Introduction to Machine Learning

Mark Gales

Lent 2012

Machine Learning for Language Processing: Lectures 1 & 2

MPhil in Advanced Computer Science

Decision Making

In this world nothing can be said to be certain, except death and taxes.

- Benjamin Franklin
- We make decisions under uncertainty all the time

```
gambling (not recommended), weather forecasting (not very successfully) insurance (risk assessment), stock market
```

Need to formalise "intuitive decisions" mathematically

- Basically, how to quantify and manipulate uncertainty.
- Various tasks we can consider
 - classification: predict class from observations
 - regression (prediction): predict value from observations
 - clustering: group observations into "meaningful" groups

Machine Learning

• One definition is (Mitchell):

"A computer program is said to learn from experience (E) with some class of tasks (T) and a performance measure (P) if its performance at tasks in T as measured by P improves with E"

alternatively

"Systems built by analysing data sets rather than by using the intuition of experts"

- Multiple specific conferences:
 - {International, European} Conference on Machine Learning;
 - Neural Information Processing Systems;
 - International Conference on Pattern Recognition etc etc;
- as well as sessions in other conferences:
 - ICASSP machine learning for signal processing.

Natural Language Processing Applications

- Natural language processing becoming increasingly popular (important)
- Many possible applications:
 - spam email detection;
 - named-entity recognition;
 - machine translation;
 - relation extraction;
 - information retrieval;
 - sentiment analysis;
- Generally need to structure and annotate vast quantities of text data
 - sometimes used in combination with speech and image processing

Machine Translation

Rafales de marque - lecteur dans la technologie de... http://66.249.91.104/translate_c?hl=en&langpai...

Marquer les rafales

Les rafales de marque est un lecteur dans la technologie de l'information dans le <u>laboratoire</u> <u>d'intelliqence de machine</u> (autrefois le groupe de vision et de robotique de la parole (SVR)) et un camarade de l'<u>université d'Emmanuel</u>. Il est un membre du <u>groupe de recherche de la parole</u> ainsi que les <u>jeunes de Steve de</u> membres de personnel de corps enseignant, la <u>régfion</u> boisée et la facture Byrne de Phil.

Une brève biographie est accessible en ligne.

[Recherche | projets | publications | étudiants | enseignant | contact]

Intérêts de recherches

- · Reconnaissance de la parole continue de grand vocabulaire
- · Reconnaissance de la parole robuste
- · Adaptation d'orateur
- Étude de machine (en particulier choix modèle et méthodes grain-basées)
- Identification et vérification d'orateur

Une brève introduction à la $\underline{\text{reconnaissance de la parole}}$ est accessible en ligne $\underline{\text{dessus}}$

Projets de recherche

Projets en cours :

- Bruit ASR robuste (Europe Ltd de recherches de Toshiba placée)
- Traitement averti d'environnement rapide et robuste (Europe Ltd de recherches de Toshiba placée)
- Position d'associé de recherches disponible
- AGILE (projet placé par GALE de DARPA)
- Version 3 de HTK HTK V3.4 et exemples sont disponibles.

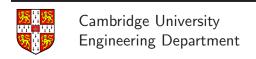
Projets récemment réalisés :

- CoreTex (améliorant la technologie de reconnaissance de la parole de noyau)
- <u>Transcription audio riche de HTK</u>(Projet placé par OREILLES de DARPA) <u>pages Web locaux</u>

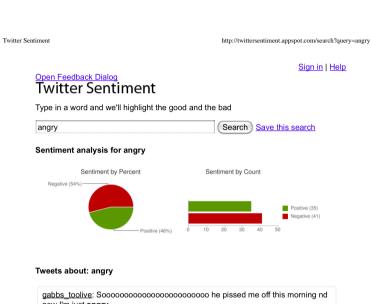
dessus

- Interesting application
 - statistical approaches work well
- Translation of my web-page (in 2007)
 - Mark Gales becomes To mark the gusts
 - Phil Woodland, Steve Young, Bill Byrne
 - (translates correctly in 2009)
- Part of this MPhil course.

