λ -Terms, M

are built up from a given, countable collection of

 \triangleright variables x, y, z, \dots

by two operations for forming λ -terms:

- ▶ λ -abstraction: $(\lambda x.M)$ (where x is a variable and M is a λ -term)
- ▶ application: (M M') (where M and M' are λ -terms).

Some random examples of λ -terms:

$$x = (\lambda x.x) = ((\lambda y.(xy))x) = (\lambda y.((\lambda y.(xy))x))$$

α -Equivalence $M =_{\alpha} M'$

is the binary relation inductively generated by the rules:

$$\frac{z \# (MN) \qquad M\{z/x\} =_{\alpha} N\{z/y\}}{\lambda x. M =_{\alpha} \lambda y. N}$$

$$\frac{M =_{\alpha} M' \qquad N =_{\alpha} N'}{MN =_{\alpha} M'N'}$$

where $M\{z/x\}$ is M with all occurrences of x replaced by z.

Substitution N[M/x]

```
x[M/x] = M

y[M/x] = y if y \neq x

(\lambda y.N)[M/x] = \lambda y.N[M/x] if y \# (M x)

(N_1 N_2)[M/x] = N_1[M/x] N_2[M/x]
```

N[M/x] = result of replacing
all free occurrences of x in N
with M, avoiding <u>capture</u> of
free variables in M by binders
in N

Substitution N[M/x]

```
x[M/x] = M
y[M/x] = y if y \neq x
(\lambda y.N)[M/x] = \lambda y.N[M/x] if y \# (M x)
(N_1 N_2)[M/x] = N_1[M/x] N_2[M/x]
```

Side-condition y # (M x) (y does not occur in M and $y \neq x$) makes substitution "capture-avoiding".

E.g. if
$$x \neq y$$

$$(\lambda y.x)[y/x] \neq \lambda y.y$$

Substitution N[M/x]

```
x[M/x] = M
y[M/x] = y \quad \text{if } y \neq x
(\lambda y.N)[M/x] = \lambda y.N[M/x] \quad \text{if } y \# (M x)
(N_1 N_2)[M/x] = N_1[M/x] N_2[M/x]
```

Side-condition y # (M x) (y does not occur in M and $y \neq x$) makes substitution "capture-avoiding".

E.g. if $x \neq y \neq z \neq x$

$$(\lambda y.x)[y/x] =_{\alpha} (\lambda z.x)[y/x] = \lambda z.y$$

 $N \mapsto N[M/x]$ induces a <u>total</u> operation on α -equivalence classes.

 λx , $(\lambda y.y)yx[\lambda z.y/y]$

 λx , $(\lambda y.y)yx[\lambda z.y/y]$ no possible capture

 λx , $(\lambda y.y)yx [\lambda z.y/y]$ = λx , $(\lambda y.y)(\lambda z.y)x$

 $\lambda x. (\lambda y.y) xy [\lambda y.x/y]$

 λx , $(\lambda y.y)yx [\lambda x.y/y]$ = λx , $(\lambda y.y)(\lambda x.y)x$

 $\lambda x. (\lambda y.y) xy [\lambda y.x/y] possible capture$

$$\lambda x$$
, $(\lambda y.y)yx [\lambda x.y/y]$
= λx , $(\lambda y.y)(\lambda x.y)x$

$$\lambda x. (\lambda y.y) xy [\lambda y.x/y]$$
 possible capture...

$$=_{\alpha} \lambda z. (\lambda y.y) zy [\lambda y.x/y] ...\alpha - convert to avoid$$

$$\lambda x$$
, $(\lambda y.y)yx [\lambda x.y/y]$
= λx , $(\lambda y.y)(\lambda x.y)x$

$$\lambda x. (\lambda y.y) x y [\lambda y.x/y]$$
 possible capture...

 $=_{\alpha} \lambda z. (\lambda y.y) z y [\lambda y.x/y]$... α - convert to avoid

$$= \lambda z \cdot (\lambda y \cdot y) z (\lambda y \cdot x)$$

$$= \lambda \lambda z. (\lambda y.y) z (\lambda y'.x)$$

Recall that $\lambda x.M$ is intended to represent the function f such that f(x) = M for all x. We can regard $\lambda x.M$ as a function on λ -terms via substitution: map each N to M[N/x].

