Summary of the rules of structured proof.

	Introduction rules	Elimination rules
~	 l. P from m. Q from $m. N \wedge Q \text{ from } l \text{ and } m \text{ by } \wedge \text{-introduction}$ (it doesn't matter in what order $l \text{ and } m \text{ are in}$)	 $m. P \land Q$ from $n. P$ from m by \land -elimination or $m. P \land Q$ from $n. Q$ from m by \land -elimination
V	 m. P from $n. P \lor Q$ from m by \lor -introduction or m. Q from $n. P \lor Q$ from m by \lor -introduction	$l. P \lor Q \text{ from by}$ $\begin{array}{c} \hline m_1. \text{ Assume } P \\ \hline \dots \\ m_2. R \\ \hline m_1. \text{ Assume } Q \\ \hline \dots \\ n_2. R \\ \hline \dots \\ n_2. R \\ \hline \dots \\ n_3. \\ \hline m_1. \\ \text{ from } l, m_1 - m_2, n_1 - n_2 \text{ by } \lor \text{-elimination} \\ \hline (\text{it doesn't matter what order } l, m_1 - m_2, \text{ and } n_1 - n_2 \text{ are in}) \end{array}$
⇒		 $l. P \Rightarrow Q$ by m. P by $n. Q$ from l and m by \Rightarrow -elimination
Г	 m. Assume Pn . F from by $n + 1$. $\neg P$ from m - n , by \neg -introduction	 l. P by $m. \neg P$ by $n. F$ from l and m by \neg -elimination
Т	 n. T	No elimination rule for True.
F	No introduction rule for False.	 <i>m</i> . <i>F</i> from by <i>n</i> . <i>P</i> from <i>m</i> , by <i>F</i> -elimination
A	$ \begin{array}{l} m. \ {\rm Consider \ an \ arbitrary \ } x \ ({\rm from \ domain \}) \\ \\ n. \ P(x) \ {\rm by \} \\ n+1. \ \forall \ x. P(x) \ {\rm from \ } m-n \ {\rm by \ } \forall {\rm -introduction} \end{array} $	orall x.P(x) from n. P(v) from m by $orall$ -elimination
Ξ	 m. P(v) $n. \exists x.P(x)$ from m by \exists -introduction with witness $x = v$	$l. \exists x.P(x)$ $m.$ For some actual $x_1, P(x_1)$ $n. Q$ (where x_1 not free in Q) $o. Q$ from $l, m-n$, by \exists -elimination
	m . Assume $\neg P$	

(Proof by contradiction)