1 of 3 17/09/07 15:08



Sentiment Analysis



- Alternative application
 - statistical approaches again work well
- "Twitter Sentiment" for angry
 - lots of tweets about angry birds game
 - sentiment accuracy reasonable

1 of 7

14/01/2011 14:47

Natural Language Processing

Why is natural language processing an interesting machine learning task?

- "Standard" machine learning tasks are of the form
 - clearly defined set of observations $oldsymbol{x}$
 - "reasonable" number of classes $\omega_1, \ldots, \omega_K$
- \bullet Consider statistical machine translation with source vocabulary $V_{\rm s}$ target vocabulary $V_{\rm t}$
 - for target sentence of 10 words $V_{\rm t}^{10}$ possible sentences
 - $V_{\rm s}$ word features, $V_{\rm s}^2$ word-pair features, $V_{\rm s}^3$ word-tuple features, ...
 - vast number of possible classes, vast number of possible features
- These initial 2 lectures will not address these problems directly
 - standard machine learning described
 - language processing extensions to will be described in future lectures

Basic Discrete Probability

• Discrete random variable x takes one value from the set, with probabilities

$$\mathcal{X} = \omega_1, \dots, \omega_K; \quad p_j = \Pr(x = \omega_j), \quad j = 1, \dots, K$$

Probability mass function, P(x), describes the set of probabilities, satisfies

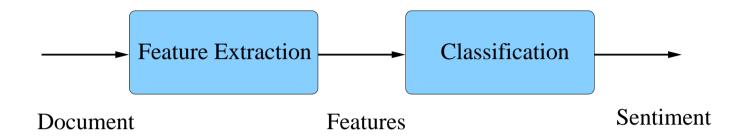
$$\sum_{x \in \mathcal{X}} P(x) = 1, \quad P(x) \ge 0$$

Probability density function, p(x), equivalent for continuous random variables

ullet For random variables x, y, z need

conditional distribution:
$$P\left(x|y\right) = \frac{P(x,y)}{P(y)}$$
 joint distribution $P\left(x,y\right)$ marginal distribution $P\left(x\right) = \sum_{y \in \mathcal{Y}} P(x,y)$ chain rule $P(x,y,z) = P(x|y,z) \ P(y|z) \ P(z)$

Machine Learning Framework



- There are two stages in a pattern recognition framework:
 - feature extraction: a feature vector, x, is derived from the "observations";
 - classification: a class ω is identified given the feature vector x:
- Example: sentiment analysis
 - w is the document (words)
 - $-\ x$ is the a binary vector whether a particular word is in the document
 - $-\omega$ is the sentiment (e.g. angry)
- Need to design a suitable feature vector and classifier for task.

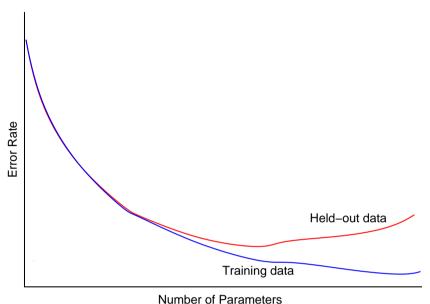
Training and Evaluation Data

- The basic machine learning framework has two sets of data:
 - 1. Training data: is used to train the classifier data may be:
 - supervised: the correct classes of the training data are known.
 - unsupervised: the correct classes of the training data are not known
 - reinforcement learning: don't learn a model directly learn an action!
 - 2. Test data: held-out data for evaluating the classifier

Supervised training data will be mostly considered in this course

- It is important that the training and test data do not overlap
 - performance on training data better than on held-out data
 - becomes more important as the classifiers become more complex
 - development data sometimes used to tune parameters
- Aim to build a classifier that performs well on held-out data, generalise.

