Lambda-Definable Functions

Encoding data in λ -calculus

Computation in λ -calculus is given by β -reduction. To relate this to register/Turing-machine computation, or to partial recursive functions, we first have to see how to encode numbers, pairs, lists, . . . as λ -terms.

We will use the original encoding of numbers due to Church...

Church's numerals

$$\begin{array}{ccc}
\underline{0} & \triangleq & \lambda f \, x. x \\
\underline{1} & \triangleq & \lambda f \, x. f \, x \\
\underline{2} & \triangleq & \lambda f \, x. f (f \, x) \\
& \vdots \\
\underline{n} & \triangleq & \lambda f \, x. \underbrace{f(\cdots (f \, x) \cdots)}_{n \, \text{times}}
\end{array}$$

so we can write \underline{n} as $\lambda f x. f^n x$ and we have $|\underline{n} M N| =_{\beta} M^n N|$.

λ -Definable functions

Definition. $f \in \mathbb{N}^n \rightarrow \mathbb{N}$ is λ -definable if there is a closed λ -term F that represents it: for all

$$(x_1,\ldots,x_n)\in\mathbb{N}^n$$
 and $y\in\mathbb{N}$

- $f(x_1,\ldots,x_n)=y$, then $F\underline{x_1}\cdots\underline{x_n}=_{\beta}\underline{y}$
- ightharpoonup if $f(x_1,\ldots,x_n)\uparrow$, then $F\underline{x_1}\cdots\underline{x_n}$ has no β -nf.

For example, addition is λ -definable because it is represented by $P \triangleq \lambda x_1 x_2 . \lambda f x . x_1 f(x_2 f x)$:

$$P \underline{m} \underline{n} =_{\beta} \lambda f x. \underline{m} f(\underline{n} f x)$$

$$=_{\beta} \lambda f x. \underline{m} f(f^{n} x)$$

$$=_{\beta} \lambda f x. f^{m}(f^{n} x)$$

$$= \lambda f x. f^{m+n} x$$

$$= m + n$$

Computable = λ -definable

Theorem. A partial function is computable if and only if it is λ -definable.

We already know that

- Register Machine computable
- = Turing computable
- partial recursive.

Using this, we break the theorem into two parts:

- every partial recursive function is λ -definable
- \triangleright λ -definable functions are RM computable

λ -Definable functions

Definition. $f \in \mathbb{N}^n \rightarrow \mathbb{N}$ is λ -definable if there is a closed λ -term F that represents it: for all $(x_1, \ldots, x_n) \in \mathbb{N}^n$ and $y \in \mathbb{N}$ \mapsto if $f(x_1, \ldots, x_n) = y$, then $F \underline{x_1} \cdots \underline{x_n} =_{\beta} \underline{y}$ \mapsto if $f(x_1, \ldots, x_n) \uparrow$, then $F x_1 \cdots x_n$ has no β -nf.

This condition can make it quite tricky to find a λ -term representing a non-total function.

For now, we concentrate on total functions. First, let us see why the elements of $\frac{\mathbf{PRIM}}{\mathbf{I}}$ (primitive recursive functions) are λ -definable.

Basic functions

▶ Projection functions, $proj_i^n \in \mathbb{N}^n \rightarrow \mathbb{N}$:

$$\operatorname{proj}_{i}^{n}(x_{1},\ldots,x_{n}) \triangleq x_{i}$$

► Constant functions with value 0, zeroⁿ $\in \mathbb{N}^n \rightarrow \mathbb{N}$:

$$zero^n(x_1,\ldots,x_n) \stackrel{\triangle}{=} 0$$

▶ Successor function, $succ \in \mathbb{N} \rightarrow \mathbb{N}$:

$$\operatorname{succ}(x) \triangleq x + 1$$

Basic functions are representable

- $ightharpoonup \operatorname{proj}_i^n \in \mathbb{N}^n {
 ightarrow} \mathbb{N}$ is represented by $\lambda x_1 \ldots x_n.x_i$
- ightharpoonup zero $^n \in \mathbb{N}^n
 ightarrow \mathbb{N}$ is represented by $\lambda x_1 \ldots x_n . 0$
- ▶ $succ ∈ \mathbb{N} \rightarrow \mathbb{N}$ is represented by

$$Succ \triangleq \lambda x_1 f x. f(x_1 f x)$$

since

Succ
$$\underline{n} =_{\beta} \lambda f x. f(\underline{n} f x)$$

 $=_{\beta} \lambda f x. f(f^{n} x)$
 $= \lambda f x. f^{n+1} x$
 $= n + 1$

Basic functions are representable

- $ightharpoonup \operatorname{proj}_i^n \in \mathbb{N}^n \to \mathbb{N}$ is represented by $\lambda x_1 \dots x_n.x_i$
- ightharpoonup zero $^n \in \mathbb{N}^n
 ightarrow \mathbb{N}$ is represented by $\lambda x_1 \ldots x_n . \underline{0}$
- ▶ $succ ∈ \mathbb{N} \rightarrow \mathbb{N}$ is represented by

