
Computer Graphics &
Image Processing

Computer Laboratory

Computer Science Tripos Part IB

Neil Dodgson & Peter Robinson

Lent 2012

William Gates Building
15 JJ Thomson Avenue
Cambridge
CB3 0FD

http://www.cl.cam.ac.uk/

This handout includes copies of the slides that will be used in lectures together with some suggested
exercises for supervisions. These notes do not constitute a complete transcript of all the lectures and
they are not a substitute for text books. They are intended to give a reasonable synopsis of the subjects
discussed, but they give neither complete descriptions nor all the background material.

Material is copyright © Neil A Dodgson, 1996-2012, except where otherwise noted.
All other copyright material is made available under the University’s licence.
All rights reserved.

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 1

1

Computer Graphics & Image Processing

Sixteen lectures for Part IB CST
Neil Dodgson

 Introduction
 Colour and displays
 Image processing Image processing

Peter Robinson
 2D computer graphics
 3D computer graphics

Two exam questions on Paper 4

©1996–2012 Neil A. Dodgson
http://www.cl.cam.ac.uk/~nad/

2
What are Computer Graphics &

Image Processing?

Scene
description

Computer
graphics

Image analysis &
computer vision

Digital
image

Image processing

Image
capture

Image
display

3

Why bother with CG & IP?
All visual computer output depends on CG

 printed output (laser/ink jet/phototypesetter)
 monitor (CRT/LCD/plasma/DMD)
 all visual computer output consists of real images generated

by the computer from some internal digital image

Much other visual imagery depends on CG & IP
 TV & movie special effects & post-production
 most books, magazines, catalogues,

flyers, brochures, junk mail,
newspapers, packaging, posters

4

What are CG & IP used for?

 2D computer graphics
 graphical user interfaces: Mac, Windows, X,…
 graphic design: posters, cereal packets,…
 typesetting: book publishing, report writing,…

 Image processing
 photograph retouching: publishing posters

430 thousand printing
companies worldwide

£250 billion annual
turnover

 photograph retouching: publishing, posters,…
 photocollaging: satellite imagery,…
 art: new forms of artwork based on digitised images

 3D computer graphics
 visualisation: scientific, medical, architectural,…
 Computer Aided Design (CAD)
 entertainment: special effect, games, movies,…

20 million users
worldwide

5

Course Structure
Background [3L]

 images, human vision, displays

2D computer graphics [4L]
 lines, curves, clipping, polygon filling,

transformations

3D computer graphics [6L] 2D CG IP

3D CG

3D computer graphics [6L]
 projection (3D2D), surfaces, clipping,

transformations, lighting, filling, ray tracing,
texture mapping

Image processing [3L]
 filtering, compositing, half-toning, dithering,

encoding, compression

Background

6

Course books
 Computer Graphics: Principles & Practice

 Foley, van Dam, Feiner & Hughes,Addison-Wesley, 1990
 Older version: Fundamentals of Interactive Computer Graphics

 Foley & van Dam, Addison-Wesley, 1982

 Computer Graphics & Virtual Environments
 Slater, Steed, & Chrysanthou, Addison-Wesley, 2002

 Digital Image Processing
 Gonzalez & Woods, Addison-Wesley , 2008 (5th ed.) ,

2003 (4th ed.) or 1992 (3rd ed.)
 Alternatives:

Digital Image Processing, Gonzalez & Wintz
Digital Picture Processing, Rosenfeld & Kak

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 2

7

Past exam questions
 Prof. Dodgson has been lecturing the course since 1996

 the course changed considerably between 1996 and 1997
 all questions from 1997 onwards are good examples of his question

setting style
 do not worry about the last 5 marks of 97/5/2

 this is now part of Advanced Graphics syllabus

 do not attempt exam questions from 1994 or earlier
 the course was so different back then that they are not helpful

8

Background
what is a digital image?

 what are the constraints on digital images?

what hardware do we use?

Later on in the course we will ask:


2D CG IP

3D CG

Background

how does human vision work?
 what are the limits of human vision?
 what can we get away with given these constraints & limits?

how do we represent colour?
how do displays & printers work?

 how do we fool the human eye into seeing what we want it to
see?

9

What is an image?

two dimensional function
value at any point is an intensity or colour
not digital!

10

What is a digital image?

a contradiction in terms
 if you can see it, it’s not digital
 if it’s digital, it’s just a collection of numbers

a sampled and quantised version of a real image
a rectangular array of intensity or colour valuesa rectangular array of intensity or colour values

11

Image capture

a variety of devices can be used
 scanners

 line CCD (charge coupled device) in a flatbed scanner
 spot detector in a drum scanner

 cameras
Heidelberg

 area CCD

area CCD
www.hll.mpg.de

flatbed scanner
www.nuggetlab.com

Heidelberg
drum scanner

The image of the
Heidelberg drum
scanner and many
other images in this
section come from
“Handbook of Print
Media”,
by Helmutt Kipphan,
Springer-Verlag, 2001

12

Image capture example
103 59 12 80 56 12 34 30 1 78 79 21 145 156 52 136 143 65 115 129 41 128 143 50 85
106 11 74 96 14 85 97 23 66 74 23 73 82 29 67 76 21 40 48 7 33 39 9 94 54 19
42 27 6 19 10 3 59 60 28 102 107 41 208 88 63 204 75 54 197 82 63 179 63 46 158 62
46 146 49 40 52 65 21 60 68 11 40 51 17 35 37 0 28 29 0 83 50 15 2 0 1 13 14
8 243 173 161 231 140 69 239 142 89 230 143 90 210 126 79 184 88 48 152 69 35 123 51
27 104 41 23 55 45 9 36 27 0 28 28 2 29 28 7 40 28 16 13 13 1 224 167 112 240
174 80 227 174 78 227 176 87 233 177 94 213 149 78 196 123 57 141 72 31 108 53 22 121
62 22 126 50 24 101 49 35 16 21 1 12 5 0 14 16 11 3 0 0 237 176 83 244 206 123
241 236 144 238 222 147 221 190 108 215 170 77 190 135 52 136 93 38 76 35 7 113 56 26
156 83 38 107 52 21 31 14 7 9 6 0 20 14 12 255 214 112 242 215 108 246 227 133 239
232 152 229 209 123 232 193 98 208 162 64 179 133 47 142 90 32 29 19 27 89 53 21 171
116 49 114 64 29 75 49 24 10 9 5 11 16 9 237 190 82 249 221 122 241 225 129 240 219
126 240 199 93 218 173 69 188 135 33 219 186 79 189 184 93 136 104 65 112 69 37 191 153
80 122 74 28 80 51 19 19 37 47 16 37 32 223 177 83 235 208 105 243 218 125 238 206
103 221 188 83 228 204 98 224 220 123 210 194 109 192 159 62 150 98 40 116 73 28 146 104
46 109 59 24 75 48 18 27 33 33 47 100 118 216 177 98 223 189 91 239 209 111 236 213
117 217 200 108 218 200 100 218 206 104 207 175 76 177 131 54 142 88 41 108 65 22 103

A real image A digital image

117 217 200 108 218 200 100 218 206 104 207 175 76 177 131 54 142 88 41 108 65 22 103
59 22 93 53 18 76 50 17 9 10 2 54 76 74 108 111 102 218 194 108 228 203 102 228 200
100 212 180 79 220 182 85 198 158 62 180 138 54 155 106 37 132 82 33 95 51 14 87 48
15 81 46 14 16 15 0 11 6 0 64 90 91 54 80 93 220 186 97 212 190 105 214 177 86 208
165 71 196 150 64 175 127 42 170 117 49 139 89 30 102 53 12 84 43 13 79 46 15 72 42
14 10 13 4 12 8 0 69 104 110 58 96 109 130 128 115 196 154 82 196 148 66 183 138 70
174 125 56 169 120 54 146 97 41 118 67 24 90 52 16 75 46 16 58 42 19 13 7 9 10 5
0 18 11 3 66 111 116 70 100 102 78 103 99 57 71 82 162 111 66 141 96 37 152 102 51
130 80 31 110 63 21 83 44 11 69 42 12 28 8 0 7 5 10 18 4 0 17 10 2 30 20 10
58 88 96 53 88 94 59 91 102 69 99 110 54 80 79 23 69 85 31 34 25 53 41 25 21 2
0 8 0 0 17 10 4 11 0 0 34 21 13 47 35 23 38 26 14 47 35 23

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 3

13

Image display

a digital image is an array of integers, how do you
display it?

reconstruct a real image on some sort of display
device
 CRT — computer monitor, TV set p ,
 LCD — portable computer, video projector
 DMD — video projector
 printer — ink jet, laser printer, dot matrix, dye

sublimation, commercial typesetter

14

Image display example

103 59 12 80 56 12 34 30 1 78 79 21 145 156 52 136 143 65 115 129 41 128 143 50 85
106 11 74 96 14 85 97 23 66 74 23 73 82 29 67 76 21 40 48 7 33 39 9 94 54 19
42 27 6 19 10 3 59 60 28 102 107 41 208 88 63 204 75 54 197 82 63 179 63 46 158 62
46 146 49 40 52 65 21 60 68 11 40 51 17 35 37 0 28 29 0 83 50 15 2 0 1 13 14
8 243 173 161 231 140 69 239 142 89 230 143 90 210 126 79 184 88 48 152 69 35 123 51
27 104 41 23 55 45 9 36 27 0 28 28 2 29 28 7 40 28 16 13 13 1 224 167 112 240
174 80 227 174 78 227 176 87 233 177 94 213 149 78 196 123 57 141 72 31 108 53 22 121
62 22 126 50 24 101 49 35 16 21 1 12 5 0 14 16 11 3 0 0 237 176 83 244 206 123
241 236 144 238 222 147 221 190 108 215 170 77 190 135 52 136 93 38 76 35 7 113 56 26
156 83 38 107 52 21 31 14 7 9 6 0 20 14 12 255 214 112 242 215 108 246 227 133 239
232 152 229 209 123 232 193 98 208 162 64 179 133 47 142 90 32 29 19 27 89 53 21 171
116 49 114 64 29 75 49 24 10 9 5 11 16 9 237 190 82 249 221 122 241 225 129 240 219
126 240 199 93 218 173 69 188 135 33 219 186 79 189 184 93 136 104 65 112 69 37 191 153
80 122 74 28 80 51 19 19 37 47 16 37 32 223 177 83 235 208 105 243 218 125 238 206
103 221 188 83 228 204 98 224 220 123 210 194 109 192 159 62 150 98 40 116 73 28 146 104
46 109 59 24 75 48 18 27 33 33 47 100 118 216 177 98 223 189 91 239 209 111 236 213

Displayed on a CRT

The image data

117 217 200 108 218 200 100 218 206 104 207 175 76 177 131 54 142 88 41 108 65 22 103
59 22 93 53 18 76 50 17 9 10 2 54 76 74 108 111 102 218 194 108 228 203 102 228 200
100 212 180 79 220 182 85 198 158 62 180 138 54 155 106 37 132 82 33 95 51 14 87 48
15 81 46 14 16 15 0 11 6 0 64 90 91 54 80 93 220 186 97 212 190 105 214 177 86 208
165 71 196 150 64 175 127 42 170 117 49 139 89 30 102 53 12 84 43 13 79 46 15 72 42
14 10 13 4 12 8 0 69 104 110 58 96 109 130 128 115 196 154 82 196 148 66 183 138 70
174 125 56 169 120 54 146 97 41 118 67 24 90 52 16 75 46 16 58 42 19 13 7 9 10 5
0 18 11 3 66 111 116 70 100 102 78 103 99 57 71 82 162 111 66 141 96 37 152 102 51
130 80 31 110 63 21 83 44 11 69 42 12 28 8 0 7 5 10 18 4 0 17 10 2 30 20 10
58 88 96 53 88 94 59 91 102 69 99 110 54 80 79 23 69 85 31 34 25 53 41 25 21 2
0 8 0 0 17 10 4 11 0 0 34 21 13 47 35 23 38 26 14 47 35 23

15
Different ways of displaying the same

digital image

the display device has a significant effect on the
appearance of the displayed image

Nearest-neighbour
e.g. LCD

Gaussian
e.g. CRT

Half-toning
e.g. laser printer

16

Sampling

a digital image is a rectangular array of intensity
values

each value is called a pixel
 “picture element”

sampling resolution is normally measured in pixels sampling resolution is normally measured in pixels
per inch (ppi) or dots per inch (dpi)

 computer monitors have a resolution around 100 ppi
 laser and ink jet printers have resolutions between 300 and 1200

ppi
 typesetters have resolutions between 1000 and 3000 ppi

17

Sampling resolution
256256 128128 6464 3232

22 44 88 1616

18

Quantisation
each intensity value is a number
for digital storage the intensity values must be

quantised
 limits the number of different intensities that can be stored
 limits the brightest intensity that can be stored

h i i l l d d f h how many intensity levels are needed for human
consumption

 8 bits often sufficient
 some applications use 10 or 12 or 16 bits
 more detail later in the course

colour is stored as a set of numbers
 usually as 3 numbers of 5–16 bits each
 more detail later in the course

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 4

19

Quantisation levels
8 bits

(256 levels)
7 bits

(128 levels)
6 bits

(64 levels)
5 bits

(32 levels)

1 bit
(2 levels)

2 bits
(4 levels)

3 bits
(8 levels)

4 bits
(16 levels)

