

Counting Game

Immerman and Lander (1990) defined a *pebble game* for C^k .

This is again played by *Spoiler* and *Duplicator* using k pairs of pebbles $\{(a_1, b_1), \ldots, (a_k, b_k)\}$.

Spoiler picks a subset of the universe (say $X \subseteq B$)

Duplicator responds with $Y \subseteq A$ such that |X| = |Y|.

Spoiler then places a b_i pebble on an element of Y and Duplicator must place a_i on an element of X.

Spoiler wins at any stage if the partial map from \mathbb{A} to \mathbb{B} defined by the pebble pairs is not a partial isomorphism

If *Duplicator* has a winning strategy for q moves, then \mathbb{A} and \mathbb{B} agree on all sentences of C^k of quantifier rank at most q.

Bijection Games

 \equiv^{C^k} is also characterised by a *k*-pebble *bijection game*. (Hella 96). The game is played on structures A and B with pebbles a_1, \ldots, a_k

• *Spoiler* chooses a pair of pebbles a_i and b_i :

on \mathbb{A} and b_1, \ldots, b_k on \mathbb{B} .

- Duplicator chooses a bijection $h : A \to B$ such that for pebbles a_j and $b_j (j \neq i)$, $h(a_j) = b_j$;
- Spoiler chooses $a \in A$ and places a_i on a and b_i on h(a).

Duplicator loses if the partial map $a_i \mapsto b_i$ is not a partial isomorphism. **Duplicator** has a strategy to play forever if, and only if, $\mathbb{A} \equiv^{C^k} \mathbb{B}$.

7

Equivalence of Games

To show that the games do, indeed, capture \equiv^{C^k} , we can show the following series of implications for any structures \mathbb{A}, \mathbb{B} and k-tuples of elements **a**, **b**.

 $1. \Rightarrow 2. \Rightarrow 3.$

- 1. $(\mathbb{A}, \mathbf{a}) \not\equiv^{C^k} (\mathbb{B}, \mathbf{b})$
- 2. Spoiler wins the k-pebble counting game starting from (\mathbb{A}, \mathbf{a}) and (\mathbb{B}, \mathbf{b}) .
- 3. Spoiler wins the k-pebble bijection game starting from (\mathbb{A}, \mathbf{a}) and (\mathbb{B}, \mathbf{b}) .

Equivalence of Games

- $4. \Rightarrow 5. \Rightarrow 6.$
- 4. $(\mathbb{A}, \mathbf{a}) \equiv^{C^k} (\mathbb{B}, \mathbf{b})$
- 5. Duplicator wins the k-pebble bijection game starting from (\mathbb{A}, \mathbf{a}) and (\mathbb{B}, \mathbf{b}) .
- Duplicator wins the k-pebble counting game starting from (A, a) and (B, b).

Solvability of Linear Equations

We can now use the games to show that some natural problems in P are not definable in IFP + C.

We consider the problem of solving linear equations over the two element field \mathbb{Z}_2 .

The problem is clearly solvable in polynomial time by means of Gaussian elimination.

We see how to represent systems of linear equations as *unordered* relational structures.

Systems of Linear Equations

Consider structures over the domain $\{x_1, \ldots, x_n, e_1, \ldots, e_m\}$, (where e_1, \ldots, e_m are the equations) with relations:

- unary E_0 for those equations e whose r.h.s. is 0.
- unary E_1 for those equations e whose r.h.s. is 1.
- binary M with M(x, e) if x occurs on the l.h.s. of e.

 $\mathsf{Solv}(\mathbb{Z}_2)$ is the class of structures representing solvable systems.

11

Undefinability in IFP + C

Take \mathcal{G} to be a *toroidal grid* of size $k \times k$.

Define equations $\mathbf{E}_{\mathcal{G}}$ with two variables x_0^e, x_1^e for each edge e.

For each vertex v with edges e_1, e_2, e_3, e_4 incident on it, we have 16 equations:

 $E_v: \qquad x_a^{e_1} + x_b^{e_2} + x_c^{e_3} + x_d^{e_4} \equiv a + b + c + d \pmod{2}$

 $\tilde{\mathbf{E}}_{\mathcal{G}}$ is obtained from $\mathbf{E}_{\mathcal{G}}$ by replacing, for exactly one vertex v, E_v by:

 $E'_v: \qquad x_a^{e_1} + x_b^{e_2} + x_c^{e_3} + x_d^{e_4} \equiv a + b + c + d + 1 \pmod{2}$

We can show: $\mathbf{E}_{\mathcal{G}}$ is satisfiable; $\tilde{\mathbf{E}}_{\mathcal{G}}$ is unsatisfiable; $\mathbf{E}_{\mathcal{G}} \equiv^{C^k} \tilde{\mathbf{E}}_{\mathcal{G}}$

Satisfiability

Lemma \mathbf{E}_G is satisfiable.

by setting the variables x_i^e to *i*.

Lemma $\tilde{\mathbf{E}}_G$ is unsatisfiable.

Consider the subsystem consisting of equations involving only the variables x_0^e .

The sum of all *left-hand sides* is

$$2\sum_{e} x_0^e \equiv 0 \pmod{2}$$

However, the sum of *right-hand sides* is 1.

12

13

15

Cops and Robbers

The *cops and robbers* game is a way of measuring the connectivity of a graph.

It is a game played on an undirected graph G = (V, E) between a player controlling k cops and another player in charge of a *robber*.

At any point, the cops are sitting on a set $X \subseteq V$ of the nodes and the robber on a node $r \in V$.

A move consists in the cop player removing some cops from $X' \subseteq X$ nodes and announcing a new position Y for them. The robber responds by moving along a path from r to some node s such that the path does not go through $X \setminus X'$.

The new position is $(X \setminus X') \cup Y$ and s. If a cop and the robber are on the same node, the robber is caught and the game ends.

Cops, Robbers and Bijections

We use this to construct a winning strategy for Duplicator in the k-pebble bijection game on \mathbf{E}_G and $\tilde{\mathbf{E}}_G$.

- A bijection $h : \mathbf{E}_G \to \tilde{\mathbf{E}}_G$ is good bar v if it is an isomorphism everywhere except at the variables $x^e a$ for edges e incident on v.
- If *h* is good bar *v* and there is a path from *v* to *u*, then there is a bijection *h'* that is good bar *u* such that *h* and *h'* differ only at vertices corresponding to the path from *v* to *u*.
- Duplicator plays bijections that are good bar v, where v is the robber position in G when the cop position is given by the currently pebbled elements.

Cops and Robbers on the Grid

If G is the $k \times k$ toroidal grid, than the *robber* has a winning strategy in the *k*-cops and robbers game played on G.

To show this, we note that for any set X of at most k vertices, the graph $G \setminus X$ contains a connected component with at least half the vertices of G.

If all vertices in X are in distinct rows then $G \setminus X$ is connected.

Otherwise, $G \setminus X$ contains an entire row column and in its connected component there are at least k-1 vertices from at least k/2 columns.

Robber's strategy is to stay in the large component.

Reading List for the Second and Third Handout

- 1. Ebbinghaus and Flum, Chapters 11 and 12, Section 3.3.
- 2. Libkin, Sections 8.1, 10.2, 11.1–11.2
- 3. Immerman, Sections 12.1–12.4, 13.2–13.3