
Latent Variable Models and

Hidden Markov Models

Mark Gales

Lent 2011

Machine Learning for Language Processing: Lecture 4

MPhil in Advanced Computer Science

MPhil in Advanced Computer Science

Module L101: Machine Learning for Language Processing

Latent Variable Models

• The models generated to date have “meaning” for each variable

– for topic detection, topic and words in text

• It is possible to introduce latent variables into the model

– do not have to have anf “meaning”
– these variables are never observed in test (possibly in training)
– marginalised over to get probabilities
– may be discrete (mixture models, HMMs), continuous (factor-analysis)

• This lecture will concentrate on two forms model

– mixture models
– hidden Markov models

MPhil in Advanced Computer Science 1

Module L101: Machine Learning for Language Processing

”Static” Latent Variable Models

q

x x

q q

x
Factor Analysis Gaussian Mixture Model Discrete Mixture Model

• Consider three forms of Byesian Network (BN) for an observation x

– indicator variable q (or q) shows value of continuous z or discrete cm space
– probability found by marginalising over the latent variable

factor analysis
∫

p(x|z)p(z)dz

Gaussian mixture models
∑M

m=1
P (cm)p(x|cm)

discrete mixture model
∑M

m=1
P (cm)P (x|cm)

– these models are extensively used in many machine learning applications

MPhil in Advanced Computer Science 2

Module L101: Machine Learning for Language Processing

Gaussian Mixture Models

• Gaussian mixture models (GMMS) are based on (multivariate) Gaussians

– form of the Gaussian distribution:

p (x) = N (x;µ,Σ) =
1

(2π)d/2 |Σ|1/2
exp

(

−
1

2
(x− µ)TΣ−1 (x− µ)

)

• For GMM each component modelled using a Gaussian distribution

p (x) =
M
∑

m=1

P (cm)p(x|cm) =
M
∑

m=1

P (cm)N (x;µm,Σm)

– component prior: P (cm)
– component distribution: p(x|cm) = N (x;µm,Σm)

• Highly flexible model, able to model wide-range of distributions

MPhil in Advanced Computer Science 3

Module L101: Machine Learning for Language Processing

Classifying Doughnut Data using GMMs

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

MPhil in Advanced Computer Science 4

Module L101: Machine Learning for Language Processing

Sequence Mixture Models

x4

ω

x2

q2q0 q1 q3 q4

x1x0 x3

• Add latent variable to a sequence classifier

– sequence x1, . . . , x3, (x0 start x4 end)
– feature additionally dependent on latent

variable
– latent variable is not observed

• Consider conditional independence and marginalising over the latent variable

P (xi|xo, . . . , xi−1, q0, . . . , qi, ωj) = P (xi|xi−1, qi)

P (xi|xi−1, ωj) =
M
∑

m=1

P (cm|ωj)P (xi|xi−1, cm)

• So the overall probability (similar to a mixture-model class-dependent LM)

P (x|ωj) =
4
∏

i=1

(

M
∑

m=1

P (cm|ωj)P (xi|xi−1, cm)

)

; Note P (x0|ωj) = 1

MPhil in Advanced Computer Science 5

Module L101: Machine Learning for Language Processing

Mixture Language Model

• The general form of a mixture language model (for a trigram) is:

P (wk|wi, wj) =
M
∑

m=1

λmPm(wk|wi, wj); λm = P (cm)

– M is the number of mixture components
– Pm(wk|wi, wj) is the language model probability for component m
– λm is the language model component prior (tuned for the task) - note

M
∑

m=1

λm = 1, λm ≥ 0

• Each of the individual component language is trained on a different sources

• Component prior, λm, tuned for a particular task using development data

MPhil in Advanced Computer Science 6

Module L101: Machine Learning for Language Processing

Hidden Markov Models
• An important model for sequence data is the hidden Markov model (HMM)

– an example of a dynamic Bayesian network (DBN)
– consider a sequence of multi-dimensional observations x1, . . . ,xT

qqt

xt xt+1

t+1

• add discrete latent variables

– qt describes discrete state-space
– conditional independence assumptions

P (qt|q0, . . . , qt−1) = P (qt|qt−1)

p(xt|x1, . . . ,xt−1, q0, . . . , qt) = p(xt|qt)

• The likelihood of the data is

p(x1, . . . ,xT) =
∑

q∈QT

P (q)p(x1, . . . ,xT |q) =
∑

q∈QT

P (q0)
T
∏

t=1

P (qt|qt−1)p(xt|qt)

q = {q0, . . . , qT+1} and QT is all possible state sequences for T observations

MPhil in Advanced Computer Science 7

Module L101: Machine Learning for Language Processing

HMM Parameters

• Two types of states are often defined for HMMs (total N states)

– emitting states: produce the observation sequence
– non-emitting states: used to define valid state and end states

• The parameters are normally split into two (assume s1 and sN are non-
emitting)

– transition matrix A:
aij = P (qt = sj|qt−1 = si) is the probability of transitioning from state si
to state sj

