Latent Variable Models and Hidden Markov Models

Mark Gales

Lent 2011

Machine Learning for Language Processing: Lecture 4

MPhil in Advanced Computer Science

MPhil in Advanced Computer Science

Latent Variable Models

- The models generated to date have "meaning" for each variable
 - for topic detection, topic and words in text
- It is possible to introduce latent variables into the model
 - do not have to have anf "meaning"
 - these variables are never observed in test (possibly in training)
 - marginalised over to get probabilities
 - may be discrete (mixture models, HMMs), continuous (factor-analysis)
- This lecture will concentrate on two forms model
 - mixture models
 - hidden Markov models

- Consider three forms of Byesian Network (BN) for an observation $m{x}$
 - indicator variable q (or q) shows value of continuous \boldsymbol{z} or discrete c_m space
 - probability found by marginalising over the latent variable

factor analysis Gaussian mixture models discrete mixture model

$$\int p(\boldsymbol{x}|\boldsymbol{z})p(\boldsymbol{z})d\boldsymbol{z} \\ \sum_{m=1}^{M} P(\boldsymbol{c}_m)p(\boldsymbol{x}|\boldsymbol{c}_m) \\ \sum_{m=1}^{M} P(\boldsymbol{c}_m)P(\boldsymbol{x}|\boldsymbol{c}_m)$$

- these models are extensively used in many machine learning applications

Gaussian Mixture Models

- Gaussian mixture models (GMMS) are based on (multivariate) Gaussians
 - form of the Gaussian distribution:

$$p(\boldsymbol{x}) = \mathcal{N}(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\right)$$

• For GMM each component modelled using a Gaussian distribution

$$p(\boldsymbol{x}) = \sum_{m=1}^{M} P(\mathbf{c}_m) p(\boldsymbol{x} | \mathbf{c}_m) = \sum_{m=1}^{M} P(\mathbf{c}_m) \mathcal{N}(\boldsymbol{x}; \boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m)$$

- component prior: $P(c_m)$
- component distribution: $p(\boldsymbol{x}|\boldsymbol{c}_m) = \mathcal{N}(\boldsymbol{x}; \boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m)$
- Highly flexible model, able to model wide-range of distributions

Classifying Doughnut Data using GMMs

Sequence Mixture Models

- Add latent variable to a sequence classifier
 - sequence x_1, \ldots, x_3 , $(x_0 \text{ start } x_4 \text{ end})$
 - feature additionally dependent on latent variable
 - latent variable is not observed
- Consider conditional independence and marginalising over the latent variable

$$P(x_{i}|x_{o},...,x_{i-1},q_{0},...,q_{i},\omega_{j}) = P(x_{i}|x_{i-1},q_{i})$$

$$P(x_{i}|x_{i-1},\omega_{j}) = \sum_{m=1}^{M} P(c_{m}|\omega_{j})P(x_{i}|x_{i-1},c_{m})$$

• So the overall probability (similar to a mixture-model class-dependent LM)

$$P(\boldsymbol{x}|\omega_j) = \prod_{i=1}^4 \left(\sum_{m=1}^M P(\mathbf{c}_m | \omega_j) P(x_i | x_{i-1}, \mathbf{c}_m) \right); \quad \text{Note } P(x_0 | \omega_j) = 1$$

Mixture Language Model

• The general form of a mixture language model (for a trigram) is:

$$P(w_k|w_i, w_j) = \sum_{m=1}^M \lambda_m P_m(w_k|w_i, w_j); \quad \lambda_m = P(\mathbf{c}_m)$$

- ${\cal M}$ is the number of mixture components
- $P_m(w_k|w_i, w_j)$ is the language model probability for component m
- λ_m is the language model component prior (tuned for the task) note

$$\sum_{m=1}^{M} \lambda_m = 1, \quad \lambda_m \ge 0$$

- Each of the individual component language is trained on a different sources
- Component prior, λ_m , tuned for a particular task using development data

Hidden Markov Models

- An important model for sequence data is the hidden Markov model (HMM)
 - an example of a dynamic Bayesian network (DBN)
 - consider a sequence of multi-dimensional observations $oldsymbol{x}_1,\ldots,oldsymbol{x}_T$

- add discrete latent variables
 - q_t describes discrete state-space
 - conditional independence assumptions

$$P(q_t|q_0,\ldots,q_{t-1}) = P(q_t|q_{t-1})$$
$$p(\boldsymbol{x}_t|\boldsymbol{x}_1,\ldots,\boldsymbol{x}_{t-1},q_0,\ldots,q_t) = p(\boldsymbol{x}_t|q_t)$$

• The likelihood of the data is

$$p(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_T) = \sum_{\boldsymbol{q}\in\boldsymbol{Q}_T} P(\boldsymbol{q})p(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_T|\boldsymbol{q}) = \sum_{\boldsymbol{q}\in\boldsymbol{Q}_T} P(q_0)\prod_{t=1}^T P(q_t|q_{t-1})p(\boldsymbol{x}_t|q_t)$$

 $q = \{q_0, \ldots, q_{T+1}\}$ and Q_T is all possible state sequences for T observations

