Definition. f € IN"~IN is A-definable if there is a
closed A-term F that represents it: for all
(x1,...,x,) EIN"andy € N

if f(x1,...,x%,) =y, then Fxy---x, =pY
if f(x1,...,%,)T, then Fxq---x, has no B-nf.

This condition can make it quite tricky to find a A-term
representing a non-total function.

For now, we concentrate on total functions. First, let us
see why the elements of PRIM (primitive recursive
functions) are A-definable.

Representing primitive recursion

If f € IN"—=IN is represented by a A-term F and

g € IN"T >IN is represented by a A-term G,
we want to show A-definability of the unique
h € N"T1-IN satisfying
[h@o) =@
h(d,a+1) =g(d,a,h(d,a))

(‘Pora\M aelN"and ac "\/)

Computation Theory , L 12

156,/171

Representing primitive recursion

If f € IN"—=IN is represented by a A-term F and
g € IN"T >IN is represented by a A-term G,

we want to show A-definability of the unique
h € N"T1-IN satisfying

h(d,a) = if a =0 then f(d)
else g(d,a—1,h(d,a—1))

Computation Theory , L 12 157/171

Representing primitive recursion

If f € IN"—=IN is represented by a A-term F and
g € IN"T >IN is represented by a A-term G,

we want to show A-definability of the unique
h € N"TSIN satisfying |h = ®.(h)

where @ ¢, € (N"T'-IN)—(IN"*'-IN) is given by

®.(h)(d,a) =if a=0 then f(d)
else ¢g(d,a —1,h(d,a —1))

Computation Theory , L 12 157/171

Representing primitive recursion

If f € IN"—=IN is represented by a A-term F and
g € IN"T >IN is represented by a A-term G,

we want to show A-definability of the unique
h € N"TSIN satisfying |h = ®.(h)

where @ ¢, € (N"T'-IN)—(IN"*'-IN) is given by

®.(h)(d,a) =if a=0 then f(d)
else ¢g(d,a —1,h(d,a —1))

Computation Theory , L 12 157/171

Representing primitive recursion

If f € IN"—=IN is represented by a A-term F and
g € IN"T >IN is represented by a A-term G,

we want to show A-definability of the unique
h € N"TSIN satisfying |h = ®.(h)

where @ ¢, € (N"T'-IN)—(IN"T'-IN) is given by. ..
Strategy:

o show that @y, is A-definable>

A2xx . I (%X) F<) Pvedx)(Zx(Predl)))

Computation Theory , L 12 158/171

Representing primitive recursion

If f € IN"—=IN is represented by a A-term F and
g € IN"T >IN is represented by a A-term G,

we want to show A-definability of the unique
h € N"TSIN satisfying |h = ®.(h)

where @ ¢, € (N"T'-IN)—(IN"T'-IN) is given by. ..
Strategy:

> show that @ ¢, is A-definable;
» show that we can solve fixed point equations
X = M X | up to B-conversion in the A-calculus.

Computation Theory , L 12 158/171

Y2 AL (Ax. f(xx)) (Ax. f(xx))

satisfiess YM — (Ax.M(xx))(Ax.M(xx))

Y2 AL (Ax. f(xx)) (Ax. f(xx))

satisfiess YM — (Ax.M(xx))(Ax.M(xx))

Computation Theory , L 12 164/171

Y2 AL (Ax. f(xx)) (Ax. f(xx))

satisfiess YM — (Ax.M(xx))(Ax.M(xx))
— M((Ax.M(xx))(Ax.M(xx)))

hence YM — M((Ax.M(xx))(Ax.M(xx))) « M(YM).

So for all A-terms M we have

YM =4 M(YM)

Computation Theory , L 12 164/171

N aives ek Ty X calondns
Ruscell ek .
RE {a]a(xex)) R = Xx.n%\:(vuc)

NEEAL.TF b False Tme,

Ruscell ek .
R={o]axex)) R = Xx.nék(onux)

Rumecells Youndox

ReER & 1 (ReR) RR =, nst (REe)

Ruscell ek .
R={o]axex)) R = Xx.nék(onux)

Rmeslls Tourmdox :
ReR & 1 (ReR) RR = nst(RE)

e T

Yk =, RR = (hoc. nd (20) A b (o))

Ruscell Set .
R={o]axex)) R = Xox. nék (o)

Rmeslls Tourmdox :
ReR & 1 (ReR) RR = nst(RE)

Yk =, RR =(Xrx. vuﬂ:(xx)ka th(ouc))
Y£ = (. Fea))(xx. $@n)
XY = M. Ovx.fEo) A fon)

Representing primitive recursion

If f € IN"—=IN is represented by a A-term F and
g € IN"T25IN is represented by a A-term G,

we want to show A-definability of the unique
h € N"TSIN satisfying |h = ®.(h)

where @ ¢, € (N"T'-IN)—(IN"*'-IN) is given by

®;.(h)(d,a) Zif a=0 then f(d)
else g(d,a —1,h(d,a — 1))

We now know that h can be represented by
Y(AzXx. If(Eqyx)(FX)(GX(Predx)(zX (Predx)))).