Generalisation



- Performance typically goes as left
 - increasing model parameters,
 - improves training data performance
 - but not always test data performance
- What complexity of classifier to use?
- Consider various regions of the graph
 - 1. Too Simple: The models used are relatively simple. The performance on the training and test data is about the same as the models are "well" trained.
 - 2. Optimal: This is where the error rate on the test data is at a minimum. This is where we want to be.
 - 3. Too Complex: The models perform very well on the training data. However the models perform badly on the test data.

Machine Learning Based Decisions

- Need a systematic well-motivated approach for making decisions consider
 - classifier: form and how to train the classifier
 - decision rule given a classifier: how to use it
- Consider a system where
 - observation: feature vector of dimension d, x
 - class labels: there are K classes, denoted by $\omega_1, \ \omega_2, ..., \ \omega_K$.
- Classifiers for making decisions can be broadly split as:
 - Generative models: a model of the joint distribution of observations and classes is trained, $P(\mathbf{x}, \omega_i)$.
 - Discriminative models: a model of the posterior distribution of the class given the observation is trained, $P(\omega_i|x)$.
 - Discriminant functions: a mapping from an observation x to class ω_j is directly trained. No posterior probability, $P(\omega_j|x)$, generated just class labels.

Bayes' Decision Theory

• Given a classifier create a decision rule to minimise average probability of error.

$$P(\text{error}) = \sum_{\boldsymbol{x} \in \mathcal{X}} P(\text{error}, \boldsymbol{x}) = \sum_{\boldsymbol{x} \in \mathcal{X}} P(\text{error}|\boldsymbol{x}) P(\boldsymbol{x})$$

- for a two class problem, the conditional probability of error can be written

$$P(\text{error}|\boldsymbol{x}) = \begin{cases} P(\omega_1|\boldsymbol{x}) & \text{if we decide } \omega_2 \\ P(\omega_2|\boldsymbol{x}) & \text{if we decide } \omega_1 \end{cases}$$

- Minimising $P(\text{error}|\boldsymbol{x})$ for each \boldsymbol{x} minimises the average probability of error.
 - this gives Bayes' decision rule, which for a two class problem is

Decide
$$\begin{cases} \text{Class } \omega_1 & \text{if } P(\omega_1 | \boldsymbol{x}) > P(\omega_2 | \boldsymbol{x}) \\ \text{Class } \omega_2 & \text{otherwise} \end{cases}$$
, $\frac{P(\omega_1 | \boldsymbol{x})}{P(\omega_2 | \boldsymbol{x})} \stackrel{\omega_1}{\underset{\omega_2}{\leq}} 1$

- for multiple classes select according to $\hat{\omega} = \operatorname{argmax}_{\omega} \{ P(\omega | \boldsymbol{x}) \}$

Generative Models

For generative models the joint distribution is found - often expressed as

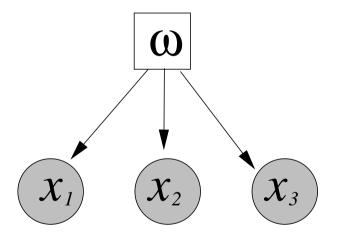
$$P(\boldsymbol{x}, \omega_j) = P(\boldsymbol{x}|\omega_j)P(\omega_j)$$

- Form of classifier considered has two parts
 - prior probabilities: an idea of how frequent each class is, $P(\omega_1), \ldots, P(\omega_K)$.
 - class-conditional (likelihood) probability: the PMF of the feature vector for each class $P(x|\omega_1), \ldots, P(x|\omega_K)$.
- ullet For an unknown observation x, Bayes' rule allows the calculation of posterior probability of class membership.

$$P(\omega_j | \boldsymbol{x}) = \frac{P(\boldsymbol{x} | \omega_j) P(\omega_j)}{\sum_{k=1}^K P(\boldsymbol{x} | \omega_k) P(\omega_k)}, \quad j = 1, 2, ..., K$$

