L113 Word Meaning and Discourse Understanding

Session 3: Semantic Spaces and Semantic Similarity

Simone Teufel

Natural Language and Information Processing (NLIP) Group

UNIVERSITY OF CAMBRIDGE

Simone.Teufel@cl.cam.ac.uk

(Slides after Stefan Evert)

2011/2012

Simone Teufel

L113 Word Meaning and Discourse Understanding

1

Cooccurrence matrices
Term Weighting
Proximity Metrics
Dimensionality Reduction

Distributional Semantic Spaces

- We want to automatically determine how "similar" two words are.
- Distributional hypothesis of word meaning:
 - "Die Bedeutung eines Wortes liegt in seinem Gebrauch."
 - -Ludwig Wittgenstein
 - "You shall know a word by the company it keeps." J.R. Firth (1957)
- Represent a word by its syntagmatic and paradigmatic affinities, and you have captured its meaning.
- Today: how to create models that do that (and that can be used for many NLP applications)
- Apart from the Distributional Measures treated here, there are also Thesaurus-based Methods (cf. JM chapter 20.6)

What is the meaning of "bardiwac"?

- He handed her a glass of bardiwac.
- Beef dishes are made to complement the bardiwacs.
- Nigel staggered to his feet, face flushed from too much bardiwac.
- Malbec, one of the lesser-known bardiwac grapes, responds well to Australia's sunshine.
- I dined off bread and cheese and this excellent bardiwac.
- The drinks were delicious: blood-red bardiwac as well as light, sweet Rhenish.

Simone Teufel

L113 Word Meaning and Discourse Understanding

3

Cooccurrence matrices Term Weighting Proximity Metrics Dimensionality Reduction

What is the meaning of "bardiwac"?

- He handed her a glass of bardiwac.
- Beef dishes are made to complement the bardiwacs.
- Nigel staggered to his feet, face flushed from too much bardiwac.
- Malbec, one of the lesser-known bardiwac grapes, responds well to Australia's sunshine.
- I dined off bread and cheese and this excellent bardiwac.
- The drinks were delicious: blood-red bardiwac as well as light, sweet Rhenish.
- \rightarrow Bardiwac is a heavy red alcoholic beverage made from grapes.

What is ⊠ similar to?

		Q	∇	*	þ	\leftarrow
♦	51	20	84	0	3	0
	52	58	4	4	6	26
\boxtimes	115	83	10	42	33	17
•	59	39	23	4	0	0
\Diamond	98	14	6	2	1	0
\Diamond	12	17	3	2	9	27
*	11	2	2	0	18	0

Simone Teufel

L113 Word Meaning and Discourse Understanding

5

Cooccurrence matrices
Term Weighting
Proximity Metrics
Dimensionality Reduction

Example
Geometric interpretation
Variations
Context Type

What is ⊠ similar to?

		Q	∇	*	þ	\leftarrow
♦	51	20	84	0	3	0
\blacksquare	52	58	4	4	6	26
\boxtimes	115	83	10	42	33	17
•	59	39	23	4	0	0
\Diamond	98	14	6	2	1	0
\Diamond	12	17	3	2	9	27
*	11	2	2	0	18	0

$$sim(\boxtimes, \spadesuit) = 0.770$$

 $sim(\boxtimes, \diamondsuit) = 0.939$

$$sim(\boxtimes, \boxplus) = 0.961$$

What it really looks like

	get	see	use	hear	eat	kill
knife	51	20	84	0	3	0
cat	52	58	4	4	6	26
dog	115	83	10	42	33	17
boat	59	39	23	4	0	0
cup	98	14	6	2	1	0
pig	12	17	3	2	9	27
banana	11	2	2	0	18	0

• Row vector x_{dog} describes the usage of the word dog in the corpus.