20

Storing images in memory

8 bits became a de facto standard for greyscale images
 8 bits = 1 byte
 16 bits is now being used more widely, 16 bits = 2 bytes
 an 8 bit image of size W  H can be stored in a block of

W  H bytes
 one way to do this is to store pixel[x][y] at memory

location base + x + W  y
 memory is 1D, images are 2D

base

base + 1 + 5  2

5

5

4
3
2
1
0

0 1 2 3 4



21

Colour images

 tend to be 24 bits per pixel
 3 bytes: one red, one green, one blue
 increasing use of 48 bits per pixel, 2 bytes per colour plane

 can be stored as a contiguous block of memory
 of size W  H  3

 more common to store each colour in a separate “plane” more common to store each colour in a separate plane
 each plane contains just W  H values

 the idea of planes can be extended to other attributes associated
with each pixel
 alpha plane (transparency), z-buffer (depth value), A-buffer (pointer to a data

structure containing depth and coverage information), overlay planes (e.g. for
displaying pop-up menus) — see later in the course for details

22

The frame buffer

most computers have a special piece of memory
reserved for storage of the current image being
displayed

output
t di l

frame
B
U

the frame buffer normally consists of dual-ported
Dynamic RAM (DRAM)
 sometimes referred to as Video RAM (VRAM)

stage
(e.g. DAC)

displaybuffer
U
S

23

Double buffering
 if we allow the currently displayed image to be updated then we

may see bits of the image being displayed halfway through the
update
 this can be visually disturbing, especially if we want the illusion of smooth

animation

 double buffering solves this problem: we draw into one frame
buffer and display from the otherbuffer and display from the other
 when drawing is complete we flip buffers

output
stage

(e.g. DAC)
display

Buffer AB
U
S

Buffer B

24

Modern graphics cards

 most graphics processing is now done on a separate graphics card
 the CPU communicates primitive data over the bus to the special

purpose Geometry Processing Unit (GPU)
 there is additional video memory on the graphics card, mostly used

for storing textures, which are mostly used in 3D games

output
stage

(e.g. DAC)
display

Buffer AB
U
S

Buffer B

GPU

Texture
memory

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 5

25

2D Computer Graphics
lines

 how do I draw a straight line?

curves
 how do I specify curved lines?

clipping
 ff f ?

IP

3D CG

Background

2D CG

 what about lines that go off the edge of the screen?

filled areas
transformations

 scaling, rotation, translation, shearing

applications

26

Drawing a straight line

 a straight line can be defined by:

 a mathematical line is “length without breadth”

y mx c 
the slope of
the line

x

y

m

1c

 a mathematical line is length without breadth
 a computer graphics line is a set of pixels
 which pixels do we need to turn on to draw a

given line?

27

Which pixels do we use?

 there are two reasonably sensible alternatives:

 i l th h hi h th th “ l t” i l t th li every pixel through which the
line passes

for lines of slope less than 45º
we can have either one or two

pixels in each column

the “closest” pixel to the line
in each column

for lines of slope less than 45º
we always have just one pixel

in every column

 in general, use this


28

A line drawing algorithm — preparation 1

pixel (x,y) has its centre at real co-ordinate (x,y)
 it thus stretches from (x-½, y-½) to (x+½, y+½)

y+1

½

y+1½
pixel (x,y)

y

x-1 x+1x

x-½

y-½

y+½

x+½ x+1½x-1½

Beware: not every graphics system uses this convention. Some put
real co-ordinate (x,y) at the bottom left hand corner of the pixel.

29

A line drawing algorithm — preparation 2

the line goes from (x0,y0) to (x1,y1)

the line lies in the first octant (0 m 1)

x0 < x1
(x1,y1)

(x0,y0)

30
Bresenham’s line drawing algorithm 1

Initialisation d = (y1 - y0) / (x1 - x0)
x = x0

yi = y0

y = y0

DRAW(x,y)

y

x x+1

d
yi

(x0,y0)

WHILE x  x1 DO
x = x + 1
yi = yi + d
y = ROUND(yi)
DRAW(x,y)

END WHILE

y & y’

x x’

d

yi

yi’

Iteration

J. E. Bresenham, “Algorithm for Computer Control of a Digital Plotter”, IBM Systems Journal, 4(1), 1965

assumes
integer end

points

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 6

31
Bresenham’s line drawing algorithm 2

 this slide and the next show how we
can optimise Bresenham’s algorithm
for use on an architecture where
integer operations are much faster
than floating point

 naïve algorithm involves floating

d = (y1 - y0) / (x1 - x0)
x = x0

yf = 0
y = y0

DRAW(x,y)
WHILE x  x1 DO

x = x + 1g g
point arithmetic & rounding inside
the loop
 slow

 Speed up A:
 separate integer and fractional parts of

yi (into y and yf)
 replace rounding by an IF

 removes need to do rounding

x = x + 1
yf = yf + d
IF (yf > ½) THEN

y = y + 1
yf = yf - 1

END IF
DRAW(x,y)

END WHILE

32
Bresenham’s line drawing algorithm 3

 Speed up B:
 multiply all operations involving yf by

2(x1 - x0)
 yf = yf + dy/dx  yf = yf + 2dy

 yf > ½  yf > dx
 yf = yf - 1  yf = yf - 2dx

dy = (y1 - y0)
dx = (x1 - x0)
x = x0

yf = 0
y = y0

DRAW(x,y)
WHILE x  x1 DO

x = x + 1
 removes need to do floating point

arithmetic if end-points have integer co-
ordinates

yf = yf + 2dy
IF (yf > dx) THEN

y = y + 1
yf = yf - 2dx

END IF
DRAW(x,y)

END WHILE

33
Bresenham’s algorithm for floating point

end points

y

x x+1

d
yi = y+yf

(x0,y0)

d = (y1 - y0) / (x1 - x0)
x = ROUND(x0)
yi = y0 + d * (x-x0)
y = ROUND(yi)
yf = yi - y
DRAW(x,y)
WHILE x  (x1 - ½) DO

1

y & y’

x x’

d
y’+yf’

x = x + 1
yf = yf + d
IF (yf > ½) THEN

y = y + 1
yf = yf - 1

END IF
DRAW(x,y)

END WHILE

y+yf

If your end-points are not integers then these kinds of optimisations may not be appropriate.
In this case, it is still useful to incorporate speed up A, but not speed up B.

34

Bresenham’s algorithm — more details

we assumed that the line is in the first octant
 can do fifth octant by swapping end points

therefore need four versions of the algorithm

2nd3rd

1st

4th

5th

6th 7th

8th

Exercise: work out what
changes need to be made to
the algorithm for it to work
in each of the other three
octants

35

Uses of the line drawing algorithm

to draw lines

as the basis for a curve-drawing algorithm

 d f lto draw curves as a sequence of lines

as the basis for iterating on the edges of polygons in
the polygon filling algorithms

36

A second line drawing algorithm

a line can be specified using an equation of the form:

this divides the plane into three regions:
 above the line k < 0

 below the line k > 0

k ax by c  

 below the line k 0

 on the line k = 0 k < 0

k > 0
k = 0

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 7

37

Midpoint line drawing algorithm 1

first work out the iterative step
 it is often easier to work out what should be done on each

iteration and only later work out how to initialise and
terminate the iteration

given that a particular pixel is on the line,
the next pixel must be either immediately to the right
(E) or to the right and up one (NE)

use a decision variable
(based on k) to determine
which way to go Evaluate the

decision variable
at this point

if ≥ 0 then go NE

if < 0 then go E
This is the current pixel

38

Midpoint line drawing algorithm 2
decision variable needs to make a decision at point

(x+1, y+½)

if go E then the new decision variable is at
(x+2, y+½)

d a x b y c    () ()1 1
2

d a x b y c' () ()    2 1
2

if go NE then the new decision variable is at
(x+2, y+1½)

d a x b y c

d a

() ()    
 

2 2

d a x b y c

d a b

' () ()    
  

2 1 1
2

39

Midpoint line drawing algorithm 3

a = (y1 - y0)
b = -(x1 - x0)
c = x1 y0 - x0 y1

x = ROUND(x0)
y = ROUND(y0-(x- x0)(a / b))
d = a * (x+1) + b * (y+½) + c

WHILE x x1 - ½) DO
x = x + 1
IF d < 0 THEN

d = d + a
ELSE

d = d + a + b

Initialisation Iteration

E case
just increment x

() (y)
DRAW(x,y) y = y + 1

END IF
DRAW(x,y)

END WHILE
y

x x+1(x0,y0)
First decision

point

NE case
increment x & y

If end-points have integer co-ordinates then all
operations can be in integer arithmetic

40

Midpoint — comments

this version only works for lines in the first octant
 extend to other octants as for Bresenham

it is not immediately obvious that Bresenham and
Midpoint give identical results, but it can be proven
that they doy

Midpoint algorithm can be generalised to draw
arbitrary circles & ellipses
 Bresenham can only be generalised to draw circles with

integer radii

41

Curves

circles & ellipses
Bezier cubics

 Pierre Bézier, worked in CAD for Renault
 de Casteljau invented them five years earlier at Citroën

 but Citroën would not let him publish the results
 widely used in graphic design & typography

Overhauser cubics
 Overhauser, worked in CAD for Ford

NURBS
 Non-Uniform Rational B-Splines
 more powerful than Bezier & now more widely used
 consider these in Part II

42

Midpoint circle algorithm 1

equation of a circle is
 centred at the origin

decision variable can be
 d = 0 on the circle, d > 0 outside, d < 0 inside

x y r2 2 2 

d x y r  2 2 2

divide circle into eight octants

 on the next slide we consider only
the second octant, the others are
similar

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 8

43

Midpoint circle algorithm 2
decision variable needed to make a

decision at point (x+1, y-½)

if go E then the new decision variable is

d x y r    () ()1 2 1
2

2 2

at (x+2, y-½)

if go SE then the new decision variable is
at (x+2, y-1½)

d x y r

d x

' () ()    
  

2

2 3

2 1
2

2 2

d x y r

d x y

' () ()    
   

2 1

2 2 5

2 1
2

2 2

44

Taking circles further
the algorithm can be easily extended

to circles not centred at the origin

a similar method can be derived for

Exercise 1: complete the
circle algorithm for the
second octant

Exercise 2: complete the
circle algorithm for the
entire circle

Exercise 3: explain how
to handle a circle not a similar method can be derived for

ovals
 but: cannot naively use octants

 use points of 45° slope to divide
oval into eight sections

 and: ovals must be axis-aligned
 there is a more complex algorithm which

can be used for non-axis aligned ovals

centred at the origin

45

Are circles & ellipses enough?

simple drawing packages use ellipses & segments of
ellipses

for graphic design & CAD need something with more
flexibilityflexibility
 use cubic polynomials

 lower orders (linear, quadratic) cannot:
have a point of inflection
match both position and slope at both ends of a segment
be non-planar in 3D

 higher orders (quartic, quintic,…):
 can wiggle too much
 take longer to compute

46

Hermite cubic

 the Hermite form of the cubic is defined by its two end-
points and by the tangent vectors at these end-points:

P t t t P

t t P

t t t T

() ()

()

()

  

  

  

2 3 1

2 3

2

3 2
0

3 2
1

3 2
0

 two Hermite cubics can be smoothly joined by matching
both position and tangent at an end point of each cubic

t t T

()

() 
0

3 2
1

Charles Hermite, mathematician, 1822–1901

47

Bezier cubic

 difficult to think in terms of tangent vectors

Bezier defined by two end points and two other
control points

P t t P() ()

()

 1

3 1

3
0

2t t P

t t P

t P

()

()

 

 



3 1

3 1

2
1

2
2

3
3

Pierre Bézier worked for Renault in the 1960s
where: P x yi i i (,)

48

Bezier properties

 Bezier is equivalent to Hermite

Weighting functions are Bernstein polynomials

T P P T P P0 1 0 1 3 23 3   () ()

b t t b t t t b t t t b t t0
3

1
2

2
2

3
31 3 1 3 1() () () () () () ()      

Weighting functions sum to one

 Bezier curve lies within convex hull of its control points

b ti
i
 

0

3

1()

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 9

49

Types of curve join
each curve is smooth within itself
joins at endpoints can be:

 C1 – continuous in both position and tangent vector
 smooth join in a mathematical sense

 G1 – continuous in position, tangent vector in same direction
  smooth join in a geometric sense

 C0 – continuous in position only
 “corner”

 discontinuous in position

Cn (mathematical continuity): continuous in all derivatives up to the nth derivative

Gn (geometric continuity): each derivative up to the nth has the same “direction”
to its vector on either side of the join

Cn  Gn

50

Types of curve join
C0 – continuous in
position only

C0

C1 – continuous in position
& tangent vector

C1

G1 – continuous in
position & tangent
direction, but not
tangent magnitude

G1

51

Drawing a Bezier cubic – naïve method

 draw as a set of short line segments equispaced in
parameter space, t

(x0,y0) = Bezier(0)
FOR t = 0.05 TO 1 STEP 0.05 DO

(x1,y1) = Bezier(t)
DrawLine((x0,y0), (x1,y1))
(x0 y0) = (x1 y1)

 problems:
 cannot fix a number of segments that is appropriate for all possible

Beziers: too many or too few segments

 distance in real space, (x,y), is not linearly related to distance in
parameter space, t

(x0,y0) (x1,y1)
END FOR

52

Examples
the tick marks are
spaced 0.05 apart in t
(∆t=0.05)

