an ideal model of chemistry. What if the reactions can be inhibited by the presence of other
chemicals? Proofs about the real world always depend upon general assumptions. It is essential to bear these in mind
when relying on such a proof.

2.4 Equivalences
Note that A ↔ B and A ' B are different kinds of assertions. The formula A ↔ B refers to some fixed interpretation,
while the metalanguage statement A ' B refers to all interpretations. On the other hand, |H A↔ B means the same thing
as A ' B. Both are metalanguage statements, and A ' B is equivalent to saying that the formula A↔ B is a tautology.

Similarly, A → B and A |H B are different kinds of assertions, while |H A → B and A |H B mean the same thing.
The formula A→ B is a tautology if and only if A |H B.

Here is a listing of some of the more basic equivalences of propositional logic. They provide one means of reasoning
about propositions, namely by transforming one proposition into an equivalent one. They are also needed to convert
propositions into various normal forms.

idempotency laws

A ∧ A ' A

A ∨ A ' A

commutative laws

A ∧ B ' B ∧ A

A ∨ B ' B ∨ A

associative laws

(A ∧ B) ∧ C ' A ∧ (B ∧ C)

(A ∨ B) ∨ C ' A ∨ (B ∨ C)

distributive laws

A ∨ (B ∧ C) ' (A ∨ B) ∧ (A ∨ C)

A ∧ (B ∨ C) ' (A ∧ B) ∨ (A ∧ C)

de Morgan laws

¬(A ∧ B) ' ¬A ∨ ¬B

¬(A ∨ B) ' ¬A ∧ ¬B

1Chang and Lee, page 21, as amended by Ross Younger, who knew more about Chemistry!

4

2 PROPOSITIONAL LOGIC 5

other negation laws

¬(A→ B) ' A ∧ ¬B

¬(A↔ B) ' (¬A)↔ B ' A↔ (¬B)

laws for eliminating certain connectives

A↔ B ' (A→ B) ∧ (B → A)

¬A ' A→ f
A→ B ' ¬A ∨ B

simplification laws

A ∧ f ' f
A ∧ t ' A

A ∨ f ' A

A ∨ t ' t
¬¬A ' A

A ∨ ¬A ' t
A ∧ ¬A ' f

Propositional logic enjoys a principle of duality: for every equivalence A ' B there is another equivalence A′ ' B ′,
where A′, B ′ are derived from A, B by exchanging∧with∨ and t with f. Before applying this rule, remove all occurrences
of→ and↔, since they implicitly involve ∧ and ∨.

Exercise 2 Verify some of the equivalences using truth tables.

2.5 Normal forms
The language of propositional logic is redundant: many of the connectives can be defined in terms of others. By repeatedly
applying certain equivalences, we can transform a formula into a normal form. A typical normal form eliminates certain
connectives entirely, and uses others in a restricted manner. The restricted structure makes the formula easy to process,
although the normal form may be exponentially larger than the original formula. Most normal forms are unreadable,
although Negation Normal Form is not too bad.

Definition 2 (Normal Forms)

• A literal is an atomic formula or its negation. Let K , L , L ′, . . . stand for literals.

• A formula is in Negation Normal Form (NNF) if the only connectives in it are ∧, ∨, and ¬, where ¬ is only applied
to atomic formulæ.

• A formula is in Conjunctive Normal Form (CNF) if it has the form A1 ∧ · · · ∧ Am , where each Ai is a disjunction
of one or more literals.

• A formula is in Disjunctive Normal Form (DNF) if it has the form A1 ∨ · · · ∨ Am , where each Ai is a conjunction
of one or more literals.

An atomic formula like P is in all the normal forms NNF, CNF, and DNF. The formula

(P ∨ Q) ∧ (¬P ∨ S) ∧ (R ∨ P)

is in CNF. Unlike in some hardware applications, the disjuncts in a CNF formula do not have to mention all the variables.
On the contrary, they should be as simple as possible. Simplifying the formula

(P ∨ Q) ∧ (¬P ∨ Q) ∧ (R ∨ S)

to Q ∧ (R ∨ S) counts as an improvement, because it will make our proof procedures run faster. For examples of DNF
formulæ, exchange ∧ and ∨ in the examples above. As with CNF, there is no need to mention all combinations of
variables.

NNF can reveal the underlying nature of a formula. For example, converting ¬(A→ B) to NNF yields A∧¬B. This
reveals that the original formula was effectively a conjunction. Every formula in CNF or DNF is also in NNF, but the
NNF formula

((¬P ∧ Q) ∨ R) ∧ P

is in neither CNF nor DNF.

2.6 Translation to normal form
Every formula can be translated into an equivalent formula in NNF, CNF, or DNF by means of the following steps.

Step 1. Eliminate↔ and→ by repeatedly applying the following equivalences:

A↔ B ' (A→ B) ∧ (B → A)

A→ B ' ¬A ∨ B

Step 2. Push negations in until they apply only to atoms, repeatedly replacing by the equivalences

¬¬A ' A

¬(A ∧ B) ' ¬A ∨ ¬B

¬(A ∨ B) ' ¬A ∧ ¬B

At this point, the formula is in Negation Normal Form.

Step 3. To obtain CNF, push disjunctions in until they apply only to literals. Repeatedly replace by the equivalences

A ∨ (B ∧ C) ' (A ∨ B) ∧ (A ∨ C)

(B ∧ C) ∨ A ' (B ∨ A) ∧ (C ∨ A)

These two equivalences obviously say the same thing, since disjunction is commutative. In fact, we have

(A ∧ B) ∨ (C ∧ D) ' (A ∨ C) ∧ (A ∨ D) ∧ (B ∨ C) ∧ (B ∨ D).

Use this equivalence when you can, to save writing.

Step 4. Simplify the resulting CNF by deleting any disjunction that contains both P and ¬P , since it is equivalent to t.
Also delete any conjunct that includes another conjunct (meaning, every literal in the latter is also present in the former).
This is correct because (A∨ B)∧ A ' A. Finally, two disjunctions of the form P ∨ A and ¬P ∨ A can be replaced by A,
thanks to the equivalence

(P ∨ A) ∧ (¬P ∨ A) ' A.

This simplification is related to the resolution rule, which we shall study later.
Since ∨ is commutative, saying ‘a conjunct of the form A∨ B’ refers to any possible way of arranging the literals into

two parts. This includes A ∨ f, since one of those parts may be empty and the empty disjunction is false. So in the last
simplification above, two conjuncts of the form P and ¬P can be replaced by f.

Steps 3’ and 4’. To obtain DNF, apply instead the other distributive law:

A ∧ (B ∨ C) ' (A ∧ B) ∨ (A ∧ C)

(B ∨ C) ∧ A ' (B ∧ A) ∨ (C ∧ A)

Exactly the same simplifications can be performed for DNF as for CNF, exchanging the roles of ∧ and ∨.

2.7 Tautology checking using CNF
Here is a method of proving theorems in propositional logic. To prove A, reduce it to CNF. If the simplified CNF formula
is t then A is valid because each transformation preserves logical equivalence. And if the CNF formula is not t, then A is
not valid.

To see why, suppose the CNF formula is A1 ∧ · · · ∧ Am . If A is valid then each Ai must also be valid. Write Ai as
L1∨· · ·∨ Ln , where the L j are literals. We can make an interpretation I that falsifies every L j , and therefore falsifies Ai .
Define I such that, for every propositional letter P ,

I (P) =
{

f if L j is P for some j
t if L j is ¬P for some j

This definition is legitimate because there cannot exist literals L j and Lk such that L j is ¬Lk ; if there did, then simplifi-
cation would have deleted the disjunction Ai .

The powerful BDD method is related to this CNF method. It uses an if-then-else data structure, an ordering on the
propositional letters, and some standard algorithmic techniques (such as hashing) to gain efficiency.

6

2 PROPOSITIONAL LOGIC 7

Example 1 Start with
P ∨ Q → Q ∨ R

Step 1, eliminate→, gives
¬(P ∨ Q) ∨ (Q ∨ R)

Step 2, push negations in, gives
(¬P ∧ ¬Q) ∨ (Q ∨ R)

Step 3, push disjunctions in, gives
(¬P ∨ Q ∨ R) ∧ (¬Q ∨ Q ∨ R)

Simplifying yields
(¬P ∨ Q ∨ R) ∧ t

¬P ∨ Q ∨ R

The interpretation P 7→ t, Q 7→ f, R 7→ f falsifies this formula, which is equivalent to the original formula. So the
original formula is not valid.

Example 2 Start with
P ∧ Q → Q ∧ P

Step 1, eliminate→, gives
¬(P ∧ Q) ∨ Q ∧ P

Step 2, push negations in, gives
(¬P ∨ ¬Q) ∨ (Q ∧ P)

Step 3, push disjunctions in, gives
(¬P ∨ ¬Q ∨ Q) ∧ (¬P ∨ ¬Q ∨ P)

Simplifying yields t ∧ t, which is t. Both conjuncts are valid since they contain a formula and its negation. Thus
P ∧ Q → Q ∧ P is valid.

Example 3 Peirce’s law is another example. Start with

((P → Q)→ P)→ P

Step 1, eliminate→, gives
¬(¬(¬P ∨ Q) ∨ P) ∨ P

Step 2, push negations in, gives
(¬¬(¬P ∨ Q) ∧ ¬P) ∨ P

((¬P ∨ Q) ∧ ¬P) ∨ P

Step 3, push disjunctions in, gives
(¬P ∨ Q ∨ P) ∧ (¬P ∨ P)

Simplifying again yields t. Thus Peirce’s law is valid.
There is a dual method of refuting A (proving inconsistency). To refute A, reduce it to DNF, say A1 ∨ · · · ∨ Am . If A

is inconsistent then so is each Ai . Suppose Ai is L1 ∧ · · · ∧ Ln , where the L j are literals. If there is some literal L ′ such
that the L j include both L ′ and ¬L ′, then Ai is inconsistent. If not then there is an interpretation that verifies every L j ,
and therefore Ai .

To prove A, we can use the DNF method to refute ¬A. The steps are exactly the same as the CNF method because the
extra negation swaps every ∨ and ∧. Gilmore implemented a theorem prover based upon this method in 1960 (see Chang
and Lee, page 62).

Exercise 3 Each of the following formulæ is satisfiable but not valid. Exhibit an interpretation that makes the formula
true and another interpretation that makes the formula false.

P → Q

¬(P ∨ Q ∨ R)

P ∨ Q → P ∧ Q

¬(P ∧ Q) ∧ ¬(Q ∨ R) ∧ (P ∨ R)

Exercise 4 Convert each of the following propositional formulæ into Conjunctive Normal Form and also into Disjunctive
Normal Form. For each formula, state whether it is valid, satisfiable, or unsatisfiable; justify each answer.

(P → Q) ∧ (Q → P)

((P ∧ Q) ∨ R) ∧ (¬((P ∨ R) ∧ (Q ∨ R)))

¬(P ∨ Q ∨ R) ∨ ((P ∧ Q) ∨ R)

Exercise 5 Using ML, define datatypes for representing propositions and interpretations. Write a function to test whether
or not a proposition holds under an interpretation (both supplied as arguments). Write a function to convert a proposition
to Negation Normal Form.

3 Proof Systems for Propositional Logic
We can verify any tautology by checking all possible interpretations, using the truth tables. This is a semantic approach,
since it appeals to the meanings of the connectives.

The syntactic approach is formal proof: generating theorems, or reducing a conjecture to a known theorem, by apply-
ing syntactic transformations of some sort. We have already seen a proof method based on CNF. Most proof methods are
based on axioms and inference rules.

What about efficiency? Deciding whether a propositional formula is satisfiable is an NP-complete problem (Aho,
Hopcroft and Ullman 1974, pages 377–383). Thus all approaches are likely to be exponential in the length of the formula.

3.1 A Hilbert-style proof system
Here is a simple proof system for propositional logic. There are countless similar systems. They are often called Hilbert
systems after the logician David Hilbert, although they existed before him.

This proof system provides rules for implication only. The other logical connectives are not taken as primitive. They
are instead defined in terms of implication:

¬A def= A→ f

A ∨ B def= ¬A→ B

A ∧ B def= ¬(¬A ∨ ¬B)

Obviously, these definitions apply when we are discussing this proof system!
Note that A→ (B → A) is a tautology. Call it Axiom K. Also,

(A→ (B → C))→ ((A→ B)→ (A→ C))

is a tautology. Call it Axiom S. The Double-Negation Law ¬¬A→ A, is a tautology. Call it Axiom DN.
These axioms are more properly called axiom schemes, since we assume all instances of them that can be obtained by

substituting formulæ for A, B and C . For example, Axiom K is really an infinite set of formulæ.
Whenever A→ B and A are both valid, it follows that B is valid. We write this as the inference rule

A→ B A
B.

This rule is traditionally called Modus Ponens. Together with Axioms K, S, and DN and the definitions, it suffices to
prove all tautologies of (classical) propositional logic.2 However, this formalization of propositional logic is inconvenient
to use. For example, try proving A→ A!

A variant of this proof system replaces the Double-Negation Law by the Contrapositive Law:

(¬B → ¬A)→ (A→ B)

Another formalization of propositional logic consists of the Modus Ponens rule plus the following axioms:

A ∨ A→ A

B → A ∨ B

A ∨ B → B ∨ A

(B → C)→ (A ∨ B → A ∨ C)

2If the Double-Negation Law is omitted, only the intuitionistic tautologies are provable. This axiom system is connected with the combinators S
and K and the λ-calculus.

8

3 PROOF SYSTEMS FOR PROPOSITIONAL LOGIC 9

Here A ∧ B and A→ B are defined in terms of ¬ and ∨.
Where do truth tables fit into all this? Truth tables define the semantics, while proof systems define what is sometimes

called the proof theory. A proof system must respect the truth tables. Above all, we expect the proof system to be sound:
every theorem it generates must be a tautology. For this to hold, every axiom must be a tautology and every inference rule
must yield a tautology when it is applied to tautologies.

The converse property is completeness: the proof system can generate every tautology. Completeness is harder to
achieve and to demonstrate. There are complete proof systems even for first-order logic. Gödel’s incompleteness theorem
says that there are no “interesting” complete proof systems for logical theories strong enough to define the properties of
the natural numbers.

3.2 Gentzen’s Natural Deduction Systems
Natural proof systems do exist. Natural deduction, devised by Gerhard Gentzen, is based upon three principles:

1. Proof takes place within a varying context of assumptions.

2. Each logical connective is defined independently of the others. (This is possible because item 1 eliminates the need
for tricky uses of implication.)

3. Each connective is defined by introduction and elimination rules.

For example, the introduction rule for ∧ describes how to deduce A ∧ B:

A B
A ∧ B

(∧i)

The elimination rules for ∧ describe what to deduce from A ∧ B:

A ∧ B
A

(∧e1) A ∧ B
B

(∧e2)

The elimination rule for→ says what to deduce from A→ B. It is just Modus Ponens:

A→ B A
B

(→e)

The introduction rule for→ says that A→ B is proved by assuming A and deriving B:

[A]....
B

A→ B
(→i)

For simple proofs, this notion of assumption is pretty intuitive. Here is a proof of the formula A ∧ B → A:

[A ∧ B]
A

(∧e1)

A ∧ B → A
(→i)

The key point is that rule (→i) discharges its assumption: the assumption could be used to prove A from A ∧ B, but is no
longer available once we conclude A ∧ B → A.

The introduction rules for ∨ are straightforward:

A
A ∨ B

(∨i1) B
A ∨ B

(∨i2)

The elimination rule says that to show some C from A ∨ B there are two cases to consider, one assuming A and one
assuming B:

A ∨ B

[A]....
C

[B]....
C

C
(∨e)

The scope of assumptions can get confusing in complex proofs. Let us switch attention to the sequent calculus, which
is similar in spirit but easier to use.

3.3 The sequent calculus
The sequent calculus resembles natural deduction, but it makes the set of assumptions explicit. Thus, it is more concrete.

A sequent has the form 0⇒1, where 0 and 1 are finite sets of formulæ.3 These sets may be empty. The sequent

A1, . . . , Am⇒ B1, . . . , Bn

is true (in a particular interpretation) if A1 ∧ . . . ∧ Am implies B1 ∨ . . . ∨ Bn . In other words, if each of A1, . . . , Am are
true, then at least one of B1, . . . , Bn must be true. The sequent is valid if it is true in all interpretations.