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Simone Teufel

L113 Word Meaning and Discourse Understanding

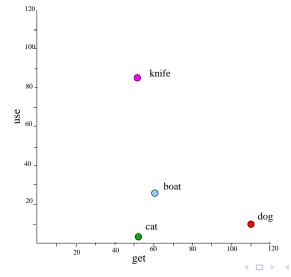
7

Cooccurrence matrices
Term Weighting
Proximity Metrics
Dimensionality Reduction

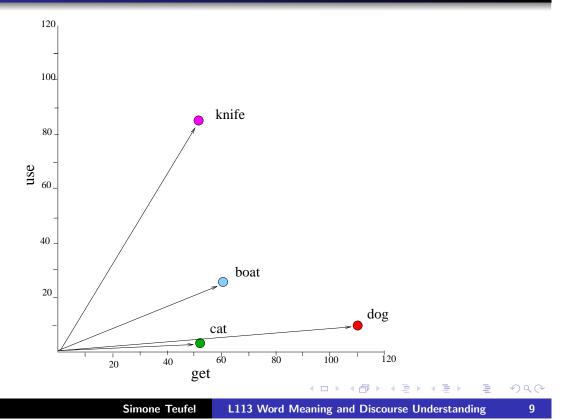
Example
Geometric interpretation
Variations
Context Type

Geometric interpretation

- Row vector can be seen as coordinates of point/vector "dog" in n-dimensional Euclidean space
- Illustrated with two dimensions, get and use. $\times_{dog} = (115, 10)$



Cosign of Vector angles in Semantic Space



Cooccurrence matrices Term Weighting Proximity Metrics Dimensionality Reduction Example
Geometric interpretation
Variations
Context Type

Variations of (Distributional) Semantic Space

- What we looked at so far was one particular semantic space:
 V-obj. term-term matrix with frequency counts.
- There are many alternative types of semantic spaces.
- Definition of DSM (Distributional Semantic Model): a scaled and/or transformed co-occurrence Matrix M such that each row x represents a distribution of a target term across contexts

Dimensions of Distributional Semantic Models

- Linguistic Pre-processing: definition of a term
- Term-context vs term-term matrix
- Size and Type of context (co-occurrence, dependency relations (structured, lexicalised?), . . .)
- Feature scaling (also called term weighting)
- Normalisation of rows/columns
- Proximity measure
- Compression/Dimensionality Reduction

Simone Teufel

L113 Word Meaning and Discourse Understanding

11

Cooccurrence matrices
Term Weighting
Proximity Metrics
Dimensionality Reduction

Example
Geometric interpretation
Variations
Context Type

Linguistic Preprocessing

- Tokenisation
- POS-tagging (light/N vs light/A vs light/V)
- Stemming/lemmatisation
 - go, goes, went, gone, going → go
- Dependency parsing or shallow syntactic chunking

Effect of Linguistic Preprocessing

Nearest Neighbours of walk (BNC):

Word forms
stroll
walking
walked
go
path
drive
ride
wander
sprinted
sauntered

Lemmatised forms
hurry
stroll
stride
trudge
amble
wander
walk-NN
walking
retrace
scuttle

<ロ > ◆ □ > ◆ ■ > ◆ ■ > ◆ ■ ● 9 へ ©

Simone Teufel

L113 Word Meaning and Discourse Understanding

13

Cooccurrence matrices
Term Weighting
Proximity Metrics
Dimensionality Reduction

Example
Geometric interpretation
Variations
Context Type

Term-document vs term-term matrices

- In Information Retrieval, the "context" is always exactly one document.
- This results in term-document matrices (called the "Vector Space Model")
- This allows us to measure the similarity of words with sets of words (e.g., documents vs. queries in IR).
- Term-document matrices are sparse

	doc1	doc2	doc3	doc4	doc5	doc6	doc7	doc8
apricot	0	1	0	0	1	1	0	1
pineapple	0	1	0	0	1	1	0	1
digital	0	0	1	1	0	0	1	0
information	0	0	1	1	1	0	1	0
arts	1	0	0	0	0	0	0	0

Context Type

- Context term appears in same fixed window
- Context term is member in same linguistic unit as target (e.g., paragraph, turn in conversation)
- Context term is linked to target term by a syntactic dependency (e.g., subject, modifier)

Simone Teufel

L113 Word Meaning and Discourse Understanding

15

Cooccurrence matrices
Term Weighting
Proximity Metrics
Dimensionality Reduction

Example
Geometric interpretation
Variations
Context Type

Nearest neighbours of car and dog (BNC)

2-word window		
car	dog	
van	cat	
vehicle	horse	
truck	fox	
motorcycle	pet	
driver	rabbit	
motor	pig	
lorry	animal	
motorist	mongrel	
cavalier	sheep	
bike	pigeon	

