
Distributed Systems
8L for Part IB

Handout 2

Dr. Steven Hand

1

Clocks

• Distributed systems need to be able to:

– order events produced by concurrent processes;

– synchronize senders and receivers of messages;

– serialize concurrent accesses to shared objects; and

– generally coordinate joint activity

• This can be provided by some sort of “clock”:

– physical clocks keep time of day

• (must be kept consistent across multiple nodes)

– logical clocks keep track of event ordering

2

Physical Clock Technology

• Quartz Crystal Clocks (1929)
– resonator shaped like a tuning fork
– laser-trimmed to vibrate at 32,768 Hz
– standard resonators accurate to 6ppm at 31°C... so

will gain/lose around 0.5 seconds per day
– stability better than accuracy (about 2s/month)
– best resonators get accuracy of ~1s in 10 years

• Atomic clocks (1948)
– count transitions of the caesium 133 atom
– 9,192,631,770 periods defined to be 1 second
– accuracy is better than 1 second in 6 million years...

3

Coordinated Universal Time (UTC)

• Physical clocks provide ‘ticks’ but we want to
know the actual time of day
– determined by astronomical phenomena

• Several variants of universal time
– UT0: mean solar time on Greenwich meridian

– UT1: UT0 corrected for polar motion; measured via
observations of quasars, laser ranging, & satellites

– UT2: UT1 corrected for seasonal variations

– UTC: civil time, tracked using atomic clocks, but kept
within 0.9s of UT1 by occasional leap seconds

4

Computer Clocks

• Typically have a real-time clock
– CMOS clock driven by a quartz oscillator

– battery-backed so continues when power is off

• Also have range of other clocks (PIT, ACPI,
HPET, TSC, ...), mostly higher frequency
– free running clocks driven by quartz oscillator

– mapped to real time by OS at boot time

– programmable to generate interrupts after some
number of ticks (~= some amount of real time)

5

The Clock Synchronization Problem

• In distributed systems, we’d like all the different
nodes to have the same notion of time, but
– quartz oscillators oscillate at slightly different

frequencies (time, temperature, manufacture)

• Hence clocks tick at different rates:
– create ever-widening gap in perceived time
– this is called clock drift

• The difference between two clocks at a given
point in time is called clock skew

• Clock synchronization aims to minimize clock
skew between two (or a set of) different clocks

6

Clock Skew and Clock Drift

February 18, 2012
08:00:00

7

08:00:00 08:00:00

Clock Skew and Clock Drift

8

March 23, 2012
08:00:00

08:01:24 08:01:48

Skew = 84 seconds
Drift = 84s / 34 days

= +2.47s per day

Skew = 108 seconds
Drift = 108s / 34 days

= +3.18s per day

Dealing with Drift

• A clock can have positive or negative drift with
respect to a reference clock (e.g. UTC)

– Need to [re]synchronize periodically

• Can’t just set clock to ‘correct’ time

– Jumps (particularly backward!) can confuse apps

• Instead aim for gradual compensation

– If clock fast, make it run slower until correct

– If clock slow, make it run faster until correct

9

Compensation

• Most systems relate real-time to cycle counters or
periodic interrupt sources
– e.g. calibrate TSC against CMOS RT clock at boot, and

compute scaling factor (e.g. cycles per microsecond)

– can now convert TSC differences to real-time

– similarly can determine how much real-time passes
between periodic interrupts: call this delta

– on interrupt, add delta to software real-time clock

• Making small changes to delta gradually adjusts time
– Once synchronized, change delta back to original value

– (or try to estimate drift & continually adjust delta)

10

Obtaining accurate time

• Of course, need some way to know correct
time (e.g. UTC) in order to adjust clock!
– could attach a GPS receiver (or GOES receiver) to

computer, and get ±1ms (or ±0.1ms) accuracy…

– …but too expensive/clunky for general use

• Instead can ask some machine with a more
accurate clock: a time server
– e.g. send RPC getTime() to server

– What’s the problem here?