$$\mathsf{Succ} \triangleq \lambda x_1 f x. f(x_1 f x)$$

since

Succ
$$\underline{n} =_{\beta} \lambda f x. f(\underline{n} f x)$$

$$=_{\beta} \lambda f x. f(f^{n} x)$$

$$= \lambda f x. f^{n+1} x$$

$$= \underline{n+1}$$

$$(\lambda x_{1} f x. x_{1} f(f x)) also represents succ)$$

Computation Theory, L 11

Representing composition

If total function $f \in \mathbb{N}^n \to \mathbb{N}$ is represented by F and total functions $g_1, \ldots, g_n \in \mathbb{N}^m \to \mathbb{N}$ are represented by G_1, \ldots, G_n , then their composition $f \circ (g_1, \ldots, g_n) \in \mathbb{N}^m \to \mathbb{N}$ is represented simply by

$$\lambda x_1 \ldots x_m \cdot F(G_1 x_1 \ldots x_m) \ldots (G_n x_1 \ldots x_m)$$

because
$$F(G_1 \underline{a_1} \dots \underline{a_m}) \dots (G_n \underline{a_1} \dots \underline{a_m})$$

$$=_{\beta} F \underline{g_1(a_1, \dots, a_m)} \dots \underline{g_n(a_1, \dots, a_m)}$$

$$=_{\beta} \underline{f(g_1(a_1, \dots, a_m), \dots, g_n(a_1, \dots, a_m))}$$

$$= f \circ (g_1, \dots, g_n)(a_1, \dots, a_m)$$

Representing composition

If total function $f \in \mathbb{N}^n \to \mathbb{N}$ is represented by F and total functions $g_1, \ldots, g_n \in \mathbb{N}^m \to \mathbb{N}$ are represented by G_1, \ldots, G_n , then their composition $f \circ (g_1, \ldots, g_n) \in \mathbb{N}^m \to \mathbb{N}$ is represented simply by

$$\lambda x_1 \ldots x_m \cdot F(G_1 x_1 \ldots x_m) \ldots (G_n x_1 \ldots x_m)$$

This does not necessarily work for <u>partial</u> functions. E.g. totally undefined function $u \in \mathbb{N} \rightarrow \mathbb{N}$ is represented by $U \triangleq \lambda x_1 \cdot \Omega$ (why?) and $\mathsf{zero}^1 \in \mathbb{N} \rightarrow \mathbb{N}$ is represented by $Z \triangleq \lambda x_1 \cdot \Omega$; but $\mathsf{zero}^1 \circ u$ is not represented by $\lambda x_1 \cdot Z(U x_1)$, because $(\mathsf{zero}^1 \circ u)(n) \uparrow$ whereas $(\lambda x_1 \cdot Z(U x_1)) \underline{n} =_{\beta} Z \Omega =_{\beta} \underline{0}$. (What is $\mathsf{zero}^1 \circ u$ represented by?)

Primitive recursion

Theorem. Given $f \in \mathbb{N}^n \rightarrow \mathbb{N}$ and $g \in \mathbb{N}^{n+2} \rightarrow \mathbb{N}$, there is a unique $h \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ satisfying

$$\begin{cases} h(\vec{x},0) & \equiv f(\vec{x}) \\ h(\vec{x},x+1) & \equiv g(\vec{x},x,h(\vec{x},x)) \end{cases}$$

for all $\vec{x} \in \mathbb{N}^n$ and $x \in \mathbb{N}$.

We write $\rho^n(f,g)$ for h and call it the partial function defined by primitive recursion from f and g.