∆t=0.2 ∆t=0.1 ∆t=0.05

53

Drawing a Bezier cubic – sensible method

adaptive subdivision
 check if a straight line between P0 and P3 is an adequate

approximation to the Bezier
 if so: draw the straight line
 if not: divide the Bezier into two halves, each a Bezier, and

repeat for the two new Beziers

need to specify some tolerance for when a straight
line is an adequate approximation
 when the Bezier lies within half a pixel width of the straight

line along its entire length

54

Drawing a Bezier cubic (continued)

Procedure DrawCurve(Bezier curve)
VAR Bezier left, right
BEGIN DrawCurve

IF Flat(curve) THEN
DrawLine(curve)

ELSE

e.g. if P1 and P2 both lie
within half a pixel width of
the line joining P0 to P3

SubdivideCurve(curve, left, right)
DrawCurve(left)
DrawCurve(right)

END IF
END DrawCurve

draw a line between
P0 and P3: we already
know how to do this

this requires some
straightforward
calculations

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 10

55

Checking for flatness

0

0)(

)1()(

)y)(yy(y)x)(xx(x

sCPAB

sBAssP

CPABCPAB





we need to know
this distance

A

C

B

P(s)

2

22)()(

))(())((

AB

ACAB

yyxx

yyyyxxxx

)y)(yy(y))((

s

s
ABAB

ACABACAB

CPABCPAB










56

Special cases

if s<0 or s>1 then the distance from point C to the
line segment AB is not the same as the distance from
point C to the infinite line AB

in these cases the distance is |AC| or |BC|
respectivelyp y

A

B

C

P(s)

57

Subdividing a Bezier cubic into two halves

a Bezier cubic can be easily subdivided into two
smaller Bezier cubics

Q P

Q P P

Q P P P

0 0

1
1
2 0

1
2 1

1 1 1


 

 

R P P P P

R P P P

R P P

0
1
8 0

3
8 1

3
8 2

1
8 3

1
1
4 1

1
2 2

1
4 3

1 1

   
  

Q P P P

Q P P P P
2

1
4 0

1
2 1

1
4 2

3
1
8 0

3
8 1

3
8 2

1
8 3

  
   

R P P

R P
2

1
2 2

1
2 3

3 3

 


Exercise: prove that the Bezier cubic curves defined by Q0, Q1, Q2, Q3 and R0, R1, R2, R3

match the Bezier cubic curve defined by P0, P1, P2, P3 over the ranges t[0,½] and
t[½,1] respectively

58

The effect of different tolerances

 this is the same Bezier curve drawn with four different tolerances

100 20 5 0.2

59

What if we have no tangent vectors?

 base each cubic piece on the four surrounding data points

 at each data point the curve must depend solely on the
three surrounding data points
 define the tangent at each point as the direction from the preceding

point to the succeeding point
 tangent at P1 is ½(P2 -P0), at P2 is ½(P3 -P1)

 this is the basis of Overhauser’s cubic

Why?

60

Overhauser’s cubic

 method for generating Bezier curves which match
Overhauser’s model
 simply calculate the appropriate Bezier control point locations

from the given points
 e.g. given points A, B, C, D, the Bezier control points are:

P0=B P1=B+(C-A)/6
P C P C (D B)/6P3=C P2=C-(D-B)/6

 Overhauser’s cubic interpolates its controlling data points
 good for control of movement in animation
 not so good for industrial design because moving a single point

modifies the surrounding four curve segments
 compare with Bezier where moving a single point modifies just

the two segments connected to that point

Overhauser worked for the Ford motor company in the 1960s

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 11

61

Simplifying line chains
 this can be thought of as an inverse problem to the one of

drawing Bezier curves

 problem specification: you are given a chain of line segments
at a very high resolution, how can you reduce the number of
line segments without compromising quality
 e.g. given the coastline of Britain defined as a chain of line segments at

one metre resolution, draw the entire outline on a 12801024 pixel
screen

 the solution: Douglas & Pücker’s line chain simplification
algorithm

This can also be applied to chains of Bezier curves at high resolution: most of the curves
will each be approximated (by the previous algorithm) as a single line segment, Douglas
& Pücker’s algorithm can then be used to further simplify the line chain

62

Douglas & Pücker’s algorithm

 find point, C, at greatest distance from line segment AB
 if distance from C to AB is more than some specified

tolerance then subdivide into AC and CB, repeat for each of
the two subdivisions

 otherwise approximate entire chain from A to B by the single
line segment AB

A B

C Exercises:
(1) How do you
calculate the distance
from C to AB?
(2) What special cases
need to be considered?
How should they be
handled?

see slides 135 and 136
Douglas & Pücker, Canadian Cartographer, 10(2), 1973

63

Clipping

what about lines that go off the edge of the screen?
 need to clip them so that we only draw the part of the line

that is actually on the screen

clipping points against a rectangle

y yT

y yB
x x L x x R

need to check against four edges:

T

B

R

L

yy

yy

xx

xx






64

Clipping lines against a rectangle — naïvely

21

21

21

221121

)1()(

)1()(

)1()(

),(to),(to

tyytty

txxttx

tPPttP

yxyxPP







)1(

else

onintersecti no then)(if

with intersect to

1

21

21

L

LLL

L

xx

xtxtx

xx

xx







 do this operation for each of the four edges

edgeintersect not doessegment line else

))(),((at

intersectssegment linethen

)10(if
12

1

LLL

L

L
L

tytxxx

t

xx

xx
t








Exercise:

once you have the four
intersection calculations,
work out how to
determine which bit of the
line is actually inside the
rectangle

65

Clipping lines against a rectangle — examples

y yT

 you can naïvely check every line against each of the four edges
 this works but is obviously inefficient

 adding a little cleverness improves efficiency enormously
 Cohen-Sutherland clipping algorithm

y yB

x x L x x R

66

Cohen-Sutherland clipper 1

 make a four bit code, one bit for each inequality
A x x B x x C y y D y yL R B T       

y yT

00001000 0100

00011001 0101
ABCD ABCDABCD

 evaluate this for both endpoints of the line
Q A B C D Q A B C D1 1 1 1 1 2 2 2 2 2 

y yB

x x L x x R

00001000 0100

00101010 0110

Ivan Sutherland is one of the founders of Evans & Sutherland, manufacturers of flight simulator systems

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 12

67

Cohen-Sutherland clipper 2
 Q1= Q2 =0

 both ends in rectangle ACCEPT

 Q1 Q2 0
 both ends outside and in same half-plane REJECT

 otherwise
 need to intersect line with one of the edges and start again

 you must always re-evaluate Q and recheck the above tests after
doing a single clip

 the 1 bits tell you which edge to clip against

y yB

x x L

0000

0010

1010

0000

x x y y y y
x x
x x

y y x x x x
y y
y y

L
L

B
B

1 1 1 2 1
1

2 1

1 1 1 2 1
1

2 1

' ' ()

' ' ' ' ' (')
'
'

   



   



P1

P1'

P1''

P2Example

68

Cohen-Sutherland clipper 3

 if code has more than a single 1 then you cannot tell which is the
best: simply select one and loop again

 horizontal and vertical lines are not a problem
 need a line drawing algorithm that can cope with floating-point

endpoint co-ordinates

Why not?

Why?p

y yT

y yB

x x L x x R

Exercise: what happens in each of
the cases at left?
[Assume that, where there is a
choice, the algorithm always tries to
intersect with xL or xR before yB or yT.]

Try some other cases of your own
devising.

Why?

69

which pixels do we turn on?

Polygon filling

 those whose centres lie inside the polygon
 this is a naïve assumption, but is sufficient for now

70
Scanline polygon fill algorithm

take all polygon edges and place in an edge list (EL) , sorted on
lowest y value
start with the first scanline that intersects the polygon, get all

edges which intersect that scan line and move them to an active
edge list (AEL)
for each edge in the AEL: find the intersection point with the

current scanline; sort these into ascending order on the x value
fill between pairs of intersection points
move to the next scanline (increment y); remove edges from

the AEL if endpoint  y ; move new edges from EL to AEL if
start point  y; if any edges remain in the AEL go back to step 

71

Scanline polygon fill example
72

Scanline polygon fill details
 how do we efficiently calculate the intersection points?

 use a line drawing algorithm to do incremental calculation
 store current x value, increment value dx, starting and ending y values
 on increment do a single addition x=x+dx

 what if endpoints exactly intersect
li ?scanlines?

 need to ensure that the algorithm
handles this properly

 what about horizontal edges?
 can throw them out of the edge

list, they contribute nothing

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 13

73

Clipping polygons
74

Sutherland-Hodgman polygon clipping 1

 clips an arbitrary polygon against an arbitrary convex polygon
 basic algorithm clips an arbitrary polygon against a single infinite clip

edge
 so we reduce a complex algorithm to a simpler one which we call

recursively
 the polygon is clipped against one edge at a time, passing the result on

 h to the next stage

Sutherland & Hodgman, “Reentrant Polygon Clipping,” Comm. ACM, 17(1), 1974

75

Sutherland-Hodgman polygon clipping 2
 the algorithm progresses around the polygon checking if each edge

crosses the clipping line and outputting the appropriate points

s

inside outside inside outside
s

e

inside outside

e
inside outside

i

e

e output

s
e

i output i and e output

s

nothing
output

Exercise: the Sutherland-Hodgman algorithm may introduce new edges
along the edge of the clipping polygon — when does this happen and why?

i

76

2D transformations

 scale

 rotate

why?
 it is extremely useful to be

able to transform predefined
objects to an arbitrary
location, orientation, and size

 any reasonable graphics
package will include

 translate

 (shear)

package will include
transforms
 2D  Postscript
 3D  OpenGL

77

Basic 2D transformations
 scale

 about origin
 by factor m

 rotate
 about origin
 by angle 

x mx

y my

'

'




x x y

y x y

' cos sin

' sin cos

 
 

 
 

 translate
 along vector (xo,yo)

 shear
 parallel to x axis
 by factor a

x x x

y y y
o

o

'

'

 
 

x x ay

y y

'

'

 


78

Matrix representation of transformations

 scale
 about origin, factor m

x

y

m

m

x

y

'

'



















0

0

 rotate
 about origin, angle 

x

y

x

y

'

'

cos sin

sin cos




















 
 

 do nothing
 identity

x

y

x

y

'

'



















1 0

0 1

x

y

a x

y

'

'



















1

0 1

 shear
 parallel to x axis, factor a

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 14

79

Homogeneous 2D co-ordinates

 translations cannot be represented using simple 2D matrix
multiplication on 2D vectors, so we switch to
homogeneous co-ordinates

 an infinite number of homogeneous co-ordinates map to
 2D i

 (, ,) ,x y w x
w

y
w

every 2D point
 w=0 represents a point at infinity
 usually take the inverse transform to be:

(,) (, ,)x y x y 1

80

Matrices in homogeneous co-ordinates
 scale

 about origin, factor m

x

y

w

m

m

x

y

w

'

'

'


















































0 0

0 0

0 0 1

 rotate
 about origin, angle 

x

y

w

x

y

w

'

'

'

cos sin

sin cos

















































 
 

0

0

0 0 1

 do nothing
 identity

 shear
 parallel to x axis, factor a

x

y

w

a x

y

w

'

'

'


















































1 0

0 1 0

0 0 1

x

y

w

x

y

w

'

'

'


















































1 0 0

0 1 0

0 0 1

81

Translation by matrix algebra

x

y

w

x

y

x

y

w

o'

'

'


















































1 0

0 1

0 0 1
0

In homogeneous coordinates

w w'y y wyo' x x wxo' 

x
w

x
w

x
'
'
  0 0'

'
y

w

y

w

y


In conventional coordinates

g

82

Concatenating transformations

 often necessary to perform more than one transformation on the
same object

 can concatenate transformations by multiplying their matrices
e.g. a shear followed by a scaling:

shearscale
x

y

w

m

m

x

y

w

x

y

w

a x

y

w

' '

' '

' '

'

'

'

'

'

'



































































































0 0

0 0

0 0 1

1 0

0 1 0

0 0 1

x

y

w

m

m

a x

y

w

m ma

m

x

y

w

' '

' '

' '



































































































0 0

0 0

0 0 1

1 0

0 1 0

0 0 1

0

0 0

0 0 1

shearscale both

83

Concatenation is not commutative

be careful of the order in which you concatenate
transformations

rotate by 45° scale by 2

2
2

2
2

1
2

1
2

0

0

2 0 0

0 1 0

















scalerotate then scale

scale by 2
along x axis

rotate by 45°

along x axis

2
2

1
2

2
2

1
2

1
2

1
2

1
2

1
2

0 0 1 0 0 1

0

0

0 0 1

0

0

0 0 1

 



 


 


 




































rotatescale then rotate

84

Scaling about an arbitrary point

 scale by a factor m about point (xo,yo)
translate point (xo,yo) to the origin
scale by a factor m about the origin
translate the origin to (xo,yo)

(xo,yo)

(0,0)

x x xo'

'

















1 0

0 1

x m x' '

' '

'

'

















0 0

0 0

x x xo' ' '

' ' '

' '

' '

















1 0

0 1
  

y

w

y y

w
o'

'



 





 





 







 





0 1

0 0 1

y

w

m y

w

' '

' '

'

'



 











 







 





0 0

0 0 1

y

w

y y

w
o' ' '

' ' '

' '

' '



 











 







 





0 1

0 0 1

x

y

w

x

y

m

m

x

y

x

y

w

o

o

o

o

' ' '

' ' '

' ' '





















































