11

Cristian’s Algorithm (1989)

• Attempt to compensate for network delays
– Remember local time just before sending: T0
– Server gets request, and puts Ts into response

– When client receives reply, notes local time: T1
– Correct time is then approximately (Ts + (T1- T0) / 2)

– (assumes symmetric behaviour...)

12

client

server
time

request reply

T0 T1

Ts

Cristian’s Algorithm: Example

• RTT = 460ms, so one way delay is [approx] 230ms.
• Estimate correct time as (08:02:04.325 + 230ms) = 08:02:04.555
• Client gradually adjusts local clock to gain 2.425 seconds

13

C 08:02:01.670

S

C 08:02:02.130

08:02:04.325

T0

T1

Ts

Berkeley Algorithm (1989)

• Don’t assume have an accurate time server

• Try to synchronize a set of clocks to the average
– One machine, M, is designated the master

– M periodically polls all other machines for their time

– (can use Cristian’s technique to account for delays)

– Master computes average (including itself, but ignoring
outliers), and sends an adjustment to each machine

M

A B C

0
8

:0
2

:0
1

08:01:17 M

A B C

-0
0

:0
0

:3
1

Avg = (01:17+01:12+02:01)/3
= (04:30/3) = 01:30

14

+00:00:13

Network Time Protocol (NTP)

• Previous schemes designed for LANs; in practice
today’s systems use NTP:
– Global service designed to enable clients to stay

within (hopefully) a few ms of UTC

• Hierarchy of clocks arranged into strata
– Stratum0 = atomic clocks (or maybe GPS, GEOS)
– Stratum1 = servers directly attached to stratum0 clock
– Stratum2 = servers that synchronize with stratum1
– … and so on

• Timestamps made up of seconds and ‘fraction’
– e.g. 32 bit seconds-since-epoch; 32 bit ‘picoseconds’

15

NTP Algorithm

• UDP/IP messages with slots for four timestamps
– systems insert timestamps at earliest/latest opportunity

• Client computes:
– Offset O = ((T1-T0) + (T2-T3)) / 2
– Delay D = (T3-T0) – (T2-T1)

• Relies on symmetric messaging delays to be correct
(but now excludes variable processing delay at server)

16

client

server
time

request reply

T0 T3

T1 T2

NTP Example

• First request/reply pair:
– Total message delay is ((6-3) - (38-37)) = 2
– Offset is ((37-3) + (38-6)) / 2 = 33

• Second request/reply pair:
– Total message delay is ((13-8) - (45-42)) = 2
– Offset is ((42-8) + (45-13)) / 2 = 33

17

client

server
time

request reply

02 03 04 05 06 07 08 09 10 11 12 13

35 36 37 38 39 40 41 42 43 44 45 46

NTP: Additional Details

• NTP uses multiple requests per server
– Remember <offset, delay> in each case
– Calculate the filter dispersion of the offsets & discard outliers
– Chooses remaining candidate with the smallest delay

• NTP can also use multiple servers
– Servers report synchronization dispersion = estimate of their

quality relative to the root (stratum 0)
– Combined procedure to select best samples from best servers

(see RFC 5905 for the gory details)

• Various operating modes:
– Broadcast (“multicast”): server advertises current time
– Client-server (“procedure call”): as described on previous
– Symmetric: between a set of NTP servers

18

Physical Clocks: Summary

• Physical devices exhibit clock drift
– Even if initially correct, they tick too fast or too slow,

and hence time ends up being wrong
– Drift rates depend on the specific device, and can vary

with time, temperature, acceleration, …

• Difference between clocks is called clock skew
• Clock synchronization algorithms attempt to

minimize the skew between a set of clocks
– Decide upon a target correct time (atomic, or average)
– Communicate to agree, compensating for delays
– In reality, will still have 1-10ms skew after sync ;-(

 19

Ordering

• One use of time is to provide ordering
– If I withdrew £100 cash at 23:59.44…

– And the bank computes interest at 00:00.00…

– Then interest calculation shouldn’t include the £100

• But in distributed systems we can’t perfectly
synchronize time => cannot use this for ordering
– Clock skew can be large, and may not be trusted

– And over large distances, relativistic events mean that
ordering depends on the observer

– (similar effect due to finite ‘speed of Internet’ ;-)