30-word window		
car	dog	
drive	kennel	
park	puppy	
bonnet	pet	
windscreen	bitch	
hatchback	terrier	
headlight	rottweiler	
jaguar	canine	
garage	cat	
cavalier	to bark	
tyre	Alsatian	

Semantic Similarity vs. Relatedness

- Generally accepted that there are at least two dimensions of word associations:
 - Semantic Similarity: two words sharing a high number of salient features (attributes)
 - (near) synonymy (car-automobile)
 - hyperonymy (car-vehicle)
 - co-hyponymy (car-van-lorry-bike)
 - **Semantic Relatedness**: two words semantically associated without being necessarily similar
 - function (car-drive)
 - meronymy (car-tyre)
 - location (car-road)
 - attribute (car-fast)
 - other (car-petrol)

Simone Teufel

L113 Word Meaning and Discourse Understanding

17

Cooccurrence matrices
Term Weighting
Proximity Metrics
Dimensionality Reduction

Example
Geometric interpretation
Variations
Context Type

Nearest Neighbours of car (BNC)

2-word window		
van	co-hyponym	
vehicle	hyperonym	
truck	co-hyponym	
motorcycle	co-hyponym	
driver	related entity	
motor	meronym	
lorry	co-hyponym	
motorist	related entity	
cavalier	hyponym	
bike	co-hyponym	

30-word window		
drive	function	
park	typical action	
bonnet	meronym	
windscreen	meronym	
hatchback	meronym	
headlight	meronym	
jaguar	hyponym	
garage	location	
cavalier	hyponym	
tyre	meronym	

Lexicalised grammatical relations (Lin 1998)

subj-of, absorb	1
subj-of, adapt	1
subj-of, behave	1
pobj-of, inside	16
pobj-of, into	30
nmod-of, abnormality	3
nmod-of, anemia	8
nmod-of, architecture	1
obj-of, attack	6
obj-of, call	11
obj-of, come from	3
obj-of, decorate	2
nmod, bacteria	3
nmod, body	2
nmod, bone marrow	2

Context word: cell; frequency counts from 64-Million word corpus.

990

Simone Teufel

L113 Word Meaning and Discourse Understanding

19

Cooccurrence matrices
Term Weighting
Proximity Metrics
Dimensionality Reduction

Example
Geometric interpretation
Variations
Context Type

Structured vs. Unstructured Dependencies

A dog bites a man. The man's dog bites a dog. A dog bites a man.

unstructured	bite
dog	4
man	2

structured	bite-subj	bite-obj
dog	3	1
man	0	2

Pado and Lapata (2007) investigate dependency-based semantic spaces in detail; they weight the relative importance of different syntactic structures.

Feature Scaling

- How can we discount less important features?
- Two solutions:
 - If they occur in few contexts overall, they must be important
 - Zipf's law; TF*IDF
 - If they co-occur with our target word more than expected, they must be important
 - Association metrics

Simone Teufel

L113 Word Meaning and Discourse Understanding

21

Cooccurrence matrices Term Weighting Proximity Metrics Dimensionality Reduction

Zipf's Law & TF*IDF Association Metrics

Zipf's Law

Most frequent words in a large language sample, with frequencies:

Rank	English	(BNC)	German
1	the	61847	der
2	of	29391	die
3	and	26817	und
4	a	21626	in
5	in	18214	den
6	to	16284	von
7	it	10875	zu
8	is	9982	das
9	to	9343	mit
10	was	9236	sich
11	1	8875	des
12	for	8412	auf
13	that	7308	für
14	you	6954	ist
15	he	6810	im

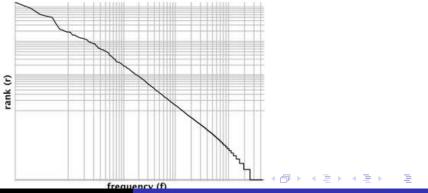
Zipf's Law

Zipf's Law: The frequency rank of a word is reciprocally proportional to its frequency:

$$freq(word_i) = \frac{1}{i^{\theta}} freq(word_1)$$

(word; is the ith most frequent word of the language; $1.5 < \theta < 2$ for most languages)

Plotting a Zipfian distribution on a log-scale:



Simone Teufel

L113 Word Meaning and Discourse Understanding

2

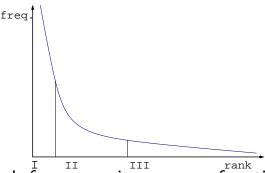
Cooccurrence matrices
Term Weighting
Proximity Metrics
Dimensionality Reduction