1 0

0 1

0 0 1

0 0

0 0

0 0 1

1 0

0 1

0 0 1

Exercise: show how to
perform rotation about
an arbitrary point

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 15

85

Bounding boxes

 when working with complex objects, bounding boxes can be
used to speed up some operations

N

S

EW

86

Clipping with bounding boxes

 do a quick accept/reject/unsure test to the bounding box then
apply clipping to only the unsure objects

BBB

BBT yT

y

A

A
A

R R

RR

U

U

BBL BBR

yB

x L x R

A

R
R

U
U

BB x BB x BB x BB xL R R L B T T B      

BB x BB x BB x BB xL L R R B B T T      

otherwise  clip at next higher level of detail

REJECT

 ACCEPT

87

Object inclusion with bounding boxes
 including one object (e.g. a graphics) file inside another can be easily

done if bounding boxes are known and used

N
BBT N

S

EW

COMPASS
productions

PT

P

PRPL

use the eight values to
translate and scale the
original to the appropriate
position in the destination
document

S

EW

BBL BBR

BBB

Tel: 01234 567890 Fax: 01234 567899
E-mail: compass@piped.co.uk

PB

88

Bit block transfer (BitBlT)

 it is sometimes preferable to predraw something and then
copy the image to the correct position on the screen as and
when required
 e.g. icons  e.g. games

 copying an image from place to place is essentially a memory
operation
 can be made very fast

 e.g. 3232 pixel icon can be copied, say, 8 adjacent pixels at a time, if
there is an appropriate memory copy operation

89

Application 1: user interface

 tend to use objects that are
quick to draw
 straight lines
 filled rectangles

 complicated bits done using p g
predrawn icons

 typefaces also tend to be
predrawn

90

Application 2: typography
 typeface: a family of letters designed to look good together

 usually has upright (roman/regular), italic (oblique), bold and bold-italic members

 two forms of typeface used in computer graphics
d d bi

abcd efgh ijkl mnop – Gill Sans abcd efgh ijkl mnop – Times
abcd efgh ijkl mnop – Arial abcd efgh ijkl mnop – Garamond

 pre-rendered bitmaps

 single resolution (don’t scale well)
 use BitBlT to put into frame buffer

 outline definitions
 multi-resolution (can scale)
 need to render (fill) to put into frame buffer

These notes are mainly set in Gill Sans, a lineale (sans-serif) typeface designed by Eric
Gill for Monotype, 1928–30. The lowercase italic p is particularly interesting.
Mathematics is mainly set in Times New Roman, a roman typeface commissioned by
The Times in 1931, the design supervised by Stanley Morison.

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 16

91

Application 3: Postscript

 industry standard rendering language for printers
 developed by Adobe Systems
 stack-based interpreted language
 basic features

 object outlines made up of lines, arcs & Bezier curves

 objects can be filled or stroked
 whole range of 2D transformations can be applied to objects
 typeface handling built in

 typefaces are defined using Bezier curves
 halftoning

 can define your own functions in the language

92

Examples which are Bezier-friendly

typeface: Utopia (1989)
designed as a Postscript typeface by

Robert Slimbach at Adobe

typeface: Hobo (1910)
this typeface can be easily
approximated by Beziers

93

Examples which are more fussy

typeface: Helvetica (1957)
abcdQRST2345&

typeface: Palatino (1950)
abcdQRST2345&

94

3D Computer Graphics
3D  2D projection
3D versions of 2D operations

 clipping, transforms, matrices, curves & surfaces

3D scan conversion
 depth-sort, BSP tree, z-Buffer, A-buffer

IP

Background

2D CG

3D CG

p

sampling
lighting
ray tracing

95

3D  2D projection

to make a picture
 3D world is projected to a 2D image

 like a camera taking a photograph
 the three dimensional world is projected onto a plane

The 3D orld is described as a setThe 3D world is described as a set
of (mathematical) objects

e.g. sphere radius (3.4)
centre (0,2,9)

e.g. box size (2,4,3)
centre (7, 2, 9)
orientation (27º, 156º)

96

Types of projection

parallel
 e.g.
 useful in CAD, architecture, etc
 looks unrealistic

perspective

(, ,) (,)x y z x y

perspective
 e.g.
 things get smaller as they get farther away
 looks realistic

 this is how cameras work

(, ,) (,)x y z x
z

y
z

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 17

97School of Athens by Raphael
painted 1510–11
Fresco in the
Vatican

Perspective projection 98

Perspective projection examples

Gates Building – the rounded version
(Stanford)

Gates Building – the rectilinear version
(Cambridge)

99

Viewing volume

viewing plane
(screen plane)

eye point
(camera point)

 the rectangular pyramid is
the viewing volume

 everything within the
viewing volume is projected
onto the viewing plane

100

Geometry of perspective projection

y

z

(, ,)x y z
(' , ' ,)x y d

x x
d
z

'

()0 0 0

d

y y
d
z

'

(, ,)0 0 0

101
Perspective projection

with an arbitrary camera
 we have assumed that:

 screen centre at (0,0,d)

 screen parallel to xy-plane
 z-axis into screen

 y-axis up and x-axis to the right
 () t i i (0 0 0) eye (camera) at origin (0,0,0)

 for an arbitrary camera we can either:
 work out equations for projecting objects about an arbitrary point

onto an arbitrary plane
 transform all objects into our standard co-ordinate system (viewing

co-ordinates) and use the above assumptions

102

3D transformations
 3D homogeneous co-ordinates

 3D transformation matrices

(, , ,) (, ,)x y z w x
w

y
w

z
w

1 0 0 0

0 1 0 0

0 0 1 0











1 0 0

0 1 0

0 0 1

t

t

t

x

y











1 0 0 0

0 0

0 0

cos sin

sin cos

 
 












translation identity rotation about x-axis

0 0 1 0

0 0 0 1









m

m

m

x

y

z

0 0 0

0 0 0

0 0 0

0 0 0 1



















0 0 1

0 0 0 1

tz











cos sin

sin cos

 
 



















0 0

0 0

0 0 1 0

0 0 0 1

0 0

0 0 0 1

sin cos 











cos sin

sin cos

 

 

0 0

0 1 0 0

0 0

0 0 0 1





















scale rotation about y-axisrotation about z-axis

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 18

103

3D transformations are not commutative

x

y
z x

z

90° rotation
about z-axis

90° rotation
about x-axis

opposite
faces





x
z

x

y
z

90° rotation
about z-axis

90° rotation
about x-axis





104

Viewing transform 1

the problem:
 to transform an arbitrary co-ordinate system to the

default viewing co ordinate system

world
co-ordinates

viewing
co-ordinatesviewing

transform

default viewing co-ordinate system

camera specification in world co-ordinates
 eye (camera) at (ex,ey,ez)

 look point (centre of screen) at (lx,ly,lz)

 up along vector (ux,uy,uz)
 perpendicular to

u

e

l

el

105

Viewing transform 2

 translate eye point, (ex,ey,ez), to origin, (0,0,0)

 scale so that eye point to look point distance, , is distance el

T 























1 0 0

0 1 0

0 0 1

0 0 0 1

e

e

e

x

y

z

 scale so that eye point to look point distance, , is distance
from origin to screen centre, d

el S

el

el

el

      



















() () ()l e l e l ex x y y z z

d

d

d

2 2 2

0 0 0

0 0 0

0 0 0

0 0 0 1

106

Viewing transform 3

 need to align line with z-axis
 first transform e and l into new co-ordinate system

 then rotate e''l'' into yz-plane, rotating about y-axis

el

e S T e 0 l S T l'' ''      

0θsin0θcos   z

 

22

1

''''

''
arccosθ

1000

0θcos0θsin

0010

0θsin0θcos

zx

z

ll

l






















R

x

(' ' , ' ' , ' ')l l lx y z

 0 2 2, ' ' , ' ' ' 'l l ly x z



107

Viewing transform 4

 having rotated the viewing vector onto the yz plane, rotate it
about the x-axis so that it aligns with the z-axis

0001  z 0 0 2 2' ' ' ' ' 'l l

l R l''' '' 1

22

2

''''''

'''
arccosφ

1000

0φcosφsin0

0φsinφcos0

000

zy

z

ll

l























R

y

(, ' ' ' , ' ' ')0 l ly z

 0 0

0 0

, ,

(, ,)

l l

d

y z





108

Viewing transform 5

 the final step is to ensure that the up vector actually points up,
i.e. along the positive y-axis
 actually need to rotate the up vector about the z-axis so that it lies in the

positive y half of the yz plane

u R R u''''   2 1
why don’t we need to
multiply u by S or T?

u is a vector rather than
a point, vectors do not
get translated

scaling u by a uniform
scaling matrix would
make no difference to the
direction in which it
points

22

3

''''''''

''''
arccosψ

1000

0100

00ψcosψsin

00ψsinψcos

yx

y

uu

u




















 

R

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 19

109

Viewing transform 6

 we can now transform any point in world co-ordinates to the
equivalent point in viewing co-ordinate

world
co-ordinates

viewing
co-ordinatesviewing

transform

x x'









 in particular:
 the matrices depend only on e, l, and u, so they can be pre-

multiplied together

y

z

w

y

z

w

'

'

'

 


     



 



R R R S T3 2 1

e l (, ,) (, ,)0 0 0 0 0 d

M R R R S T    3 2 1

110

Another transformation example
 a well known graphics package (Open Inventor) defines a cylinder to be:

 centre at the origin, (0,0,0)

 radius 1 unit
 height 2 units, aligned along the y-axis

 this is the only cylinder that can be drawn,
but the package has a complete set of 3D transformations

 we want to draw a cylinder of:

x

y

2

2
 we want to draw a cylinder of:

 radius 2 units
 the centres of its two ends located at (1,2,3) and (2,4,5)

 its length is thus 3 units
 what transforms are required?

and in what order should they be applied?

111

A variety of transformations

 the modelling transform and viewing transform can be multiplied together to
produce a single matrix taking an object directly from object co-ordinates into
viewing co-ordinates

object in
world

co-ordinates

object in
viewing

co-ordinatesviewing
transform

object in
2D screen

co-ordinates
projection

object in
object

co-ordinates modelling
transform

g
 either or both of the modelling transform and viewing transform matrices can

be the identity matrix

 e.g. objects can be specified directly in viewing co-ordinates, or directly in
world co-ordinates

 this is a useful set of transforms, not a hard and fast model of how things
should be done

112

Clipping in 3D

clipping against a volume in viewing co-ordinates

2a

a point (x,y,z) can be
clipped against the
pyramid by checking it
against four planes:

x

y

z
d

2b x z
a
d

x z
a
d

y z
b
d

y z
b
d

  

  

113

What about clipping in z?

 need to at least check for z <
0 to stop things behind the
camera from projecting onto
the screen

 can also have front and back

x

y

z

oops!

 can also have front and back
clipping planes:
z > zf and z < zb

 resulting clipping volume is
called the viewing frustum

zf
x

y

z

zb

114

Clipping in 3D — two methods

clip against the viewing frustum
 need to clip against six planes

 2D () d l h

x z
a
d

x z
a
d

y z
b
d

y z
b
d

z z z zf b       

which is
best?

project to 2D (retaining z) and clip against the axis-
aligned cuboid
 still need to clip against six planes

 these are simpler planes against which to clip
 this is equivalent to clipping in 2D with two extra clips for z

x a x a y b y b z z z zf b       

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 20

115

Bounding volumes & clipping

can be very useful for reducing the amount of work
involved in clipping

what kind of bounding volume?

 axis aligned box g

 sphere

can have multiple levels of bounding volume

116

Curves in 3D

same as curves in 2D, with an extra
co-ordinate for each point

e.g. Bezier cubic in 3D:

P t t P() ()

()

 1

3 1

3
0

2t t P

t t P

t P

()

()

 

 



3 1

3 1

2
1

2
2

3
3

where: P x y zi i i i (, ,)

117

Surfaces in 3D: polygons

lines generalise to planar polygons
 3 vertices (triangle) must be planar
 > 3 vertices, not necessarily planar

a non-planar
“polygon” rotate the polygon

this vertex is in
front of the other

three, which are all
in the same plane

rotate the polygon
about the vertical axis

should the result be this
or this?

118

Splitting polygons into triangles

 some graphics processors accept only triangles
 an arbitrary polygon with more than three vertices isn’t

guaranteed to be planar; a triangle is

which is preferable?

?

119

Surfaces in 3D: patches

curves generalise to patches
 a Bezier patch has a Bezier curve running along each of its

four edges and four extra internal control points

120

Bezier patch definition

 the Bezier patch defined by the sixteen control points,
P0,0,P0,1,…,P3,3, is:

b t t b t t t b t t t b t t0
3

1
2

2
2

3
31 3 1 3 1() () () () () () ()      

P s t b s b t Pi j
ji

i j(,) () () ,



0

3

0

3

where:

 compare this with the 2D version:

0 1 2 3() () () () () () ()

P t b t Pi i
i

() ()



0

3

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 21

121

Continuity between Bezier patches

each patch is smooth within itself
ensuring continuity in 3D:

 C0 – continuous in position
 the four edge control points must match

 C1 – continuous in both position and tangent vector1 p g
 the four edge control points must match

 the two control points on either side of each of the four edge control
points must be co-linear with both the edge point and each another and
be equidistant from the edge point

122

Drawing Bezier patches

 in a similar fashion to Bezier curves, Bezier patches can be drawn by
approximating them with planar polygons

 simple method
 select appropriate increments in s and t and render the resulting quadrilaterals

 tolerance-based method
 h k if th B i t h i ffi i tl ll i t d b d il t l if  check if the Bezier patch is sufficiently well approximated by a quadrilateral, if so

use that quadrilateral
 if not then subdivide it into two smaller Bezier patches and repeat on each

 subdivide in different dimensions on alternate calls to the subdivision
function

 having approximated the whole Bezier patch as a set of (non-planar)
quadrilaterals, further subdivide these into (planar) triangles
 be careful to not leave any gaps in the resulting surface!