20

The “happens-before” relation

• Often don’t need to know when event a occurred
– Just need to know if a occurred before or after b

• Define the happens-before relation, a  b
– If events a and b are within the same process, then

a b if a occurs with an earlier local timestamp
– Messages between processes are ordered causally,

i.e. the event send(m)  the event receive(m)
– Transitivity: i.e. if a b and b c, then a c

• Note that this only provides a partial order:
– Possible for neither a b nor b a to hold
– We say that a and b are concurrent and write a ~ b

21

Example

• Three processes (each with 2 events), and 2 messages
– Due to process order, we know a b, c d and e f

– Causal order tells us b c and d f

– And by transitivity a c, a d, a f, b d, b f, c f

• However event e is concurrent with a, b, c and d

22

P1

P2 physical time

P3

a b

e f

c d

m1

m2

? ?

? ?

Implementing Happens-Before

• One early scheme due to Lamport [1978]
– Each process Pi has a logical clock Li

• Li can simply be an integer, initialized to 0

– Li is incremented on every local event e
• We write Li(e) or L(e) as the timestamp of e

– When Pi sends a message, it increments Li and copies
the value into the packet

– When Pi receives a message from Pj, it extracts Lj and
sets Li := max(Li,Lj), and then increments Li

• Guarantees that if a  b, then L(a) < L(b)
– However if L(x) < L(y), this doesn’t imply x  y !

23

Lamport Clocks: Example

• When P2 receives m1, it extracts timestamp 2 and sets its
clock to max(0, 2) before increment

• Possible for events to have duplicate timestamps
– e.g. event e has the same timestamp as event a

• If desired can break ties by looking at pids, IP addresses, …
– this gives a total order, but doesn’t imply happens-before!

24

P1

P2 physical time

P3

a b

e f

c d

1 2

3 4

1 5

m1

m2

Vector Clocks

• With Lamport clocks, given L(a) and L(b), we
can’t tell if a b or b a or a ~ b

• One solution is vector clocks:
– An ordered list of logical clocks, one per-process
– Each process Pi maintains Vi[], initially all zeroes
– On a local event e, Pi increments Vi[i]

• If the event is message send, new Vi[] copied into packet

– If Pi receives a message from Pj then, for all k = 0, 1, …,
it sets Vi[k] := max(Vj[k], Vi[k]), and increments Vi[i]

• Intuitively Vi[k] captures the number of events at
process Pk that have been observed by Pi

25

Vector Clocks: Example

• When P2 receives m1, it merges the entries from P1’s clock
– choose the maximum value in each position

• Similarly when P3 receives m2, it merges in P2’s clock
– this incorporates the changes from P1 that P2 already saw

• Vector clocks explicitly track the transitive causal order: f’s
timestamp captures the history of a, b, c & d

26

P1

P2 physical time

P3

a b

e f

c d

(1,0,0)

m1

m2

(2,0,0)

(2,1,0) (2,2,0)

(0,0,1) (2,2,2)

Using Vector Clocks for Ordering

• Can compare vector clocks piecewise:
– Vi = Vj iff Vi[k] = Vj[k] for k = 0, 1, 2, …
– Vi ≤ Vj iff Vi[k] ≤ Vj[k] for k = 0, 1, 2, …
– Vi < Vj iff Vi ≤ Vj and Vi ≠ Vj

– Vi ~ Vj otherwise

• For any two event timestamps T(a) and T(b)
– if a  b then T(a) < T(b) ; and
– if T(a) < T(b) then a  b

• Hence can use timestamps to determine if there
is a causal ordering between any two events
– i.e. determine whether a  b, b  a or a ~ b

27

e.g. [2,0,0] versus [0,0,1]

Consistent Global State

• We have the notion of “a happens-before b” (a b) or
“a is concurrent with b” (a ~ b)

• What about ‘instantaneous’ system-wide state?
– distributed debugging, GC, deadlock detection, ...