Computation Theory , L 12

165,/170

Exom ple

Fackoriad fundin fock € W=y Satvshes
fock (n) = if n=oten 1 else n.(fad (n-v)

Example
tackonall fundhm {ock € W= vy Sodvshes
fﬁtu)c(n) = 1f n=o trem 1 else, Y\v@”\‘k("\-‘l»
ond. s X-definalle —t5 represented by

ok 2 (M. TF(E,) 1 (Mulk x (£ Redn))

P |

Q e Ml = Agafr. (% 5) X wprsents
Y\Ml\&\f\\co\{' Y >

Recall that the class PRIM of primitive recursive
functions is the smallest collection of (total) functions
containing the basic functions and closed under the
operations of composition and primitive recursion.

Combining the results about A-definability so far, we
have: every f € PRIM is A-definable.

So for A-definability of all recursive functions, we just
have to consider how to represent minimization.
Recall. ..

Computation Theory , L 12 166/171

Given a partial function f € IN"T!'~IN, define
u'f € N"—IN by
1" f(¥) = least x such that f(¥,x) =0

and foreachi1 =20,...,x — 1,
f(X,1) is defined and > 0
(undefined if there is no such x)

Can express u” f in terms of a fixed point equation:

1 f(xX) = g(x,0) where g satisfies |g = ¥((g)
with ¥ € (IN*T'~IN)—(IN"*'=IN) defined by

Y (g)(¥,x) =if f(X,x) =0 then x else g(X,x+ 1)

Representing minimization

Suppose f € IN"T1-IN (totally defined function)
satisfies Vd Jda (f(d,a) = 0), so that " f € IN"=IN
is totally defined.

Thus for all @ € IN*, " f(d) = g(d,0) with

g =Y¢(g) and ¥((g)(d, a) given by
if (f(d,a) =0) then a else g(d,a+1).

So if f is represented by a A-term F, then u"f is
represented by

AXY(AzXx. If(Eqy(FXx))x(zX(Succx))) X0

Computation Theory , L 12 168/171

Fact: every partial recursive f € IN”"—~IN can be
expressed in a standard form as f = g o (u"h) for some
g, h € PRIM. (Follows from the proof that computable =

partial-recursive.)

Hence every (total) recursive function is A-definable.

More generally, every partial recursive function is
A-definable, but matching up 1 with AB—nf makes the

representations more complicated than for total
functions: see [Hindley, J.R. & Seldin, J.P. (CUP, 2008),

chapter 4]

Computation Theory , L 12 169/170

Theorem. A partial function is computable if and only if

it is A-definable.

We already know that computable = partial recursive =
A-definable. So it just remains to see that A-definable functions
are RM computable. To show this one can

» code A-terms as numbers (ensuring that operations for
constructing and deconstructing terms are given by RM
computable functions on codes)

» write a RM interpreter for (normal order) B-reduction.

The details are straightforward, if tedious.

Computation Theory , L 12 170/171

Numerical coding. ot X-terms
fix an emwabion x.,%,, %, ... o e sek 6[3 Ay ables
fov QO\IJlf\ A= o M) Ou/{'\\'\b r[\/xjé NJ 10\4_
T = "[o0,3]’

Aomt = TC1,4,7M7)

- N7
rMN1 — [2.)rM")rN]

(ulf\u—e, “[n,, n”.--,nk]—’ ic the Vumenwl Uding c{l lvsk
st numkers o p43).

Theorem. A partial function is computable if and only if

it is A-definable.

We already know that computable = partial recursive =
A-definable. So it just remains to see that A-definable functions
are RM computable. To show this one can

» code A-terms as numbers (ensuring that operations for
constructing and deconstructing terms are given by RM
computable functions on codes)

Qrite a RM interpreter for (normal order) ﬁ—reduc’@

The details are straightforward, if tedious.

Computation Theory , L 12 170/171

Tpl45)

Normal-order reduction is a deterministic strategy for
reducing A-terms: reduce the “left-most, outer-most”
redex first.

» left-most: reduce M before N in M N, and then

> outer-most: reduce (Ax.M)N rather than either of
M or N.

(cf. call-by-name evaluation).

Fact: normal-order reduction of M always reaches the
B-nf of M if it possesses one.

Computation Theory , L 11 145/171

Summany

® Tormalizphion Gll mitthive nShom GF
ALgorTMM in severnd equivialnk Way
cf ° Cl/\(w(/\-Tvur{V\g, Thesis®)

® Limitabve results ZW\JQLMW‘O& pwoblems
uncom putable fanchms

"prgrums as doka, + Aiox?,ovxulién}'im