A basic sequent is one in which the same formula appears on both sides, as in P, B⇒ B, R. This sequent is valid
because, if all the formulæ on the left side are true, then in particular B is; so, at least one right-side formula (B again) is
true. Our calculus therefore regards all basic sequents as proved.

Every basic sequent might be written in the form {A} ∪ 0⇒{A} ∪ 1, where A is the common formula and 0 and
1 are the other left- and right-side formulæ, respectively. The sequent calculus identifies the one-element set {A} with
its element A and denotes union by a comma. Thus, the correct notation for the general form of a basic sequent is
A, 0⇒ A,1.

Sequent rules are almost always used backward. We start with the sequent that we would like to prove. We view the
sequent as saying that A1, . . . , Am are true, and we try to show that one of B1, . . . , Bn is true. Working backwards, we use
sequent rules to reduce it to simpler sequents, stopping when those sequents become trivial. The forward direction would
be to start with known facts and derive new facts, but this approach tends to generate random theorems rather than ones
we want.

Sequent rules are classified as right or left, indicating which side of the ⇒ symbol they operate on. Rules that operate
on the right side are analogous to natural deduction’s introduction rules, and left rules are analogous to elimination rules.

The sequent calculus analogue of (→i) is the rule

A, 0⇒1, B
0⇒1, A→ B

(→r)

Working backwards, this rule breaks down some implication on the right side of a sequent; 0 and 1 stand for the sets of
formulæ that are unaffected by the inference. The analogue of the pair (∨i1) and (∨i2) is the single rule

0⇒1, A, B
0⇒1, A ∨ B

(∨r)

This breaks down some disjunction on the right side, replacing it by both disjuncts. Thus, the sequent calculus is a kind
of multiple-conclusion logic. Figure 1 summarises the rules.

Let us prove that the rule (∨l) is sound. We must show that if both premises are valid, then so is the conclusion. For
contradiction, assume that the conclusion, A ∨ B, 0⇒1, is not valid. Then there exists an interpretation I under which
the left side is true while the right side is false; in particular, A ∨ B and 0 are true while 1 is false. Since A ∨ B is true
under interpretation I , either A is true or B is. In the former case, A, 0⇒1 is false; in the latter case, B, 0⇒1 is false.
Either case contradicts the assumption that the premises are valid.

basic sequent: A, 0⇒ A,1
Negation rules:

0⇒1, A
¬A, 0⇒1

(¬l)
A, 0⇒1

0⇒1,¬A
(¬r)

Conjunction rules:
A, B, 0⇒1

A ∧ B, 0⇒1
(∧l)

0⇒1, A 0⇒1, B
0⇒1, A ∧ B

(∧r)

Disjunction rules:
A, 0⇒1 B, 0⇒1

A ∨ B, 0⇒1
(∨l)

0⇒1, A, B
0⇒1, A ∨ B

(∨r)

Implication rules:
0⇒1, A B, 0⇒1

A→ B, 0⇒1
(→l)

A, 0⇒1, B
0⇒1, A→ B

(→r)

Figure 1: Sequent Rules for Propositional Logic

3With minor changes, sequents can instead be lists or multisets.

10

3 PROOF SYSTEMS FOR PROPOSITIONAL LOGIC 11

3.4 Examples of Sequent Calculus Proofs
To illustrate the use of multiple formulæ on the right, let us prove the classical theorem (A→ B) ∨ (B → A). Working
backwards (or upwards), we reduce this formula to a basic sequent:

A, B⇒ B, A
A⇒ B, B → A

(→r)

⇒ A→ B, B → A
(→r)

⇒ (A→ B) ∨ (B → A)
(∨r)

The basic sequent has a line over it to emphasize that it is provable.
This example is typical of the sequent calculus: start with the desired theorem and work upward. Notice that inference

rules still have the same logical meaning, namely that the premises (above the line) imply the conclusion (below the line).
Instead of matching a rule’s premises with facts that we know, we match its conclusion with the formula we want to prove.
That way, the form of the desired theorem controls the proof search.

Here is part of a proof of the distributive law A ∨ (B ∧ C) ' (A ∨ B) ∧ (A ∨ C):

A⇒ A, B
B,C⇒ A, B

B ∧ C⇒ A, B
(∧l)

A ∨ (B ∧ C)⇒ A, B
(∨l)

A ∨ (B ∧ C)⇒ A ∨ B
(∨r)

similar
A ∨ (B ∧ C)⇒ (A ∨ B) ∧ (A ∨ C)

(∧r)

The second, omitted proof tree proves A ∨ (B ∧ C)⇒ A ∨ C similarly.
Finally, here is a failed proof of the invalid formula A ∨ B → B ∨ C .

A⇒ B,C B⇒ B,C
A ∨ B⇒ B,C

(∨l)

A ∨ B⇒ B ∨ C
(∨r)

⇒ A ∨ B → B ∨ C
(→r)

The sequent A⇒ B,C has no line over it because it is not valid! The interpretation A 7→ t, B 7→ f, C 7→ f falsifies it.
We have already seen this as Example 1 (page 7).

3.5 Further Sequent Calculus Rules
Structural rules concern sequents in general rather than particular connectives. They are little used in this course, because
they are not useful for proof procedures. However, a brief mention is essential in any introduction to the sequent calculus.

The weakening rules allow additional formulæ to be inserted on the left or right side. Obviously, if 0⇒1 holds then
the sequent continues to hold after further assumptions or goals are added:

0⇒1

A, 0⇒1
(weaken:l)

0⇒1

0⇒1, A
(weaken:r)

Exchange rules allow formulæ in a sequent to be re-ordered. We do not need them because our sequents are sets rather
than lists. Contraction rules allow formulæ to be used more than once:

A, A, 0⇒1

A, 0⇒1
(contract :l)

0⇒1, A, A
0⇒1, A

(contract :r)

Because the sets {A} and {A, A} are identical, we don’t need contraction rules either. Moreover, it turns out that we almost
never need to use a formula more than once. Exceptions are ∀x A (when it appears on the left) and ∃x A (when it appears
on the right).

The cut rule allows the use of lemmas. Some formula A is proved in the first premise, and assumed in the second
premise. A famous result, the cut-elimination theorem, states that this rule is not required. All uses of it can be removed
from any proof, but the proof could get exponentially larger.

0⇒1, A A, 0⇒1

0⇒1
(cut)

This special case of cut may be easier to understand. We prove lemma A from 0 and use A and 0 together to reach the
conclusion B.

0⇒ B, A A, 0⇒ B
0⇒ B

Since 0 contains as much information as A, it is natural to expect that such lemmas should not be necessary, but the
cut-elimination theorem is hard to prove.

Note On the course website,4 there is a simple theorem prover called folderol.ML. It can prove easy first-order
theorems using the sequent calculus, and outputs a summary of each proof. The file begins with very basic instructions
describing how to run it. The file testsuite.ML contains further instructions and numerous examples.

Exercise 6 Prove the following sequents:

¬¬A⇒ A

A ∧ B⇒ B ∧ A

A ∨ B⇒ B ∨ A

Exercise 7 Prove the following sequents:

(A ∧ B) ∧ C⇒ A ∧ (B ∧ C)

(A ∨ B) ∧ (A ∨ C)⇒ A ∨ (B ∧ C)

¬(A ∨ B)⇒¬A ∧ ¬B

4 First-order Logic
First-order logic (FOL) extends propositional logic to allow reasoning about the members (such as numbers) of some
non-empty universe. It uses the quantifiers ∀ (‘for all’) and ∃ (‘there exists’). First-order logic has variables ranging over
‘individuals,’ but not over functions or predicates; such variables are found in second- or higher-order logic.

4.1 Syntax of first-order Logic
Terms stand for individuals while formulæ stand for truth values. We assume there is an infinite supply of variables x , y,
. . . that range over individuals. A first-order language specifies symbols that may appear in terms and formulæ. A first-
order language L contains, for all n ≥ 0, a set of n-place function symbols f , g, . . . and n-place predicate symbols P , Q,
. . .. These sets may be empty, finite, or infinite.

Constant symbols a, b, . . . are simply 0-place function symbols. Intuitively, they are names for fixed elements of the
universe. It is not required to have a constant for each element; conversely, two constants are allowed to have the same
meaning.

Predicate symbols are also called relation symbols. Prolog programmers refer to function symbols as functors.

Definition 3 The terms t , u, . . . of a first-order language are defined recursively as follows:

• A variable is a term.

• A constant symbol is a term.

• If t1, . . ., tn are terms and f is an n-place function symbol then f (t1, . . . , tn) is a term.

Definition 4 The formulæ A, B, . . . of a first-order language are defined recursively as follows:

• If t1, . . ., tn are terms and P is an n-place predicate symbol then P(t1, . . . , tn) is a formula (called an atomic
formula).

• If A and B are formulæ then ¬A, A ∧ B, A ∨ B, A→ B, A↔ B are also formulæ.

• If x is a variable and A is a formula then ∀x A and ∃x A are also formulæ.

Brackets are used in the conventional way for grouping. Terms and formulæ are tree-like data structures, not strings.
The quantifiers ∀x A and ∃x A bind tighter than the binary connectives; thus ∀x A ∧ B is equivalent to (∀x A) ∧ B.

Frequently, you will see an alternative quantifier syntax, ∀x . A and ∃x . B, which binds more weakly than the binary
connectives: ∀x . A ∧ B is equivalent to ∀x (A ∧ B). The dot is the give-away; look out for it!

Nested quantifications such as ∀x ∀y A are abbreviated to ∀xy A.

Example 4 A language for arithmetic might have the constant symbols 0, 1, 2, . . ., and function symbols +, −, ×,
/, and the predicate symbols =, <, >, We informally may adopt an infix notation for the function and predicate
symbols. Terms include 0 and (x + 3)− y; formulæ include y = 0 and x + y < y + z.

4http://www.cl.cam.ac.uk/users/lcp/papers/#Courses

12

4 FIRST-ORDER LOGIC 13

4.2 Examples of statements in first-order logic
Here are some sample formulæ with a rough English translation. English is easier to understand but is too ambiguous for
long derivations.

All professors are brilliant:
∀x (professor(x)→ brilliant(x))

The income of any banker is greater than the income of any bedder:

∀xy (banker(x) ∧ bedder(y)→ income(x) > income(y))

Note that > is a 2-place relation symbol. The infix notation is simply a convention.
Every student has a supervisor:

∀x (student(x)→ ∃y supervises(y, x))

This does not preclude a student having several supervisors.
Every student’s tutor is a member of the student’s College:

∀xy (student(x) ∧ college(y) ∧member(x, y)→ member(tutor(x), y))

The use of a function ‘tutor’ incorporates the assumption that every student has exactly one tutor.
A mathematical example: there exist infinitely many Pythagorean triples:

∀n ∃i jk (i > n ∧ i2 + j2 = k2)

Here the superscript 2 refers to the squaring function. Equality (=) is just another relation symbol (satisfying suitable
axioms) but there are many special techniques for it.

First-order logic assumes a non-empty domain: thus ∀x P(x) implies ∃x P(x). If the domain could be empty, even
∃x t could fail to hold. Note also that ∀x ∃y y2 = x is true if the domain is the complex numbers, and is false if the domain
is the integers or reals. We determine properties of the domain by asserting the set of statements it must satisfy.

There are many other forms of logic. Many-sorted first-order logic assigns types to each variable, function symbol
and predicate symbol, with straightforward type checking; types are called sorts and denote non-empty domains. Second-
order logic allows quantification over functions and predicates. It can express mathematical induction by

∀P [P(0) ∧ ∀k (P(k)→ P(k + 1))→ ∀n P(n)],

using quantification over the unary predicate P . In second-order logic, these functions and predicates must themselves
be first-order, taking no functions or predicates as arguments. Higher-order logic allows unrestricted quantification over
functions and predicates of any order. The list of logics could be continued indefinitely.

4.3 Formal semantics of first-order logic
Let us rigorously define the meaning of formulæ. An interpretation of a language maps its function symbols to actual
functions, and its relation symbols to actual relations. For example, the predicate symbol ‘student’ could be mapped to
the set of all students currently enrolled at the University.

Definition 5 Let L be a first-order language. An interpretation I of L is a pair (D, I). Here D is a nonempty set, the
domain or universe. The operation I maps symbols to individuals, functions or sets:

• if c is a constant symbol (of L) then I [c] ∈ D

• if f is an n-place function symbol then I [f] ∈ Dn → D (which means I [f] is an n-place function on D)

• if P is an n-place relation symbol then I [P] ∈ Dn → {t, f} (equivalently, I [P] ⊆ Dn , which means I [P] is
an n-place relation on D)

It is natural to regard predicates as truth-valued functions. In first-order logic, relations and functions are distinct
concepts because the truth values t and f may not belong to the domain D. (One of the benefits of higher-order logic is
that relations are a special case of functions.)

An interpretation does not say anything about variables. There are various ways of talking about the values of variables
under an interpretation. One way is to ‘invent’ a constant symbol for every element of D. More natural is to represent the
values of variables using an environment, known as a valuation.

Definition 6 A valuation V of L over D is a function from the variables of L into D. Write IV [t] for the value of t with
respect to I and V , defined by

IV [x] def= V (x) if x is a variable

IV [c] def= I [c]

IV [f (t1, . . . , tn)]
def= I [f](IV [t1], . . . , IV [tn])

Write V {a/x} for the valuation that maps x to a and is otherwise the same as V . Typically, we modify a valuation one
variable at a time. This is a semantic analogue of substitution for the variable x .

4.4 What is truth?
We now can define truth itself. (First-order truth, that is!) This formidable definition formalizes the intuitive meanings
of the connectives. Thus it almost looks like a tautology. It effectively specifies each connective by English descriptions.
Valuations help specify the meanings of quantifiers. Alfred Tarski first defined truth in this manner.

Definition 7 Let A be a formula. Then for an interpretation I = (D, I) write |HI,V A to mean ‘A is true in I under V .’
This is defined by cases on the construction of the formula A:

|HI,V P(t1, . . . , tn) holds if I [P](IV [t1], . . . , IV [tn]) = t (that is, the actual relation I [P] is true for the
given values)

|HI,V t = u if IV [t] equals IV [u] (if = is a predicate symbol of the language, then we insist that it really
denotes equality)

|HI,V ¬B if |HI,V B does not hold

|HI,V B ∧ C if |HI,V B and |HI,V C

|HI,V B ∨ C if |HI,V B or |HI,V C

|HI,V B → C if |HI,V B does not hold or |HI,V C

|HI,V B ↔ C if |HI,V B and |HI,V C both hold or neither hold

|HI,V ∃x B if there exists m ∈ D such that |HI,V {m/x} B holds (that is, B holds when x has the value m)

|HI,V ∀x B if for all m ∈ D we have that |HI,V {m/x} B holds

The cases for ∧, ∨,→ and↔ follow the propositional truth tables.
Write |HI A provided |HI,V A for all V . Clearly, if A is closed (contains no free variables) then its truth is independent

of the valuation.
The definitions of valid, satisfiable, etc. carry over almost verbatim from Sect. 2.2.

Definition 8 Let A be a formula having no free variables.

• An interpretation I satisfies a formula if |HI A holds.

• A set S of formulæ is valid if every interpretation of S satisfies every formula in S.

• A set S of formulæ is satisfiable (or consistent) if there is some interpretation of S that satisfies every formula in S.

• A set S of formulæ is unsatisfiable (or inconsistent) if it is not satisfiable. (Each interpretation falsifies some formula
of S.)

• A model of a set S of formulæ is an interpretation that satisfies every formula in S. We also consider models that
satisfy a single formula.

Unlike in propositional logic, models can be infinite and there can be an infinite number of models. There is no chance
of proving validity by checking all models. We must rely on proof.

14

4 FIRST-ORDER LOGIC 15

Example 5 The formula P(a) ∧ ¬P(b) is satisfiable. Consider the interpretation with D = {0, 1} and I defined by

I [a] = 0
I [b] = 1

I [P] = {0}
On the other hand, ∀xy (P(x) ∧ ¬P(y)) is unsatisfiable because it requires P(x) to be both true and false for all x . Also
unsatisfiable is P(x) ∧ ¬P(y): its free variables are taken to be universally quantified, so it is equivalent to ∀xy (P(x) ∧
¬P(y)).