123

Subdividing a Bezier patch — example
124

Triangulating the subdivided patch

 need to be careful not to generate holes
 need to be equally careful when subdividing connected patches

Final quadrilateral
mesh

Naïve triangulation More intelligent
triangulation

125

3D scan conversion

lines
polygons

 depth sort
 Binary Space-Partitioning tree
 z-buffer z buffer
 A-buffer

ray tracing

126

3D line drawing

 given a list of 3D lines we draw them by:
 projecting end points onto the 2D screen
 using a line drawing algorithm on the resulting 2D lines

 this produces a wireframe version of whatever objects are
represented by the lines

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 22

127

Hidden line removal

 by careful use of cunning algorithms, lines that are hidden by
surfaces can be carefully removed from the projected version
of the objects
 still just a line drawing

 will not be covered further in this course

128

3D polygon drawing

 given a list of 3D polygons we draw them by:
 projecting vertices onto the 2D screen

 but also keep the z information
 using a 2D polygon scan conversion algorithm on the resulting 2D

polygons

 in what order do we draw the polygons?p yg
 some sort of order on z

 depth sort
 Binary Space-Partitioning tree

 is there a method in which order does not matter?
 z-buffer

129

Depth sort algorithm

transform all polygon vertices into viewing co-ordinates
and project these into 2D, keeping z information

calculate a depth ordering for polygons, based on the most distant
z co-ordinate in each polygon

resolve any ambiguities caused by polygons overlapping in z
d h l i d h d f b k fdraw the polygons in depth order from back to front

 “painter’s algorithm”: later polygons draw on top of earlier polygons

 steps  and  are simple, step  is 2D polygon scan conversion,
step  requires more thought

130

Resolving ambiguities in depth sort

 may need to split polygons into smaller polygons to make a
coherent depth ordering





OK

OK

split









split










131

Resolving ambiguities: algorithm
 for the rearmost polygon, P, in the list, need to compare each polygon,

Q, which overlaps P in z
 the question is: can I draw P before Q?

do the polygons y extents not overlap?
do the polygons x extents not overlap?
 is P entirely on the opposite side of Q’s plane from the viewpoint?
 is Q entirely on the same side of P’s plane as the viewpoint?

tests get
more

expensive
 is Q entirely on the same side of P s plane as the viewpoint?

 if all 4 tests fail, repeat  and  with P and Q swapped (i.e. can I
draw Q before P?), if true swap P and Q

 otherwise split either P or Q by the plane of the other, throw away
the original polygon and insert the two pieces into the list

 draw rearmost polygon once it has been completely checked

132

Depth sort: comments

 the depth sort algorithm produces a list of polygons which
can be scan-converted in 2D, backmost to frontmost, to
produce the correct image

 reasonably cheap for small number of polygons, becomes
expensive for large numbers of polygons

 the ordering is only valid from one particular viewpoint

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 23

133

Back face culling: a time-saving trick
 if a polygon is a face of a closed polyhedron

and faces backwards with respect to the
viewpoint then it need not be drawn at all
because front facing faces would later obscure
it anyway
 saves drawing time at the the cost of one extra test







per polygon

 assumes that we know which way a polygon is
oriented

 back face culling can be used in combination
with any 3D scan-conversion algorithm

134

Binary Space-Partitioning trees

 BSP trees provide a way of quickly calculating the correct
depth order:
 for a collection of static polygons
 from an arbitrary viewpoint

 the BSP tree trades off an initial time- and space-intensive pre-
processing step against a linear display algorithm (O(N)) which processing step against a linear display algorithm (O(N)) which
is executed whenever a new viewpoint is specified

 the BSP tree allows you to easily determine the correct order
in which to draw polygons by traversing the tree in a simple
way

135

BSP tree: basic idea

 a given polygon will be correctly scan-converted if:
 all polygons on the far side of it from the viewer are scan-converted

first
 then it is scan-converted
 then all the polygons on the near side of it are scan-converted

136

Making a BSP tree

 given a set of polygons
 select an arbitrary polygon as the root of the tree
 divide all remaining polygons into two subsets:

 those in front of the selected polygon’s plane

 those behind the selected polygon’s plane
 any polygons through which the plane passes are split into two y p yg g p p p

polygons and the two parts put into the appropriate subsets

 make two BSP trees, one from each of the two subsets
 these become the front and back subtrees of the root

 may be advisable to make, say, 20 trees with different
random roots to be sure of getting a tree that is reasonably
well balanced

137

Drawing a BSP tree

 if the viewpoint is in front of the root’s polygon’s plane
then:
 draw the BSP tree for the back child of the root
 draw the root’s polygon

 draw the BSP tree for the front child of the root

 otherwise: otherwise:
 draw the BSP tree for the front child of the root
 draw the root’s polygon

 draw the BSP tree for the back child of the root

138

Scan-line algorithms
 instead of drawing one polygon at a time:

modify the 2D polygon scan-conversion algorithm to handle all of the
polygons at once

 the algorithm keeps a list of the active edges in all polygons and
proceeds one scan-line at a time
 there is thus one large active edge list and one (even larger) edge list

 enormous memory requirements enormous memory requirements

 still fill in pixels between adjacent pairs of edges on the scan-line but:
 need to be intelligent about which polygon is in front

and therefore what colours to put in the pixels
 every edge is used in two pairs:

one to the left and one to the right of it

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 24

139

z-buffer polygon scan conversion

depth sort & BSP-tree methods involve clever sorting
algorithms followed by the invocation of the standard
2D polygon scan conversion algorithm

by modifying the 2D scan conversion algorithm we
can remove the need to sort the polygonsp yg
 makes hardware implementation easier

140

z-buffer basics

store both colour and depth at each pixel
when scan converting a polygon:

 calculate the polygon’s depth at each pixel
 if the polygon is closer than the current depth stored at

that pixelp
 then store both the polygon’s colour and depth at that pixel

 otherwise do nothing

141

z-buffer algorithm

FOR every pixel (x,y)
Colour[x,y] = background colour ;
Depth[x,y] = infinity ;

END FOR ;

FOR each polygon
FOR every pixel (x,y) in the polygon’s projection

z = polygon’s value at pixel () ;

This is essentially the 2D
polygon scan conversion
algorithm with depth
calculation and depthz = polygon s z-value at pixel (x,y) ;

IF z < Depth[x,y] THEN
Depth[x,y] = z ;
Colour[x,y] = polygon’s colour at (x,y) ;

END IF ;
END FOR ;

END FOR ;

calculation and depth
comparison added.

142

z-buffer example

     
     
     

     
     
     

     
     
     

     
     
     

     
     
     

     
     
     

143

Interpolating depth values 1

 just as we incrementally interpolate x as we move down
the edges of the polygon, we can incrementally interpolate
z:
 as we move down the edges of the polygon

 as we move across the polygon’s projection

()x y z (' ')x y d(, ,)x y z1 1 1

(, ,)x y z2 2 2

(, ,)x y z3 3 3

(, ,)x y d1 1

(' , ' ,)x y d2 2

(' , ' ,)x y d3 3

project

x x
d
z

y y
d
z

a a
a

a a
a

'

'





144

Interpolating depth values 2

 we thus have 2D vertices, with added depth information

 we can interpolate x and y in 2D

[(' , '),]x y za a a

x t x t x

t t

' () ' () '

' () ' () '

  


1

1
1 2

this point is halfway
between front and

back in 2D (measure
with a ruler if you do

t b li it)

 but z must be interpolated in 3D

y t y t y' () ' () '  1 1 2

1
1

1 1

1 2z
t

z
t

z
  () ()

not believe it)

this point is halfway
between front and
back in 3D (count the
rungs on the ladder)

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 25

145

Comparison of methods

 BSP is only useful for scenes which do not change

Algorithm Complexity Notes
Depth sort O(N log N) Need to resolve ambiguities
Scan line O(N log N) Memory intensive
BSP tree O(N) O(N log N) pre-processing step
z-buffer O(N) Easy to implement in hardware

 as number of polygons increases, average size of polygon decreases, so
time to draw a single polygon decreases

 z-buffer easy to implement in hardware: simply give it polygons in any
order you like

 other algorithms need to know about all the polygons before drawing a
single one, so that they can sort them into order

146

Putting it all together - a summary

a 3D polygon scan conversion algorithm needs to
include:
 a 2D polygon scan conversion algorithm
 2D or 3D polygon clipping
 projection from 3D to 2Dp j
 some method of ordering the polygons so that they are

drawn in the correct order

147

Sampling
 all of the methods so far take a single

sample for each pixel at the precise
centre of the pixel
 i.e. the value for each pixel is the colour of

the polygon which happens to lie exactly
under the centre of the pixel

h l d  this leads to:
 stair step (jagged) edges to polygons

 small polygons being missed completely
 thin polygons being missed completely or

split into small pieces

148

Anti-aliasing

 these artefacts (and others) are jointly known as aliasing
 methods of ameliorating the effects of aliasing are known as

anti-aliasing

 in signal processing aliasing is a precisely defined technical term for a
particular kind of artefactp

 in computer graphics its meaning has expanded to include most
undesirable effects that can occur in the image

 this is because the same anti-aliasing techniques which ameliorate
true aliasing artefacts also ameliorate most of the other artefacts

149

Anti-aliasing method 1: area averaging
 average the contributions of all polygons to each pixel

 e.g. assume pixels are square and we just want the average
colour in the square

 Ed Catmull developed an algorithm which does this:
 works a scan-line at a time
 clips all polygons to the scan-line
 d t i th f t f h l hi h j t  determines the fragment of each polygon which projects

to each pixel
 determines the amount of the pixel covered by the visible

part of each fragment
 pixel's colour is a weighted sum of the visible parts

 expensive algorithm!

150

Anti-aliasing method 2: super-sampling

 sample on a finer grid, then
average the samples in each
pixel to produce the final
colour
 for an nn sub-pixel grid, the

algorithm would take roughly n2

times as long as just taking one
sample per pixel

 can simply average all of the
sub-pixels in a pixel or can do
some sort of weighted average

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 26

151

The A-buffer

 a significant modification of the z-buffer, which allows for sub-
pixel sampling without as high an overhead as straightforward
super-sampling

 basic observation:
 a given polygon will cover a pixel:

 totally totally
 partially
 not at all

 sub-pixel sampling is only required in the
case of pixels which are partially covered
by the polygon

L. Carpenter, “The A-buffer: an antialiased hidden surface method”, SIGGRAPH 84, 103–8

152

A-buffer: details

 for each pixel, a list of masks is stored
 each mask shows how much of a polygon covers the pixel
 the masks are sorted in depth order
 a mask is a 48 array of bits:

need to store both
colour and depth in
addition to the mask{

1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0

1 = polygon covers this sub-pixel

0 = polygon doesn’t cover this sub-pixel

sampling is done at the centre of each
of the sub-pixels

The use of 4×8 bits is because of the original architecture on which this was implemented.
You could use any number of sub-pixels: a power of 2 is obviously sensible.

153

A-buffer: example

 to get the final colour of the pixel you need to average
together all visible bits of polygons

1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

sub-pixel
colours

final pixel
colour(frontmost) (backmost)A B C

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

A=11111111 00011111 00000011 00000000
B=00000011 00000111 00001111 00011111
C=00000000 00000000 11111111 11111111

AB =00000000 00000000 00001100 00011111
ABC =00000000 00000000 11110000 11100000

A covers 15/32 of the pixel
AB covers 7/32 of the pixel
ABC covers 7/32 of the pixel

154

Making the A-buffer more efficient

 if a polygon totally covers a pixel then:
 do not need to calculate a mask, because the mask is all 1s
 all masks currently in the list which are behind this polygon can be

discarded
 any subsequent polygons which are behind this polygon can be

immediately discounted (without calculating a mask)

 in most scenes, therefore, the majority of pixels will have only
a single entry in their list of masks

 the polygon scan-conversion algorithm can be structured so
that it is immediately obvious whether a pixel is totally or
partially within a polygon

155

A-buffer: calculating masks

 clip polygon to pixel
 calculate the mask for each edge bounded by the right hand

side of the pixel
 there are few enough of these that they can be stored in a look-up

table

 XOR all masks together XOR all masks together

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 1 1 1 0 0

0 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 1 1 1

0 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0

   

156

A-buffer: comments

 the A-buffer algorithm essentially adds anti-aliasing to the z-
buffer algorithm in an efficient way

 most operations on masks are AND, OR, NOT, XOR
 very efficient boolean operations

 why 48? why 48?
 algorithm originally implemented on a machine with 32-bit registers

(VAX 11/780)

 on a 64-bit register machine, 88 is more sensible

 what does the A stand for in A-buffer?
 anti-aliased, area averaged, accumulator

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 27

157

A-buffer: extensions

 as presented the algorithm assumes that a mask has a constant
depth (z value)
 can modify the algorithm and perform approximate intersection

between polygons

 can save memory by combining fragments which start life in
the same primitivep
 e.g. two triangles that are part of the decomposition of a Bezier patch

 can extend to allow transparent objects

158

Illumination & shading

 until now we have assumed that each polygon is a uniform
colour and have not thought about how that colour is
determined

 things look more realistic if there is some sort of illumination
in the scene

 we therefore need a mechanism of determining the colour of  we therefore need a mechanism of determining the colour of
a polygon based on its surface properties and the positions of
the lights

 we will, as a consequence, need to find ways to shade
polygons which do not have a uniform colour

159

Illumination & shading (continued)
 in the real world every light source emits millions of photons

every second
 these photons bounce off objects, pass through objects, and are

absorbed by objects
 a tiny proportion of these photons enter your eyes (or the

camera) allowing you to see the objectscamera) allowing you to see the objects

 tracing the paths of all these photons is not an efficient way of
calculating the shading on the polygons in your scene

160

How do surfaces reflect light?