If $f \in \mathbb{N}^n \to \mathbb{N}$ is represented by a λ -term F and $g \in \mathbb{N}^{n+2} \to \mathbb{N}$ is represented by a λ -term G, we want to show λ -definability of the unique $h \in \mathbb{N}^{n+1} \to \mathbb{N}$ satisfying

$$\begin{cases} h(\vec{a},0) &= f(\vec{a}) \\ h(\vec{a},a+1) &= g(\vec{a},a,h(\vec{a},a)) \end{cases}$$

(for all
$$\vec{a} \in \mathbb{N}^n$$
 and $a \in \mathbb{N}$)

If $f \in \mathbb{N}^n \to \mathbb{N}$ is represented by a λ -term F and $g \in \mathbb{N}^{n+2} \to \mathbb{N}$ is represented by a λ -term G, we want to show λ -definability of the unique $h \in \mathbb{N}^{n+1} \to \mathbb{N}$ satisfying

$$h(\vec{a}, a) = if \ a = 0 \ then \ f(\vec{a})$$

else $g(\vec{a}, a - 1, h(\vec{a}, a - 1))$

If $f \in \mathbb{N}^n \to \mathbb{N}$ is represented by a λ -term F and $g \in \mathbb{N}^{n+2} \to \mathbb{N}$ is represented by a λ -term G, we want to show λ -definability of the unique $h \in \mathbb{N}^{n+1} \to \mathbb{N}$ satisfying $h = \Phi_{f,g}(h)$ where $\Phi_{f,g} \in (\mathbb{N}^{n+1} \to \mathbb{N}) \to (\mathbb{N}^{n+1} \to \mathbb{N})$ is given by

$$\Phi_{f,g}(h)(\vec{a},a) \stackrel{\triangle}{=} if \ a = 0 \ then \ f(\vec{a})$$

$$else \ g(\vec{a},a-1,h(\vec{a},a-1))$$

```
If f \in \mathbb{N}^n \to \mathbb{N} is represented by a \lambda-term F and g \in \mathbb{N}^{n+2} \to \mathbb{N} is represented by a \lambda-term G, we want to show \lambda-definability of the unique h \in \mathbb{N}^{n+1} \to \mathbb{N} satisfying h = \Phi_{f,g}(h) where \Phi_{f,g} \in (\mathbb{N}^{n+1} \to \mathbb{N}) \to (\mathbb{N}^{n+1} \to \mathbb{N}) is given by...
```

Strategy:

- show that $\Phi_{f,g}$ is λ -definable;
- show that we can solve fixed point equations X = MX up to β -conversion in the λ -calculus.

Representing booleans

```
True \triangleq \lambda x y. x

False \triangleq \lambda x y. y

If \triangleq \lambda f x y. f x y
```

satisfy

- ▶ If True $MN =_{\beta} \text{True } MN =_{\beta} M$
- ▶ If False $MN =_{\beta}$ False $MN =_{\beta} N$

Representing test-for-zero

$$\mathsf{Eq_0} \triangleq \lambda x. \, x(\lambda y. \, \mathsf{False}) \, \mathsf{True}$$

satisfies

• Eq₀ $\underline{0} =_{\beta} \underline{0} (\lambda y. \text{False})$ True $=_{\beta}$ True

$$\begin{array}{ll} \mathbf{Eq_0} \, \underline{n+1} & =_{\beta} \, \, \underline{n+1} \, (\lambda y. \, \mathsf{False}) \, \mathsf{True} \\ & =_{\beta} \, \, (\lambda y. \, \mathsf{False})^{n+1} \, \mathsf{True} \\ & =_{\beta} \, \, (\lambda y. \, \mathsf{False}) \, ((\lambda y. \, \mathsf{False})^n \, \mathsf{True}) \\ & =_{\beta} \, \, \mathsf{False} \\ \end{array}$$

Representing ordered pairs

```
Pair \triangleq \lambda x y f. f x y

Fst \triangleq \lambda f. f True

Snd \triangleq \lambda f. f False
```

satisfy

```
Fst(Pair MN) =_{\beta} Fst(\lambda f. fMN) =_{\beta} (\lambda f. fMN) True =_{\beta} True MN =_{\beta} M
```

▶ Snd(Pair MN) $=_{\beta} \cdots =_{\beta} N$

Representing predecessor

Want λ -term **Pred** satisfying

$$\begin{array}{ccc} \operatorname{\mathsf{Pred}} \underline{n+1} & =_{\beta} & \underline{n} \\ \operatorname{\mathsf{Pred}} \underline{0} & =_{\beta} & \underline{0} \end{array}$$

Have to show how to reduce the "n+1-iterator" $\underline{n+1}$ to the "n-iterator" n.

Idea: given f, iterating the function $g_f:(x,y)\mapsto (f(x),x)$ n+1 times starting from (x,x) gives the pair $(f^{n+1}(x),f^n(x))$. So we can get $f^n(x)$ from $f^{n+1}(x)$ parametrically in f and x, by building g_f from f, iterating n+1 times from (x,x) and then taking the second component.

Hence...