Naive Bayes' Classifier

- Simple form of generative model:
 - joint distribution: $P(\boldsymbol{x}, \omega_j) = P(\omega_j) \prod_{i=1}^d P(x_i | \omega_j)$
 - classification: $P(\omega_j|\boldsymbol{x}) \propto P(\omega_j) \prod_{i=1}^d P(x_i|\omega_j)$
- Elements of the feature vector conditionally independent given the class



- write as a Bayesian Network (BN)
 - shaded observed variable
 - unshaded unobserved variable
 - circle continuous variable
 - square discrete variable
- More on Bayesian Networks (and Graphical Models) later in the module

Probability Distributions

- For generative models need to decide form of conditional distribution $P(\boldsymbol{x}|\omega_j)$
 - (d-dimensional) feature vector may be discrete or continuous
- Discrete distributions (probability mass functions) primary interest here
 - Multivariate-Bernoulli distribution: $x_i \in \{0,1\}$,

$$P(\mathbf{x}|\omega_j) = \prod_{i=1}^d p_{ji}^{x_i} (1 - p_{ji})^{1 - x_i}; \qquad 0 \le p_{ji} \le 1$$

- Multinomial distribution: $x_i \in \{0, \ldots, n\}$

$$P(\boldsymbol{x}|\omega_j) = \frac{n!}{\prod_{i=1}^d x_i!} \prod_{i=1}^d p_{ji}^{x_i}, \qquad n = \sum_{i=1}^d x_i, \quad \sum_{i=1}^d p_{ji} = 1, \quad p_{ji} \ge 0$$

• Continuous distribution, $x_i \in [-\infty, \infty]$, less interest on this module

Maximum Likelihood Training

- ullet The class-conditional distribution $P(oldsymbol{x}|\omega_j)$ needs to be trained
 - only the data from the class of interest used
 - for class ω_j with n training examples ${\boldsymbol x}_1,\dots,{\boldsymbol x}_n$

$$\hat{\boldsymbol{\lambda}}_{j} = \underset{\boldsymbol{\lambda}}{\operatorname{argmax}} \left\{ \prod_{\tau=1}^{n} P(\boldsymbol{x}_{\tau} | \boldsymbol{\lambda}) \right\} = \underset{\boldsymbol{\lambda}}{\operatorname{argmax}} \left\{ \sum_{\tau=1}^{n} \log \left(P(\boldsymbol{x}_{\tau} | \boldsymbol{\lambda}) \right) \right\}$$

• For the multivariate Bernoulli distribution: $\lambda_j = \{p_{j1}, \dots, p_{jd}\}$

$$\hat{\boldsymbol{\lambda}}_j = \underset{\boldsymbol{\lambda}_j}{\operatorname{argmax}} \left\{ \sum_{\tau=1}^n \sum_{i=1}^d x_{\tau i} \log(p_{ji}) + (1 - x_{\tau i}) \log(1 - p_{ji}) \right\}$$

Differentiating wrt λ_j and equating to zero yields: $p_{ji} = \frac{1}{n} \sum_{\tau=1}^{n} x_{\tau i}$

Improving the Basic Model

- Incorporating a Prior: What happens if a count is zero?
 - simplest solution to initialise counts with a constant α : for Bernoulli

$$p_{ji} = \frac{1}{\alpha + n} \left(\alpha + \sum_{\tau=1}^{n} x_{\tau i} \right)$$

- more details on this topic in discussion of language models
- Mixture Model: more "powerful" distribution combining multiple distributions:

$$P(\boldsymbol{x}|\omega_j) = \sum_{m=1}^{M} P(c_m|\omega_j) P(\boldsymbol{x}|c_m, \omega_j)$$

- component c_m has prior, $P(c_m|\omega_j)$ and probability distribution, $P(\boldsymbol{x}|c_m,\omega_j)$
- more details on this topic in the lectures on graphical models

Limitations of Generative Models

An obvious question is:

If Bayes' decision rule minimises average probability of error and we can train generative models - why do anything else?