• Chandy/Lamport introduced consistent cuts:
– draw a (possibly wiggly) line across all processes
– this is a consistent cut if the set of events (on the lhs) is

closed under the happens-before relationship
– i.e. if the cut includes event x, then it also includes all

events e which happened before x

• In practical terms, this means every delivered message
included in the cut was also sent within the cut

28

Consistent Cuts: Example

• Vertical cuts are always consistent (due to the way we
draw these diagrams), but some curves are ok too:
– providing we don’t include any receive events without

their corresponding send events

• Intuition is that a consistent cut could have occurred
during execution (depending on scheduling etc),

29

P1

P2 physical time

P3

a b

i l

f g

c d

e

k

h

j

<< Observing Consistent Cuts >>

• Chandy/Lamport Snapshot Algorithm (1985):
– Distributed algorithm for generating a ‘snapshot’ of

relevant system-wide state (e.g. all memory, locks held, …)
– Based on flooding special marker message M to all

processes; causal order of flood defines the cut
– If Pi receives M from Pj and it has yet to snapshot:

• It pauses all communication, takes local snapshot & sets Cij to {}
• Then sends M to all other processes Pk and starts recording Cik = {

set of all post local snapshot messages received from Pk }

– If Pi receives M from some Pk after taking snapshot
• Stops recording Cik, and saves alongside local snapshot

– Global snapshot comprises all local snapshots & Cij

– Assumes reliable, in-order messages, & no failures

30

Process Groups

• Often useful to build distributed systems around the notion
of a process group
– Set of processes on some number of machines
– Possible to multicast messages to all members
– Allows fault-tolerant systems even if some processes fail

• Membership can be fixed or dynamic
– if dynamic, have explicit join() and leave() primitives

• Groups can be open or closed:
– Closed groups only allow messages from members

• Internally can be structured (e.g. coordinator and set of
slaves), or symmetric (peer-to-peer)
– Coordinator makes e.g. concurrent join/leave easier…
– … but may require extra work to elect coordinator

31

Group Communication: Assumptions

• Assume we have ability to send a message to
multiple (or all) members of a group
– Don’t care if ‘true’ multicast (single packet sent,

received by multiple recipients) or “netcast” (send set
of messages, one to each recipient)

• Assume also that message delivery is reliable, and
that messages arrive in bounded time
– But may take different amounts of time to reach

different recipients

• Assume (for now) that processes don’t crash
• What delivery orderings can we enforce?

32

FIFO Ordering

• With FIFO ordering, messages from a particular process Pi must be
received at all other processes Pj in the order they were sent
– e.g. in the above, everyone must see m1 before m3

– (ordering of m2 and m4 is not constrained)

• Seems easy but not trivial in case of delays / retransmissions
– e.g. what if message m1 to P2 takes a loooong time?

• Hence receivers may need to buffer messages to ensure order

33

P1

P2
physical time

P4

m1

P3
m2

m3

m4

?

Receiving versus Delivering

• Group communication middleware provides extra
features above ‘basic’ communication
– e.g. providing reliability and/or ordering guarantees

on top of IP multicast or netcast

• Assume that OS provides receive() primitive:
– returns with a packet when one arrives on wire

• Received messages either delivered or held back:
– “delivered” means inserted into delivery queue
– “held back” means inserted into hold-back queue
– held-back messages are delivered later as the result of

the receipt of another message…

34

Implementing FIFO Ordering

• Each process Pi maintains a message sequence number (SeqNo) Si

• Every message sent by Pi includes Si, incremented after each send
– not including retransmissions!

• Pj maintains Sji : the SeqNo of the last delivered message from Pi
– If receive message from Pi with SeqNo ≠ (Sji+1), hold back
– When receive message with SeqNo = (Sji+1), deliver it … and also

deliver any consecutive messages in hold back queue … and update Sji

35

delivery queue

hold-back queue

receive(M from Pi) {
 s = SeqNo(M);
 if (s == (Sji+1)) {
 deliver(M);
 s = flush(hbq);
 Sji = s;
 } else holdback(M);
}

add M to delivery Q

messages consumed by application

Stronger Orderings

• Can also implement FIFO ordering by just using a reliable
FIFO transport like TCP/IP ;-)