The formula (∃x P(x)) → P(c) holds in the interpretation (D, I) where D = {0, 1}, I [P] = {0}, and I [c] = 0.
(Thus P(x) means ‘x equals 0’ and c denotes 0.) If we modify this interpretation by making I [c] = 1 then the formula
no longer holds. Thus it is satisfiable but not valid.

The formula (∀x P(x)) → (∀x P(f (x))) is valid, for let (D, I) be an interpretation. If ∀x P(x) holds in this inter-
pretation then P(x) holds for all x ∈ D, thus I [P] = D. The symbol f denotes some actual function I [f] ∈ D → D.
Since I [P] = D and I [f](x) ∈ D for all x ∈ D, formula ∀x P(f (x)) holds.

The formula ∀xy x = y is satisfiable but not valid; it is true in every domain that consists of exactly one element. (The
empty domain is not allowed in first-order logic.)

Example 6 Let L be the first-order language consisting of the constant 0 and the (infix) 2-place function symbol +.
An interpretation I of this language is any non-empty domain D together with values I [0] and I [+], with I [0] ∈ D and
I [+] ∈ D × D→ D. In the language L we may express the following axioms:

x + 0 = x

0+ x = x

(x + y)+ z = x + (y + z)

(Remember, free variables in effect are universally quantified, by the definition of |HI A.) One model of these axioms is
the set of natural numbers, provided we give 0 and + the obvious meanings. But the axioms have many other models.5

Below, let A be some set.

1. The set of all strings (in ML say) letting 0 denote the empty string and + string concatenation.

2. The set of all subsets of A, letting 0 denote the empty set and + union.

3. The set of functions in A→ A, letting 0 denote the identity function and + composition.

Exercise 8 To test your understanding of quantifiers, consider the following formulæ: everybody loves somebody vs
there is somebody that everybody loves:

∀x ∃y loves(x, y) (1)
∃y ∀x loves(x, y) (2)

Does (1) imply (2)? Does (2) imply (1)? Consider both the informal meaning and the formal semantics defined above.

Exercise 9 Describe a formula that is true in precisely those domains that contain at least m elements. (We say it
characterises those domains.) Describe a formula that characterises the domains containing at most m elements.

Exercise 10 Let ≈ be a 2-place predicate symbol, which we write using infix notation as x ≈ y instead of ≈ (x, y).
Consider the axioms

∀x x ≈ x (1)
∀xy (x ≈ y → y ≈ x) (2)
∀xyz (x ≈ y ∧ y ≈ z→ x ≈ z) (3)

Let the universe be the set of natural numbers, N = {0, 1, 2, . . .}. Which axioms hold if ≈ [] is

• the empty relation, ∅?
• the universal relation, {(x, y) | x, y ∈ N }?
• the equality relation, {(x, x) | x ∈ N }?
• the relation {(x, y) | x, y ∈ N ∧ x + y is even}?
• the relation {(x, y) | x, y ∈ N ∧ x + y = 100}?
• the relation {(x, y) | x, y ∈ N ∧ x ≡ y (mod 16)}?

5Models of these axioms are called monoids.

Exercise 11 Taking = and R as 2-place relation symbols, consider the following axioms:

∀x ¬R(x, x) (1)
∀xy ¬(R(x, y) ∧ R(y, x)) (2)
∀xyz (R(x, y) ∧ R(y, z)→ R(x, z)) (3)
∀xy (R(x, y) ∨ (x = y) ∨ R(y, x)) (4)
∀xz (R(x, z)→ ∃y (R(x, y) ∧ R(y, z))) (5)

Exhibit two interpretations that satisfy axioms 1–5. Exhibit two interpretations that satisfy axioms 1–4 and falsify axiom 5.
Exhibit two interpretations that satisfy axioms 1–3 and falsify axioms 4 and 5. Consider only interpretations that make
= denote the equality relation. (This exercise asks whether you can make the connection between the axioms and typical
mathematical objects satisfying them. A start is to say that R(x, y) means x < y, but on what domain?)

5 Formal Reasoning in First-Order Logic
This section reviews some syntactic notations: free variables versus bound variables and substitution. It lists some of the
main equivalences for quantifiers. Finally it describes and illustrates the quantifier rules of the sequent calculus.

5.1 Free vs bound variables
The notion of bound variable occurs widely in mathematics: consider the role of x in

∫
f (x)dx and the role of k in

lim∞k=0 ak . Similar concepts occur in the λ-calculus. In first-order logic, variables are bound by quantifiers (rather than
by λ).

Definition 9 An occurrence of a variable x in a formula is bound if it is contained within a subformula of the form ∀x A
or ∃x A.

An occurrence of the form ∀x or ∃x is called the binding occurrence of x .
An occurrence of a variable is free if it is not bound.
A closed formula is one that contains no free variables.
A ground term, formula, etc. is one that contains no variables at all.

In ∀x ∃y R(x, y, z), the variables x and y are bound while z is free.
In (∃x P(x))∧Q(x), the occurrence of x just after P is bound, while that just after Q is free. Thus x has both free and

bound occurrences. Such situations can be avoided by renaming bound variables, for example obtaining (∃y P(y))∧Q(x).
Renaming can also ensure that all bound variables in a formula are distinct. The renaming of bound variables is sometimes
called α-conversion.

Example 7 Renaming bound variables in a formula preserves its meaning, provided no name clashes are introduced.
Consider the following renamings of ∀x ∃y R(x, y, z):

∀u ∃y R(u, y, z) OK
∀x ∃w R(x, w, z) OK
∀u ∃y R(x, y, z) not done consistently
∀y ∃y R(y, y, z) clash with bound variable y
∀z ∃y R(z, y, z) clash with free variable z

5.2 Substitution
If A is a formula, t is a term, and x is a variable, then A[t/x] is the formula obtained by substituting t for x throughout A.
The substitution only affects the free occurrences of x . Pronounce A[t/x] as ‘A with t for x .’ We also use u[t/x] for
substitution in a term u and C[t/x] for substitution in a clause C (clauses are described in Sect. 6 below).

Substitution is only sensible provided all bound variables in A are distinct from all variables in t . This can be achieved
by renaming the bound variables in A. For example, if ∀x A then A[t/x] is true for all t ; the formula holds when we drop
the ∀x and replace x by any term. But ∀x ∃y x = y is true in all models, while ∃y y+1 = y is not. We may not replace x
by y + 1, since the free occurrence of y in y + 1 gets captured by the ∃y . First we must rename the bound y, getting say
∀x ∃z x = z; now we may replace x by y + 1, getting ∃z y + 1 = z. This formula is true in all models, regardless of the
meaning of the symbols + and 1.

16

5 FORMAL REASONING IN FIRST-ORDER LOGIC 17

5.3 Equivalences involving quantifiers
These equivalences are useful for transforming and simplifying quantified formulæ. Later, we shall use them to convert
formulæ into prenex normal form, where all quantifiers are at the front.

pulling quantifiers through negation
(infinitary de Morgan laws)

¬(∀x A) ' ∃x ¬A

¬(∃x A) ' ∀x ¬A

pulling quantifiers through conjunction and disjunction
(provided x is not free in B)

(∀x A) ∧ B ' ∀x (A ∧ B)

(∀x A) ∨ B ' ∀x (A ∨ B)

(∃x A) ∧ B ' ∃x (A ∧ B)

(∃x A) ∨ B ' ∃x (A ∨ B)

distributive laws

(∀x A) ∧ (∀x B) ' ∀x (A ∧ B)

(∃x A) ∨ (∃x B) ' ∃x (A ∨ B)

implication: A→ B as ¬A ∨ B
(provided x is not free in B)

(∀x A)→ B ' ∃x (A→ B)

(∃x A)→ B ' ∀x (A→ B)

expansion: ∀ and ∃ as infinitary conjunction and disjunction

∀x A ' (∀x A) ∧ A[t/x]
∃x A ' (∃x A) ∨ A[t/x]

With the help of the associative and commutative laws for ∧ and ∨, a quantifier can be pulled out of any conjunct or
disjunct.

The distributive laws differ from pulling: they replace two quantifiers by one. (Note that the quantified variables will
probably have different names, so one of them will have be renamed.) Depending upon the situation, using distributive
laws can be either better or worse than pulling. There are no distributive laws for ∀ over ∨ and ∃ over ∧. If in doubt, do
not use distributive laws!

Two substitution laws do not involve quantifiers explicitly, but let us use x = t to replace x by t in a restricted context:

(x = t ∧ A) ' (x = t ∧ A[t/x])
(x = t → A) ' (x = t → A[t/x])

Many first-order formulæ have easy proofs using equivalences:

∃x (x = a ∧ P(x)) ' ∃x (x = a ∧ P(a))

' ∃x (x = a) ∧ P(a)

' P(a)

The following formula is quite hard to prove using the sequent calculus, but using equivalences it is simple:

∃z (P(z)→ P(a) ∧ P(b)) ' ∀z P(z)→ P(a) ∧ P(b)

' ∀z P(z) ∧ P(a) ∧ P(b)→ P(a) ∧ P(b)

' t

If you are asked to prove a formula, but no particular formal system (such as the sequent calculus) has been specified,
then you may use any convincing argument. Using equivalences as above can shorten the proof considerably. Also, take
advantage of symmetries; in proving A ∧ B ' B ∧ A, it obviously suffices to prove A ∧ B |H B ∧ A.

Exercise 12 Verify these equivalences by appealing to the truth definition for first-order logic:

¬(∃x P(x)) ' ∀x ¬P(x)

(∀x P(x)) ∧ R ' ∀x (P(x) ∧ R)

(∃x P(x)) ∨ (∃x Q(x)) ' ∃x (P(x) ∨ Q(x))

Exercise 13 Explain why the following are not equivalences. Are they implications? In which direction?

(∀x A) ∨ (∀x B)
?' ∀x (A ∨ B)

(∃x A) ∧ (∃x B)
?' ∃x (A ∧ B)

5.4 Sequent rules for the universal quantifier
Here are the sequent rules for ∀:

A[t/x], 0⇒1

∀x A, 0⇒1
(∀l) 0⇒1, A

0⇒1,∀x A
(∀r)

Rule (∀r) holds provided x is not free in the conclusion! Note that if x were indeed free somewhere in 0 or 1, then
the sequent would be assuming properties of x . This restriction ensures that x is a fresh variable, which therefore can
denote an arbitrary value. Contrast the proof of the theorem ∀x [P(x) → P(x)] with an attempted proof of the invalid
formula P(x) → ∀x P(x). Since x is a bound variable, you may rename it to get around the restriction, and obviously
P(x)→ ∀y P(y) should have no proof.

Rule (∀l) lets us create many instances of ∀x A. The exercises below include some examples that require more than
one copy of the quantified formula. Since we regard sequents as consisting of sets, we may regard them as containing
unlimited quantities of each of their elements. But except for the two rules (∀l) and (∃r) (see below), we only need one
copy of each formula.

Example 8 In this elementary proof, rule (∀l) is applied to instantiate the bound variable x with the term f (y). The
application of (∀r) is permitted because y is not free in the conclusion (which, in fact, is closed).

P(f (y))⇒ P(f (y))
∀x P(x)⇒ P(f (y))

(∀l)

∀x P(x)⇒∀y P(f (y))
(∀r)

Example 9 This proof concerns part of the law for pulling universal quantifiers out of conjunctions. Rule (∀l) just
discards the quantifier, since it instantiates the bound variable x with the free variable x .

P(x), Q⇒ P(x)
P(x) ∧ Q⇒ P(x)

(∧l)

∀x (P(x) ∧ Q)⇒ P(x)
(∀l)

∀x (P(x) ∧ Q)⇒∀x P(x)
(∀r)

Example 10 The sequent ∀x (A→ B)⇒ A→ ∀x B is valid provided x is not free in A. That condition is required for
the application of (∀r) below:

A⇒ A, B A, B⇒ B
A, A→ B⇒ B

(→l)

A, ∀x (A→ B)⇒ B
(∀l)

A, ∀x (A→ B)⇒∀x B
(∀r)

∀x (A→ B)⇒ A→ ∀x B
(→r)

What if the condition fails to hold? Let A and B both be the formula x = 0. Then ∀x (x = 0 → x = 0) is valid, but
x = 0→ ∀x (x = 0) is not valid (it fails under any valuation that sets x to 0).

Note. The proof on the slides of ∀x (P → Q(x))⇒ P → ∀y Q(y) is essentially the same as the proof above. The
version on the slides uses different variable names so that you can see how a quantified formula like ∀x (P → Q(x)) is
instantiated to produce P → Q(y). The proof given above is also valid; because the variable names are identical, the
instantiation is trivial and ∀x (A → B) simply produces A → B. Here B may be any formula possibly containing the
variable x ; the proof on the slides uses the specific formula Q(x).

Exercise 14 Prove ¬∀y [(Q(a) ∨ Q(b)) ∧ ¬Q(y)] using equivalences, and then formally using the sequent calculus.

18

6 CLAUSE METHODS FOR PROPOSITIONAL LOGIC 19

Exercise 15 Prove the following using the sequent calculus. Note that the last one requires two uses of (∀l)!

(∀x P(x)) ∧ (∀x Q(x))⇒∀y (P(y) ∧ Q(y))

∀x (P(x) ∧ Q(x))⇒ (∀y P(y)) ∧ (∀y Q(y))

∀x [P(x)→ P(f (x))]⇒∀x [P(x)→ P(f (f (x)))]

Exercise 16 Prove the equivalence ∀x [P(x) ∨ P(a)] ' P(a).

5.5 Sequent rules for the existential quantifier
Here are the sequent rules for ∃:

A, 0⇒1

∃x A, 0⇒1
(∃l) 0⇒1, A[t/x]

0⇒1, ∃x A
(∃r)

Rule (∃l) holds provided x is not free in the conclusion—that is, not free in the formulæ of 0 or 1. These rules are strictly
dual to the ∀-rules; any example involving ∀ can easily be transformed into one involving ∃ and having a proof of precisely
the same form. For example, the sequent ∀x P(x)⇒∀y P(f (y)) can be transformed into ∃y P(f (y))⇒∃x P(x).

If you have a choice, apply rules that have provisos — namely (∃l) and (∀r) — before applying the other quantifier rules
as you work upwards. The other rules introduce terms and therefore new variables to the sequent, which could prevent
you from applying (∃l) and (∀r) later.

Example 11 Here is half of the ∃ distributive law. Rule (∃r) just discards the quantifier, instantiating the bound variable x
with the free variable x . In the general case, it can instantiate the bound variable with any term.

P(x)⇒ P(x), Q(x)
P(x)⇒ P(x) ∨ Q(x)

(∨r)

P(x)⇒∃x (P(x) ∨ Q(x))
(∃r)

∃x P(x)⇒∃x (P(x) ∨ Q(x))
(∃l) similar

∃x Q(x)⇒∃x (P(x) ∨ Q(x))
(∃l)

∃x P(x) ∨ ∃x Q(x)⇒∃x (P(x) ∨ Q(x))
(∨l)

The restriction on the sequent rules, namely “x is not free in the conclusion,” can be confusing when you are building
a sequent proof working backwards. One simple way to avoid problems is always to rename a quantified variable if
the same variable appears free in the sequent. For example, when you see the sequent P(x), ∃x Q(x)⇒1, replace it
immediately by P(x), ∃y Q(y)⇒1.

Example 12 The sequent ∃x P(x) ∧ ∃x Q(x)⇒∃x (P(x) ∧ Q(x)) is not valid: the value of x that makes P(x) true
could differ from the value of x that makes Q(x) true. This comes out clearly in the proof attempt, where we are not
allowed to apply (∃l) twice with the same variable name, x . As soon as we are forced to rename the second variable to y,
it becomes obvious that the two values could differ. Turning to the right side of the sequent, no application of (∃r) can lead
to a proof. We have nothing to instantiate x with:

P(x), Q(y)⇒ P(x) ∧ Q(x)
P(x), Q(y)⇒∃x (P(x) ∧ Q(x))

(∃r)

P(x), ∃x Q(x)⇒∃x (P(x) ∧ Q(x))
(∃l)

∃x P(x), ∃x Q(x)⇒∃x (P(x) ∧ Q(x))
(∃l)

∃x P(x) ∧ ∃x Q(x)⇒∃x (P(x) ∧ Q(x))
(∧l)

Exercise 17 Prove the following using the sequent calculus. The last one is difficult and requires two uses of (∃r).