    

perfect reflection
(mirror)

specular reflection diffuse reflection
(Lambertian reflection)

Johann Lambert, 18th century German mathematician

the surface of a specular reflector is
facetted, each facet reflects perfectly but
in a slightly different direction to the other
facets

161

Comments on reflection

 the surface can absorb some wavelengths of light
 e.g. shiny gold or shiny copper

 specular reflection has “interesting” properties at glancing angles
owing to occlusion of micro-facets by one another

 plastics are good examples of surfaces with:
 specular reflection in the light’s colour
 diffuse reflection in the plastic’s colour

162

Calculating the shading of a polygon
 gross assumptions:

 there is only diffuse (Lambertian) reflection
 all light falling on a polygon comes directly from a light source

 there is no interaction between polygons

 no polygon casts shadows on any other
 so can treat each polygon as if it were the only polygon in the scene

li h id d b i fi i l di f h l light sources are considered to be infinitely distant from the polygon
 the vector to the light is the same across the whole polygon

 observation:
 the colour of a flat polygon will be uniform across its surface, dependent only

on the colour & position of the polygon and the colour & position of the light
sources

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 28

163

Diffuse shading calculation

L is a normalised vector pointing in
the direction of the light source

N is the normal to the polygon

Il is the intensity of the light source

kd is the proportion of light which is

L
N

I I k  diffusely reflected by the surface

I is the intensity of the light reflected
by the surface

I I k

I k N L
l d

l d


 

cos

()



use this equation to set the colour of the whole polygon and draw the polygon
using a standard polygon scan-conversion routine

164

Diffuse shading: comments

 can have different Il and different kd for different wavelengths
(colours)

 watch out for cos < 0
 implies that the light is behind the polygon and so it cannot illuminate

this side of the polygon

 do you use one-sided or two-sided polygons? do you use one sided or two sided polygons?
 one sided: only the side in the direction of the normal vector can be

illuminated
 if cos < 0 then both sides are black

 two sided: the sign of cos determines which side of the polygon is
illuminated
 need to invert the sign of the intensity for the back side

165
Gouraud shading

 for a polygonal model, calculate the diffuse illumination at each
vertex rather than for each polygon
 calculate the normal at the vertex, and use this to calculate the diffuse

illumination at that point
 normal can be calculated directly if the polygonal model was derived from a

curved surface

 interpolate the colour across the
[(' , '), , (, ,)]x y z r g b1 1 1 1 1 1

p
polygon, in a similar manner to that
used to interpolate z

 surface will look smoothly curved
 rather than looking like a set of polygons
 surface outline will still look polygonal

[(' , '), ,
(, ,)]

x y z
r g b

2 2 2

2 2 2

[(' , '), , (, ,)]x y z r g b3 3 3 3 3 3

Henri Gouraud, “Continuous Shading of Curved Surfaces”, IEEE Trans Computers, 20(6), 1971

166

Flat vs Gouraud shading

 note how the interior is smoothly
shaded but the outline remains
polygonal

http://computer.howstuffworks.com/question484.htm

167
Specular reflection

 Phong developed an easy-to-
calculate approximation to
specular reflection

 

N
R

V

L

 

L is a normalised vector pointing in the
direction of the light source

R is the vector of perfect reflection

N is the normal to the polygon

V is a normalised vector pointing at the
viewer

Il is the intensity of the light source 
 V Il is the intensity of the light source

ks is the proportion of light which is
specularly reflected by the surface

n is Phong’s ad hoc “roughness” coefficient

I is the intensity of the specularly reflected
light

I I k
I k R V

l s
n

l s
n


 

cos
()



Phong Bui-Tuong, “Illumination for
computer generated pictures”, CACM,
18(6), 1975, 311–7

n=1 n=3 n=7 n=20 n=40

168

Phong shading

 similar to Gouraud shading, but calculate the specular component
in addition to the diffuse component

 therefore need to interpolate the normal across the polygon in
order to be able to calculate the reflection vector

[(' , '), , (, ,),]x y z r g b1 1 1 1 1 1 1N

 N.B. Phong’s approximation to
specular reflection ignores
(amongst other things) the
effects of glancing incidence

[(' , ') , ,
(, ,) ,]

x y z
r g b

2 2 2

2 2 2 2N

[(' , ') , , (, ,),]x y z r g b3 3 3 3 3 3 3N

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 29

169

Examples

specular
reflection

100%

75%

50%

diffuse reflection

reflection

100% 75% 50% 25% 0%

25%

0%

170

The gross assumptions revisited
 only diffuse reflection

 now have a method of approximating specular reflection

 no shadows
 need to do ray tracing to get shadows

 lights at infinity
 can add local lights at the expense of more calculationg p

 need to interpolate the L vector

 no interaction between surfaces
 cheat!

 assume that all light reflected off all other surfaces onto a given polygon
can be amalgamated into a single constant term: “ambient illumination”,
add this onto the diffuse and specular illumination

171

Shading: overall equation

 the overall shading equation can thus be considered to be the
ambient illumination plus the diffuse and specular reflections
from each light source

 

N
Ri

V

Li

I I k I k L N I k R Vi d i i i
n     () ()

 the more lights there are in the scene, the longer this calculation will take

 
 VI I k I k L N I k R Va a i d i i s i

ii

   () ()

172

Illumination & shading: comments
 how good is this shading equation?

 gives reasonable results but most objects tend to look as if they are made
out of plastic

 Cook & Torrance have developed a more realistic (and more expensive)
shading model which takes into account:
 micro-facet geometry (which models, amongst other things, the

roughness of the surface)

 Fresnel’s formulas for reflectance off a surface
 there are other, even more complex, models

 is there a better way to handle inter-object interaction?
 “ambient illumination” is, frankly, a gross approximation

 distributed ray tracing can handle specular inter-reflection
 radiosity can handle diffuse inter-reflection

173

Ray tracing

 a powerful alternative to polygon scan-conversion techniques
 given a set of 3D objects, shoot a ray from the eye through

the centre of every pixel and see what it hits

shoot a ray through each pixel whatever the ray hits determines the colour of
that pixel

174Ray tracing: examples

ray tracing easily handles reflection, refraction,
shadows and blur: all of which are difficult to
achieve with polygon scan-conversion

ray tracing is considerably slower than polygon
scan-conversion

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 30

175

Ray tracing algorithm

select an eye point and a screen plane

FOR every pixel in the screen plane
determine the ray from the eye through the pixel’s centre
FOR each object in the scene

IF the object is intersected by the ray
IF the intersection is the closest (so far) to the eye

record intersection point and object
END IF ;

END IF ;
END FOR ;
set pixel’s colour to that of the object at the closest intersection point

END FOR ;

176

Intersection of a ray with an object 1
 plane

O
D

ray

plane

: ,

:

P O sD s

P N d

  
  

0

0

N

 polygon
 intersection the ray with the plane of the polygon

 as above
 then check to see whether the intersection point lies inside the polygon

 a 2D geometry problem

s
d N O

N D
 

 


177

Intersection of a ray with an object 2
 sphere

O
D C

r  
   

acbd

rCOCOc

CODb

DDa

4

2

2

2








0)()(:sphere

0,:ray
2 



rCPCP

ssDOP

 cylinder, cone, torus
 all similar to sphere
 much more on this in the Part II Advanced Graphics course

a

db
s

a

db
s

2

2

2

1







d real d imaginary

178

Ray tracing: shading

 once you have the intersection of a
ray with the nearest object you can
also:
 calculate the normal to the object at

that intersection point
 shoot rays from that point to all of the

light 1

light 2

light sources, and calculate the diffuse
and specular reflections off the object
at that point
 this (plus ambient illumination)

gives the colour of the object (at
that point)

O
D C

r

N

179

Ray tracing: shadows

 because you are tracing
rays from the intersection
point to the light, you can
check whether another
object is between the
intersection and the light

light 1

light 2

light 3 g
and is hence casting a
shadow
 also need to watch for self-

shadowing
O

D C
r

N

light 3

180

Ray tracing: reflection

 if a surface is totally or
partially reflective then
new rays can be
spawned to find the
contribution to the
pixel’s colour given by N2 p g y
the reflection
 this is perfect (mirror)

reflection

O

N1

light
2

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 31

181

Ray tracing: transparency & refraction

 objects can be totally or
partially transparent
 this allows objects behind the

current one to be seen through
it

 transparent objects can have
light D

D2

refractive indices
 bending the rays as they pass

through the objects

 transparency + reflection
means that a ray can split into
two parts

O

light

D0

D1

D'1

D'2

182

Sampling in ray tracing
 single point

 shoot a single ray through the pixel’s
centre

 super-sampling for anti-aliasing
 shoot multiple rays through the pixel

and average the result
 regular grid, random, jittered, Poisson

disc

 adaptive super-sampling
 shoot a few rays through the pixel,

check the variance of the resulting
values, if similar enough stop, otherwise
shoot some more rays

183

Types of super-sampling 1

 regular grid
 divide the pixel into a number of sub-pixels and

shoot a ray through the centre of each
 problem: can still lead to noticable aliasing unless

a very high resolution sub-pixel grid is used

 random
 shoot N rays at random points in the pixel
 replaces aliasing artefacts with noise artefacts

 the eye is far less sensitive to noise than to
aliasing

12 8 4

184

Types of super-sampling 2

 Poisson disc
 shoot N rays at random points in

the pixel with the proviso that no
two rays shall pass through the
pixel closer than  to one another

 for N rays this produces a better
looking image than pure random looking image than pure random
sampling

 very hard to implement properly

Poisson disc pure random

185

Types of super-sampling 3

 jittered
 divide pixel into N sub-pixels and

shoot one ray at a random point in
each sub-pixel

 an approximation to Poisson disc
sampling
f N i i b h  for N rays it is better than pure
random sampling

 easy to implement

jittered pure randomPoisson disc

186More reasons for wanting to take
multiple samples per pixel

 super-sampling is only one reason why we might want to take
multiple samples per pixel

 many effects can be achieved by distributing the multiple samples
over some range
 called distributed ray tracing

 N.B. distributed means distributed over a range of valuesg

 can work in two ways
each of the multiple rays shot through a pixel is allocated a random value from

the relevant distribution(s)

 all effects can be achieved this way with sufficient rays per pixel
each ray spawns multiple rays when it hits an object

 this alternative can be used, for example, for area lights

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 32

187

Examples of distributed ray tracing
 distribute the samples for a pixel over the pixel area

 get random (or jittered) super-sampling

 used for anti-aliasing
 distribute the rays going to a light source over some area

 allows area light sources in addition to point and directional light sources
 produces soft shadows with penumbrae

 distribute the camera position over some area

 allows simulation of a camera with a finite aperture lens
 produces depth of field effects

 distribute the samples in time
 produces motion blur effects on any moving objects

188

Anti-aliasing

one sample per pixel multiple samples per pixel

189

Area vs point light source

an area light source produces soft shadows a point light source produces hard shadows

190
Finite aperture
left, a pinhole camera

below, a finite aperture camera

below left, 12 samples per pixel

below right, 120 samples per pixel

note the depth of field blur: only objects
at the correct distance are in focus

1, 120

191
Distributed ray tracing for

specular reflection
 previously we could only

calculate the effect of perfect
reflection

 we can now distribute the
reflected rays over the range of
directions from which specularly
reflected light could come

 provides a method of handling
some of the inter-reflections
between objects in the scene

 requires a very large number of
ray per pixel

O

light

192

Handling direct illumination
light

 diffuse reflection
 handled by ray tracing and

polygon scan conversion
 assumes that the object is a

perfect Lambertian reflector

light
 specular reflection

 also handled by ray tracing and
polygon scan conversion

 use Phong’s approximation to
true specular reflection

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 33

193

Handing indirect illumination: 1

light
 diffuse to specular

 handled by distributed ray
tracing

light
 specular to specular

 also handled by
distributed ray tracing

194

Handing indirect illumination: 2

light
 diffuse to diffuse

 handled by radiosity
 covered in the Part II

Advanced Graphics
course

light
 specular to diffuse

 handled by no usable
algorithm

 some research work has
been done on this but
uses enormous amounts
of CPU time

195

Multiple inter-reflection

 light may reflect off many surfaces on its way
from the light to the camera

 standard ray tracing and polygon scan
conversion can handle a single diffuse or
specular bounce

 distributed ray tracing can handle multiple

(diffuse | specular)*

diffuse | specular

(diffuse | specular) (specular)* distributed ray tracing can handle multiple
specular bounces

 radiosity can handle multiple diffuse bounces
 the general case cannot be handled by any

efficient algorithm

(diffuse | specular) (specular)

