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When are two program phrases
semantically equal?

Program Logic:

when they satisfy the same logical assertions.
Denotational semantics:

when they have equal denotations.
Operational semantics:

when they are contextually equivalent.



Two phrases of a programming language are
(“Morris style”) contextually equivalent (=) if

occurrences of the first phrase in any program can be
replaced by the second phrase without affecting the
observable results of executing the program.

We assume the programming language comes with an
operational semantics as part of its definition
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Two phrases of a programming language are
(“Morris style”) contextually equivalent (=) if

occurrences of the first phrase in any program can be
replaced by the second phrase without affecting the
observable results of executing the program.

Different choices lead to possibly different
notions of contextual equivalence.




Two phrases of a programming language are
(“Morris style”) contextually equivalent (=) if

occurrences of the first phrase in any program can be
replaced by the second phrase without affecting the
observable results of executing the program.

Gottfried Wilhelm Leibniz (1646-1716):
two mathematical objects are equal
if there is no test to distinguish them.




Two phrases of a programming language are
(“Morris style”) contextually equivalent (=) if

occurrences of the first phrase in any program can be
replaced by the second phrase without affecting the
observable results of executing the program.

first known CS occurrence
of this notion in Jim Morris’
PhD thesis, Lambda
Calculus Models of
Programming Languages
(MIT, 1969)




PCF syntax

Types
T :=mnat | bool | T — T

Expressions
M == 0| succ(M) | pred(M)
true | false | zero(M)

x | if M then M else M
fnx:7.M | MM | fix(M)

where x € V, an infinite set of variables.
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PCF contexts = [pe?])
C = ‘O‘ S\AcoOi) "Pveﬂ\(ﬁ)
2o () | fme | false | (F & thenC olseT
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PCF contexts & [pé3]
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PCF contexts = [pé3]
C n= — | 0] sue(T) | pred(e)
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Contextual equivalence of PCF terms

Given PCF terms N, M>, PCF type 7, and a type

environment I, the relation | I' = M7 S Mo @ T

IS defined to hold iff
e Both the typings I' = M7 : 7 and

e For all PCF contexts C for which C

I' = M> : 7 hold.

M| and C| M) are

closed terms of type v, where v = nat or v = bool,

and for all values V' : ~,

C[Ml] {L,y V & C[MQ] U,y V.

Whan T= ¢, jnd- tonke QM Z L M, T As

N N
My =g My

—

C
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Examples of PCF Conbexiual eqw'\laleuu,
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Examples of PCF Conbexiual eﬂw'\'aleuu,
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Non/ Examples of PCF Conbextual equivalence
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Non/ Examples of PCF Conbextual equivalence

{x: m\ﬂ;}l, p\—eﬂl(Smcc(x)) ek XNk

1 nd V- Zew (0) = tnd : bood

{x: k) F 2o (Suee (o)) #o('x {alse loost
becomse for = (Mainek.—) O, e have
C[%w)(s\nccx)] = (M:V\mﬁ-%(/w(mcca))ﬂmk J&\wé
e [felse] = vk mab folse) Lk ), fulse

{\AORAL:: Qm\g s Saw %édx (ms\mlb).
B Wow 0 we prove vlid vstanaes of < 7




Contextual preorder between PCF terms

Given PCF terms M, M>, PCF type 7, and a type environment

I', therelation | I' = My <gix Mo : T

IS defined to hold iff

e Boththe typings ' = My : 7and I' = M5 : 7 hold.

e For all PCF contexts C for which C

M| and C|My)] are

closed terms of type v, where v = nat or v = bool,

and for all values V' € PCF,,

C[Ml] U’W’V — C[MQ] UWV :

VV NN
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‘Fads' a‘oo»& édx

o [f M <y VT, b RixM <y Nt
(cf. (QFPZ) on S’h'ote,\e)



‘Fuds a‘oosxb édx

o [f M <y VT, b RixM <y Nt
(c_ﬁ (QF‘:Z) on Sh“ci&\?)

o tixm<y Nt iff forall o,
{Zixnl\/l S N T

Fixol\/\ S 0N-

G m &M (fm) = (- may)-)