P(a) ∨ ∃x P(f (x))⇒∃y P(y)

∃x (P(x) ∨ Q(x))⇒ (∃y P(y)) ∨ (∃y Q(y))

⇒∃z (P(z)→ P(a) ∧ P(b))

6 Clause Methods for Propositional Logic
This section discusses two proof methods in the context of propositional logic.

• The Davis-Putnam-Logeman-Loveland procedure dates from 1960, and its application to first-order logic has been
regarded as obsolete for decades. However, the procedure has been rediscovered and high-performance implemen-
tations built. In the 1990s, these “SAT solvers” were applied to obscure problems in combinatorial mathematics,
such as the existence of Latin squares. Recently, there has been an explosion of serious applications.

• Resolution is a powerful proof method for first-order logic. We first consider ground resolution, which works for
propositional logic. Though of little practical use, ground resolution introduces some of the main concepts. The
resolution method is not natural for hand proofs, but it is easy to automate: it has only one inference rule and no
axioms.

Both methods require the original formula to be negated, then converted into CNF. Recall that CNF is a conjunction
of disjunction of literals. A disjunction of literals is called a clause, and written as a set of literals. Converting the negated
formula to CNF yields a set of such clauses. Both methods seek a contradiction in the set of clauses; if the clauses are
unsatisfiable, then so is the negated formula, and therefore the original formula is valid.

To refute a set of clauses is to prove that they are inconsistent. The proof is called a refutation.

6.1 Clausal notation
Definition 10 A clause is a disjunction of literals

¬K1 ∨ · · · ∨ ¬Km ∨ L1 ∨ · · · ∨ Ln,

written as a set
{¬K1, . . . ,¬Km, L1, . . . , Ln}.

A clause is true (in some interpretation) just when one of the literals is true. Thus the empty clause, namely {},
indicates contradiction. It is normally written �.

Since ∨ is commutative, associative, and idempotent, the order of literals in a clause does not matter. The above clause
is logically equivalent to the implication

(K1 ∧ · · · ∧ Km)→ (L1 ∨ · · · ∨ Ln)

Kowalski notation abbreviates this to
K1, · · · , Km → L1, · · · , Ln

and when n = 1 we have the familiar Prolog clauses, also known as definite or Horn clauses.

6.2 The Davis-Putnam-Logeman-Loveland Method
The DPLL method is based upon some obvious identities:

t ∧ A ' A

A ∧ (A ∨ B) ' A

A ∧ (¬A ∨ B) ' A ∧ B

A ' (A ∧ B) ∨ (A ∧ ¬B)

Here is an outline of the algorithm:

1. Delete tautological clauses: {P,¬P, . . .}
2. For each unit clause {L},

• delete all clauses containing L

• delete ¬L from all clauses

3. Delete all clauses containing pure literals. A literal L is pure if there is no clause containing ¬L .

4. If the empty clause is generated, then we have a refutation. Conversely, if all clauses are deleted, then the original
clause set is satisfiable.

5. Perform a case split on some literal L , and recursively apply the algorithm to the L and ¬L subcases. The clause
set is satisfiable if and only if one of the subcases is satisfiable.

This is a decision procedure. It must terminate because each case split eliminates a propositional symbol. Modern
implementations such as zChaff add various heuristics. They also rely on carefully designed data structures that improve
performance by reducing the number of cache misses, for example.

Historical note. Davis and Putnam introduced the first version of this procedure. Logeman and Loveland introduced
the splitting rule, and their version has completely superseded the original Davis-Putnam method. When people refer to
the Davis-Putnam method, they are almost certainly referring to DPLL rather than to the original Davis-Putnam method.

Tautological clauses are deleted because they are always true, and thus cannot participate in a contradiction. A pure
literal can always be assumed to be true; deleting the clauses containing it can be regarded as a degenerate case split, in
which there is only one case.

20

6 CLAUSE METHODS FOR PROPOSITIONAL LOGIC 21

Example 13 The Davis-Putnam method can show that a formula is not a theorem. Consider the formula P∨Q → Q∨R.
After negating this and converting to CNF, we obtain the three clauses {P, Q}, {¬Q} and {¬R}. The DPLL method
terminates rapidly:

{P, Q} {¬Q} {¬R} initial clauses
{P} {¬R} unit ¬Q

{¬R} unit P (also pure)
unit ¬R (also pure)

All clauses have been deleted, so execution terminates. The clauses are satisfiable by P 7→ t, Q 7→ f, R 7→ f. This
interpretation falsifies P ∨ Q → Q ∨ R.

Example 14 Here is an example of a case split. Consider the clause set

{¬Q, R} {¬R, P} {¬R, Q} {¬P, Q, R} {P, Q} {¬P,¬Q}.
There are no unit clauses or pure literals, so we arbitrarily select P for case splitting:

{¬Q, R} {¬R, Q} {Q, R} {¬Q} if P is true
{¬R} {R} unit ¬Q
{} unit R

{¬Q, R} {¬R} {¬R, Q} {Q} if P is false
{¬Q} {Q} unit ¬R

{} unit ¬Q

The empty clause is written {} above to make the pattern of execution clearer; traditionally, however, the empty clause
is written �. When we encounter a contradiction, we abandon the current case and consider any remaining cases. If all
cases are contradictory, then the original set of clauses is inconsistent. If they arose from some negated formula ¬A, then
A is a theorem.

Exercise 18 Apply the DPLL procedure to the clause set

{P, Q} {¬P, Q} {P,¬Q} {¬P,¬Q}.

6.3 Introduction to resolution
Resolution is essentially the following rule of inference:

B ∨ A ¬B ∨ C
A ∨ C

To convince yourself that this rule is sound, note that B must be either false or true.

• if B is false, then B ∨ A is equivalent to A, so we get A ∨ C

• if B is true, then ¬B ∨ C is equivalent to C , so we get A ∨ C

You might also understand this rule via transitivity of→
¬A→ B B → C
¬A→ C

A special case of resolution is when A and C are empty:

B ¬B
f

This detects contradictions.
Resolution works with disjunctions. The aim is to prove a contradiction, refuting a formula. Here is the method for

proving a formula A:

1. Translate ¬A into CNF as A1 ∧ · · · ∧ Am .

2. Break this into a set of clauses: A1, . . ., Am .

3. Repeatedly apply the resolution rule to the clauses, producing new clauses. These are all consequences of ¬A.

4. If a contradiction is reached, we have refuted ¬A.

In set notation the resolution rule is
{B, A1, . . . , Am} {¬B,C1, . . . ,Cn}

{A1, . . . , Am,C1, . . . ,Cn}
Resolution takes two clauses and creates a new one. A collection of clauses is maintained; the two clauses are chosen
from the collection according to some strategy, and the new clause is added to it. If m = 0 or n = 0 then the new clause
will be smaller than one of the parent clauses; if m = n = 0 then the new clause will be empty. If the empty clause is
generated, resolution terminates successfully: we have found a contradiction!

6.4 Examples of ground resolution
Let us try to prove

P ∧ Q → Q ∧ P

Convert its negation to CNF:
¬(P ∧ Q → Q ∧ P)

We can combine steps 1 (eliminate→) and 2 (push negations in) using the law ¬(A→ B) ' A ∧ ¬B:

(P ∧ Q) ∧ ¬(Q ∧ P)

(P ∧ Q) ∧ (¬Q ∨ ¬P)

Step 3, push disjunctions in, has nothing to do. The clauses are

{P} {Q} {¬Q,¬P}
We resolve {P} and {¬Q,¬P} as follows:

{P} {¬P,¬Q}
{¬Q}

The resolvent is {¬Q}. Resolving {Q} with this new clause gives

{Q} {¬Q}
{}

The resolvent is the empty clause, properly written as �. We have proved P ∧ Q → Q ∧ P by assuming its negation and
deriving a contradiction.

It is nicer to draw a tree like this:

{P} {¬Q, ¬P}

{Q} {¬Q}

�

Another example is (P ↔ Q) ↔ (Q ↔ P). The steps of the conversion to clauses is left as an exercise; remember
to negate the formula first! The final clauses are

{P, Q} {¬P, Q} {P,¬Q} {¬P,¬Q}
A tree for the resolution proof is

{P, Q} {¬P, Q} {P, ¬Q} {¬P, ¬Q}

{Q} {¬Q}

�

���� �

Note that the tree contains {Q} and {¬Q} rather than {Q, Q} and {¬Q,¬Q}. If we forget to suppress repeated literals,
we can get stuck. Resolving {Q, Q} and {¬Q,¬Q} (keeping repetitions) gives {Q,¬Q}, a tautology. Tautologies are
useless. Resolving this one with the other clauses leads nowhere. Try it.

These examples could mislead. Must a proof use each clause exactly once? No! A clause may be used repeatedly,
and many problems contain redundant clauses. Here is an example:

{¬P, R} {P} {¬Q, R} {¬R}

{R}

�

(unused)

Redundant clauses can make the theorem-prover flounder; this is a challenge facing the field.

22

6 CLAUSE METHODS FOR PROPOSITIONAL LOGIC 23

Exercise 19 Prove (A→ B ∨ C)→ [(A→ B) ∨ (A→ C)] using resolution.

6.5 A proof using a set of assumptions
In this example we assume

H → M ∨ N M → K ∧ P N → L ∧ P

and prove H → P . It turns out that we can generate clauses separately from the assumptions (taken positively) and the
conclusion (negated).

If we call the assumptions A1, . . ., Ak and the conclusion B, then the desired theorem is

(A1 ∧ · · · ∧ Ak)→ B

Try negating this and converting to CNF. Using the law ¬(A→ B) ' A ∧ ¬B, the negation converts in one step to

A1 ∧ · · · ∧ Ak ∧ ¬B

Since the entire formula is a conjunction, we can separately convert A1, . . ., Ak , and ¬B to clause form and pool the
clauses together.

Assumption H → M ∨ N is essentially in clause form already:

{¬H,M, N }
Assumption M → K ∧ P becomes two clauses:

{¬M, K } {¬M, P}
Assumption N → L ∧ P also becomes two clauses:

{¬N , L} {¬N , P}
The negated conclusion, ¬(H → P), becomes two clauses:

{H} {¬P}
A tree for the resolution proof is

���� �

{H} {¬H, M, N }

{M, N } {¬M, P}

{N , P} {¬N , P}

{P} {¬P}

�

The clauses were not tried at random. Here are some points of proof strategy.

Ignoring irrelevance. Clauses {¬M, K } and {¬N , L} lead nowhere, so they were not tried. Resolving with one of
these would make a clause containing K or L . There is no way of getting rid of either literal, for no clause contains ¬K
or ¬L . So this is not a way to obtain the empty clause.

Working from the goal. In each resolution step, at least one clause involves the negated conclusion (possibly via earlier
resolution steps). We do not blindly derive facts from the assumptions — for, provided the assumptions are consistent,
any contradiction will have to involve the negated conclusion. This strategy is called set of support.

Linear resolution. The proof has a linear structure: each resolvent becomes the parent clause for the next resolution
step. Furthermore, the other parent clause is always one of the original set of clauses. This simple structure is very
efficient because only the last resolvent needs to be saved. It is similar to the execution strategy of Prolog.

Exercise 20 Explain in more detail the conversion of this example into clauses.

Exercise 21 Prove Peirce’s law, ((P → Q)→ P)→ P , using resolution.

Exercise 22 Prove (Q → R) ∧ (R→ P ∧ Q) ∧ (P → Q ∨ R)→ (P ↔ Q) using resolution.

6.6 Deletion of redundant clauses
During resolution, the number of clauses builds up dramatically; it is important to delete all redundant clauses.

Each new clause is a consequence of the existing clauses. A contradiction can only be derived if the original set of
clauses is inconsistent. A clause can be deleted if it does not affect the consistency of the set. Any tautology should be
deleted, since it is true in all interpretations.

Here is a subtler case. Consider the clauses

{S, R} {P,¬S} {P, Q, R}
Resolving the first two yields {P, R}. Since each clause is a disjunction, any interpretation that satisfies {P, R} also
satisfies {P, Q, R}. Thus {P, Q, R} cannot cause inconsistency, and should be deleted.

Put another way, P ∨ R implies P ∨ Q ∨ R. Anything that could be derived from P ∨ Q ∨ R could also be derived
from P ∨ R. This sort of deletion is called subsumption; clause {P, R} subsumes {P, Q, R}.

Exercise 23 Prove (P ∧ Q → R)∧ (P ∨ Q ∨ R)→ ((P ↔ Q)→ R) by resolution. Show the steps of converting the
formula into clauses.

Exercise 24 Using linear resolution, prove that (P ∧ Q)→ (R ∧ S) follows from P → R and R ∧ P → S.

Exercise 25 Convert these axioms to clauses, showing all steps. Then prove Winterstorm→ Miserable by resolution:

Rain ∧ (Windy ∨ ¬Umbrella)→ Wet Winterstorm→ Storm ∧ Cold
Wet ∧ Cold→ Miserable Storm→ Rain ∧Windy

7 Skolem Functions and Herbrand’s Theorem
Propositional logic is the basis of many proof methods for first-order logic. Eliminating the quantifiers from a first-order
formula reduces it nearly to propositional logic. This section describes how to do so.

7.1 Prenex normal form
The simplest method of eliminating quantifiers from a formula involves first moving them to the front.

Definition 11 A formula is in prenex normal form if and only if it has the form

Q1x1 Q2x2 · · · Qn xn︸ ︷︷ ︸
prefix

(A)︸︷︷︸
matrix

,

where A is quantifier-free, each Qi is either ∀ or ∃, and n ≥ 0. The string of quantifiers is called the prefix and A is called
the matrix.

Using the equivalences described above, any formula can be put into prenex normal form.

Examples of translation.

The affected subformulæ will be underlined.

Example 15 Start with
¬(∃x P(x)) ∧ (∃y Q(y) ∨ ∀z P(z))

Pull out the ∃x :
∀x ¬P(x) ∧ (∃y Q(y) ∨ ∀z P(z))

Pull out the ∃y :
∀x ¬P(x) ∧ (∃y (Q(y) ∨ ∀z P(z)))

Pull out the ∃y again:
∃y (∀x ¬P(x) ∧ (Q(y) ∨ ∀z P(z)))

Pull out the ∀z :
∃y (∀x ¬P(x) ∧ ∀z (Q(y) ∨ P(z)))

24

7 SKOLEM FUNCTIONS AND HERBRAND’S THEOREM 25

Pull out the ∀z again:
∃y ∀z (∀x ¬P(x) ∧ (Q(y) ∨ P(z)))

Pull out the ∀x :
∃y ∀z ∀x (¬P(x) ∧ (Q(y) ∨ P(z)))

Example 16 Start with
∀x P(x)→ ∃y ∀z R(y, z)

Remove the implication:
¬∀x P(x) ∨ ∃y ∀z R(y, z)

Pull out the ∀x :
∃x ¬P(x) ∨ ∃y ∀z R(y, z)

Distribute ∃ over ∨, renaming y to x :6

∃x (¬P(x) ∨ ∀z R(x, z))

Finally, pull out the ∀z :
∃x ∀z (¬P(x) ∨ R(x, z))

7.2 Removing quantifiers: Skolem form
Now that the quantifiers are at the front, let’s eliminate them! We replace every existentially bound variable by a Skolem
constant or function. This transformation does not preserve the meaning of a formula; it does preserve inconsistency,
which is the critical property, since resolution works by detecting contradictions.

How to Skolemize a formula

Suppose the formula is in prenex normal form.7 Starting from the left, if the formula contains an existential quantifier,
then it must have the form

∀x1 ∀x2 · · · ∀xk ∃y A

where A is a prenex formula, k ≥ 0, and ∃y is the leftmost existential quantifier. Choose a k-place function symbol f not
present in A (that is, a new function symbol). Delete the ∃y and replace all other occurrences of y by f (x1, x2, . . . , xk).
The result is another prenex formula:

∀x1 ∀x2 · · · ∀xk A[f (x1, x2, . . . , xk)/y]

If k = 0 above then the prenex formula is simply ∃y A, and other occurrences of y are replaced by a new constant
symbol c. The resulting formula is A[c/y].

The remaining existential quantifiers, if any, are in A. Repeatedly eliminate all of them, as above. The new symbols
are called Skolem functions (or Skolem constants).

After Skolemization the formula is just ∀x1 ∀x2 · · · ∀xk A where A is quantifier-free. The next step is to throw the
remaining quantifiers away. This step is correct because we are converting to clause form, and a clause implicitly includes
universal quantifiers over all of its free variables.