– state output probability {b2(xt), . . . , bN−1(xt)}:
bj(xt) = p(xt|qt = sj) is the output distribution for state sj

• The estimation of the parameters λ = {A, b2(xt), . . . , bN−1(xt)} will be
discussed later in the course

– usually trained using Expectation-Maximisation (EM)

Cambridge University
Engineering Department

MPhil in Advanced Computer Science 8

Module L101: Machine Learning for Language Processing

Hidden Markov Model

2 3 4 5

x x x3 4 T2

12a

a a33

a a34 a

a22

23

44

45

xx1

b b
3 4() ()b2

1

()
qqt

xt xt+1

t+1

• To design a classifier need to determine:
– transition matrix: discrete state-space and allowed transitions (diagram left)
– state output distribution: form of distribution p(xt|qt)

• Can then be used as a generative classifier

ω̂ = argmax
ω

{P (ω|x1, . . . ,xT)} = argmax
ω

{P (ω)p(x1, . . . ,xT |ω)}

need to be able to compute p(x1, . . . ,xT |ω) efficiently

Cambridge University
Engineering Department

MPhil in Advanced Computer Science 9

Module L101: Machine Learning for Language Processing

Viterbi Approximation

• An important technique for HMMs (and other models) is the Viterbi Algorithm

– here the likelihood is approximated as (ignoring dependence on class ω)

p(x1, . . . ,xT) =
∑

q∈QT

p(x1, . . . ,xT , q) ≈ p(x1, . . . ,xT , q̂)

where

q̂ = {q̂0, . . . , q̂T+1} = argmax
q∈QT

{p(x1, . . . ,xT , q)}

• This yields:

– an approximate likelihood (lower bound) for the model
– the best state-sequence through the discrete-state space

Cambridge University
Engineering Department

MPhil in Advanced Computer Science 10

Module L101: Machine Learning for Language Processing

Viterbi Algorithm

• Need an efficient approach to obtaining the best state-sequence, q̂,

– simply searching through all possible state-sequences impractical ...

2 3 4 5

x x x3 4 72

12a

a a33

a a34 a

a22

23

44

45

xx1

b b
3 4() ()b2

1

()

St
at

e

Time

• Consider generating the observation sequence x1, . . . ,x7

– HMM topology - 3 emitting states with strict left-to-right topology (left)
– representation of all possible state sequences on the right

Cambridge University
Engineering Department

MPhil in Advanced Computer Science 11

Module L101: Machine Learning for Language Processing

Extending Partial Paths with Time
St

at
e

Time

• Red partial path to time 4

• Green possible extensions

• Partial path state sequence {1, 2, 2, 3, 3} with cost φ3(4): now extend path

– cost of staying in state s3 and generating observation x5: log(a33b3(x5))
– cost of moving to state s4 and generating observation x5: log(a34b4(x5))

• Hence: φ3(5) = φ3(4) + log(a33b3(x5)) and φ4(5) = φ3(4) + log(a34b4(x5))

Cambridge University
Engineering Department

MPhil in Advanced Computer Science 12

Module L101: Machine Learning for Language Processing

Best Partial Path to a State/Time
St

at
e

Time

• Red possible partial paths

• Green state of interest

• Require best partial path to state s4 at time 5 (with associated cost φ4(5))

– cost of moving from state s3 and generating observation x5: log(a34b4(x5))
– cost of staying in state s4 and generating observation x5: log(a44b4(x5))

• Select “best: φ4(5) = max {φ3(4) + log(a34b4(x5)), φ4(4) + log(a44b4(x5))}

Cambridge University
Engineering Department

MPhil in Advanced Computer Science 13

Module L101: Machine Learning for Language Processing

Viterbi Algorithm for HMMs

• The Viterbi algorithm for HMMs can then be expressed as:

– Initialisation: (LZERO= log(0))
φ1(0) = 0.0, φj(0) = LZERO, 1 < j < N ,
φ1(t) = LZERO, 1 ≤ t ≤ T

– Recursion:
for t = 1, . . . , T
for j = 2, . . . , N − 1

φj(t) = max1≤k<N {φk(t− 1) + log(akj)}+ log(bj(xt))

– Termination:
log(p(x1, . . . ,xT , q̂)) = max1<k<N {φk(T) + log(akN)}

• Can also store the best previous state to allow best sequence q̂ to be found.

Cambridge University
Engineering Department

MPhil in Advanced Computer Science 14

Module L101: Machine Learning for Language Processing

State-Space

• The state-space can define many different attributes e.g.

– sub-parts of phones/words/sentences in a speech recognition system
– part-of-speech tags
– word-alignments in machine translation
– named entities

• HMMs can be combined together to form models of sequences of labels

– many “classes” can be formed from combining sub-classes together
– for examples words into phones

speech task = /s/ /p/ /iy/ /ch/ /t/ /ae/ /s/ /k/

– number of observations and labels do not need to be the same

Cambridge University
Engineering Department

MPhil in Advanced Computer Science 15

