λ -Definable functions

Definition. $f \in \mathbb{N}^n \to \mathbb{N}$ is λ -definable if there is a closed λ -term F that represents it: for all $(x_1, \ldots, x_n) \in \mathbb{N}^n$ and $y \in \mathbb{N}$ • if $f(x_1, \ldots, x_n) = y$, then $F \underline{x_1} \cdots \underline{x_n} =_{\beta} \underline{y}$ • if $f(x_1, \ldots, x_n) \uparrow$, then $F \underline{x_1} \cdots \underline{x_n}$ has no β -nf.

This condition can make it quite tricky to find a λ -term representing a non-total function.

For now, we concentrate on total functions. First, let us see why the elements of $\frac{PRIM}{primitive}$ (primitive recursive functions) are λ -definable.

If $f \in \mathbb{N}^n \to \mathbb{N}$ is represented by a λ -term F and $g \in \mathbb{N}^{n+2} \to \mathbb{N}$ is represented by a λ -term G, we want to show λ -definability of the unique $h \in \mathbb{N}^{n+1} \to \mathbb{N}$ satisfying

$$\begin{cases} h(\vec{a},0) &= f(\vec{a}) \\ h(\vec{a},a+1) &= g(\vec{a},a,h(\vec{a},a)) \end{cases}$$

(for all $\vec{a} \in IN^n$ and $a \in IN$)

If $f \in \mathbb{N}^n \to \mathbb{N}$ is represented by a λ -term F and $g \in \mathbb{N}^{n+2} \to \mathbb{N}$ is represented by a λ -term G, we want to show λ -definability of the unique $h \in \mathbb{N}^{n+1} \to \mathbb{N}$ satisfying

$$h(\vec{a}, a) = if \ a = 0 \ then \ f(\vec{a})$$

 $else \ g(\vec{a}, a - 1, h(\vec{a}, a - 1))$

If $f \in \mathbb{N}^n \to \mathbb{N}$ is represented by a λ -term F and $g \in \mathbb{N}^{n+2} \to \mathbb{N}$ is represented by a λ -term G, we want to show λ -definability of the unique $h \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ satisfying $h = \Phi_{f,g}(h)$ where $\Phi_{f,g} \in (\mathbb{N}^{n+1} \to \mathbb{N}) \to (\mathbb{N}^{n+1} \to \mathbb{N})$ is given by $\Phi_{f,g}(h)(\vec{a},a) \triangleq if \ a = 0 \ then \ f(\vec{a})$ else $g(\vec{a}, a-1, h(\vec{a}, a-1))$

If $f \in \mathbb{N}^n \to \mathbb{N}$ is represented by a λ -term F and $g \in \mathbb{N}^{n+2} \to \mathbb{N}$ is represented by a λ -term G, we want to show λ -definability of the unique $h \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ satisfying $h = \Phi_{f,g}(h)$ where $\Phi_{f,g} \in (\mathbb{N}^{n+1} \to \mathbb{N}) \to (\mathbb{N}^{n+1} \to \mathbb{N})$ is given by $\Phi_{f,g}(h)(\vec{a},a) \triangleq if \ a = 0 \ then \ f(\vec{a})$ else $g(\vec{a}, a-1, h(\vec{a}, a-1))$

If $f \in \mathbb{N}^n \to \mathbb{N}$ is represented by a λ -term F and $g \in \mathbb{N}^{n+2} \to \mathbb{N}$ is represented by a λ -term G, we want to show λ -definability of the unique $h \in \mathbb{N}^{n+1} \to \mathbb{N}$ satisfying $h = \Phi_{f,g}(h)$ where $\Phi_{f,g} \in (\mathbb{N}^{n+1} \to \mathbb{N}) \to (\mathbb{N}^{n+1} \to \mathbb{N})$ is given by... Strategy:

• show that $\Phi_{f,g}$ is λ -definable;

```
If f \in \mathbb{N}^n \to \mathbb{N} is represented by a \lambda-term F and g \in \mathbb{N}^{n+2} \to \mathbb{N} is represented by a \lambda-term G, we want to show \lambda-definability of the unique h \in \mathbb{N}^{n+1} \to \mathbb{N} satisfying h = \Phi_{f,g}(h) where \Phi_{f,g} \in (\mathbb{N}^{n+1} \to \mathbb{N}) \to (\mathbb{N}^{n+1} \to \mathbb{N}) is given by... Strategy:
```

- show that $\Phi_{f,g}$ is λ -definable;
- show that we can solve fixed point equations X = MX up to β -conversion in the λ -calculus.