We are almost back to the propositional case, except the formula typically contains terms. We shall have to handle
constants, function symbols, and variables.

Examples of Skolemization

The affected expressions are underlined.

6Or simply pull out the quantifiers separately. Using the distributive law is marginally better here because it will result in only one Skolem constant
instead of two; see the following section.

7Prenex normal form makes things easier to follow. However, some proof methods merely require the formula to be in negation normal form. The
basic idea is the same: remove the outermost existential quantifier, replacing its bound variable by a Skolem term. Pushing quantifiers in as far as
possible, instead of pulling them out, yields a better set of clauses.

Example 17 Start with
∃x ∀y ∃z R(x, y, z)

Eliminate the ∃x using the Skolem constant a:
∀y ∃z R(a, y, z)

Eliminate the ∃z using the 1-place Skolem function f :

∀y R(a, y, f (y))

Finally, drop the ∀y and convert the remaining formula to a clause:

{R(a, y, f (y))}

Example 18 Start with
∃u ∀v ∃w ∃x ∀y ∃z ((P(h(u, v)) ∨ Q(w)) ∧ R(x, h(y, z)))

Eliminate the ∃u using the Skolem constant c:

∀v ∃w ∃x ∀y ∃z ((P(h(c, v)) ∨ Q(w)) ∧ R(x, h(y, z)))

Eliminate the ∃w using the 1-place Skolem function f :

∀v ∃x ∀y ∃z ((P(h(c, v)) ∨ Q(f (v))) ∧ R(x, h(y, z)))

Eliminate the ∃x using the 1-place Skolem function g:

∀v ∀y ∃z ((P(h(c, v)) ∨ Q(f (v))) ∧ R(g(v), h(y, z)))

Eliminate the ∃z using the 2-place Skolem function j (note that function h is already used!):

∀v ∀y ((P(h(c, v)) ∨ Q(f (v))) ∧ R(g(v), h(y, j (v, y))))

Finally drop the universal quantifiers, getting a set of clauses:

{P(h(c, v)), Q(f (v))} {R(g(v), h(y, j (v, y)))}
Recall that each clause is implicitly enclosed by universal quantifiers over each of its variables. In this example, it follows
that the occurrences of the variable v in the two clauses are independent of each other.

Correctness of Skolemization

Skolemization does not preserve meaning. The version presented above does not even preserve validity! For example,

∃x (P(a)→ P(x))

is valid. (Why? In any model, the required value of x exists — it is just the value of a in that model.)
Replacing the ∃x by the Skolem constant b gives

P(a)→ P(b)

This has a different meaning since it refers to a constant b not previously mentioned. And it is not valid! For example, it
is false in the interpretation where P(x) means ‘x equals 0’ and a denotes 0 and b denotes 1.

Our version of Skolemization does preserve consistency — and therefore inconsistency. Consider one Skolemization
step.

• The formula ∀x ∃y A is consistent iff it holds in some interpretation I = (D, I)

• iff for all x ∈ D there is some y ∈ D such that A holds

• iff there is some function on D, say f̂ ∈ D→ D, such that for all x ∈ D, if y = f̂ (x) then A holds

• iff there is an interpretation I ′ extending I so that the symbol f denotes the function f̂ , and A[f (x)/y] holds for
all x ∈ D

• iff the formula ∀x A[f (x)/y] is consistent.

Note that I above does not interpret f because Skolem functions have to be new. Thus I may be extended to I ′ by giving
an interpretation for f .

This argument easily generalizes to the case ∀x1 ∀x2 · · · ∀xk ∃y A. Thus, if a formula is consistent then so is the
Skolemized version. If it is inconsistent then so is the Skolemized version. That is what we need: resolution works by
proving that a formula is inconsistent.

There is a dual version of Skolemization that preserves validity rather than consistency. It replaces universal quanti-
fiers, rather than existential ones, by Skolem functions.

26

7 SKOLEM FUNCTIONS AND HERBRAND’S THEOREM 27

Exercise 26 Describe this dual version of Skolemization and demonstrate that it preserves validity. What might it be
used for?

7.3 Herbrand interpretations
An Herbrand interpretation basically consists of all terms that can be written using just the constant and function symbols
in a set of clauses S (or quantifier-free formula). Why define Herbrand interpretations? A mathematical reason: for
consistency of S we need only consider Herbrand interpretations. A programming reason: the data processed by a Prolog
program S is simply its Herbrand universe.

To define the Herbrand universe for the set of clauses S we start with sets of the constant and function symbols in S,
including Skolem functions.

Definition 12 Let C be the set of all constants in S. If there are none, let C = {a} for some constant symbol a of the
first-order language. For n > 0 let Fn be the set of all n-place function symbols in S and let Pn be the set of all n-place
predicate symbols in S.

The Herbrand universe is the set H =⋃
i≥0 Hi , where

H0 = C
Hi+1 = Hi ∪ { f (t1, . . . , tn) | t1, . . . , tn ∈ Hi and f ∈ Fn}

Thus, H consists of all the terms that can be written using only the constants and function symbols present in S. There
are no variables: the elements of H are ground terms. Formally, H turns out to satisfy the recursive equation

H = { f (t1, . . . , tn) | t1, . . . , tn ∈ H and f ∈ Fn}
The definition above ensures that C is non-empty. It follows that H is also non-empty, which is an essential requirement
for a universe.

The elements of H are ground terms. An interpretation (H, IH) is a Herbrand interpretation provided IH [t] = t
for all ground terms t . In detail, every Herbrand interpretation IH assigns trivial meanings to the constants and function
symbols of S. Each constant, say a, is mapped to itself: IH [a] = a. Each function symbol is mapped to the function
that creates symbolic applications of itself; for example, if f is a 1-place function symbol, then IH [f] is the function that
maps x to f (x). Note that if x ∈ H then f (x) ∈ H , so IH [f] is a function from H into H . The point of this peculiar
exercise is that we can give meanings to the symbols of S in a purely syntactic way, without needing other mathematical
spaces such as the Complex numbers.

Example 19 Suppose we have the set (consisting of two clauses)

S = {{P(a)}, {Q(g(y, z)),¬P(f (x))}}
Then

C = {a}
F1 = { f }
F2 = {g}
Fn = ∅ (n > 2)
H = {a, f (a), g(a, a), f (f (a)), g(f (a), a), g(a, f (a)), g(f (a), f (a)), . . .}

An Herbrand interpretation IH defines each n-place predicate symbol P to denote some truth-valued function IH [P] ∈
Hn → {t, f}. We take

IH [P(t1, . . . , tn)] = t

if and only if P(t1, . . . , tn) holds in our desired “real” interpretation I of the clauses. In other words, any specific
interpretation I = (D, I) over some universe D can be mimicked by an Herbrand interpretation. Thus, we have informally
proved the following two results (Chang and Lee, page 55):

Lemma 13 Let S be a set of clauses. If an interpretation satisfies S, then an Herbrand interpretation satisfies S.

Theorem 14 A set S of clauses is unsatisfiable if and only if no Herbrand interpretation satisfies S.

Equality may behave strangely in Herbrand interpretations. Given an interpretation I, the denotation of = is the set
of all pairs of ground terms (t1, t2) such that t1 = t2 according to I. In a context of the natural numbers, the denotation
of= could include pairs like (1+1, 2)— the two components need not be identical, contrary to the normal situation with
equality.

7.4 The Skolem-Gödel-Herbrand Theorem
Finally we have the Skolem-Gödel-Herbrand theorem. A version of the Completeness Theorem, it tells us that unsatis-
fiability can always be detected by a finite process. It does not tell us how to detect satisfiability, for there is no general
method.8

Definition 15 An instance of a clause C is a clause that results by replacing variables in C by terms. A ground instance
of a clause C is an instance of C that contains no variables. (It can be obtained by replacing all variables in C by elements
of an Herbrand universe, which are ground terms.)

Since the variables in a clause are taken to be universally quantified, every instance of C is a logical consequence of C .

Example 20 This clause is valid in the obvious integer model:

C = {¬even(x),¬even(y), even(x + y)}
Replacing x by y + y in C results in the instance

C ′ = {¬even(y + y),¬even(y), even((y + y)+ y)}
Replacing y by 2 in C ′ results in the ground instance

C ′′ = {¬even(2+ 2),¬even(2), even((2+ 2)+ 2)}

Example 21 Consider the clause

C = {Q(g(y, x)),¬P(f (x))}
Replacing x by f (z) in C results in the instance

C ′ = {Q(g(y, f (z))),¬P(f (f (z)))}
Replacing y by j (a) and z by b in C ′ results in the instance

C ′′ = {Q(g(j (a), f (b))),¬P(f (f (b)))}
Assuming that a and b are constants, C ′′ is a ground instance of C .

Theorem 16 A set S of clauses is unsatisfiable if and only if there is a finite unsatisfiable set S′ of ground instances of
clauses of S.

The proof is rather involved; see Chang and Lee, pages 56–61, for details. The (H⇒) direction is the interesting one.
It uses a non-constructive argument to show that if there is no finite unsatisfiable set S′, then there must be a model of S.

The (⇐H) direction simply says that if S′ is unsatisfiable then so is S. This is straightforward since every clause in S′
is a logical consequence of some clause in S. Thus if S′ is inconsistent, the inconsistency is already present in S.

The theorem is valuable because the new set S′ expresses the inconsistency in a finite way. However, it only tells
us that S′ exists; it does not tell us how to derive S′. (The general problem is undecidable, since the validity problem is
undecidable.) A key question is, how do we generate useful ground instances of clauses? One answer, outlined in the next
lecture, is unification.

Example 22 To demonstrate the Skolem-Gödel-Herbrand theorem, consider proving the formula

∀x P(x) ∧ ∀y [P(y)→ Q(y)]→ Q(a) ∧ Q(b).

If we negate this formula, we trivially obtain the following set S of clauses:

{P(x)} {¬P(y), Q(y)} {¬Q(a),¬Q(b)}.
This set is inconsistent. Here is a finite set of ground instances of clauses in S:

{P(a)} {P(b)} {¬P(a), Q(a)} {¬P(b), Q(b)} {¬Q(a),¬Q(b)}.
This set reflects the intuitive proof of the theorem. We obviously have P(a) and P(b); using ∀y [P(y)→ Q(y)] with a
and b, we obtain Q(a) and Q(b). If we can automate this procedure, then we can generate such proofs automatically.

8It is often confused with Herbrand’s Theorem, a stronger result.

28

8 UNIFICATION 29

Exercise 27 Consider a first-order language with 0 and 1 as constant symbols, with − as a 1-place function symbol and
+ as a 2-place function symbol, and with < as a 2-place predicate symbol.

(a) Describe the Herbrand Universe for this language.

(b) The language can be interpreted by taking the integers for the universe and giving 0, 1, −, +, and < their usual
meanings over the integers. What do those symbols denote in the corresponding Herbrand model?

8 Unification
Unification is the operation of finding a common instance of two terms. Though the concept is simple, it involves a
complicated theory. Proving the unification algorithm’s correctness (especially termination) is difficult.

To introduce the idea of unification, consider a few examples. The terms f (x, b) and f (a, y) have the common
instance f (a, b), replacing x by a and y by b. The terms f (x, x) and f (a, b) have no common instance, assuming that a
and b are distinct constants. The terms f (x, x) and f (y, g(y)) have no common instance, since there is no way that x can
have the form y and g(y) at the same time — unless we admit the infinite term g(g(g(· · ·))).

Only variables may be replaced by other terms. Constants are not affected (they remain constant!). If a term has the
form f (t, u) then instances of that term must have the form f (t ′, u′), where t ′ is an instance of t and u′ is an instance
of u.

8.1 Substitutions
We have already seen substitutions informally. It is now time for a more detailed treatment.

Definition 17 A substitution is a finite set of replacements

[t1/x1, . . . , tk/xk]

where x1, . . ., xk are distinct variables such that ti 6= xi for all i = 1, . . . , k. We use Greek letters φ, θ , σ to stand for
substitutions.

The finite set {x1, . . . , xk} is called the domain of the substitution. The domain of a substitution θ is written dom(θ).

A substitution θ = [t1/x1, . . . , tk/xk] defines a function from the variables {x1, . . . , xk} to terms. Postfix notation is
usual for applying a substitution; thus, for example, xiθ = ti . Substitutions may be applied to terms, not just to variables.
Substitution on terms is defined recursively as follows:

f (t1, . . . , tn)θ = f (t1θ, . . . , tnθ)

xθ = x for all x 6∈ dom(θ)

Here f is an n-place function symbol. The operation substitutes in the arguments of functions, and leaves unchanged any
variables outside of the domain of θ .

Substitution may be extended to literals and clauses as follows:

P(t1, . . . , tn)θ = P(t1θ, . . . , tnθ)

{L1, . . . , Lm}θ = {L1θ, . . . , Lmθ}
Here P is an n-place predicate symbol (or its negation), while L1, . . . , Lm are the literals in a clause.

Example 23 The substitution θ = [h(y)/x, b/y] says to replace x by h(y) and y by b. The replacements occur
simultaneously; it does not have the effect of replacing x by h(b). Its domain is dom(θ) = {x, y}. Applying this
substitution gives

f (x, g(u), y)θ = f (h(y), g(u), b)

R(h(x), z)θ = R(h(h(y)), z)

{P(x),¬Q(y)}θ = {P(h(y)),¬Q(b)}

8.2 Composition of substitutions
If φ and θ are substitutions then so is their composition φ ◦ θ , which satisfies

t (φ ◦ θ) = (tφ)θ for all terms t

Can we write φ ◦ θ as a set of replacements? It has to satisfy the above for all relevant variables:

x(φ ◦ θ) = (xφ)θ for all x ∈ dom(φ) ∪ dom(θ)

Thus it must be the set consisting of the replacements

(xφ)θ / x for all x ∈ dom(φ) ∪ dom(θ)

Equality of substitutions φ and θ is defined as follows: φ = θ if xφ = xθ for all variables x . Under these definitions
composition enjoys an associative law. It also has an identity element, namely [], the empty substitution.

(φ ◦ θ) ◦ σ = φ ◦ (θ ◦ σ)
φ ◦ [] = φ
[] ◦ φ = φ

Example 24 Let φ = [j (x)/u, 0/y] and θ = [h(z)/x, g(3)/y]. Then dom(φ) = {u, y} and dom(θ) = {x, y}, so
dom(φ) ∪ dom(θ) = {u, x, y}. Thus

φ ◦ θ = [j (h(z))/u, h(z)/x, 0/y]

Notice that y(φ ◦ θ) = (yφ)θ = 0θ = 0; the replacement g(3)/y has disappeared.

Exercise 28 Verify that ◦ is associative and has [] for an identity.

8.3 Unifiers
Definition 18 A substitution θ is a unifier of terms t1 and t2 if t1θ = t2θ . More generally, θ is a unifier of terms t1, t2, . . .,
tm if t1θ = t2θ = · · · = tmθ . The term t1θ is called the common instance of the unified terms. A unifier of two or more
literals is defined similarly.

Two terms can only be unified if they have similar structure apart from variables. The terms f (x) and h(y, z) are
clearly non-unifiable since no substitution can do anything about the differing function symbols. It is easy to see that θ
unifies f (t1, . . . , tn) and f (u1, . . . , un) if and only if θ unifies ti and ui for all i = 1, . . . , n.

Example 25 The substitution [3/x, g(3)/y] unifies the terms g(g(x)) and g(y). The common instance is g(g(3)). These
terms have many other unifiers, including the following:

unifying substitution common instance
[f (u)/x, g(f (u))/y] g(g(f (u)))
[z/x, g(z)/y] g(g(z))
[g(x)/y] g(g(x))

Note that g(g(3)) and g(g(f (u))) are instances of g(g(x)). Thus g(g(x)) is more general than g(g(3)) and
g(g(f (u))); it admits many other instances. Certainly g(g(3)) seems to be arbitrary — neither of the original terms
mentions 3! A separate point worth noting is that g(g(x)) is equivalent to g(g(z)), apart from the name of the variable.
Let us formalize these intuitions.