Representing predecessor

Want λ -term **Pred** satisfying

$$\begin{array}{ccc} \operatorname{Pred} \underline{n+1} & =_{\beta} & \underline{n} \\ \operatorname{Pred} \underline{0} & =_{\beta} & \underline{0} \end{array}$$

$$\mathsf{Pred} \triangleq \lambda y \, f \, x. \, \mathsf{Snd}(y \, (G \, f)(\mathsf{Pair} \, x \, x))$$
 where
 $G \triangleq \lambda f \, p. \, \mathsf{Pair}(f(\mathsf{Fst} \, p))(\mathsf{Fst} \, p)$

has the required β -reduction properties. [Exercise]

Show ($\forall n \in \mathbb{N}$) $\underline{n+1}(Gf)(Pair xx) = \beta Pair(\underline{n+1}fx)(\underline{n}fx)$ by induction on $N \in \mathbb{N}$: Base case N=0: $\frac{1}{2}(G_{f})(Pair xx) = G_{f}(Pair xx)$ = Pair (for) x

 $= \rho \operatorname{Pair} (1 fx) (0 fx)$

Show ($\forall n \in \mathbb{N}$) $\underline{n+1}(Gf)(Pair xx) = \beta Pair(\underline{n+1}fx)(\underline{n}fx)$ by induction on $N \in \mathbb{N}$: Induction step: n+2 (Gf) (Pair x x) = (Gf) n+1 (Gf) (Pair x x)

 $\frac{1+2}{\beta}(G_{f})(P_{air} \times x) = \frac{(G_{f})}{n+1}(G_{f})(P_{air} \times x)$ $= \frac{by ind.hyp.}{\beta}(G_{f})(P_{air} \times x)(P_{f} \times x)$ $= \frac{by ind.hyp.}{\beta}(G_{f})(P_{air} \times x)(P_{f} \times x)$

Show ($\forall n \in \mathbb{N}$) $\underline{n+1}(Gf)(Pair xx) = \beta Pair(\underline{n+1}fx)(\underline{n}fx)$ by induction on $N \in \mathbb{N}$: Induction step: n+2 (Gif) (Pair x x) = (Gif) n+1 (Gif) (Pair x x)

by ind.hyp. $=_{\mathcal{B}}(G_{r}f) \operatorname{Pair}(\underline{n+1} fx)(\underline{n} fx)$ $=_{\mathcal{B}} \operatorname{Pair}(f(\underline{n+1}fx))(\underline{n+1}fx)$ $=_{\mathcal{B}} \operatorname{Pair}(\underline{n+2}fx)(\underline{n+1}fx)$

Show

Vne in) $\underline{n+1}(Gf)(Pair xx) = \beta Pair (\underline{n+1} fx)(\underline{n} fx)$ So Pred $\underline{n+1} = \beta \lambda fx$. Snd $(\underline{n+1} (Gf)(Pair xx))$ $\Rightarrow = \beta \lambda fx$. Snd $(Pair (\underline{n+1} fx)(\underline{n} fx))$

Pred n+1 = β $\lambda f x$. Snd(n+1)(Gf)(Pair xx)) $=_{B} \lambda fx. Snd (Pair(n+1fx)(nfx))$ = β λ for. n for $= \beta \lambda x. f^{n} x$

If $f \in \mathbb{N}^n \to \mathbb{N}$ is represented by a λ -term F and $g \in \mathbb{N}^{n+2} \to \mathbb{N}$ is represented by a λ -term G, we want to show λ -definability of the unique $h \in \mathbb{N}^{n+1} \to \mathbb{N}$ satisfying $h = \Phi_{f,g}(h)$ where $\Phi_{f,g} \in (\mathbb{N}^{n+1} \to \mathbb{N}) \to (\mathbb{N}^{n+1} \to \mathbb{N})$ is given by

$$\Phi_{f,g}(h)(\vec{a},a) \stackrel{\triangle}{=} if \ a = 0 \ then \ f(\vec{a})$$

$$else \ g(\vec{a},a-1,h(\vec{a},a-1))$$

If $f \in \mathbb{N}^n \to \mathbb{N}$ is represented by a λ -term F and $g \in \mathbb{N}^{n+2} \rightarrow \mathbb{N}$ is represented by a λ -term G, we want to show λ -definability of the unique $h \in \mathbb{N}^{n+1} o \mathbb{N}$ satisfying $h = \Phi_{f,g}(h)$ where $\Phi_{f,g} \in (\mathbb{N}^{n+1} \rightarrow \mathbb{N}) \rightarrow (\mathbb{N}^{n+1} \rightarrow \mathbb{N})$ is given by...

Strategy:

lacksquare show that $\Phi_{f,g}$ is λ -definable;

$$\lambda \neq \vec{x} \times . \text{ If } (\exists q_{x})(F\vec{x})(G\vec{x}(Predx)(\vec{z}\vec{x}(Predx)))$$