Plus often able to estimate parameters simply by counting!

- The classifier is the minimum error classifier only if
 - form of the class-conditional distribution is correct
 - training sample set is infinite
 - training algorithm finds the correct parameters
 - correct prior is used

None of these are usually true!, but still used for some tasks

Discriminative Models

- Classification requires the class-posterior $P(\omega_j|\boldsymbol{x})$
 - can just directly model the posterior distribution
 - avoids the complexity of modelling the joint distribution $P(\boldsymbol{x},\omega_j)$
- Form of model called a discriminative model
- Many debates of generative versus discriminative models:
 - discriminative model criterion more closely related to classification process
 - not dependent on generative process being correct
 - joint distribution can be very complicated to accurately model
 - only final posterior distribution needs to be a valid distribution
- Initially consider classifiers that yield linear decision boundaries

Linear Decision Boundaries

- Decision boundaries partition the feature-space into regions
 - associated with each region is a class label
 - linear decision boundaries use: lines (d=2); planes (d=3); hyper-planes (d>3) to determine regions
- Initially only binary (2-class) classification tasks will be considered

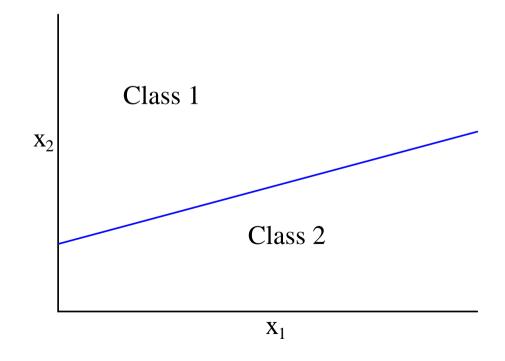
Consider linear decision boundary where

$$g(\boldsymbol{x}) = \mathbf{w}^\mathsf{T} \boldsymbol{x} + b$$

Decisions are made based on

Decide
$$\begin{cases} \text{ class } \omega_1 & g(\boldsymbol{x}) > 0 \\ \text{ class } \omega_2 & g(\boldsymbol{x}) < 0 \end{cases}$$

Parameters of decision boundary $b \& \mathbf{w}$



Logistic Regression/Classification

- For binary classification logistic regression classification is a simple form
 - class posterior probability a function of the perpendicular distance to the decision boundary

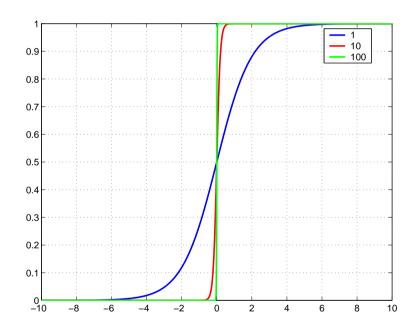
$$P(\omega_1|\boldsymbol{x}) = \frac{1}{1 + \exp(-(\mathbf{w}^\mathsf{T}\boldsymbol{x} + b))}; \quad P(\omega_2|\boldsymbol{x}) = \frac{\exp(-(\mathbf{w}^\mathsf{T}\boldsymbol{x} + b))}{1 + \exp(-(\mathbf{w}^\mathsf{T}\boldsymbol{x} + b))}$$

- linear decision boundary need to find $\lambda = \{\mathbf{w}, b\}$.
- Often parameters combined into single vectors

$$ilde{m{x}} = \left[egin{array}{c} m{x} \\ 1 \end{array}
ight], \quad ilde{f w} = \left[egin{array}{c} m{w} \\ b \end{array}
ight], \quad egin{array}{c} m{ ilde{w}}^{\mathsf{T}} m{ ilde{x}} = m{w}^{\mathsf{T}} m{x} + b \end{array}$$

Form of Posterior

• The posterior distribution of class 1 and perpendicular distance to the decision boundary