8.4 Most general unifiers
Definition 19 The substitution θ is more general than φ if φ = θ ◦ σ for some substitution σ .

Example 26 Recall the unifiers of g(g(x)) and g(y). The unifier [g(x)/y] is more general than the others listed, for

[3/x, g(3)/y] = [g(x)/y] ◦ [3/x]
[f (u)/x, g(f (u))/y] = [g(x)/y] ◦ [f (u)/x]

[z/x, g(z)/y] = [g(x)/y] ◦ [z/x]
[g(x)/y] = [g(x)/y] ◦ []

30

8 UNIFICATION 31

The last line above illustrates that every substitution θ is more general than itself because θ = θ ◦ []; ‘more general’ is a
reflexive relation.

If two substitutions θ and φ are each more general than the other then they differ at most by renaming of variables,
and can be regarded as equivalent. For instance, [y/x, f (y)/w] and [x/y, f (x)/w] are equivalent:

[y/x, f (y)/w] = [x/y, f (x)/w] ◦ [y/x]
[x/y, f (x)/w] = [y/x, f (y)/w] ◦ [x/y]

What does all this mean in practice? Suppose we would like to apply either θ or φ, where φ = θ ◦ σ . If we apply θ
then we can still get the effect of φ by applying σ later. Furthermore, there is an algorithm to find a most general unifier
of two terms; by composition, this one unifier can generate all the unifiers of the terms.

Definition 20 A substitution θ is a most general unifier (MGU) of terms t1, . . ., tm if

• θ unifies t1, . . ., tm , and

• θ is more general than every other unifier of t1, . . ., tm .

A most general unifier of two or more literals is defined similarly.

Thus if θ is an MGU of terms t1 and t2 and t1φ = t2φ then φ = θ ◦ σ for some substitution σ .

8.5 A simple unification algorithm
In many books, the unification algorithm is presented as operating on the concrete syntax of terms, scanning along char-
acter strings. But terms are really tree structures and are so represented in a computer. Unification should be presented as
operating on trees. In fact, we need consider only binary trees, since these can represent n-ary branching trees. Unification
is easily implemented in Lisp, where the basic data structure (the S-expression) is a binary tree with labelled leaves.

Our trees have three kinds of nodes:

• A variable x , y, . . . — can be modified by substitution

• A constant a, b, . . . — handles function symbols also

• A pair (t, u) — where t and u are terms

Unification of two terms considers nine cases, most of which are trivial. It is impossible to unify a constant with a
pair; in this case the algorithm fails. When trying to unify two constants a and b, if a = b then the most general unifier is
[]; if a 6= b then unification is impossible. The interesting cases are variable-anything and pair-pair.

Unification with a variable

When unifying a variable x with a term t , where x 6= t , we must perform the occurs check. If x does not occur in t then
the substitution [t/x] has no effect on t , so it does the job trivially:

x[t/x] = t = t[t/x]

It is not hard to show that [t/x] is a most general unifier.
If x does occur in t then no unifier exists, for if xθ = tθ then the term xθ would be a subterm of itself, which is

impossible.

Example 27 The terms x and f (x) are not unifiable. If xθ = u then f (x)θ = f (u). Thus xθ = f (x)θ would imply
u = f (u). We could, perhaps, introduce the infinite term

u = f (f (f (f (f (· · ·)))))
as a unifier, but this would require a rigorous definition of the syntax and semantics of infinite terms.

Unification of two pairs

Unifying the pairs (t1, t2) with (u1, u2) requires two recursive calls of the unification algorithm. If θ1 unifies t1 with u1
and θ2 unifies t2θ1 with u2θ1 then θ1 ◦ θ2 unifies (t1, t2) with (u1, u2):

(t1, t2)(θ1 ◦ θ2) = (t1, t2)θ1θ2

= (t1θ1θ2, t2θ1θ2)

= (u1θ1θ2, t2θ1θ2) since t1θ1 = u1θ1

= (u1θ1θ2, u2θ1θ2) since (t2θ1)θ2 = (u2θ1)θ2

= (u1, u2)θ1θ2

= (u1, u2)(θ1 ◦ θ2)

It is possible to prove that if θ1 and θ2 are most general unifiers then so is θ1 ◦ θ2. If either recursive call fails then the
pairs are not unifiable.

Note that the substitution θ1 is applied to t2 and u2 before the second recursive call. Will this terminate, even if t2θ1
and u2θ1 are much bigger than t2 and u2? One can show that either θ1 does not affect t2 and u2, or else θ1 reduces the
number of variables in the pair of terms. This is enough to show termination.

As given above, the algorithm works from left to right. An equally good alternative is to begin by unifying t2 and u2.

Examples of unification

These examples are given for terms rather than binary trees. The translation to binary trees is left as an exercise.
In most of these examples, the two terms have no variables in common. Most uses of unification (including resolution,

see below) rename variables in one of the terms to ensure this. However, such renaming is not part of unification itself.

Example 28 Unify f (x, b) with f (a, y). Steps:

Unify x and a getting [a/x].

Try to unify b[a/x] and y[a/x].

These are b and y, so unification succeeds with [b/y].

Result is [a/x] ◦ [b/y], which is [a/x, b/y].

Strictly speaking we also have to unify f with f , but this just gives [], the null substitution.

Example 29 Unify f (x, x) with f (a, b). Steps:

Unify x and a getting [a/x].

Try to unify x[a/x] and b[a/x].

These are a and b, distinct constants. Fail.

Example 30 Unify f (x, g(y)) with f (y, x). Steps:

Unify x and y getting [y/x].

Try to unify g(y)[y/x] and x[y/x]. These are g(y) and y, violating the occurs check. Fail.
If we had renamed the variables in one of the terms beforehand, unification would have succeeded. In the
next example, the two terms have no variables in common, but unification fails anyway.

Example 31 Unify f (x, x) with f (y, g(y)). Steps:

Unify x and y getting [y/x].

Try to unify x[y/x] and g(y)[y/x].

These are y and g(y), where y occurs in g(y). Fail.

32

8 UNIFICATION 33

Example 32 Unify j (w, a, h(w)) with j (f (x, y), x, z). Steps:

Unify w and f (x, y) getting [f (x, y)/w].

Unify a and x (the substitution has no effect) getting [a/x].

Unify (h(w)[f (x, y)/w])[a/x] and (z[f (x, y)/w])[a/x].

These are h(f (x, y))[a/x] and z[a/x].

These are h(f (a, y)) and z; unifier is [h(f (a, y))/z].

Result is [f (x, y)/w] ◦ [a/x] ◦ [h(f (a, y))/z]. Performing the compositions, this simplifies to
[f (a, y)/w, a/x, h(f (a, y))/z].

Example 33 Unify j (w, a, h(w)) with j (f (x, y), x, y). This is the previous example but with a y in place of a z.

Unify w and f (x, y) getting [f (x, y)/w].

Unify a and x getting [a/x].

Unify (h(w)[f (x, y)/w])[a/x] and (y[f (x, y)/w])[a/x].

These are h(f (a, y)) and y, but y occurs in h(f (a, y)). Fail.

Diagrams can be helpful. The lines indicate variable replacements:

j (w, a, h(w)) j (f (x, y), x, y)

a/x

f (a, y)/w

h(f (a, y))/y???

Implementation remarks

To unify terms t1, t2, . . ., tm for m > 2, compute a unifier θ of t1 and t2, then recursively compute a unifier σ of the terms
t2θ , . . ., tmθ . The overall unifier is then θ ◦ σ . If any unification fails then the set is not unifiable.

A real implementation does not need to compose substitutions. Most represent variables by pointers and effect the
substitution [t/x] by updating pointer x to t . The compositions are cumulative, so this works. However, if unification
fails at some point, the pointer assignments must be undone!

To avoid pointers you can store the updates as a list of pairs, called an environment. For example, the environment
a/x, f (x)/y represents the substitution [a/x, f (a)/y]. The algorithm sketched here can take exponential time in unusual
cases. Faster algorithms exist, although they are more complex and are seldom adopted.

Prolog systems, for the sake of efficiency, omit the occurs check. This can result in circular data structures and looping.
It is unsound for theorem proving.

8.6 Examples of theorem proving
These two examples are fundamental. They illustrate how the occurs check enforces correct quantifier reasoning.

Example 34 Consider a proof of
(∃y ∀x R(x, y))→ (∀x ∃y R(x, y)).

Produce clauses separately for the antecedent and for the negation of the consequent; this is more efficient than producing
clauses for the negation of the entire formula.

• The antecedent is ∃y ∀x R(x, y); replacing y by the Skolem constant a yields the clause {R(x, a)}.
• In ¬(∀x ∃y R(x, y)), pushing in the negation produces ∃x ∀y ¬R(x, y). Replacing x by the Skolem constant b

yields the clause {¬R(b, y)}.
Unifying R(x, a) with R(b, y) detects the contradiction R(b, a) ∧ ¬R(b, a).

Example 35 In a similar vein, let us try to prove

(∀x ∃y R(x, y))→ (∃y ∀x R(x, y)).

• Here the antecedent is ∀x ∃y R(x, y); replacing y by the Skolem function f yields the clause {R(x, f (x))}.
• The negation of the consequent is ¬(∃y ∀x R(x, y)), which becomes ∀y ∃x ¬R(x, y). Replacing x by the Skolem

function g yields the clause {¬R(g(y), y)}.
Observe that R(x, f (x)) and R(g(y), y) are not unifiable because of the occurs check. And so it should be, because
the original formula is not a theorem! The best way to demonstrate that a formula is not a theorem is to exhibit a
counterexample. Here are two:

• The domain is the set of all people who have ever lived. The relation R(x, y) holds whenever x loves y. The
function f (x) denotes the mother of x , and {R(x, f (x))} holds because everybody loves their mother. The function
g(x) denotes the father of x , and in this model ¬R(g(y), y) holds because no fathers love their children.

• The domain is the set of integers. The relation R(x, y) holds whenever x = y. The function f is the identity, so
f (x) = x and {R(x, f (x))} holds. The function g is defined by g(x) = x + 1 and so {¬R(g(y), y)} holds.

Exercise 29 For each of the following pairs of terms, give a most general unifier or explain why none exists. Do not
rename variables prior to performing the unification.

f (g(x), z) f (y, h(y))

j (x, y, z) j (f (y, y), f (z, z), f (a, a))

j (x, z, x) j (y, f (y), z)

j (f (x), y, a) j (y, z, z)

j (g(x), a, y) j (z, x, f (z, z))

9 First-Order Resolution and Prolog
By means of unification, we can extend resolution to first-order logic. As a special case we obtain Prolog. Other theorem
provers are also based on unification. Other applications include polymorphic type checking for the language ML.

9.1 Binary resolution
We now define the binary resolution rule with unification:

{B, A1, . . . , Am} {¬D,C1, . . . ,Cn}
{A1, . . . , Am,C1, . . . ,Cn}σ provided Bσ = Dσ

As before, the first clause contains B and other literals, while the second clause contains ¬D and other literals. The
substitution σ is a unifier of B and D (almost always a most general unifier). This substitution is applied to all remaining
literals, producing the conclusion.

The variables in one clause are renamed before resolution to prevent clashes with the variables in the other clause.
Renaming is sound because the scope of each variable is its clause. Resolution is sound because it takes an instance of
each clause — the instances are valid, because the clauses are universally valid — and then applies the propositional
resolution rule, which is sound. For example, the two clauses

{P(x)} and {¬P(g(x))}
yield the empty clause in a single resolution step. This works by renaming variables — say, x to y in the second clause —
and unifying P(x) with P(g(y)). Forgetting to rename variables is fatal, because P(x) cannot be unified with P(g(x)).

9.2 Factoring
In general, resolution must be combined with another rule, factoring. Factoring takes a clause and unifies some lit-
erals within it (which must all have the same sign), yielding a new clause. For example, starting with the clause
{P(x, b), P(a, y)}, factoring can derive the clause {P(a, b)}, since P(a, b) is the result of unifying P(x, b) with P(a, y).
Compared with the original clause, the new one may be weaker, but more useful in resolution because it is shorter.

34

9 FIRST-ORDER RESOLUTION AND PROLOG 35

Some resolution provers combine the factoring and resolution rules. In other words, they perform the factoring
unifications at the same time as the unification of the complementary literals in the two clauses. The binary resolution
rule with factoring is

{B1, . . . , Bk, A1, . . . , Am} {¬D1, . . . ,¬Dl ,C1, . . . ,Cn}
{A1, . . . , Am,C1, . . . ,Cn}σ

where σ is the most general substitution such that

B1σ = · · · = Bkσ = D1σ = · · · = Dlσ.

However, modern provers such as SPASS perform factoring steps independently of resolution steps. Factoring is necessary
for completeness, since resolution by itself tends to make clauses longer and longer, when only short clauses are likely to
lead to a contradiction.

The search space is huge: resolution with factoring can be applied in many different ways, every time. Modern
resolution systems use highly complex heuristics to limit the search. Typically they only perform resolutions that can
lead (perhaps after several steps) to very short clauses, and they discard the intermediate clauses produced along the way.
Dozens of flags and parameters influence their operation.

Example 36 Let us prove ∀x ∃y ¬(P(y, x)↔ ¬P(y, y)).
Negate and expand the↔, getting

¬∀x ∃y ¬((¬P(y, x) ∨ ¬P(y, y)) ∧ (¬¬P(y, y) ∨ P(y, x)))

Its negation normal form is
∃x ∀y ((¬P(y, x) ∨ ¬P(y, y)) ∧ (P(y, y) ∨ P(y, x)))

Skolemization yields
(¬P(y, a) ∨ ¬P(y, y)) ∧ (P(y, y) ∨ P(y, a))

The clauses are
{¬P(y, a),¬P(y, y)} {P(y, y), P(y, a)}

We can apply the factoring rule to both of these clauses, obtaining two new clauses:

{¬P(a, a)} {P(a, a)}
These are complementary unit clauses, so resolution yields the empty clause. This proof is trivial! However, the use of
factoring is essential, since the 2-literal clauses must be reduced to unit clauses.

Observe what happens if we try to prove it without factoring. We can resolve the two original clauses on the literal
P(y, a). We obtain

{¬P(y, y), P(y, y)},
which is a tautology and therefore worthless.

Example 37 Let us prove ∃x [P → Q(x)] ∧ ∃x [Q(x)→ P]→ ∃x [P ↔ Q(x)]. The clauses are

{P,¬Q(b)} {P, Q(x)} {¬P,¬Q(x)} {¬P, Q(a)}
A short resolution proof follows. The complementary literals are underlined:

Resolve {P,¬Q(b)} with {P, Q(x)} getting {P}
Resolve {¬P,¬Q(x)} with {¬P, Q(a)} getting {¬P}
Resolve {P} with {¬P} getting �

Exercise 30 Show the steps of converting ∃x [P → Q(x)] ∧ ∃x [Q(x) → P] → ∃x [P ↔ Q(x)] into clauses. Then
show two resolution proofs different from the one shown above.

Exercise 31 Is the clause {P(x, b), P(a, y)} logically equivalent to the unit clause {P(a, b)}? Is the clause
{P(y, y), P(y, a)} logically equivalent to {P(y, a)}? Explain both answers.

9.3 Prolog clauses
Prolog clauses, also called Horn clauses, have at most one positive literal. A definite clause is one of the form

{¬A1, . . . ,¬Am, B}
It is logically equivalent to (A1 ∧ · · · ∧ Am)→ B. Prolog’s notation is

B ← A1, . . . , Am .

If m = 0 then the clause is simply written as B and is sometimes called a fact.
A negative or goal clause is one of the form

{¬A1, . . . ,¬Am}
Prolog permits just one of these; it represents the list of unsolved goals. Prolog’s notation is

← A1, . . . , Am .

A Prolog database consists of definite clauses. Observe that definite clauses cannot express negative assertions, since they
must contain a positive literal. From a mathematical point of view, they have little expressive power; every set of definite
clauses is consistent! Even so, definite clauses are a natural notation for many problems.

Exercise 32 Show that every set of definite clauses is consistent. (Hint: first consider propositional logic, then extend
your argument to first order logic.)

9.4 Prolog computations
A Prolog computation takes a database of definite clauses together with one goal clause. It repeatedly resolves the goal
clause with some definite clause to produce a new goal clause. If resolution produces the empty goal clause, then execution
succeeds.

Here is a diagram of a Prolog computation step:

���� �

definite clause goal clause
{¬A1, . . . , ¬An, B} {¬B1, . . . ,¬Bm}

σ = unify(B, ¬B1)

new goal clause
{¬A1σ, . . . , ¬Anσ, ¬B2σ, . . . , ¬Bmσ }

This is a linear resolution (§6). Two program clauses are never resolved with each other. The result of each resolution
step becomes the next goal clause; the previous goal clause is discarded after use.