Zipf's Law & TF*IDF Association Metrics

Other collections (allegedly) obeying Zipf's law

- Sizes of settlements
- Frequency of access to web pages
- Income distributions amongst top earning 3% individuals
- Korean family names
- Size of earth quakes
- Word senses per word
- Notes in musical performances

Zipf's law as motivation for Term Weighting



- Zone I: High frequency items, e.g., function words, carry little semantics. (Top 135 types account for 50% of tokens in Brown corpus.)
- **Zone II**: Mid-frequency items, best indicators of semantics of the co-occurring word.
- Zone III: Low frequency words tend to be overspecific (e.g., "Uni7ed", "super-noninteresting", "87-year-old", "0.07685")

Simone Teufel

L113 Word Meaning and Discourse Understanding

25

Term Weighting **Proximity Metrics Dimensionality Reduction**

Zipf's Law & TF*IDF **Association Metrics**

Term Weighting

- Not all terms describe a document equally well
- Terms which are frequent in a document are better:

$$tf_{w,d} = freq_{w,d}$$

 Terms that are overall rare in the document collection are better:

$$idf_{w,D} = log \frac{|D|}{n_{w,D}}$$
 $tfidf_{w,d,D} = tf_{w,d} \times idf_{w,D}$

• Improvement: Normalize by term frequency of most frequent term in document

$$norm_t f_{w,d} = \frac{freq_{w,d}}{max_{l \in d} freq_{l,d}}$$

TF*IDF, formulae

TFIDF weight of word w in document d in document collection D.

Term frequency of word w in document dNormalized term frequency of word w in document didf_{w,D}

Inverse document frequency of word w in document collection DNumber of documents in document colletion Dwhich contain word w

Maximum term frequency of any word in docu-

ment d



Simone Teufel

L113 Word Meaning and Discourse Understanding

27

Cooccurrence matrices Term Weighting Proximity Metrics Dimensionality Reduction

Zipf's Law & TF*IDF Association Metrics

Example: TF*IDF

 $max_{l \in d} freq_{l,d}$

Document set contains N=30,000 documents

Term	tf	$n_{w,D}$	TF*IDF
the	312	28,799	5.55
in	179	26,452	9.78
general	136	179	302.50
fact	131	231	276.87
explosives	63	98	156.61
nations	45	142	104.62
1	44	2,435	47.99
haven	37	227	78.48
2-year-old	1	4	3.88

IDF("the") =
$$\log \left(\frac{30,000}{28,799}\right) = 0.0178$$

TF*IDF("the") = $312 \cdot 0.0178 = 5.55$

Association measures: weighting co-occurrences

How surprised should we be to see context term associated with the target word?

Expected co-occurrence frequency:

$$f_{\rm exp} = \frac{f_1 \cdot f_2}{N}$$

	eat	get	hear	kill	see	use
boat	7.0	52.4	7.3	9.5	31.2	17.6
cat	8.4	62.8	8.8	11.4	37.5	21.1
cup	6.8	50.7	7.1	9.2	30.2	17.0

. . .

Simone Teufel

L113 Word Meaning and Discourse Understanding

29

Cooccurrence matrices
Term Weighting
Proximity Metrics
Dimensionality Reduction

Zipf's Law & TF*IDI Association Metrics

MI

Mutual Information (MI) compares observed vs. expected frequency:

$$MI(word_1, word_2) = log_2 \frac{f_{obs}}{f_{exp}} = \frac{N \cdot f_{obs}}{f_1 \cdot f_2}$$

$word_1$	word ₂	f _{obs}	f_1	f_2	MI
dog	small	855	33,338	490,580	3.96
dog	domesticated	29	33,338	918	6.85
dog	sgjkj	1	33,338	1	10.31

Disadvantage: MI overrates combinations involving rare terms. Log-likelihood ratio (Dunning 1993) and local MI (Evert 2004) correct for this.