• a sigmoid function

$$P(\omega_1|\boldsymbol{x}) = \frac{1}{1 + \exp(-\rho z)}$$

where
$$\rho z = \mathbf{w}^\mathsf{T} \boldsymbol{x} + b$$

ullet diagram shows variations with ho

- Posterior is only a function of perpendicular distance to the decision boundary
- Altering the value of the priors simply moves the sigmoid to the right or left

MaxEnt Model

A multi-class generalisation of logistic regression is the MaxEnt model

$$P(\omega_j | \boldsymbol{x}) = \frac{1}{Z} \exp\left(\mathbf{w}_j^\mathsf{T} \boldsymbol{x} + b_j\right); \quad Z = \sum_{k=1}^K \exp\left(\mathbf{w}_k^\mathsf{T} \boldsymbol{x} + b_k\right)$$

Z is the normalisation term

- A more general form of MaxEnt model considers class-specific features
 - can use a feature function of the observation and class, $f(x,\omega_i)$

$$P(\omega_j | \boldsymbol{x}) = \frac{1}{Z} \exp \left(\sum_{i=1}^{D} \lambda_i f_i(\boldsymbol{x}, \omega_j) \right); \quad Z = \sum_{k=1}^{K} \exp \left(\sum_{i=1}^{D} \lambda_i f_i(\boldsymbol{x}, \omega_k) \right)$$

-D is the size of the combined feature-vector for all classes

MaxEnt Model (cont)

• Feature-functions can represent the simple linear form

$$oldsymbol{\lambda} = egin{bmatrix} \mathbf{w}_1 \ b_1 \ \vdots \ b_K \end{bmatrix}; \quad \mathbf{f}(oldsymbol{x}, \omega_1) = egin{bmatrix} oldsymbol{x} \ 1 \ 0 \ \vdots \ 0 \end{bmatrix}; \quad \mathbf{f}(oldsymbol{x}, \omega_k) = egin{bmatrix} 0 \ \vdots \ x \ 1 \ 0 \ \vdots \end{bmatrix}$$

• Relationship to logistic regression (note binary case, restricted feature function)

$$P(\omega_1|\mathbf{x}) = \frac{\exp(\mathbf{w}_1^\mathsf{T}\mathbf{x} + b_1)}{\exp(\mathbf{w}_1^\mathsf{T}\mathbf{x} + b_1) + \exp(\mathbf{w}_2^\mathsf{T}\mathbf{x} + b_2)}$$
$$= \frac{1}{1 + \exp((\mathbf{w}_2 - \mathbf{w}_1)^\mathsf{T}\mathbf{x} + (b_2 - b_1))}$$

Discriminative Model Training

- Similar criterion to ML-training of generative models
 - maximise posterior of the correct class (rather than generating the data)

$$\hat{\boldsymbol{\lambda}} = \underset{\boldsymbol{\lambda}}{\operatorname{argmax}} \left\{ \sum_{\tau=1}^{N} \log \left(P(y_{\tau} | \boldsymbol{x}_{\tau}, \boldsymbol{\lambda}) \right) \right\}$$

where $y_{\tau} \in \{\omega_1, \ldots, \omega_K\}$ and training data $\{(\boldsymbol{x}_1, y_1), \ldots, (\boldsymbol{x}_N, y_N)\}$

- Useful properties
 - multi-class training of parameters λ
 - all training examples used to derive all the model parameters
 - different features may be used for different classes (generative model requires same feature-space)

Training MaxEnt Models

- Training MaxEnt model is a convex optimisation problem
 - one solution to train parameters is generalised iterative scaling

$$\lambda_i^{(l+1)} = \lambda_i^{(l)} + \frac{1}{C} \log \left(\frac{\sum_{\tau=1}^N f_i(\boldsymbol{x}_{\tau}, y_{\tau})}{\sum_{\tau=1}^N \sum_{k=1}^K P(\omega_k | \boldsymbol{x}_{\tau}, \boldsymbol{\lambda}^{(l)}) f_i(\boldsymbol{x}_{\tau}, \omega_k)} \right)$$