Prolog resolution is efficient, compared with general resolution, because it involves less search and storage. General
resolution must consider all possible pairs of clauses; it adds their resolvents to the existing set of clauses; it spends a
great deal of effort getting rid of subsumed (redundant) clauses and probably useless clauses. Prolog always resolves
some program clause with the goal clause. Because goal clauses do not accumulate, Prolog requires little storage. Prolog
never uses factoring and does not even remove repeated literals from a clause.

Prolog has a fixed, deterministic execution strategy. The program is regarded as a list of clauses, not a set; the clauses
are tried strictly in order. With a clause, the literals are also regarded as a list. The literals in the goal clause are proved
strictly from left to right. The goal clause’s first literal is replaced by the literals from the unifying program clause,
preserving their order.

Prolog’s search strategy is depth-first. To illustrate what this means, suppose that the goal clause is simply ← P
and that the program clauses are P ← P and P ← . Prolog will resolve P ← P with ← P to obtain a new goal
clause, which happens to be identical to the original one. Prolog never notices the repeated goal clause, so it repeats the
same useless resolution over and over again. Depth-first search means that at every ‘choice point,’ such as between using
P ← P and P ← , Prolog will explore every avenue arising from its first choice before considering the second choice.
Obviously, the second choice would prove the goal trivially, but Prolog never notices this.

9.5 Example of Prolog execution
Here are axioms about the English succession: how y can become King after x .

∀x ∀y (oldestson(y, x) ∧ king(x)→ king(y))

36

9 FIRST-ORDER RESOLUTION AND PROLOG 37

���� �

definite clause goal clause

{¬os(y1, x1), ¬k(x1), k(y1)} {¬k(henryVIII)}

{os(henryVIII, henryVII)} {¬os(henryVIII, x1), ¬k(x1)}

{¬defeat(y2, x2), ¬k(x2), k(y2)} {¬k(henryVII)}

{defeat(henryVII, richardIII)} {¬defeat(henryVII, x2), ¬k(x2)}

{k(richardIII)} {¬k(richardIII)}

�

Figure 2: Execution of a Prolog program (os = oldestson, k = king)

∀x ∀y (defeat(y, x) ∧ king(x)→ king(y))

king(richardIII)

defeat(henryVII, richardIII)

oldestson(henryVIII, henryVII)

The goal is to prove king(henryVIII).
These axioms correspond to the following definite clauses:

{¬oldestson(y, x),¬king(x), king(y)}
{¬defeat(y, x),¬king(x), king(y)}

{king(richardIII)}
{defeat(henryVII, richardIII)}
{oldestson(henryVIII, henryVII)}

The goal clause is
{¬king(henryVIII)}

Figure 2 shows the execution. The subscripts in the clauses are to rename the variables.
Note how crude this formalization is. It says nothing about the passage of time, about births and deaths, about not

having two kings at once. Henry VIII was the second son of Henry VII; the first son, Arthur, died in his youth. Logic is
clumsy for talking about situations in the real world.

The Frame Problem in Artificial Intelligence reveals another limitation of logic. Consider writing an axiom system to
describe a robot’s possible actions. We might include an axiom to state that if the robot lifts an object at time t , then it
will be holding the object at time t + 1. But we also need to assert that the positions of everything else remain the same
as before. Then we must consider the possibility that the object is a table and has other things on top of it . . .

Prolog is a powerful and useful language, but it is not necessarily logic. Most Prolog programs rely on special
predicates that affect execution but have no logical meaning. There is a huge gap between the theory and practice of logic
programming.

Exercise 33 Convert these formulæ into clauses, showing each step: negating the formula, eliminating → and ↔,
pushing in negations, moving the quantifiers, Skolemizing, dropping the universal quantifiers, and converting the resulting
formula into CNF.

(∀x ∃y R(x, y))→ (∃y ∀x R(x, y))

(∃y ∀x R(x, y))→ (∀x ∃y R(x, y))

∃x ∀yz ((P(y)→ Q(z))→ (P(x)→ Q(x)))

¬∃y ∀x (R(x, y)↔ ¬∃z (R(x, z) ∧ R(z, x)))

Exercise 34 Consider the Prolog program consisting of the definite clauses

P(f (x, y))← Q(x), R(y)

Q(g(z))← R(z)

R(a)←
Describe the Prolog computation starting from the goal clause ← P(v). Keep track of the substitutions affecting v to
determine what answer the Prolog system would return.

Exercise 35 Find a refutation from the following set of clauses using resolution with factoring.

{¬P(x, a),¬P(x, y),¬P(y, x)}
{P(x, f (x)), P(x, a)}
{P(f (x), x), P(x, a)}

Exercise 36 Prove the following formulæ by resolution, showing all steps of the conversion into clauses. Remember to
negate first!

∀x (P ∨ Q(x))→ (P ∨ ∀x Q(x))

∃xy (R(x, y)→ ∀zw R(z, w))

Note that P is just a predicate symbol, so in particular, x is not free in P .

10 BDDs, or Binary Decision Diagrams
A binary decision tree represents a propositional formula by binary decisions, namely if-then-else expressions over the
propositional letters. (In the relevant literature, propositional letters are called variables.) A tree may contain much
redundancy; a binary decision diagram is a directed graph, sharing identical subtrees. An ordered binary decision diagram
is based upon giving an ordering < to the variables: they must be tested in order. Further refinements ensure that each
propositional formula is mapped to a unique diagram, for a given ordering.

The acronym BDD for binary decision diagram is well-established in the literature. However, many earlier papers use
OBDD or even ROBDD (for “reduced ordered binary decision diagram”) synonymously.

A BDD representation must satisfy the following conditions:

• ordering: if P is tested before Q, then P < Q
(thus in particular, P cannot be tested more than once on a single path)

• uniqueness: identical subgraphs are stored only once
(to do this efficiently, hash each node by its variable and pointer fields)

• irredundancy: no test leads to identical subgraphs in the t and f cases
(thanks to uniqueness, redundant tests can be detected by comparing pointers)

Because the BDD representation of each formula is unique, it is called a canonical form. Canonical forms usually
lead to good algorithms — for a start, you can test whether two things are equivalent by comparing their canonical forms.

The BDD form of any tautology is t. Similarly, that of any inconsistent formula is f. To check whether two formulæ
are logically equivalent, convert both to BDD form and then — thanks to uniqueness — simply compare the pointers.

A recursive algorithm converts a formula to a BDD. All the logical connectives can be handled directly, including→
and ↔. (Exclusive ‘or’ is also used, especially in hardware examples.) The expensive transformation of A ↔ B into
(A→ B) ∧ (B → A) is unnecessary.

Here is how to convert a conjunction A ∧ A′ to a BDD. In this algorithm, XPY is a decision node that tests the
variable P , with a ‘true’ link to X and a ‘false’ link to Y . In other words, XPY is the BDD equivalent of the decision ‘if P
then X else Y .’

38

10 BDDS, OR BINARY DECISION DIAGRAMS 39

1. Recursively convert A and A′ to BDDs Z and Z ′.

2. Check for trivial cases. If Z = Z ′ (pointer comparison) then the result is Z ; if either operand is f, then the result is
f; if either operand is t, then the result is the other operand.

3. In the general case, let Z = XPY and Z ′ = X ′P ′Y ′ . There are three possibilities:

(a) If P = P ′ then recursively build the BDD X∧X ′PY∧Y ′ .
This means convert X ∧ X ′ and Y ∧ Y ′ to BDDs U and U ′, then construct a new decision node from P
to them. Do the usual simplifications. If U = U ′ then the resulting BDD for the conjunction is U . If an
identical decision node from P to (U,U ′) has been created previously, then that existing node is used instead
of creating a new one.

(b) If P < P ′ then recursively build the BDD X∧Z ′PY∧Z ′ . When building BDDs on paper, it is easier to pretend
that the second decision node also starts with P: assume that it has the redundant decision Z ′PZ ′ and proceed
as in case (3a).

(c) If P > P ′ is treated analogously to the previous case.

Other connectives are treated similarly; they differ only in the base cases. The negation of the BDD XPY is ¬XP¬Y . In
essence we copy the BDD, and when we reach the leaves, exchange t and f. The BDD of Z → f is the same as the BDD
of ¬Z .

During this processing, the same input (consisting of a connective and two BDDs) may be transformed into a BDD
repeatedly. Efficient implementations therefore have an additional hash table, which associates inputs to the corresponding
BDDs. The result of every transformation is stored in the hash table so that it does not have to be computed again.

Example 38 We apply the BDD Canonicalisation Algorithm to P ∨ Q → Q ∨ R. First, we make tiny BDDs for P
and Q. Then, we combine them using ∨ to make a small BDD for P ∨ Q:

P

0 1

Q

0 1

P

⁄

The BDD for Q ∨ R has a similar construction, so we omit it. We combine the two small BDDs using→, then simplify
(removing a redundant test on Q) to obtain the final BDD.

Q

0 1

P Æ

R

0 1

Q Q

P

R

0 1

Q

P

The new construction is shown in grey. In both of these examples, it appears over the rightmost formula because its
variables come later in the ordering.

The final diagram indicates that the original formula is always true except if P is true while Q and R are false. When
you have such a simple BDD, you can easily check that it is correct. For example, this BDD suggests the formula evaluates
to t when P is f, and indeed we find that the formula simplifies to Q → Q ∨ R, which simplifies further to t.

Huth and Ryan [2004] present a readable introduction to BDDs. A classic but more formidable source of information
is Bryant [1992].

Exercise 37 Compute the BDD for each of the following formulæ, taking the variables as alphabetically ordered:

P ∧ Q → Q ∧ P

¬(P ∨ Q) ∨ P

P ∨ Q → P ∧ Q

¬(P ∧ Q)↔ (P ∨ R)

Exercise 38 Verify the following equivalences using BDDs:

(P ∧ Q) ∧ R ' P ∧ (Q ∧ R)

(P ∨ Q) ∨ R ' P ∨ (Q ∨ R)

P ∨ (Q ∧ R) ' (P ∨ Q) ∧ (P ∨ R)

P ∧ (Q ∨ R) ' (P ∧ Q) ∨ (P ∧ R)

Exercise 39 Verify the following equivalences using BDDs:

¬(P ∧ Q) ' ¬P ∨ ¬Q

(P ↔ Q)↔ R ' P ↔ (Q ↔ R)

(P ∨ Q)→ R ' (P → R) ∧ (Q → R)

11 Modal Logics
There are many forms of modal logic. Each one is based upon two parameters:

• W is the set of possible worlds (machine states, future times, . . .)

• R is the accessibility relation between worlds (state transitions, flow of time, . . .)

The pair (W, R) is called a modal frame.
The two modal operators, or modalities, are 2 and 3:

• 2A means A is necessarily true

• 3A means A is possibly true

Here ‘necessarily true’ means ‘true in all worlds accessible from the present one’. The modalities are related by the law
¬3A ' 2¬A; in words, ‘it is not possible that A is true’ is equivalent to ‘A is necessarily false.’

Complex modalities are made up of strings of the modal operators, such as 22A, 23A, 32A, etc. Typically many
of these are equivalent to others; in S4, an important modal logic, 22A is equivalent to 2A.

11.1 Semantics of propositional modal logic
Here are some basic definitions, with respect to a particular frame (W, R):

An interpretation I maps the propositional letters to subsets of W . For each letter P , the set I (P) consists of those
worlds in which P is regarded as true.

If w ∈ W and A is a modal formula, then w
 A means A is true in world w. This relation is defined as follows:

w
 P ⇐⇒ w ∈ I (P)
w
 2A ⇐⇒ v
 A for all v such that R(w, v)
w
 3A ⇐⇒ v
 A for some v such that R(w, v)
w
 A ∨ B ⇐⇒ w
 A or w
 B
w
 A ∧ B ⇐⇒ w
 A and w
 B
w
 ¬A ⇐⇒ w
 A does not hold

This definition of truth is more complex than we have seen previously (§2.2), because of the extra parameters W
and R. We shall not consider quantifiers at all; they really complicate matters, especially if the universe is allowed to vary
from one world to the next.

For a particular frame (W, R), further relations can be defined in terms of w
 A:

|HW,R,I A means w
 A for all w under interpretation I
|HW,R A means w
 A for all w and all I

Now |H A means |HW,R A for all frames. We say that A is universally valid. In particular, all tautologies of proposi-
tional logic are universally valid.

Typically we make further assumptions on the accessibility relation. We may assume, for example, that R is transitive,
and consider whether a formula holds under all such frames. More formulæ become universally valid if we restrict the
accessibility relation, as they exclude some modal frames from consideration. The purpose of such assumptions is to
better model the task at hand. For instance, to model the passage of time, we might want R to be reflexive and transitive;
we could even make it a linear ordering, though branching-time temporal logic is popular.

40

11 MODAL LOGICS 41

11.2 Hilbert-style proof systems for the modal logics
Start with any proof system for propositional logic. Then add the distribution axiom

2(A→ B)→ (2A→ 2B)

and the necessitation rule:
A

2A

There are no axioms or inference rules for 3. The modality is viewed simply as an abbreviation:

3A def= ¬2¬A

The distribution axiom clearly holds in our semantics. The propositional connectives obey their usual truth tables
in each world. If A holds in all worlds, and A → B holds in all worlds, then B holds in all worlds. Thus if 2A and
2(A→ B) hold then so does 2B, and that is the essence of the distribution axiom.

The necessitation rule states that all theorems are necessarily true. In more detail, if A can be proved, then it holds in
all worlds; therefore 2A is also true.

The modal logic that results from adding the distribution axiom and necessitation rule is called K . It is a pure modal
logic, from which others are obtained by adding further axioms. Each axiom corresponds to a property that is assumed to
hold of all accessibility relations. Here are just a few of the main ones:

T 2A→ A (reflexive)
4 2A→ 22A (transitive)
B A→ 23A (symmetric)

Logic T includes axiom T: reflexivity. Logic S4 includes axioms T and 4: reflexivity and transitivity. Logic S5
includes axioms T, 4 and B: reflexivity, transitivity and symmetry; these imply that the accessibility relation is an equiva-
lence relation, which is a strong condition.

Other conditions on the accessibility relation concern forms of confluence. One such condition might state that if w1
and w2 are both accessible from w then there exists some v that is accessible from both w1 and w2.

11.3 Sequent Calculus Rules for S4

We shall mainly look at S4, which is one of the mainstream modal logics. As mentioned above, S4 assumes that the
accessibility relation is reflexive and transitive. If you want an intuition, think of the flow of time. Here are some S4
statements with their intuitive meanings:

• 2A means “A will be true from now on.”

• 3A means “A will be true at some point in the future,” where the future includes the present moment.

• 23A means “3A will be true from now on.” At any future time, A must become true some time afterwards. In
short, A will be true infinitely often.

• 22A means “2A will be true from now on.” At any future time, A will continue to be true. So 22A and 2A have
the same meaning in S4.

Figure 3: Counterexample to 32A ∧32B → 32(A ∧ B)

The “time” described by S4 allows multiple futures, which can be confusing. For example, 32A intuitively means
“eventually A will be true forever.” You might expect 32A and 32B to imply 32(A ∧ B), since eventually A and B
should both have become true. However, this property fails because time can split, with A becoming true in one branch

and B in the other (Fig. 3). Note in particular that 232A is stronger than 32A, and means “in all futures, eventually A
will be true forever.”

The sequent calculus for S4 extends the usual sequent rules for propositional logic with additional ones for 2 and 3.
Four rules are required because the modalities may occur on either the left or right side of a sequent.

A, 0⇒1

2A, 0⇒1
(2l)

0∗⇒1∗, A
0⇒1,2A

(2r)

A, 0∗⇒1∗
3A, 0⇒1

(3l)
0⇒1, A
0⇒1,3A

(3r)

The (2r) rule is analogous to the necessitation rule. But now A may be proved from other formulæ. This introduces
complications. Modal logic is notorious for requiring strange conditions in inference rules. The symbols 0∗ and1∗ stand
for sets of formulæ, defined as follows:

0∗ def= {2B | 2B ∈ 0}
1∗ def= {3B | 3B ∈ 1}

In effect, applying rule (2r) in a backward proof throws away all left-hand formulæ that do not begin with a 2 and all
right-hand formulæ that do not begin with a 3.