HMM Parameters

- Two types of states are often defined for HMMs (total N states)
 - emitting states: produce the observation sequence
 - non-emitting states: used to define valid state and end states
- The parameters are normally split into two (assume s_1 and s_N are non-emitting)
 - transition matrix A:

 $a_{ij} = P(q_t = s_j | q_{t-1} = s_i)$ is the probability of transitioning from state s_i to state s_j

- state output probability $\{b_2(x_t), \ldots, b_{N-1}(x_t)\}$: $b_j(x_t) = p(x_t | q_t = s_j)$ is the output distribution for state s_j
- The estimation of the parameters $\lambda = \{A, b_2(x_t), \dots, b_{N-1}(x_t)\}$ will be discussed later in the course
 - usually trained using Expectation-Maximisation (EM)

- To design a classifier need to determine:
 - transition matrix: discrete state-space and allowed transitions (diagram left)
 - state output distribution: form of distribution $p(\boldsymbol{x}_t|q_t)$
- Can then be used as a generative classifier

$$\hat{\omega} = \operatorname*{argmax}_{\omega} \{ P(\omega | \boldsymbol{x}_1, \dots, \boldsymbol{x}_T) \} = \operatorname*{argmax}_{\omega} \{ P(\omega) p(\boldsymbol{x}_1, \dots, \boldsymbol{x}_T | \omega) \}$$

need to be able to compute $p({m x}_1,\ldots,{m x}_T|\omega)$ efficiently

Viterbi Approximation

- An important technique for HMMs (and other models) is the Viterbi Algorithm
 - here the likelihood is approximated as (ignoring dependence on class ω)

$$p(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_T) = \sum_{\boldsymbol{q}\in\boldsymbol{Q}_T} p(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_T,\boldsymbol{q}) \approx p(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_T,\hat{\boldsymbol{q}})$$

where

$$\hat{\boldsymbol{q}} = \{\hat{q}_0, \dots, \hat{q}_{T+1}\} = \operatorname*{argmax}_{\boldsymbol{q} \in \boldsymbol{Q}_T} \{p(\boldsymbol{x}_1, \dots, \boldsymbol{x}_T, \boldsymbol{q})\}$$

- This yields:
 - an approximate likelihood (lower bound) for the model
 - the best state-sequence through the discrete-state space

Viterbi Algorithm

- Need an efficient approach to obtaining the best state-sequence, \hat{q} ,
 - simply searching through all possible state-sequences impractical ...

- Consider generating the observation sequence $oldsymbol{x}_1,\ldots,oldsymbol{x}_7$
 - HMM topology 3 emitting states with strict left-to-right topology (left)
 - representation of all possible state sequences on the right

- Partial path state sequence $\{1, 2, 2, 3, 3\}$ with cost $\phi_3(4)$: now extend path
 - cost of staying in state s_3 and generating observation x_5 : $\log(a_{33}b_3(x_5))$
 - cost of moving to state s_4 and generating observation x_5 : $\log(a_{34}b_4(x_5))$
- Hence: $\phi_3(5) = \phi_3(4) + \log(a_{33}b_3(\boldsymbol{x}_5))$ and $\phi_4(5) = \phi_3(4) + \log(a_{34}b_4(\boldsymbol{x}_5))$

- Require best partial path to state s_4 at time 5 (with associated cost $\phi_4(5)$)
 - cost of moving from state s $_3$ and generating observation $m{x}_5$: $\log(a_{34}b_4(m{x}_5))$
 - cost of staying in state s_4 and generating observation x_5 : $\log(a_{44}b_4(x_5))$
- Select "best: $\phi_4(5) = \max \{ \phi_3(4) + \log(a_{34}b_4(\boldsymbol{x}_5)), \phi_4(4) + \log(a_{44}b_4(\boldsymbol{x}_5)) \}$

Viterbi Algorithm for HMMs

• The Viterbi algorithm for HMMs can then be expressed as:

- Initialisation: (LZERO= log(0))

$$\phi_1(0) = 0.0$$
, $\phi_j(0) =$ LZERO, $1 < j < N$,
 $\phi_1(t) =$ LZERO, $1 \le t \le T$

- Recursion: for $t = 1, \dots, T$ for $j = 2, \dots, N-1$ $\phi_j(t) = \max_{1 \le k < N} \{\phi_k(t-1) + \log(a_{kj})\} + \log(b_j(\boldsymbol{x}_t))$
- Termination: $\log(p(\boldsymbol{x}_1, \dots, \boldsymbol{x}_T, \hat{\boldsymbol{q}})) = \max_{1 < k < N} \{\phi_k(T) + \log(a_{kN})\}$
- Can also store the best previous state to allow best sequence \hat{q} to be found.

State-Space

- The state-space can define many different attributes e.g.
 - sub-parts of phones/words/sentences in a speech recognition system
 - part-of-speech tags
 - word-alignments in machine translation
 - named entities
- HMMs can be combined together to form models of sequences of labels
 - many "classes" can be formed from combining sub-classes together
 - for examples words into phones

speech task = /s/ /p/ /iy/ /ch/ /t/ /ae/ /s/ /k/

- number of observations and labels do not need to be the same