- iterative approach (parameters at iteration l are $\boldsymbol{\lambda}^{(l)}$)
- (strictly) requires that the features add up to a constant

$$\sum_{i=1}^{D} f_i(\boldsymbol{x}_{\tau}, \omega_k) = C, \quad \forall \tau, k$$

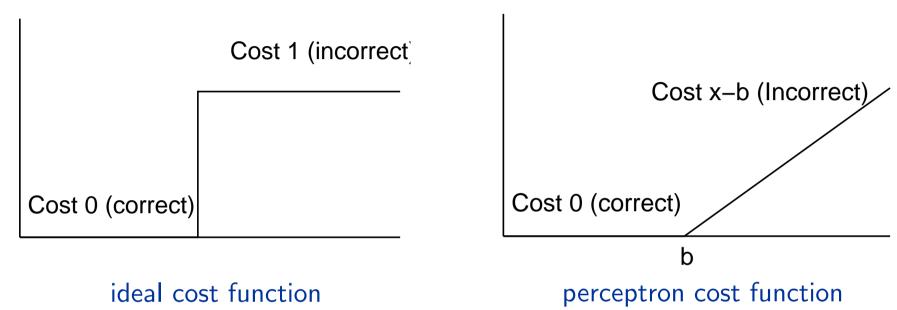
- extensions relaxes this requirements, e.g. improved iterative scaling

Discriminative Functions

- Aim to directly minimise the error rate
 - all we care about for classification
 - don't need to determine class posteriors, $P(\omega_j|x)$, just decision boundaries
- Wide range of possible optimisation schemes/criteria (Duda, Hart and Stork)
 - perceptron algorithm described in this lecture
- Some disadvantages to not obtaining a posterior probability: issues with
 - reject option: don't quote answer if posterior below a threshold
 - compensating for class priors: priors are sometimes estimated on different data (e.g. language models)
 - combining models: sometimes build and combine multiple systems using posteriors (could use voting ...)

Cost Functions

Need to decide on the criterion, cost function, to train the decision boundary



- Would like to minimise the error rate ideal cost function above shown above
 - differentiating this function yields a delta-function
 - awkward to train (consider gradient descent with this)
- An alternative is the perceptron algorithm, which is differentiable
 - the distance of incorrect observations from the decision boundary

Perceptron Criterion

- The perceptron criterion cost for a sample is
 - zero when correctly classified
 - perpendicular distance to the decision boundary, $g({m x})$, when misclassified
- The distance to the decision boundary for misclassified samples
 - for class ω_1 , $g(\boldsymbol{x}) < 0$
 - for class ω_2 , $g(\boldsymbol{x}) > 0$
- ullet To simplify training the extended training observations, $ilde{x}_{ au}$, are normalised

$$oldsymbol{ar{x}}_{ au} = \left\{egin{array}{ll} ilde{m{x}}_{ au}, & ext{belongs to } \omega_1 \ - ilde{m{x}}_{ au}, & ext{belongs to } \omega_2 \end{array}
ight.$$

$$\tilde{\mathbf{w}}^{\mathsf{T}} \overline{\mathbf{x}}_{\tau} > 0 \qquad \qquad \tilde{\mathbf{w}}^{\mathsf{T}} \overline{\mathbf{x}}_{\tau} < 0$$

correctly classified misclassified

Perceptron Algorithm

- ullet The perceptron algorithm can be used to find $ilde{\mathbf{w}}$
 - 1. Choose initial value $\tilde{\mathbf{w}}^{(0)}$, l=0; $(\tilde{\mathbf{w}}^{(l)})$ estimate at iteration l
 - 2. Obtain the set of mis-classified points, $\mathcal{Y}^{(l)}$, using current estimate $\tilde{\mathbf{w}}^{(l)}$, i.e. find all the points where $\tilde{\mathbf{w}}^{(l)\mathsf{T}}\overline{\boldsymbol{x}}_{\tau}<0$
 - 3. Minimise the total perceptron criterion