If you consider why the (2r) rule actually holds, it is not hard to see why those formulæ must be discarded. If we
forgot about the restriction, then we could use (2r) to infer A⇒2A from A⇒ A, which is ridiculous. The restriction
ensures that the proof of A in the premise is independent of any particular world.

The rule (3l) is an exact dual of (2r). The obligation to discard formulæ forces us to plan proofs carefully. If rules are
applied in the wrong order, vital information may have to be discarded and the proof will fail.

11.4 Some sample proofs in S4

A few examples will illustrate how the S4 sequent calculus is used.
The distribution axiom is assumed in the Hilbert-style proof system. Using the sequent calculus, we can prove it (I

omit the (→r) steps):
A⇒ A B⇒ B
A→ B, A⇒ B

(→l)

A→ B,2A⇒ B
(2l)

2(A→ B),2A⇒ B
(2l)

2(A→ B),2A⇒2B
(2r)

Intuitively, why is this sequent true? We assume 2(A → B): from now on, if A holds then so does B. We assume 2A:
from now on, A holds. Obviously we can conclude that B will hold from now on, which we write formally as 2B.

The order in which you apply rules is important. Working backwards, you must first apply rule (2r). This rule discards
non-2 formulæ, but there aren’t any. If you first apply (2l), removing the boxes from the left side, then you will get stuck:

now what?
⇒ B ?

A→ B, A⇒2B
(2r)

A→ B,2A⇒2B
(2l)

2(A→ B),2A⇒2B
(2l)

Applying (2r) before (2l) is analogous to applying (∀r) before (∀l). The analogy because 2A has an implicit universal
quantifier: for all accessible worlds.

The following two proofs establish the equivalence 2323A ' 23A. Strings of modalities, like 2323 and 23,
are called operator strings. So the pair of results establish an operator string equivalence. The validity of this particular
equivalence is not hard to see. Recall that 23A means that A holds infinitely often. So 2323A means that 23A holds
infinitely often — but that can only mean that A holds infinitely often, which is the meaning of 23A.

Now, let us prove the equivalence. Here is the first half of the proof. As usual we apply (2r) before (2l). Dually, and
analogously to the treatment of the ∃ rules, we apply (3l) before (3r):

3A⇒3A
23A⇒3A

(2l)

323A⇒3A
(3l)

2323A⇒3A
(2l)

2323A⇒23A
(2r)

42

12 TABLEAUX-BASED METHODS 43

The opposite entailment is easy to prove:

23A⇒23A
23A⇒323A

(3r)

23A⇒2323A
(2r)

Logic S4 enjoys many operator string equivalences, including 22A ' 2A. And for every operator string equivalence,
its dual (obtained by exchanging 2 with 3) also holds. In particular, 33A ' 3A and 3232A ' 32A hold. So we
only need to consider operator strings in which the boxes and diamonds alternate, and whose length does not exceed three.

The distinct S4 operator strings are therefore 2, 3, 23, 32, 232 and 323.
Finally, here are two attempted proofs that fail — because their conclusions are not theorems! The modal sequent

A⇒23A states that if A holds now then it necessarily holds again: from each accessible world, another world is
accessible in which A holds. This formula is valid if the accessibility relation is symmetric; then one could simply return
to the original world. The formula is therefore a theorem of S5 modal logic, but not S4.

⇒ A
⇒3A

(3r)

A⇒23A
(2r)

Here, the modal sequent 3A,3B⇒3(A ∧ B) states that if A holds in some accessible world, and B holds in some
accessible world, then both A and B hold in some accessible world. It is a fallacy because those two worlds need not
coincide. The (3l) rule prevents us from removing the diamonds from both 3A and 3B; if we choose one we must discard
the other:

B⇒ A ∧ B
B⇒3(A ∧ B)

(3r)

3A,3B⇒3(A ∧ B)
(3l)

The topmost sequent may give us a hint as to why the conclusion fails. Here we are in a world in which B holds, and we
are trying to show A ∧ B, but there is no reason why A should hold in that world.

As mentioned previously, the sequent 32A,32B⇒32(A ∧ B) is not valid because A and B can become true in
different futures. However, the sequents 32A,232B⇒32(A ∧ B) and 232A,232B⇒232(A ∧ B) are both
valid.

Exercise 40 Why does the dual of an operator string equivalence also hold?

Exercise 41 Prove the sequent 3(A ∨ B)⇒3A,3B.

Exercise 42 Prove the sequent 3A ∨ 3B⇒3(A ∨ B). Together with the previous exercise, this yields 3(A ∨ B) '
3A ∨3B.

Exercise 43 Prove the sequent 3(A→ B),2A⇒3B.

Exercise 44 Prove the equivalence 2(A ∧ B) ' 2A ∧2B.

Exercise 45 Prove the sequent 232A,232B⇒232(A ∧ B).

12 Tableaux-Based Methods
There is a lot of redundancy among the connectives ¬, ∧, ∨,→,↔, ∀, ∃. We could get away using only three of them
(two if we allowed exclusive ‘or’), but use the full set for readability. There is also a lot of redundancy in the sequent
calculus, because it was designed to model human reasoning, not to be as small as possible.

One approach to removing redundancy results in the resolution method. Clause notation replaces the connectives, and
there is only one inference rule. A less radical approach still removes much of the redundancy, while preserving much
of the natural structure of formulæ. The resulting formalism, known as the tableau calculus, is often adopted by proof
theorists because of its logical simplicity. Adding unification produces yet another formalism known as free-variable
tableaux; this form is particularly amenable to implementation. Both formalisms use proof by contradiction.

12.1 Simplifying the sequent calculus
The usual formalisation of first-order logic involves seven connectives, or nine in the case of modal logic. For each
connective the sequent calculus has a left and a right rule. So, apart from the structural rules (basic sequent and cut) there
are 14 rules, or 18 for modal logic.

Suppose we allow only formulæ in negation normal form. This immediately disposes of the connectives→ and↔.
Really ¬ is discarded also, as it is allowed only on propositional letters. So only four connectives remain, six for modal
logic.

The greatest simplicity gain comes in the sequent rules. The only sequent rules that move formulæ from one side to
the other (across the ⇒ symbol) are the rules for the connectives that we have just discarded. Half of the sequent rules
can be discarded too. It makes little difference whether we discard the left-side rules or the right-side rules.

Let us discard the right-side rules. The resulting system allows sequents of the form A⇒ . It is a form of refutation
system (proof by contradiction), since the formula A has the same meaning as the sequent ¬A⇒ . Moreover, a basic
sequent has the form of a contradiction. We have created a new formal system, known as the tableau calculus.

¬A, A, 0⇒ (basic)
¬A, 0⇒ A, 0⇒

0⇒ (cut)

A, B, 0⇒
A ∧ B, 0⇒ (∧l)

A, 0⇒ B, 0⇒
A ∨ B, 0⇒ (∨l)

A[t/x], 0⇒
∀x A, 0⇒ (∀l) A, 0⇒

∃x A, 0⇒ (∃l)

Rule (∃l) has the usual proviso: it holds provided x is not free in the conclusion!
We can extend the system to S4 modal logic by adding just two further rules, one for 2 and one for 3:

A, 0⇒
2A, 0⇒ (2l)

A, 0∗⇒
3A, 0⇒ (3l)

As previously, 0∗ is defined to erase all non-2 formulæ:

0∗ def= {2B | 2B ∈ 0}
We have gone from 14 rules to four, ignoring the structural rules. For modal logic, we have gone from 18 rules to six.
A simple proof will illustrate how the tableau calculus works. Let us prove ∀x (A → B)⇒ A → ∀x B, where x is

not free in A. We must negate the formula, convert it to NNF and finally put it on the left side of the arrow. The resulting
sequent is A ∧ ∃x ¬B, ∀x (¬A ∨ B)⇒ . Elaborate explanations should not be necessary because this tableau calculus is
essentially a subset of the sequent calculus described in §5.

A, ¬B, ¬A⇒ A, ¬B, B⇒
A, ¬B, ¬A ∨ B⇒ (∨l)

A, ¬B, ∀x (¬A ∨ B)⇒ (∀l)

A, ∃x ¬B, ∀x (¬A ∨ B)⇒ (∃l)

A ∧ ∃x ¬B, ∀x (¬A ∨ B)⇒ (∧l)

12.2 The free-variable tableau calculus
Some proof theorists adopt the tableau calculus as their formalisation of first-order logic. It has the advantages of the
sequent calculus, without the redundancy. But can we use it as the basis for a theorem prover? Implementing the cal-
culus (or indeed, implementing the full sequent calculus) requires a treatment of quantifiers. As with resolution, a good
computational approach is to combine unification with Skolemization.

First, consider how to add unification. The rule (∀l) substitutes some term for the bound variable. Since we do not
know in advance what the term ought to be, instead substitute a free variable. The variable ought to be fresh, not used
elsewhere in the proof:

A[z/x], 0⇒
∀x A, 0⇒ (∀l)

Then allow unification to instantiate variables with terms. This should occur when trying to solve any goal containing two
formulæ, ¬A and B. Try to unify A with B, producing a basic sequent. Of course, instantiating a variable updates the
entire proof tree.

44

12 TABLEAUX-BASED METHODS 45

Rule (∃l), used in backward proof, must create a fresh variable. That will no longer do, in part because we now allow
variables to become instantiated by terms. We have a choice of techniques, but the simplest is to Skolemize the formula.
All existential quantifiers disappear, so we can discard rule (∃l). This version of the tableau method is known as the
free-variable tableau calculus.

Warning: if you wish to use unification, you absolutely must also use Skolemization. If you use unification without
Skolemization, then you are trying to use two formalisms at the same time and your proofs will be nonsense! This is
because unification is likely to introduce variable occurrences in places where they are forbidden by the side condition of
the existential rule.

Previously (§7.2) we performed Skolemization on formulæ in prenex form: all quantifiers at the front. The outermost
existentially-bound variable was replaced by a function, which took as many arguments as there were enclosing universal
quantifiers. But there is no need to pull quantifiers to the front. Precisely the same approach works, although now the
existential quantifiers are found in subformulæ instead of being lined up in a row.

The Skolem form of ∀y ∃z Q(y, z) ∧ ∃x P(x) is ∀y Q(y, f (y)) ∧ P(a). The subformula ∃x P(x) goes to P(a) and
not to P(g(y)) because it is outside the scope of the ∀y.

12.3 Proofs in the free-variable tableau calculus
To demonstrate the system, let us prove the formula ∃x ∀y [P(x) → P(y)]. First negate it and convert to NNF, getting
∀x ∃y [P(x) ∧ ¬P(y)]. Then Skolemize the formula, and finally put it on the left side of the arrow. The sequent to be
proved is ∀x [P(x) ∧ ¬P(f (x))]⇒ . Unification completes the proof by creating a basic sequent; there are two distinct
ways of doing so:

z 7→ f (y) or y 7→ f (z)
P(y), ¬P(f (y)), P(z), ¬P(f (z))⇒ basic

P(y), ¬P(f (y)), P(z) ∧ ¬P(f (z))⇒ (∧l)

P(y), ¬P(f (y)), ∀x [P(x) ∧ ¬P(f (x))]⇒ (∀l)

P(y) ∧ ¬P(f (y)), ∀x [P(x) ∧ ¬P(f (x))]⇒ (∧l)

∀x [P(x) ∧ ¬P(f (x))]⇒ (∀l)

In the first inference from the bottom, the universal formula is retained because it must be used again. In principle,
universally quantified formulæ ought always to be retained, as they may be used any number of times. I normally erase
them to save space.

Pulling quantifiers to the front is not merely unnecessary; it can be harmful. Skolem functions should have as few
arguments as possible, as this leads to shorter proofs. Attaining this requires that quantifiers should have the smallest
possible scopes; we ought to push quantifiers in, not pull them out. This is sometimes called miniscope form.

For example, the formula ∃x ∀y [P(x)→ P(y)] is tricky to prove, as we have just seen. But putting it in miniscope
form makes its proof trivial. Let us do this step by step:

Negate; convert to NNF: ∀x ∃y [P(x) ∧ ¬P(y)]
Push in the ∃y : ∀x [P(x) ∧ ∃y ¬P(y)]
Push in the ∀x : ∀x P(x) ∧ ∃y ¬P(y)

Skolemize: ∀x P(x) ∧ ¬P(a)

The formula ∀x P(x) ∧ ¬P(a) is obviously inconsistent. Here is its refutation in the free-variable tableau calculus:

y 7→ a
P(y), ¬P(a)⇒ basic

∀x P(x), ¬P(a)⇒ (∀l)

∀x P(x) ∧ ¬P(a)⇒ (∧l)

A failed proof is always illuminating. Let us try to prove the invalid formula

∀x [P(x) ∨ Q(x)]⇒∀x P(x) ∨ ∀x Q(x).

Negation and conversion to NNF gives ∃x ¬P(x) ∧ ∃x ¬Q(x), ∀x [P(x) ∨ Q(x)].
Skolemization gives ¬P(a) ∧ ¬Q(b), ∀x [P(x) ∨ Q(x)].
The proof fails because a and b are distinct constants. It is impossible to instantiate y to both simultaneously.

y 7→ a
¬P(a), ¬Q(b), P(y)⇒

y 7→ b???
¬P(a), ¬Q(b), Q(y)⇒

¬P(a), ¬Q(b), P(y) ∨ Q(y)⇒ (∨l)

¬P(a), ¬Q(b), ∀x [P(x) ∨ Q(x)]⇒ (∀l)

¬P(a) ∧ ¬Q(b), ∀x [P(x) ∨ Q(x)]⇒ (∧l)

12.4 Tableaux-based theorem provers
A tableau represents a partial proof as a set of branches of formulæ. Each formula on a branch is expanded until this is
no longer possible (and the proof fails) or until the proof succeeds.

Expanding a conjunction A∧ B on a branch replaces it by the two conjuncts, A and B. Expanding a disjunction A∨ B
splits the branch in two, with one branch containing A and the other branch B. Expanding the quantification ∀x A extends
the branch by a formula of the form A[t/x]. If a branch contains both A and ¬A then it is said to be closed. When all
branches are closed, the proof has succeeded.

A tableau can be viewed as a compact, graph-based representation of a set of sequents. The branch operations de-
scribed above correspond to our sequent rules in an obvious way.

Quite a few theorem provers have been based upon free-variable tableaux. The simplest is due to Beckert and Posegga
[1994] and is called leanTAP . The entire program appears below! Its deductive system is similar to the reduced sequent
calculus we have just studied. It relies on some Prolog tricks, and is certainly not pure Prolog code. It demonstrates just
how simple a theorem prover can be. leanTAP does not outperform big resolution systems. But it quickly proves some
fairly hard theorems.

prove((A,B),UnExp,Lits,FreeV,VarLim) :- !,
prove(A,[B|UnExp],Lits,FreeV,VarLim).

prove((A;B),UnExp,Lits,FreeV,VarLim) :- !,
prove(A,UnExp,Lits,FreeV,VarLim),
prove(B,UnExp,Lits,FreeV,VarLim).

prove(all(X,Fml),UnExp,Lits,FreeV,VarLim) :- !,
\+ length(FreeV,VarLim),
copy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),
append(UnExp,[all(X,Fml)],UnExp1),
prove(Fml1,UnExp1,Lits,[X1|FreeV],VarLim).

prove(Lit,_,[L|Lits],_,_) :-
(Lit = -Neg; -Lit = Neg) ->
(unify(Neg,L); prove(Lit,[],Lits,_,_)).

prove(Lit,[Next|UnExp],Lits,FreeV,VarLim) :-
prove(Next,UnExp,[Lit|Lits],FreeV,VarLim).

The first clause handles conjunctions, the second disjunctions, the third universal quantification. The fourth line
handles literals, including negation. The fifth line brings in the next formula to be analyzed.

You are not expected to memorize this program or to understand how it works in detail.

Exercise 46 Use a tableau calculus (standard or free variable) to prove examples given in previous sections.

References
B. Beckert and J. Posegga. leanTAP: Lean, tableau-based theorem proving. In A. Bundy, editor, Automated Deduction

— CADE-12 International Conference, LNAI 814, pages 793–797. Springer, 1994.

R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams. Computing Surveys, 24(3):
293–318, Sept. 1992.

M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning about Systems. Cambridge University
Press, 2nd edition, 2004.

46