So the natural notion of computation for λ -terms is given by stepping from a

 β -redex $(\lambda x.M)N$

to the corresponding

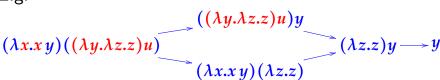
 β -reduct M[N/x]

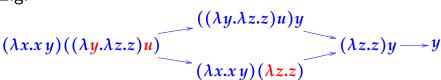
One-step β -reduction, $M \rightarrow M'$:

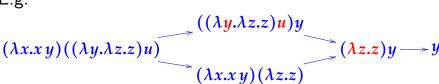
$$\frac{M \to M'}{\lambda x.M)N \to M[N/x]} \frac{M \to M'}{\lambda x.M \to \lambda x.M'}$$

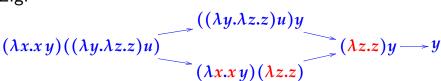
$$\frac{M \to M'}{M N \to M' N} \frac{M \to M'}{N M \to N M'}$$

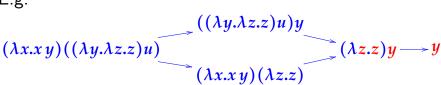
$$\frac{N =_{\alpha} M \quad M \to M'}{N \to N'} \frac{M' =_{\alpha} N'}{N \to N'}$$











E.g.

$$(\lambda x.xy)((\lambda y.\lambda z.z)u) \xrightarrow{((\lambda y.\lambda z.z)u)y} (\lambda z.z)y \longrightarrow y$$

$$(\lambda x.xy)(\lambda z.z)u$$

E.g. of "up to α -equivalence" aspect of reduction:

$$(\lambda x.\lambda y.x)y =_{\alpha} (\lambda x.\lambda z.x)y \to \lambda z.y$$

Many-step β -reduction, $M \rightarrow M'$:

$$rac{M =_{lpha} M'}{M o M'}$$
 $rac{M o M'}{M o M'}$ $rac{M o M'}{M o M'}$ $rac{M o M'}{M o M'}$ (1 step) (1 more step)

$$(\lambda x.xy)((\lambda yz.z)u) \rightarrow y$$

 $(\lambda x.\lambda y.x)y \rightarrow \lambda z.y$

β -Conversion $M =_{\beta} N$

Informally: $M =_{\beta} N$ holds if N can be obtained from M by performing zero or more steps of α -equivalence, β -reduction, or β -expansion (= inverse of a reduction).

E.g.
$$u((\lambda x y. vx)y) =_{\beta} (\lambda x. ux)(\lambda x. vy)$$

because $(\lambda x. ux)(\lambda x. vy) \rightarrow u(\lambda x. vy)$
and so we have
$$u((\lambda x y. vx)y) =_{\alpha} u((\lambda x y'. vx)y)$$

$$\rightarrow u(\lambda y'. vy)$$

$$\rightarrow u(\lambda y'. vy)$$
reduction
$$=_{\alpha} u(\lambda x. vy)$$

$$\leftarrow (\lambda x. ux)(\lambda x. vy)$$
 expansion

β -Conversion $M =_{\beta} N$

is the binary relation inductively generated by the rules:

$$\frac{M =_{\alpha} M'}{M =_{\beta} M'} \qquad \frac{M \to M'}{M =_{\beta} M'} \qquad \frac{M =_{\beta} M'}{M' =_{\beta} M}$$

$$\frac{M =_{\beta} M' \qquad M' =_{\beta} M''}{M =_{\beta} M''} \qquad \frac{M =_{\beta} M'}{\lambda x. M =_{\beta} \lambda x. M'}$$

$$\frac{M =_{\beta} M' \qquad N =_{\beta} N'}{M N =_{\beta} M' N'}$$

Theorem. \rightarrow is confluent, that is, if $M_1 \twoheadleftarrow M \twoheadrightarrow M_2$, then there exists M' such that $M_1 \twoheadrightarrow M' \twoheadleftarrow M_2$.

[Proof omitted.]

Theorem. \rightarrow is confluent, that is, if $M_1 \twoheadleftarrow M \twoheadrightarrow M_2$, then there exists M' such that $M_1 \twoheadrightarrow M' \twoheadleftarrow M_2$.

Corollary. Two show that two terms are β -convertible, it suffices to show that they both reduce to the same term. More precisely: $M_1 =_{\beta} M_2$ iff $\exists M \ (M_1 \twoheadrightarrow M \twoheadleftarrow M_2)$.

Theorem. \rightarrow is confluent, that is, if $M_1 \twoheadleftarrow M \twoheadrightarrow M_2$, then there exists M' such that $M_1 \twoheadrightarrow M' \twoheadleftarrow M_2$.

Corollary. $M_1 =_{\beta} M_2$ iff $\exists M (M_1 \rightarrow M \leftarrow M_2)$.

Proof. $=_{\beta}$ satisfies the rules generating \twoheadrightarrow ; so $M \twoheadrightarrow M'$ implies $M =_{\beta} M'$. Thus if $M_1 \twoheadrightarrow M \twoheadleftarrow M_2$, then $M_1 =_{\beta} M =_{\beta} M_2$ and so $M_1 =_{\beta} M_2$.