$$E(\tilde{\mathbf{w}}) = \sum_{\overline{\boldsymbol{x}}_{\tau} \in \mathcal{Y}^{(l)}} (-\tilde{\mathbf{w}}^{\mathsf{T}} \overline{\boldsymbol{x}}_{\tau})$$

update rule is

$$\tilde{\mathbf{w}}^{(l+1)} = \tilde{\mathbf{w}}^{(l)} + \sum_{\overline{\boldsymbol{x}}_{\tau} \in \mathcal{Y}^{(l)}} \overline{\boldsymbol{x}}_{\tau}$$

4. If converged $(\mathcal{Y}^{(l)})$ is empty, or max iter, STOP; else l = l + 1 goto (2).

Perceptron Algorithm (cont)

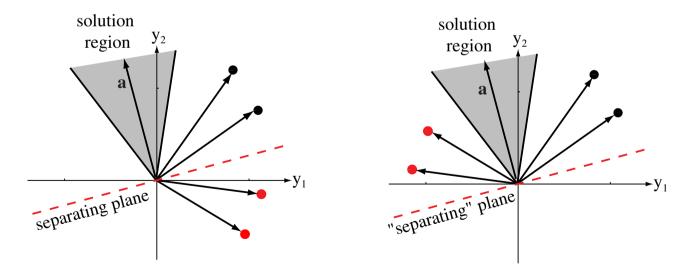
- For linearly separable data:
 - a linear decision boundary that correctly classifies all points exists
 - in this case using the algorithm guaranteed to find a solution

$$\tilde{\mathbf{w}}^{(l+1)} = \tilde{\mathbf{w}}^{(l)} + \sum_{\overline{\boldsymbol{x}}_{\tau} \in \mathcal{Y}^{(l)}} \overline{\boldsymbol{x}}_{\tau}$$

- automatically stops when the set of mis-classified points is empty.
- Two forms of update may be considered:
 - batch update: all the data is presented for each iteration
 the decision boundary is only updated after all the samples have been seen
 - sequential update: data is presented one sample at a time the decision boundary is updated after each sample

Perceptron Solution Region

- ullet Each sample $ilde{x}_{ au}$ places a constraint on possible location of solution vector.
- $\tilde{w}^{\mathsf{T}}\tilde{x}_{\tau}=0$ defines a hyperplane through the origin on the "weight-space" of \tilde{w} vectors with \tilde{x}_{τ} as a normal vector.
- Normalised data: solution must be on the positive side of every such hyperplane
 - it is not unique (if it exists) and lies anywhere within solution region
- Figure shows solution region for un-normalised and normalised data (DHS).
 - note change of notation: $\mathbf{a} = \tilde{\mathbf{w}}$, $y = \tilde{x}$ (left) $y = \overline{x}$ (right)



Structured Data

- So far considered the case where the labels (training and test) are "scalar"
 - not always the case consider translation

Speech recognition is difficult \rightarrow Lleferydd cydnabyddiaeth yn anodd

- Consider the number of possible classes
 - every possible possible "sentence" translation vast
- This is also an issue with the possible features to extract
 - can consider pairs of words, triples etc etc

Need to make conditional-independence assumptions

"Theory" Part of Module

• These lectures give underlying theory for the seminars and associated papers

Graphical Models

- Bayesian networks and graphical models (beyond naive Bayes)
- Markov chains (including language modelling)
- mixture models (including Gaussian mixture models)
- hidden Markov models (including Viterbi algorithm)
- conditional random fields
- expectation maximisation and variational approaches

Support Vector Machines

- large margin training and dual representation
- kernel methods (including sequence kernels)

Clustering

- unsupervised approaches (including K-means clustering)
- latent Dirichlet allocation