Curry's fixed point combinator Y

$$\mathbf{Y} \triangleq \lambda f. (\lambda x. f(xx)) (\lambda x. f(xx))$$

satisfies
$$YM \rightarrow (\lambda x. M(xx))(\lambda x. M(xx))$$

Curry's fixed point combinator Y

$$\mathbf{Y} \triangleq \lambda f. (\lambda x. f(xx)) (\lambda x. f(xx))$$

satisfies
$$YM \rightarrow (\lambda \underline{x}.M(xx))(\lambda x.M(xx))$$

Curry's fixed point combinator Y

$$\mathbf{Y} \triangleq \lambda f. (\lambda x. f(xx)) (\lambda x. f(xx))$$

```
satisfies YM \to (\lambda x. M(xx))(\lambda x. M(xx))

\to M((\lambda x. M(xx))(\lambda x. M(xx)))

hence YM \to M((\lambda x. M(xx))(\lambda x. M(xx))) \leftarrow M(YM).
```

So for all λ -terms M we have

$$\mathbf{Y}M =_{\beta} M(\mathbf{Y}M)$$

Naive set theory

2 calculus

Russell Set:

$$R \triangleq \{x \mid \neg(x \in x)\}$$

$$R \triangleq \lambda x. not(xx)$$

not = λb. If b False True

Naive set theory

2 calculus

Russell Set:

$$R \triangleq \{x \mid \neg(x \in x)\}$$

Russell's Paradox:

$$R \triangleq \lambda x. not(xx)$$

$$RR =$$
 p $not(RR)$

Naive set theory

2 calculus

Russell Set:

$$R \triangleq \{x \mid \neg(x \in x)\}$$

Russell's Paradox:

$$R \triangleq \lambda x. not(xx)$$

$$RR = not(RR)$$

Ynot = RR =
$$(\lambda x. not(\alpha x))(\lambda x. not(\alpha x))$$

Naive	set	theony

2 calculus

Russell Set:

$$R \triangleq \{x \mid \neg(x \in x)\}$$

Russell's Paradox:

$$R \triangleq \lambda x. not(xx)$$

$$RR =$$
 p $not(RR)$

Ynot =
$$RR = (\lambda x. not(\alpha x))(\lambda x. not(\alpha x))$$

Yf = $(\lambda x. f(xx))(\lambda x. f(xx))$
Y = $\lambda f. (\lambda x. f(xx))(\lambda x. f(xx))$

If $f \in \mathbb{N}^n \to \mathbb{N}$ is represented by a λ -term F and $g \in \mathbb{N}^{n+2} \to \mathbb{N}$ is represented by a λ -term G, we want to show λ -definability of the unique $h \in \mathbb{N}^{n+1} \to \mathbb{N}$ satisfying $h = \Phi_{f,g}(h)$ where $\Phi_{f,g} \in (\mathbb{N}^{n+1} \to \mathbb{N}) \to (\mathbb{N}^{n+1} \to \mathbb{N})$ is given by $\Phi_{f,g}(h)(\vec{a},a) \triangleq if \ a = 0 \ then \ f(\vec{a})$ else $g(\vec{a}, a-1, h(\vec{a}, a-1))$

We now know that h can be represented by

$$Y(\lambda z \vec{x} x. \operatorname{lf}(\operatorname{Eq}_0 x)(F \vec{x})(G \vec{x}(\operatorname{Pred} x)(z \vec{x}(\operatorname{Pred} x)))).$$

Example

Factorial function fact $\in \mathbb{N} \to \mathbb{N}$ satisfies fact (n) = if n = 0 then 1 else n.(fact(n-1))

Example

Factorial function fact $\in \mathbb{N} \to \mathbb{N}$ satisfies fact (n) = if n = 0 then 1 else n.(fact(n-1))

and is λ -definable — it's represented by

Fact $\triangleq Y(\lambda f x. If(Eq_0 x) 1 (Mult x(f(Pred x))))$

(where Mult $\triangleq \lambda x_1 x_2 f x$. $x_1(x_2 f) x$ represents multiplication).

Recall that the class **PRIM** of primitive recursive functions is the smallest collection of (total) functions containing the basic functions and closed under the operations of composition and primitive recursion.