• But the general ‘receive versus deliver’ model also allows
us to provide stronger orderings:
– Causal ordering: if event multicast(g, m1)  multicast(g, m2),

then all processes will see m1 before m2

– Total ordering: if any processes delivers a message m1 before
m2, then all processes will deliver m1 before m2

• Causal ordering implies FIFO ordering, since any two
multicasts by the same process are related by 

• Total ordering (as defined) does not imply FIFO (or causal)
ordering, just says that all processes must agree
– In reality often want FIFO-total ordering (combines the two)

36

Causal Ordering

• Same example as previously, but now causal ordering means that
(a) everyone must see m1 before m3 (as with FIFO), and
(b) everyone must see m1 before m2 (due to happens-before)

• Is this ok?
– No! m1  m2, but P2 sees m2 before m1
– To be correct, must hold back (delay) delivery of m2 at P2
– But how do we know this?

37

P1

P2
physical time

P4

m1

P3
m2

m3

m4

Implementing Causal Ordering

• Turns out this is pretty easy!
– Start with receive algorithm for FIFO multicast…
– and replace sequence numbers with vector clocks

38

• Need some care with dynamic groups
– must encode variable-length vector clock, typically using

positional notation, and deal with joins and leaves

P1

P2

m1

P3
m2

m3

(1,0,1) > (0,0,1), so must
hold back m2

(1,0,0)

(1,0,1)

(2,0,1)

Once receive m1, can
deliver m1 and then m2

In more detail

• Each process Pi has vector Vi[] to ensure causal order
– don’t use this vector to track other process-internal events

• To send message m, Pi first increments its local vector
Vi[i], and copies the result into message as a timestamp

• On receipt of message m from Pj we only deliver if
– Vj[j] = Vi[j] + 1 (i.e. m is the next message from Pj) and
– Vj[k] <= Vi[k] for all k ≠ j (i.e. Pi has seen at least as many

other messages as Pj)
– If these conditions do not hold, m must be held back
– Otherwise we increment Vi[j] and deliver the message...

and check if we can now deliver any held-back messages

• Note that we do not increment Vi[i] on receive

39

Example:

40

P1

P2

P4

P3

(1,0,0,0)

• P1 increments first element, and sends message w/ timestamp [1,0,0,0]
• P3 and P4 receive it and compare local (0,0,0,0) to [1,0,0,0]

• ok, so both set their local vectors to (1,0,0,0)
• P3 increments third element, and sends message w/ timestamp [1,0,1,0]

• P1, P4 compare (1,0,0,0) to [1,0,1,0] => ok, so both update to (1,0,1,0)
• P2 receives and compares (0,0,0,0) to [1,0,1,0] – cannot deliver!

• P2 receives P1’s message and compares (0,0,0,0) to [1,0,0,0] – ok
• After delivery, P2 checks held-back queue, and now can deliver P3’s message

(1,0,0,0)

(1,0,0,0)
(1,0,1,0)

(1,0,1,0)

(1,0,1,0)

(1,0,0,0)
(1,0,1,0)

(2,0,1,0)

(2,0,1,0)

(2,0,1,0)

(2,0,1,0)

Total Ordering

• Sometimes we want all processes to see exactly the
same, FIFO, sequence of messages
– particularly for state machine replication (see later)

• One way is to have a ‘can send’ token:
– Token passed round-robin between processes
– Only process with token can send (if he wants)

• Or use a dedicated sequencer process
– Other processes ask for global sequence no. (GSN), and

then send with this in packet
– Use FIFO ordering algorithm, but on GSNs

• Can also build non-FIFO total order multicast by having
processes generate GSNs themselves and resolving ties

41

Ordering and Asynchrony

• FIFO ordering allows quite a lot of asynchrony
– e.g. any process can delay sending a message until it has a

batch (to improve performance)
– or can just tolerate variable and/or long delays

• Causal ordering also allows some asynchrony
– But must be careful queues don’t grow too large!

• Traditional total order multicast not so good:
– Since every message delivery transitively depends on

every other one, delays holds up the entire system
– Instead tend to an (almost) synchronous model, but this

performs poorly, particularly over the wide area ;-)
– Some clever work on virtual synchrony (for the interested)

42