Other Association Metrics

• Pointwise Mutual Information (Fano, 1961):

$$assoc_{PMI}(w_1, w_2) = log_2 \frac{f_{obs}}{f_{exp}}$$

Lin Association Measure:

$$assoc_{Lin}(w, f) = log_2 \frac{P(w, f)}{P(w)P(r|w)P(w'|w)}$$

r: grammatical function; w': grammatically related word.

t-score:

$$assoc_{t-test}(w_1, w_2) = \frac{f_{obs} - f_{exp}}{\sqrt{f_{obs}}}$$

◆□▶ ◆□▶ ◆≧▶ ◆≧▶ ○ ● ○ 夕へ○

Simone Teufel

L113 Word Meaning and Discourse Understanding

31

Cooccurrence matrices
Term Weighting
Proximity Metrics
Dimensionality Reduction

Zipf's Law & TF*IDF Association Metrics

t-score on our example

	eat	get	hear	kill	see	use
boat	-7.03	0.86	-1.48	-9.47	1.23	1.11
cat	-0.92	-1.49	-2.13	2.82	2.67	-7.65
cup	-4.11	4.76	-2.93	-9.17	-4.20	-4.17
dog	2.76	-0.99	3.73	-1.35	0.87	-9.71
knife	-2.95	-2.10	-9.23	-11.97	-4.26	6.70
pig	1.60	-4.80	-1.21	4.10	-0.12	-3.42

Distance metrics

• Manhattan Distance: (Levenshtein Distance, L1 norm)

$$distance_{manhattan}(\vec{x}, \vec{y}) = \sum_{i=1}^{N} |x_i - y_i|$$

• Euclidean Distance: (L2 norm)

$$distance_{euclidean}(\vec{x}, \vec{y}) = \sqrt{\sum_{i=1}^{N} (x_i - y_i)^2}$$

boat	cat	cup	dog	knife
1.56				
0.73	1.43			
1.53	0.84	1.30		
0.77	1.70	0.93	1.73	
1.80	0.80	1.74	1.10	1.69
	1.56 0.73 1.53 0.77	1.56 0.73 1.43 1.53 0.84 0.77 1.70	1.56 0.73 1.43 1.53 0.84 1.30 0.77 1.70 0.93	0.73 1.43

Simone Teufel

L113 Word Meaning and Discourse Understanding

4 □ → 4 □ → 4 □ →

33

Cooccurrence matrices
Term Weighting
Proximity Metrics
Dimensionality Reduction

Similarity Metrics

• Cosine: (normalisation by vector lengths)

$$sim_{cosine}(\vec{x}, \vec{y}) = \frac{\vec{x}\vec{y}}{|\vec{x}||\vec{y}|} = \frac{\sum_{i=1}^{N} x_i \cdot y_i}{\sqrt{\sum_{i=1}^{N} x_i^2} \sqrt{\sum_{i=1}^{N} y_i^2}}$$

• Jaccard (Grefenstette, 1994):

$$sim_{jacc}(\vec{x}, \vec{y}) = \frac{\sum_{i=1}^{N} min(x_i, y_i)}{\sum_{i=1}^{N} max(x_i, y_i)}$$

• Dice Coefficient (Curran, 2003):

$$sim_{dice}(\vec{x}, \vec{y}) = \frac{2\sum_{i=1}^{N} min(x_i, y_i)}{\sum_{i=1}^{N} (x_i + y_i)}$$

Information-Theoretic Association Measures

How similar two words are depends on how much their distributions diverge from each other.

Kuhlback-Leibler Divergence

$$D(P||Q) = \sum_{x} P(x) log \frac{P(x)}{Q(x)}$$

Unfortunately, KL is undefined when Q(x) = 0 and $P(x) \neq 0$, which is frequent. Therefore:

Jensen-Shannon Divergence

$$sim_{JS}(\vec{x}||\vec{y}) = D(\vec{x}|\frac{\vec{x}+\vec{y}}{2}) + D(\vec{y}|\frac{\vec{x}+\vec{y}}{2})$$

<ロ > < @ > < き > くき > き の < @

Simone Teufel

L113 Word Meaning and Discourse Understanding

35

Cooccurrence matrices
Term Weighting
Proximity Metrics
Dimensionality Reduction

Example: Lin's Online Similarity Tool

hope (N)		hope (V)		brief (A)		brief (N)	
optimism	0.141	would like	0.158	lengthy	0.256	legal brief	0.139
chance	0.137	wish	0.140	hour-long	0.191	affidavit	0.103
expectation	0.137	plan	0.139	short	0.174	filing	0.0983
prospect	0.126	say	0.137	extended	0.163	petition	0.0865
dream	0.119	believe	0.135	frequent	0.163	document	0.0835
desire	0.118	think	0.133	recent	0.158	argument	0.0832
fear	0.116	agree	0.130	short-lived	0.155	letter	0.0786
effort	0.111	wonder	0.130	prolonged	0.149	rebuttal	0.0778
confidence	0.109	try	0.127	week-long	0.149	memo	0.0768
promise	0.108	decide	0.125	occasional	0.146	article	0.0758

all MINIPAR relations used; assoc_{Lin} used; similarity metric from Lin(98) used.