Combining the results about λ -definability so far, we have: **every** $f \in PRIM$ **is** λ -**definable**.

So for λ -definability of all recursive functions, we just have to consider how to represent minimization. Recall...

Minimization

```
Given a partial function f \in \mathbb{N}^{n+1} \to \mathbb{N}, define \mu^n f \in \mathbb{N}^n \to \mathbb{N} by \mu^n f(\vec{x}) \triangleq \text{least } x \text{ such that } f(\vec{x}, x) = 0 and for each i = 0, \dots, x - 1, f(\vec{x}, i) is defined and > 0 (undefined if there is no such x)
```

Can express $\mu^n f$ in terms of a fixed point equation: $\mu^n f(\vec{x}) \equiv g(\vec{x}, 0)$ where g satisfies $g = \Psi_f(g)$ with $\Psi_f \in (\mathbb{N}^{n+1} \to \mathbb{N}) \to (\mathbb{N}^{n+1} \to \mathbb{N})$ defined by $\Psi_f(g)(\vec{x}, x) \equiv if \ f(\vec{x}, x) = 0 \ then \ x \ else \ g(\vec{x}, x+1)$

Representing minimization

Suppose $f \in \mathbb{N}^{n+1} \to \mathbb{N}$ (totally defined function) satisfies $\forall \vec{a} \exists a \ (f(\vec{a}, a) = 0)$, so that $\mu^n f \in \mathbb{N}^n \to \mathbb{N}$ is totally defined.

Thus for all $\vec{a} \in \mathbb{N}^n$, $\mu^n f(\vec{a}) = g(\vec{a}, 0)$ with $g = \Psi_f(g)$ and $\Psi_f(g)(\vec{a}, a)$ given by if $(f(\vec{a}, a) = 0)$ then a else $g(\vec{a}, a + 1)$.

So if f is represented by a λ -term F, then $\mu^n f$ is represented by

$$\lambda \vec{x}.Y(\lambda z \vec{x} x. lf(Eq_0(F \vec{x} x)) x (z \vec{x} (Succ x))) \vec{x} \underline{0}$$

Recursive implies λ -definable

Fact: every partial recursive $f \in \mathbb{N}^n \to \mathbb{N}$ can be expressed in a standard form as $f = g \circ (\mu^n h)$ for some $g,h \in PRIM$. (Follows from the proof that computable = partial-recursive.)

Hence every (total) recursive function is λ -definable.

More generally, every partial recursive function is λ -definable, but matching up \uparrow with β -nf makes the representations more complicated than for total functions: see [Hindley, J.R. & Seldin, J.P. (CUP, 2008), chapter 4.]

Computable = λ -definable

Theorem. A partial function is computable if and only if it is λ -definable.

We already know that computable = partial recursive \Rightarrow λ -definable. So it just remains to see that λ -definable functions are RM computable. To show this one can

- \blacktriangleright code λ -terms as numbers (ensuring that operations for constructing and deconstructing terms are given by RM computable functions on codes)
- write a RM interpreter for (normal order) β -reduction.

The details are straightforward, if tedious.

Numerical coding of x-terms

Fix an emuration $x_0, x_1, x_2, ...$ of the set of variables. For each λ -term M, define $\lceil M \rceil \in \mathbb{N}$ by

(where $[n_0, n_1, ..., n_k]$ is the numerical usding of lists of numbers from p43).

Computable = λ -definable

Theorem. A partial function is computable if and only if it is λ -definable.

We already know that computable = partial recursive \Rightarrow λ -definable. So it just remains to see that λ -definable functions are RM computable. To show this one can

- \blacktriangleright code λ -terms as numbers (ensuring that operations for constructing and deconstructing terms are given by RM computable functions on codes)
- write a RM interpreter for (normal order) β -reduction.

The details are straightforward, if tedious.

[p145]

Normal-order reduction is a deterministic strategy for reducing λ -terms: reduce the "left-most, outer-most" redex first.

- ▶ left-most: reduce *M* before *N* in *M N*, and then
- outer-most: reduce $(\lambda x.M)N$ rather than either of M or N.

(cf. call-by-name evaluation).

Fact: normal-order reduction of M always reaches the β -nf of M if it possesses one.

Summany

- Tormalization of intuitive notion of Algorithm in several equivalent way

 Cf. "Church-Turing Thesis"
- Limitative results: sundecidable problems un computable functions
 - "programs as data" + diagonalization