(diffuse)*

(diffuse | specular)*

196

Hybrid algorithms

polygon scan conversion and ray tracing are the two
principal 3D rendering mechanisms
 each has its advantages

 polygon scan conversion is faster
 polygon scan conversion can be implemented easily in hardware

 d l l k l ray tracing produces more realistic looking results

hybrid algorithms exist
 these generally use the speed of polygon scan conversion

for most of the work and use ray tracing only to achieve
particular special effects

197

Commercial uses

polygon scan conversion
 in particular z-buffer and A-buffer

 used almost everywhere
 games
 user interfaces

 most special effects most special effects

ray tracing
 used when realism or beauty is absolutely crucial

 advertising
 some special effects

198

Surface detail
so far we have assumed perfectly smooth,

uniformly coloured surfaces
real life isn’t like that:

 multicoloured surfaces
 e.g. a painting, a food can, a page in a book

 bumpy surfaces
 e.g. almost any surface! (very few things are

perfectly smooth)

 textured surfaces
 e.g. wood, marble

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 34

199

Texture mapping
without with

all surfaces are smooth and of uniform
colour

most surfaces are textured with
2D texture maps

the pillars are textured with a solid texture

200

Basic texture mapping

 a texture is simply an image,
with a 2D coordinate system
(u,v)

 each 3D object is parameterised

u

v

 each 3D object is parameterised
in (u,v) space

 each pixel maps to some part of
the surface

 that part of the surface maps to
part of the texture

201

Paramaterising a primitive

 polygon: give (u,v)
coordinates for three
vertices, or treat as part of
a plane

 plane: give u-axis and v-axis
directions in the planedirections in the plane

 cylinder: one axis goes up
the cylinder, the other
around the cylinder

202

Sampling texture space

v

u

Find (u,v) coordinate of the sample point on
the object and map this into texture space
as shown

203

Sampling texture space: finding the value

 nearest neighbour: the sample value is the nearest pixel value
to the sample point

 bilinear reconstruction: the sample value is the weighted mean
of the four pixels around the sample point

204
Sampling texture space:
interpolation methods
 nearest neighbour

 fast with many artefacts

 bilinear
 reasonably fast, blurry

 bicubic

the three
standard
methods

 gives better results

 uses 16 values (44) around the sample location
 but runs at one quarter the speed of bilinear

 can we get any better?
 many slower techniques offering slightly higher quality

 biquadratic is an interesting trade-off
 use 9 values (33) around the sample location
 faster than bicubic, slower than linear, results seem to

be nearly as good as bicubic

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 35

205

Texture mapping examples

v

nearest-
neighbour

bicubic
u

look at the bottom right hand corner of the distorted
image to compare the two interpolation methods

206

Down-sampling

 if the pixel covers quite a large area
of the texture, then it will be
necessary to average the texture
across that area, not just take a
sample in the middle of the area

207

Multi-resolution texture
Rather than down-sampling every time you need to, have
multiple versions of the texture at different resolutions and pick
the appropriate resolution to sample from…

You can use tri-linear
interpolation to get an even better
result: that is, use bi-linear
interpolation in the two nearest levels
and then linearly interpolate between
the two interpolated values

208

an efficient memory arrangement for a multi-
resolution colour image

pixel (x,y) is a bottom level pixel location (level 0);
for an image of size (m,n), it is stored at these
locations in level k:

The MIP map
2 2

2

1 1

1

0 0

0













 





 

kk

ynxm

2
,

2











 







kk

ynx

2
,

2



















 

kk

yxm

2
,

2

Red

GreenBlue

209

Solid textures

 texture mapping applies a
2D texture to a surface

colour = f(u,v)

 solid textures have colour
defined for every point in
spacespace

colour = f(x,y,z)

 permits the modelling of
objects which appear to be
carved out of a material

210

What can a texture map modify?

any (or all) of the colour components
 ambient, diffuse, specular

transparency
 “transparency mapping”

reflectivenessreflectiveness

but also the surface normal
 “bump mapping”

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 36

211

Bump mapping
 the surface normal is used in

calculating both diffuse and
specular reflection

 bump mapping modifies the
direction of the surface normal so
that the surface appears more or
less bumpy

 rather than using a texture map, a
2D function can be used which
varies the surface normal
smoothly across the plane

 but bump mapping doesn’t change
the object’s outline

212

Background
what is a digital image?

 what are the constraints on digital images?

what hardware do we use?

We are now ready to ask:


2D CG IP

3D CG

Background

how does human vision work?
 what are the limits of human vision?
 what can we get away with given these constraints & limits?

how do we represent colour?
how do displays & printers work?

 how do we fool the human eye into seeing what we want it to
see?

213

The workings of the human visual system

to understand the requirements of displays
(resolution, quantisation and colour) we need to
know how the human eye works...

The lens of the eye forms an
image of the world on the
retina: the back surface ofretina: the back surface of
the eye

214

Structure of the human eye

 the retina is an array of light
detection cells

 the fovea is the high
resolution area of the retina

 the optic nerve takes signals
from the retina to the visual from the retina to the visual
cortex in the brain

Fig. 2.1 from Gonzalez & Woods

215

The retina

consists of about 150 million light receptors
retina outputs information to the brain along the

optic nerve
 there are about one million nerve fibres in the optic nerve
 the retina performs significant pre-processing to reduce  the retina performs significant pre processing to reduce

the number of signals from 150M to 1M
 pre-processing includes:

 averaging multiple inputs together

 colour signal processing
 local edge detection

www.stlukeseye.com

216

Light detectors in the retina

two classes
 rods
 cones

cones come in three types
 sensitive to short, medium and long wavelengths
 allow you to see in colour

the cones are concentrated in the macula, at the
centre of the retina

the fovea is a densely packed region in the centre of
the macula
 contains the highest density of cones
 provides the highest resolution vision

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 37

217
Distribution of rods & cones

 i th f

Fig. 2.2 from Gonzalez & Woods
www.cis.rit.edu/people/faculty/montag/vandplite/pages/chap_9/ch9p1.html

cones in the fovea

rods & cones outside the fovea

(1) cones in the fovea are squished together more tightly than
outside the fovea: higher resolution vision;
(2) as the density of cones drops the gaps between them are filled
with rods

218

Foveal vision

150,000 cones per square millimetre in the fovea
 high resolution
 colour

outside fovea: mostly rods
 lower resolution

 many rods’ inputs are combined to produce one signal to the
visual cortex in the brain

 principally monochromatic
 there are very few cones, so little input available to provide

colour information to the brain

 provides peripheral vision
 allows you to keep the high resolution region in context
 without peripheral vision you would walk into things, be unable

to find things easily, and generally find life much more difficult

219

Detailed structure of retinal processing

 a lot of pre-processing occurs in the retina before signals are
passed to the brain

many light receptors have their signals combined into a single
signal to the brain

www.ahaf.org/macular/about/NormalMacula.htm
www.phys.ufl.edu/~avery/course/3400/vision/retina schema.jpg …/retina schema2.jpg

light comes in from
this direction

220

Some of the processing in the eye

discrimination
 discriminates between different intensities and colours

adaptation
 adapts to changes in illumination level and colour

 can see about 1:100 contrast at any given time
10 but can adapt to see light over a range of 1010

persistence
 integrates light over a period of about 1/30 second

edge detection and edge enhancement
 visible in e.g. Mach banding effects

221

Intensity adaptation
 at any one time the eye can handle intensities

over a range of ~100:1
 this is the curve BbBa
 anything darker is seen as black

 if everything is black, the eye adjusts down

 anything brighter causes pain
 and stimulates the eye to adjust upy j p

 the eye can adjust over a range of 107:1 in colour
vision
 the curve BbBa slides up or down the photopic

curve

 at very low light levels only rods are effective
 this is the scotopic curve
 no colour, because the cones are not able to pick

up any light

Fig. 2.4 from Gonzalez & Woods

222

Intensity differentiation

the eye can obviously differentiate between different
colours and different intensities

Weber’s Law tells us how good the eye is at
distinguishing different intensities using just noticeable
differencesff

background at
intensity I

foreground at intensity I+I

for a range of values of I

• start with I=0
increase I until human observer can
just see a difference

• start with I large
decrease I until human observer can
just not see a difference

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 38

223

Intensity differentiation

results for a “normal” viewer
 a human can distinguish about a 2% change in intensity for

much of the range of intensities
 discrimination becomes rapidly worse as you get close to

the darkest or brightest intensities that you can currently
see

I

I/I



224

Simultaneous contrast

the eye performs a range of non-linear operations
for example, as well as responding to changes in

overall light, the eye responds to local changes

The centre square is the same intensity in all four cases but does not appear to be
because your visual system is taking the local contrast into account

225

Mach bands

show the effect of edge enhancement in the retina’s
pre-processing

Each of the nine rectangles is a constant colour but you will see each rectangle
being slightly brighter at the end which is near a darker rectangle and slightly

darker at the end which is near a lighter rectangle

226
Ghost squares

another effect caused by retinal pre-processing
 the edge detectors outside the fovea cause you to see grey

squares at the corners where four black squares join
 the fovea has sufficient resolution to avoid this “error”

227

Summary of what human eyes do...

sample the image that is projected onto the retina
adapt to changing conditions
perform non-linear pre-processing

 makes it very hard to model and predict behaviour

combine a large number of basic inputs into a much combine a large number of basic inputs into a much
smaller set of signals
 which encode more complex data

 e.g. presence of an edge at a particular location with a particular
orientation rather than intensity at a set of locations

pass pre-processed information to the visual cortex
 which performs extremely complex processing
 discussed in the Computer Vision course

228

Implications of vision on resolution

 the acuity of the eye is measured as the ability to see a
white gap,1 minute wide, between two black lines
 about 300dpi at 30cm
 the corresponds to about 2 cone widths on the fovea

 resolution decreases as contrast decreases resolution decreases as contrast decreases
 colour resolution is much worse than intensity resolution

 this is exploited in TV broadcast
 analogue television broadcasts the colour signal at half the

horizontal resolution of the intensity signal

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 39

229

Implications of vision on quantisation
humans can distinguish, at best, about a 2% change in

intensity
 not so good at distinguishing colour differences

we need to know what the brightest white and
darkest black are
 most modern display technologies (CRT, LCD, plasma)

have contrast ratios in the hundreds
 ranging from 100:1 to about 600:1

 movie film has a contrast ratio of about 1000:1

12–16 bits of intensity information
 assuming intensities are distributed linearly

 this allows for easy computation

 8 bits are often acceptable, except in the dark regions

230

What is required for vision?

illumination
 some source of light

objects
 which reflect (or transmit) the light

eyesy
 to capture the light as an image

direct viewing transmission reflection

231

Light: wavelengths & spectra

light is electromagnetic radiation
 visible light is a tiny part of the electromagnetic spectrum
 visible light ranges in wavelength from 700nm (red end of spectrum)

to 400nm (violet end)

every light has a spectrum of wavelengths that it emits
 b h f l h h every object has a spectrum of wavelengths that it

reflects (or transmits)
the combination of the two gives the spectrum of

wavelengths that arrive at the eye

232

The spectrum
visible light is only a tiny
part of the whole
electromagnetic spectrum

the short wavelength
end of the spectrum

is violet

the long wavelength
end of the spectrum
is red

violet blue green yellow red

233
Illuminants have different characteristics

different lights emit
different intensities of
each wavelength
 sunlight is reasonably

uniform
 incandescent light

bulbs are very red
 sodium street lights

emit almost pure
yellow

www.gelighting.com/na/business_lighting/education_resources/learn_about_light/

Incandescent Light Bulbs

234

Illuminant × reflection = reflected light

intensity

wavelength

reflectivity

wavelength

intensity received
by the eye

wavelength

× =

daylight

g g g

intensity

wavelength

reflectivity

wavelength

intensity received
by the eye

wavelength

× =

incandescent light bulb

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 40

235
incandescent light bulb camera flash bulb

compare these things:

 colour of the
monkey’s nose and
paws: more red under

t i li ht

Comparison
of

illuminants

halogen light bulbs (overhead)winter sunlight

certain lights

 oranges & yellows
(similar in all)

 blues & violets
(considerably
different)

236

Representing colour

we need a mechanism which allows us to represent
colour in the computer by some set of numbers
 preferably a small set of numbers which can be quantised

to a fairly small number of bits each

we will discuss:
 Munsell’s artists’ scheme

 which classifies colours on a perceptual basis

 the mechanism of colour vision
 how colour perception works

 various colour spaces
 which quantify colour based on either physical or perceptual

models of colour

237

Munsell’s colour classification system

three axes
 hue  the dominant colour
 value  bright colours/dark colours
 chroma  vivid colours/dull colours

 can represent this as a 3D graph

238

Munsell’s colour classification system

any two adjacent colours are a standard “perceptual”
distance apart
 worked out by testing it on people
 a highly irregular space

 e.g. vivid yellow is much brighter than vivid blue

invented by Albert H. Munsell, an American artist, in 1905 in an attempt to systematically classify colours

239

Colour vision

 there are three types of cone
 each responds to a different

spectrum
 very roughly long, medium,

and short wavelengths

 each has a response function:p
l(), m(), s()

 different numbers of the different types
 far fewer of the short wavelength receptors
 so cannot see fine detail in blue

 overall intensity response of the cones can be calculated
 y() = l() + m() + s()

 y = k  P() y() d is the perceived luminance in the fovea

 y = k  P() r() d is the perceived luminance outside the fovea r() is the response
function of the rods