- Vectors in standard vector space are very sparse
- Orthogonal dimensions clearly wrong for near-synonyms canine—dog
- Different word senses are conflated into the same dimension
- One way to solve this: dimensionality reduction
- Hypothesis for LSA (Latent Semantic Analysis; Landauer): true semantic space has fewer dimensions than number of words observed.
- Extra dimensions are noise. Dropping them brings out latent semantic space

◆□▶ ◆□▶ ◆■▶ ◆■ りへ○

Simone Teufel

L113 Word Meaning and Discourse Understanding

37

Cooccurrence matrices Term Weighting Proximity Metrics Dimensionality Reduction

Latent Semantic Analysis (LSA)

Linear Algebra: a reminder

- Eigenvalues λ and eigenvectors \vec{x} of a matrix **A**: $\mathbf{A} \cdot \vec{x} = \lambda \vec{x}$
- Example:

$$\mathbf{A} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 4 \end{pmatrix} \Rightarrow \vec{x_1} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \vec{x_2} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \vec{x_3} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$\lambda_1 = 9; \lambda_2 = 4; \lambda_3 = 2$$

• Eigenvalues are determined by solving the polynomial $\det(\mathbf{A} - \lambda \mathbf{I}) = 0$

I is unit matrix (diagonal consists of 1s, 0s otherwise)

Eigenvector Decomposition

- We can decompose any square matrix C into 3 matrices $C = Q\Lambda Q^{-1}$ such that Q represents the eigenvectors, and eigenvalues are listed in descending order in matrix Λ .
- Rectangular matrices need SVD (Singular Value Decomposition) for similar decomposition, because they have left and right singular vectors rather than eigenvectors.
- Left singular vectors of A are eigenvectors of AA^T .
- Right singular vectors of A are eigenvectors of A^TA .

Simone Teufel

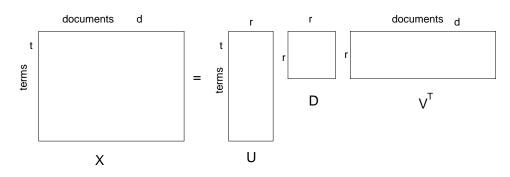
L113 Word Meaning and Discourse Understanding

39

Cooccurrence matrices Term Weighting Proximity Metrics Dimensionality Reduction

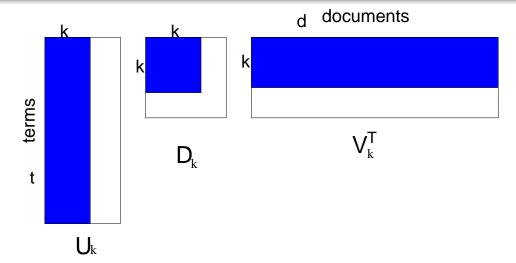
Latent Semantic Analysis (LSA)

Singular Value Decomposition



- r: rank of matrix; t: no of terms; d: no of documents
- D contains singular values (square roots of common eigenvalues for U and V) in descending order
- U contains left singular vectors of X in same ordering
- V contains right singular vectors of X in same ordering

Singular Value Decomposition



- Keep only first k (most dominant) singular values in D
- This results in two latent semantic spaces:
 - Reduced U_k represents terms in topic/concept space
 - Reduced V_k represents documents in topic/concept space collection

Simone Teufel

L113 Word Meaning and Discourse Understanding

41

Cooccurrence matrices
Term Weighting
Proximity Metrics
Dimensionality Reduction

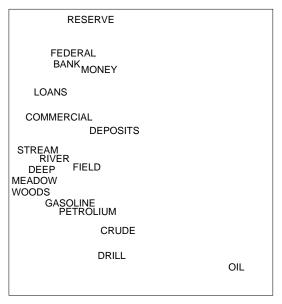
Latent Semantic Analysis (LSA)