Conversely, the relation $\{(M_1, M_2) \mid \exists M \ (M_1 \twoheadrightarrow M \twoheadleftarrow M_2)\}$ satisfies the rules generating $=_{\beta}$: the only difficult case is closure of the relation under transitivity and for this we use the Church-Rosser theorem: $M_1 \longrightarrow M \twoheadleftarrow M_2 \longrightarrow M' \twoheadleftarrow M_3$

Theorem. \rightarrow is confluent, that is, if $M_1 \twoheadleftarrow M \twoheadrightarrow M_2$, then there exists M' such that $M_1 \twoheadrightarrow M' \twoheadleftarrow M_2$.

Corollary. $M_1 =_{\beta} M_2$ iff $\exists M (M_1 \rightarrow M \leftarrow M_2)$.

Proof. $=_{\beta}$ satisfies the rules generating \twoheadrightarrow ; so $M \twoheadrightarrow M'$ implies $M =_{\beta} M'$. Thus if $M_1 \twoheadrightarrow M \twoheadleftarrow M_2$, then $M_1 =_{\beta} M =_{\beta} M_2$ and so $M_1 =_{\beta} M_2$.

Conversely, the relation $\{(M_1,M_2) \mid \exists M \ (M_1 \twoheadrightarrow M \twoheadleftarrow M_2)\}$ satisfies the rules generating $=_{\beta}$: the only difficult case is closure of the relation under transitivity and for this we use the Church-Rosser theorem: $M_1 \longrightarrow M \longleftarrow M_2 \longrightarrow M' \longleftarrow M_3$

C-R **M**'₂

Theorem. \rightarrow is confluent, that is, if $M_1 \twoheadleftarrow M \twoheadrightarrow M_2$, then there exists M' such that $M_1 \twoheadrightarrow M' \twoheadleftarrow M_2$.

Corollary. $M_1 =_{\beta} M_2$ iff $\exists M (M_1 \rightarrow M \leftarrow M_2)$.

Proof. $=_{\beta}$ satisfies the rules generating \twoheadrightarrow ; so $M \twoheadrightarrow M'$ implies $M =_{\beta} M'$. Thus if $M_1 \twoheadrightarrow M \twoheadleftarrow M_2$, then $M_1 =_{\beta} M =_{\beta} M_2$ and so $M_1 =_{\beta} M_2$.

Conversely, the relation $\{(M_1,M_2) \mid \exists M \ (M_1 \twoheadrightarrow M \twoheadleftarrow M_2)\}$ satisfies the rules generating $=_{\beta}$: the only difficult case is closure of the relation under transitivity and for this we use the Church-Rosser theorem. Hence $M_1 =_{\beta} M_2$ implies $\exists M \ (M_1 \twoheadrightarrow M' \twoheadleftarrow M_2)$.

β -Normal Forms

Definition. A λ -term N is in β -normal form (nf) if it contains no β -redexes (no sub-terms of the form $(\lambda x.M)M'$). M has β -nf N if $M=_{\beta}N$ with N a β -nf.

β -Normal Forms

Definition. A λ -term N is in β -normal form (nf) if it contains no β -redexes (no sub-terms of the form $(\lambda x.M)M'$). M has β -nf N if $M=_{\beta}N$ with N a β -nf.

Note that if N is a β -nf and $N \rightarrow N'$, then it must be that $N =_{\alpha} N'$ (why?).

Hence if $N_1=_{\beta}N_2$ with N_1 and N_2 both β -nfs, then $N_1=_{\alpha}N_2$. (For if $N_1=_{\beta}N_2$, then $M_1=M_2$ for some M_1 hence by Church-Rosser, $N_1 \twoheadrightarrow M' \twoheadleftarrow N_2$ for some M', so $N_1=_{\alpha}M'=_{\alpha}N_2$.)

So the β -nf of M is unique up to α -equivalence if it exists.

Non-termination

Some λ terms have no β -nf.

E.g. $\Omega \triangleq (\lambda x.xx)(\lambda x.xx)$ satisfies

- $ightharpoonup \Omega \twoheadrightarrow M$ implies $\Omega =_{\alpha} M$.

So there is no β -nf N such that $\Omega =_{\beta} N$.

Non-termination

Some λ terms have no β -nf.

E.g. $\Omega \triangleq (\lambda x.xx)(\lambda x.xx)$ satisfies

- $ightharpoonup \Omega \twoheadrightarrow M$ implies $\Omega =_{\alpha} M$.

So there is no β -nf N such that $\Omega =_{\beta} N$.

A term can possess both a β -nf and infinite chains of reduction from it.

E.g.
$$(\lambda x.y)\Omega \to y$$
, but also $(\lambda x.y)\Omega \to (\lambda x.y)\Omega \to \cdots$.

Non-termination

Normal-order reduction is a deterministic strategy for reducing λ -terms: reduce the "left-most, outer-most" redex first.

- ▶ left-most: reduce M before N in M N, and then
- outer-most: reduce $(\lambda x.M)N$ rather than either of M or N.

(cf. call-by-name evaluation).

Fact: normal-order reduction of M always reaches the β -nf of M if it possesses one.