N1 Jhmes
C <f. Tarsks FeT )

e |




‘Fuds a‘oout édx

o [f M <y VT, b RixM <y Nt
(c_ﬁ (QFPZ) on S’h'o(e,\q)

® {ix\ S N: T i{f{ for all h2o,

{th M € N:T
Fixol\/\ S 0N-
G m 2 M (fix"m) - N(m( M-

%mes

e |

C <f. Tarsks FeT )
How Ts PRovVE Such FACTS 7



PCF denotational semantics — aims
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PCF denotational semantics — aims

e PCFtypes 7 +> domains |7].

e Closed PCFterms M : 7 — elements [M] € [7].

Denotationsﬁpen terms will be continuous functions.
R

Srrm: b [ormet):Ir)= 7]

[r) =lcdx---x[tn)

- {1,:1‘\ L xv\:Tr\}
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PCF denotational semantics — aims

e PCFtypes 7 +> domains |7].

e Closed PCFterms M : 7 — elements [M] € [7].

Denotations of open terms will be continuous functions.

e Compositionality.

In particular: [M] = [M'] = [C[M]] = [C[M]].
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PCF types 7 +—> domains |[T].

Closed PCF terms M : 7 +— elements [M] € [7].

Denotations of open terms will be continuous functions.

Compositionality.

In particular: [M] = [M'] = [C[M]] = [C[M]].

Soundness.
Foranytype 7, M ||,V = [M] = [V].
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PCF denotational semantics — aims

PCF types 7 +—> domains |[T].

Closed PCF terms M : 7 +— elements [M] € [7].

Denotations of open terms will be continuous functions.

Compositionality.

In particular: [M] = [M'] = [C[M]] = [C[M]].

Soundness.
Foranytype 7, M ||,V = [M] = [V].

Adequacy.
For 7 = bool or nat, [M]| =[V]e|r] = M|, V.

/K\r\ﬁ A funchow WF‘QJ. pecaumse. -
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EXaumple S.6.1 Lp6S)

\V & ﬁ\x:nmt.(%\g s nak. y )0
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Example §.6.1  [pes]

\V & FV\DC:V\(N{?.G;/\\J s nak. y )0
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Exwmple 5.6.1 Cp6sT

V & fnx:nat. (fay : nak y)O
V'E fra:nak. O

Soksfy
S:g \/ )wl’\w{'—sy\wé'\/,

(’> CvI=CTv']

because Cg’“dhﬁk‘d)@ J‘va('O

So (l:(/ﬁ'\u:r\ak%)oﬂ = La) ]0} Soundness |
5o L EE(RAg:r\o\k.g)O] 1l = ICBEO:H] ‘oy, Cow\?os(FMa]ﬁy
WY e Can bk B = By xinak —




Theorem. For all types 7 and closed terms M7, My € PCF .,
if [M1] and | Ms] are equal elements of the domain 7], then

M1 gctx M2 . T.
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Theorem. For all types 7 and closed terms M7, My € PCF .,
if [M1] and | Ms] are equal elements of the domain 7], then

M1 gctx M2 . T.

Proof.

CIMi]{,, 4V = [C[Mi]] = [V] (soundness)

= [C[Ms]] = [V] (compositionality
on [[Ml]] — [[MQ]])

= C|Ms| |,V  (adequacy)

and symmetrically (% g,‘m(\ov/b @* \|th0 /Z) ]
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Proof principle

To prove

It suffices to establish

M1 %Jctx M2 . T

[M;] = [Ma] in [7]
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Proof principle

To prove
M1 %JCtX M2 . T

It suffices to establish

[M;] = [Ma] in [7]

? | The proof principle is sound, but is it complete? That is,
IS equality in the denotational model also a necessary
condition for contextual equivalence?
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Proof principle

To prove
M1 %Jctx M2 . T

It suffices to establish

[M;] = [Ma] in [7]

? | The proof principle is sound, but is it complete? That is,
IS equality in the denotational model also a necessary
condition for contextual equivalence?

—

4w Chapler & W{/ﬁnoe)d?\t answes 15 o .'
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