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When are two program phrases
semantically equal?

Program Logic:

when they satisfy the same logical assertions.

E.g. C ∼= C′ iff for all pre-, post-conditions P, Q

{P} C {Q} ⇔ {P} C′ {Q}
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When are two program phrases
semantically equal?

Program Logic:

when they satisfy the same logical assertions.

Denotational semantics:

when they have equal denotations.

Operational semantics:

when they are contextually equivalent.
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Contextual equivalence

Two phrases of a programming language are
(“Morris style”) contextually equivalent (∼=ctx) if
occurrences of the first phrase in any program can be
replaced by the second phrase without affecting the
observable results of executing the program.

We assume the programming language comes with an
operational semantics as part of its definition
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Contextual equivalences

Two phrases of a programming language are
(“Morris style”) contextually equivalent (∼=ctx) if
occurrences of the first phrase in any program can be
replaced by the second phrase without affecting the
observable results of executing the program.

Different choices lead to possibly different
notions of contextual equivalence.
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Contextual equivalence

Two phrases of a programming language are
(“Morris style”) contextually equivalent (∼=ctx) if
occurrences of the first phrase in any program can be
replaced by the second phrase without affecting the
observable results of executing the program.

Gottfried Wilhelm Leibniz (1646–1716):
two mathematical objects are equal
if there is no test to distinguish them.
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Contextual equivalence

Two phrases of a programming language are
(“Morris style”) contextually equivalent (∼=ctx) if
occurrences of the first phrase in any program can be
replaced by the second phrase without affecting the
observable results of executing the program.

Gottfried Wilhelm Leibniz (1646–1716):
two mathematical objects are equal
if there is no test to distinguish them.

first known CS occurrence
of this notion in Jim Morris’
PhD thesis, Lambda

Calculus Models of

Programming Languages

(MIT, 1969)
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PCF syntax

Types

τ ::= nat | bool | τ → τ

Expressions

M ::= 0 | succ(M) | pred(M)

| true | false | zero(M)

| x | if M then M else M

| fnx : τ .M | M M | fix(M)

where x ∈ V, an infinite set of variables.
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Contextual equivalence of PCF terms

Given PCF terms M1,M2, PCF type τ , and a type

environment Γ, the relation Γ ⊢ M1
∼=ctx M2 : τ

is defined to hold iff

• Both the typings Γ ⊢ M1 : τ and Γ ⊢ M2 : τ hold.

• For all PCF contexts C for which C[M1] and C[M2] are

closed terms of type γ, where γ = nat or γ = bool ,

and for all values V : γ,

C[M1] ⇓γ V ⇔ C[M2] ⇓γ V.
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Contextual preorder between PCF terms

Given PCF terms M1,M2, PCF type τ , and a type environment

Γ, the relation Γ ⊢ M1 ≤ctx M2 : τ is defined to hold iff

• Both the typings Γ ⊢ M1 : τ and Γ ⊢ M2 : τ hold.

• For all PCF contexts C for which C[M1] and C[M2] are

closed terms of type γ, where γ = nat or γ = bool ,

and for all values V ∈ PCFγ ,

C[M1] ⇓γ V =⇒ C[M2] ⇓γ V .
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PCF denotational semantics — aims
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PCF denotational semantics — aims

• PCF types τ 7→ domains [[τ ]].

• Closed PCF terms M : τ 7→ elements [[M ]] ∈ [[τ ]].

Denotations of open terms will be continuous functions.

• Compositionality.

In particular: [[M ]] = [[M ′]] ⇒ [[C[M ]]] = [[C[M ′]]].

• Soundness.

For any type τ , M ⇓τ V ⇒ [[M ]] = [[V ]].

• Adequacy.

For τ = bool or nat , [[M ]] = [[V ]] ∈ [[τ ]] =⇒ M ⇓τ V .
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Theorem. For all types τ and closed terms M1,M2 ∈ PCFτ ,

if [[M1]] and [[M2]] are equal elements of the domain [[τ ]], then

M1
∼=ctx M2 : τ .
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Theorem. For all types τ and closed terms M1,M2 ∈ PCFτ ,

if [[M1]] and [[M2]] are equal elements of the domain [[τ ]], then

M1
∼=ctx M2 : τ .

Proof.

C[M1] ⇓nat V ⇒ [[C[M1]]] = [[V ]] (soundness)

⇒ [[C[M2]]] = [[V ]] (compositionality

on [[M1]] = [[M2]])

⇒ C[M2] ⇓nat V (adequacy)

and symmetrically.
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Proof principle

To prove

M1
∼=ctx M2 : τ

it suffices to establish

[[M1]] = [[M2]] in [[τ ]]
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