Topic I —
Introduction and motivation

References:

¢ Chapter 1 of Concepts in programming languages by
J. C. Mitchell. CUP, 2003.

¢ Chapter 1 of Programming languages: Design and
Implementation (3rRD EDITION) by T. W. Pratt and
M. V. Zelkowitz. Prentice Hall, 1999.

¢ Chapter 1 of Programming language pragmatics
(2ND EDITION) by M. L. Scott. Elsevier, 2006.



Goals

¢ Critical thinking about programming languages.

? | What is a programming language!?

¢ Study programming languages.

¢+ Be familiar with basic language concepts.

¢+ Appreciate trade-offs in language design.
¢ Trace history, appreciate evolution and diversity of ideas.

¢ Be prepared for new programming methods, paradigms.



Why study programming languages?
¢ To improve the ability to develop effective algorithms.
¢ To improve the use of familiar languages.

¢ To increase the vocabulary of useful programming
constructs.

¢ To allow a better choice of programming language.

¢ To make it easier to learn a new language.

¢ To make it easier to design a new language.

¢ To simulate useful features in languages that lack them.

¢ To make better use of language technology wherever it
appears.



® & & & oo oo o

What makes a good language?

Clarity, simplicity, and unity.
Orthogonality.

Naturalness for the application.
Support of abstraction.

Ease of program verification.
Programming environments.

Portability of programs.



¢ Cost of use.

¢+ Cost of execution.
¢+ Cost of program translation.
¢+ Cost of program creation, testing, and use.

¢+ Cost of program maintenance.



What makes a language successful?

¢ EXxpressive power.

¢ Ease of use for the novice.
¢ Ease of implementation.

¢ Open source.

¢ Excellent compilers.

¢ Economics, patronage, and inertia.



Influences

¢ Computer capabilities.

¢ Applications.

¢ Programming methods.
¢ Implementation methods.
¢ Theoretical studies.

¢ Standardisation.



Applications domains

Era Application Major languages Other languages
1960s | Business COBOL Assembler
Scientific FORTRAN ALGOL, BASIC, APL
System Assembler JOVIAL, Forth
Al LISP SNOBOL
Today | Business COBOL, SQL, spreadsheet C, PL/I, 4GLs
Scientific FORTRAN, C, C++ BASIC, Pascal
Maple, Mathematica
System BCPL, C, C++ Pascal, Ada, BASIC,
MODULA
Al LISP, Prolog
Publishing TeX, Postscript,
word processing
Process UNIX shell, TCL, Perl Marvel, Esterel

New paradigms

Smalltalk, SML, Haskell, Java
Python, Ruby

Eifell, C#, Scala




Why are there so many languages?

¢ Evolution.
¢ Special purposes.

¢ Personal preference.



(Motivating application in language design)

A specific purpose provides focus for language designers;
It helps to set criteria for making design decisions.

A specific, motivating application also helps to solve one
of the hardest problems in programming language design:
deciding which features to leave out.

10



Examples: Good languages designed with a specific purpose
INn mind.

® 6 & & & O o o o o

LISP: symbolic computation, automated reasoning

FP: functiona
BCPL: compi

programming, algebraic laws

er writing

Simula: simu

ation

C: systems programming

ML: theorem proving

Smalltalk: Dynabook

Clu, SML Modules: modular programming

C++: object orientation

Java: Internet applications

11



Program execution model

Good language design presents abstract machine.

¢

® & & & oo o

FORTRAN: Flat register machine; memory arranged
as linear array

LISP: cons cells, read-eval-print loop

Algol family: stack of activation records; heap storage
BCPL, C: underlying machine + abstractions

Simula: Object references

FP, ML: functions are basic control structure

Smalltalk: objects and methods, communicating by
messages

Java: Java virtual machine

12



(Classification of programming Ianguages>

¢ Imperative
procedural C,Ada,Pascal ,Algol ,FORTRAN, ...

object oriented Scala, C#,Java, Smalltalk , SIMULA, ...

scripting Perl, Python, PHP, ...

¢ Declarative

functional Haskell, SML, Lisp, Scheme, ...
logic Prolog
dataflow Id, Val

constraint-based spreadsheets
template-based XSLT

13



Theoretical foundations

Examples:
¢ Formal-language theory.
¢ Automata theory.
¢ Algorithmics.
¢ A-calculus.
¢ Semantics.
¢ Formal verification.
¢ Type theory.
¢ Complexity theory.
¢ Logic.

14



Standardisation

¢ Proprietary standards.

¢ Consensus standards.
¢+ ANSI (American National Standards Institute)

¢+ |[EEE (Institute of Electrical and Electronics Engineers)
+ BSI (British Standard Institute)

¢+ |SO (International Standards Organisation)

15



Language standardisation

Consider: int i; i = (1 && 2) + 3 ;

?

?

Is it valid C code? If so, what's the value of i?

How do we answer such gquestions!?

Read the reference manual.
Try it and see!

Read the ANSI C Standard.

16



Language-standards issues

Timeliness. When do we standardise a language?

Conformance. What does it mean for a program to adhere to
a standard and for a compiler to compile a standard?

Ambiguity and freedom to optimise — Machine
dependence — Undefined behaviour.

Obsolescence. When does a standard age and how does it
get modified?

Deprecated features.

17



Language standards

PL/1
What does the following
9 + 8/3
mean?
— 11.666... 7
— Overflow ?

— 1.666... 7

18



DEC(p,q) means p digits with q after the decimal point.

Type rules for DECIMAL in PL/1:

DEC(p1,ql) + DEC(p2,92)

=> DEC(MIN(1+MAX (p1-ql1,p2-92)+MAX(ql,q2),15),MAX(ql,q92))
DEC(pl,q1) / DEC(p2,92)

=> DEC(15,15-((p1-q1)+qg2))

19



For 9 + 8/3 we have:

DEC(1,0) + DEC(1,0)/DEC(1,0)
=> DEC(1,0) + DEC(15,15-((1-0)+0))
=> DEC(1,0) + DEC(15,14)
=> DEC(MIN(1+MAX(1-0,15-14)+MAX(0,14),15),MAX(0,14))
=> DEC(15,14)

So the calculation is as follows

9 + 8/3
9 + 2.66666666666666
11.66666666666666 - OVERFLOW
= 1.66666666666666 — OVERFLOW disabled

20



History

1951-55: Experimental use of expression compilers.
1956-60: FORTRAN, COBOL, LISP, Algol 60.
1961-65: APL notation, Algol 60 (revised), SNOBOL, CPL.

1966-70: APL, SNOBOL 4, FORTRAN 66, BASIC, SIMULA,
Algol 68, Algol-W, BCPL.

1971-75: Pascal, PL/1 (Standard), C, Scheme, Prolog.
1976-80: Smalltalk , Ada, FORTRAN 77, ML.

21



1981-85: Smalltalk-80, Prolog, Ada 83.
1986-90: C++, SML, Haskell.
1991-95: Ada 95, TCL, Perl.
1996-2000: Java.

2000-05: C#, Python, Ruby, Scala.

22



Language groups

¢ Multi-purpose languages
¢ Scala, C#, Java, C++, C
¢+ Haskell, SML, Scheme, LISP
¢+ Perl, Python, Ruby
¢ Special-purpose languages
¢+ UNIX shell
¢+ SQL
¢ ATEX

23



Things to think about

¢ What makes a good language?

¢ The role of
1. motivating applications,

2. program execution,
3. theoretical foundations

In language design.

¢ Language standardisation.

24