Dimensionality Reduction

Similarity calculations in LSI:

- Term-term similarity: U_kD_k
- Document–document similarity: V_kD_k
- Term-document similarity: compare vector in $U_k D_k^{\frac{1}{2}}$ with vector in $V_k D_k^{\frac{1}{2}}$
- Matrix D_k scales axes for comparison across spaces

Example: first 2 dimensions



from Griffiths, Steyvers, Tenenbaum (2007)

Simone Teufel

L113 Word Meaning and Discourse Understanding

43

Cooccurrence matrices Term Weighting Proximity Metrics Dimensionality Reduction

Latent Semantic Analysis (LSA)

Evaluating Distributional Similarity Intrinsically

Intrinsic means by direct comparison to the right answer

- Compare to human association norms, e.g., Rubenstein and Goodenough (1965) – 65 word pairs
 - Scoring on a scale of 0-4
 - stable and replicable
 - car–automobile 3.9
 - food-fruit 2.7
 - cord-smile 0.0
 - Miller and Charles (1991) 30 word pairs
- Simulate semantic priming data
 - Hearing/reading a "related" prime facilitates access to a target in various lexical tasks (naming, lexical decision, reading)
 - The word *pear* is recognised/accessed faster if it is heard/read after *apple*.
- Compare to thesaurus(es), using precision and recall
 - Curran (2003) found Dice, Jaccard and t-score association metric to work best

Evaluating Distributional Similarity Extrinsically

Extrinsic means measure success of end-to-end application that uses DS.

- Essay and exam (multiple choice) grading
- Unsupervised part-of-speech induction (Schuetze 1995)
- WSD (Schuetze 1998) and WS ranking (McCarthy et al. 2004)
- Automatic thesaurus extraction and expansion (Grefenstette 1994, Lin 1998, Pantel 2000, Rapp 2004)
- detection of malapropism (contextual misspellings): "It is minus 15, and then there is the windscreen factor on top of that." (Jones and Martin 1997)
- Attachment disambiguation (Pantel 2000)
- Text segmentation (Choi, Wiemer-Hastings and Moore, 2001)

Simone Teufel

L113 Word Meaning and Discourse Understanding

45

Cooccurrence matrices Term Weighting Proximity Metrics Dimensionality Reduction

Latent Semantic Analysis (LSA)

More Extrinsic Evaluations for Distributional Similarity

- Query expansion in information retrieval (Salton, Wang and Yang 1975, Grefenstette 1994)
- Synonym tasks and other language tests (Landauer and Dumais 1997; Turney et al. 2003)
- Classification of 44 concrete nouns (ESSLLI 2008 competition) (animals: bird vs. ground; tools, vehicles, plants: fruit vs vegetables)
- Many other tasks in computational semantics: entailment detection, noun compound interpretation, detection of idioms,

. . .

TOEFL test

- Which of 4 multiple choices is correct synonym of a test word?
- Target: levied
 Candidates: imposed, believed, requested, correlated
- LSA: 64.5% correct; real applicants: 64.5%; native speakers 97.75% (Rapp, 2004)
- Can also explain human learning rate.
 - 40K-100K words known by age 20: 7-15 new words each day; one new word is learned in each paragraph.
 - But: experiments show only 5-10% successful learning of novel words
 - L&D hypothesize that reading provides knowledge about other words not present in immediate text.
 - Simulations show: direct learning gains 0.0007 words per word encountered. Indirect learning gains 0.15 words per article \rightarrow 10 new words per day

Simone Teufel

L113 Word Meaning and Discourse Understanding

47

Cooccurrence matrices Term Weighting Proximity Metrics Dimensionality Reduction

Latent Semantic Analysis (LSA)

Reading

- Jurafsky and Martin, chapters 20.7 (Word Similarity: Distributional Methods);
- Dekang Lin (1998), Automatic Retrieval and Clustering of Similar Words, ACL-98.

Further Reading

- Pado and Lapata (2007). Dependency-based Construction of Semantic Spaces. Computational Linguistics.
- Griffiths, Steyvers, Tenenbaum (2007). Topics in Semantic Representation. *Psychological Review*, 114(2):211.
- Landauer and Dumais (1997). A solution to Plato's problem: the latent semantic analysis theory of acquisition, induction and representation of knowledge. *Psychological Review*, 104(2):211.