240

Distribution of different cone types

 this is about 1° of visual angle
 distribution is:

 7% short, 37% medium, 56% long

 short wavelength receptors

simulated cone distribution at
the centre of the fovea

 regularly distributed
 not in the central 1/3°
 outside the fovea, only 1% of cones

are short

 long & medium
 about 3:2 ratio long:medium

www.cis.rit.edu/people/faculty/montag/vandplite/pages/chap_9/ch9p1.html

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 41

241

Colour signals sent to the brain

 the signal that is sent to the brain is pre-processed by the retina
+ + =long medium short luminance

– =long medium

+ – =long medium short yellow-blue

red-green

 this theory explains:
 colour-blindness effects
 why red, yellow, green and blue are

perceptually important colours
 why you can see e.g. a yellowish red

but not a greenish red

g y

242

Chromatic metamerism

 many different spectra will induce the same response in our
cones
 the values of the three perceived values can be calculated as:

 l = k  P() l() d
 m = k  P() m() d
 s = k  P() s() d () ()

 k is some constant, P() is the spectrum of the light incident on the retina

 two different spectra (e.g. P1() and P2()) can give the same values
of l, m, s

 we can thus fool the eye into seeing (almost) any colour by mixing correct
proportions of some small number of lights

243

Mixing coloured lights

by mixing different amounts of red, green,
and blue lights we can generate a wide
range of responses in the human eye

not all colours can be created in this way

red

green

blue

green

blue
light
off

red
light

fully on

244

XYZ colour space

not every wavelength can be represented as a mix of red,
green, and blue lights

but matching & defining coloured light with a mixture of
three fixed primaries is desirable

CIE define three standard primaries: X Y Z

FvDFH Sec 13.2.2

CIE define three standard primaries: X, Y, Z

Y matches the human eye’s response to light of a
constant intensity at each wavelength (luminous-
efficiency function of the eye)

X, Y, and Z are not themselves colours, they are
used for defining colours – you cannot make a light
that emits one of these primaries

XYZ colour space was defined in 1931 by the Commission
Internationale de l’ Éclairage (CIE)

245

CIE chromaticity diagram

chromaticity values are defined in terms of x, y, z

 ignores luminance
 can be plotted as a 2D function

x
X

X Y Z
y

Y
X Y Z

z
Z

X Y Z
x y z

 


 


 
   , , 1

FvDFH Fig 13.24
Colour plate 2540nm

520nm

510nm

 pure colours (single wavelength)
lie along the outer curve

 all other colours are a mix of
pure colours and hence lie
inside the curve

 points outside the curve do not
exist as colours

580nm

600nm

700nm

560nm

500nm

490nm

480nm

460nm
410nm

246

Colour spaces
 CIE XYZ, Yxy

 Uniform
 equal steps in any direction make equal perceptual differences

 CIE L*u*v*, CIE L*a*b*

 Pragmatic
 used because they relate directly to the way that the hardware works used because they relate directly to the way that the hardware works

 RGB, CMY, CMYK

 Munsell-like
 used in user-interfaces
 considered to be easier to use for specifying colour than are the pragmatic

colour spaces
 map easily to the pragmatic colour spaces
 HSV, HLS

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 42

247

XYZ is not perceptually uniform

Each ellipse shows how
far you can stray from
the central point before
a human being notices
a difference in colour

248

Luv was designed to be more uniform

249

Luv colour space

L is luminance and is
orthogonal to u and v, the
two colour axes

L*u*v* is an official CIE colour space. It is a straightforward distortion of XYZ space.

250

Lab space
another CIE colour

space
based on complementary

colour theory
 see slide 49 (Colour

signals sent to the brain)

also aims to be
perceptually uniform

L*=116(Y/Yn)1/3

a*=500[(X/Xn)1/3-(Y/Yn)1/3]

b*=200[(Y/Yn)1/3-(Z/Zn)1/3]

251

Lab space

this visualization shows
those colours in Lab space
which a human can perceive

again we see that human
perception of colour is not p p
uniform
 perception of colour

diminishes at the white and
black ends of the L axis

 the maximum perceivable
chroma differs for different
hues

252

RGB space

all display devices which output light mix red, green
and blue lights to make colour
 televisions, CRT monitors, video projectors, LCD screens

nominally, RGB space is a cube
the device puts physical limitations on:the device puts physical limitations on:

 the range of colours which can be displayed
 the brightest colour which can be displayed
 the darkest colour which can be displayed

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 43

253

RGB in XYZ space
CRTs and LCDs mix red, green, and blue to make all

other colours
the red, green, and blue primaries each map to a point

in XYZ space
any colour within the resultingy g

triangle can be displayed
 any colour outside the triangle

cannot be displayed
 for example: CRTs cannot display

very saturated purple, turquoise,
or yellow FvDFH Figs 13.26, 13.27

254

CMY space

printers make colour by mixing coloured inks
the important difference between inks (CMY) and

lights (RGB) is that, while lights emit light, inks absorb
light
 cyan absorbs red, reflects blue and green cyan absorbs red, reflects blue and green
 magenta absorbs green, reflects red and blue
 yellow absorbs blue, reflects green and red

CMY is, at its simplest, the inverse of RGB

CMY space is nominally a cube

255

Ideal and actual printing ink reflectivities

ideal

actual

256

CMYK space
in real printing we use black

(key) as well as CMY

why use black?
 inks are not perfect absorbers
 mixing C + M + Y gives a muddy g g y

grey, not black
 lots of text is printed in black:

trying to align C, M and Y perfectly
for black text would be a
nightmare

257

Using K

if we print using just
CMY then we can get
up to 300% ink at any
point on the paper

removing the g
achromatic portion of
CMY and replacing
with K reduces the
maximum possible ink
coverage to 200%

258

Colour spaces for user-interfaces

RGB and CMY are based on the physical devices
which produce the coloured output

RGB and CMY are difficult for humans to use for
selecting colours

Munsell’s colour system is much more intuitive:Munsell s colour system is much more intuitive:
 hue — what is the principal colour?
 value — how light or dark is it?
 chroma — how vivid or dull is it?

computer interface designers have developed basic
transformations of RGB which resemble Munsell’s
human-friendly system

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 44

259

HSV: hue saturation value

three axes, as with Munsell
 hue and value have same meaning
 the term “saturation” replaces

the term “chroma”

 designed by Alvy Ray Smith in 1978
 algorithm to convert HSV to RGB

and back can be found in Foley et al.,
Figs 13.33 and 13.34

260

HLS: hue lightness saturation
a simple variation of HSV

 hue and saturation have same
meaning

 the term “lightness” replaces the
term “value”

designed to address the
complaint that HSV has all pure
colours having the same
lightness/value as white
 designed by Metrick in 1979
 algorithm to convert HLS to RGB

and back can be found in Foley et
al., Figs 13.36 and 13.37

261

Summary of colour spaces
 the eye has three types of colour receptor
 therefore we can validly use a three-dimensional

co-ordinate system to represent colour
 XYZ is one such co-ordinate system

 Y is the eye’s response to intensity (luminance)
 X and Z are, therefore, the colour co-ordinates

 same Y, change X or Z  same intensity, different colour
 same X and Z, change Y  same colour, different intensity

 there are other co-ordinate systems with a luminance axis
 L*a*b*, L*u*v*, HSV, HLS

 some other systems use three colour co-ordinates
 RGB, CMY

 luminance can then be derived as some function of the three
 e.g. in RGB: Y = 0.299 R + 0.587 G + 0.114 B

262

Image display

a handful of technologies cover over 99% of all
display devices
 active displays

 cathode ray tube declining use
 liquid crystal display rapidly increasing use

l d l  plasma displays increasing use
 digital mirror displays increasing use in video projectors

 printers (passive displays)
 laser printers the traditional office printer
 ink jet printers low cost, rapidly increasing in quality,

the traditional home printer
 commercial printers for high volume

Cathode ray tubes 263 264

Cathode ray tubes

 focus an electron gun on a phosphor screen
 produces a bright spot

 scan the spot back and forth, up and down to cover the
whole screen

 vary the intensity of the electron beam to change the
intensity of the spotintensity of the spot

 repeat this fast enough and humans see a continuous
picture
 displaying pictures sequentially at > 20Hz gives illusion of

continuous motion
 but humans are sensitive to flicker at

frequencies higher than this...

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 45

265

Basic cathode ray tube I

phosphor
coating

 the heater emits electrons, which are accelerated by the
potential difference between cathode and anode

 electrons hitting the front screen excite the
phosphor, making it emit visible light

light
emitted

by excited
phosphor

cathode anode

+–
10–25 kV

electron beam

vacuum

heater
emitting

electrons

266

Basic cathode ray tube II

phosphor
coating

focussing
c ils

 focussing coils magnetically focus the electron beam to a
small spot on the CRT faceplate, making a single dot

 changing the voltage between the cathode and anode
changes the intensity of the electron beam and hence the
intensity of the dot

+–

cathode anode

heater
emitting

electrons electron beam

light
emitted

by excited
phosphor

vacuum

coils

267

Basic cathode ray tube III

focussing
il

 deflection coils magnetically deflect the electron beam to
any position on the screen

 the beam is scanned quickly left to right to draw a single
line of pixels and scanned top to bottom to draw multiple
lines, thus drawing the entire screen of pixels

deflection
il

+–

cathode anode

heater
emitting

electrons

coils coils

268

Raster scan
 the electron beam cannot be instantly pulled

from one side of the screen to the other or
from bottom to top, so there is flyback time,
where the intensity of the beam is made
zero and the scanning coils whizz back to the
start as fast as is electromagnetically possible

 it is not possible to scan in alternate
directions on alternate lines because this

time

horizontal
scan voltage

time

vertical
scan voltage

64µs (PAL television) 20ms (PAL television)

directions on alternate lines because this
would make a zigzag pattern of pixel
locations rather than a sequence of lines.

269

How fast do CRTs need to be?

 speed at which entire screen is updated is called
the “refresh rate”

 50Hz (PAL TV, used in most of Europe)
 many people can see a slight flicker

 60Hz (NTSC TV, used in USA and Japan)
 b tt

Flicker/resolution
trade-off

PAL 50Hz 768x576

NTSC 60Hz
640x480

this trade-off is
 better

 80-90Hz
 99% of viewers see no flicker, even on very bright

displays

 100Hz (newer “flicker-free” PAL TV sets)
 practically no-one can see the image flickering

based on an
historic maximum
line rate from the
early days of
colour television,
modern monitors
can go much faster
(higher resolution
and faster refresh
rate)

270

Colour CRTs: shadow masks
 use three electron guns & colour phosphors
 electrons have no colour

 use shadow mask to direct electrons from each gun
onto the appropriate phosphor

 the electron beams’ spots are bigger than the
shadow mask pitch
 can get spot size down to 7/4 of the pitch
 pitch can get down to 0.25mm with delta

arrangement of phosphor dots
 with a aperture grille shadow mask can reduce this

to 0.15mm

conventional
shadow mask

aperture grille
shadow mask

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 46

271

Liquid crystal displays I

 liquid crystals can twist the polarisation of light
 basic control is by the voltage that is applied across the

liquid crystal: either on or off, transparent or opaque
 greyscale can be achieved with some types of liquid crystal

by varying the voltage
 colour is achieved with colour filters

272

Liquid crystal displays II
there are two polarizers at right angles to one another
on either side of the liquid crystal: under normal
circumstances these would block all light

there are liquid crystal directors: micro-grooves which
align the liquid crystal molecules next to them

the liquid crystal molecules try to line up with one
another; the micro-grooves on each side are at right another; the micro grooves on each side are at right
angles to one another which forces the crystals’
orientations to twist gently through 90° as you go from
top to bottom, causing the polarization of the light to
twist through 90°, making the pixel transparent

liquid crystal molecules are polar: they have a positive and a
negative end

applying a voltage across the liquid crystal causes the
molecules to stand on their ends, ruining the twisting
phenomenon, so light cannot get through and the
pixel is opaque

273

Liquid crystal displays III

 low power consumption compared to CRTs although the
back light uses a lot of power

 image quality historically not as good as cathode ray tubes,
but improved dramatically over the last ten years

 uses
 l t laptops
 video projectors

 rapidly replacing CRTs as desk top displays
 increasing use as televisions

a three LCD video projector, with colour made by
devoting one LCD panel to each of red, green and

blue, and by splitting the light using dichroic mirrors
which pass some wavelengths and reflect others

274

Plasma displays I

 a high voltage across the electrodes ionizes a noble
gas (xenon, neon) which emits ultraviolet light, this
excites the phosphor, which emits visible light
 a plasma display therefore is essentially just thousands of

tiny fluorescent lights

275

Plasma displays II

 plasma displays have been commercially available since
1993
 but have been widely marketed since about 2000

 advantages
 can be made larger than LCD panels

 although LCD panels are getting bigger

January 2004:
Samsung release an
LCD TV as big as a
plasma TV at about
t i th t Will although LCD panels are getting bigger

 much thinner than CRTs for equivalent screen sizes

 disadvantages
 resolution (pixels per inch) not as good as either LCD or CRT
 uses lots of power & gets hot
 expensive compared to LCD or CRT technology

 uses
 mostly used in television and advertising

twice the cost. Will
plasma survive the
challenge?

276

Digital micromirror devices I

 developed by Texas Instruments
 often referred to as Digital Light Processing (DLP) technology

 invented in 1987, following ten year’s work on deformable
mirror devices

 manufactured like a silicon chip!
 t d d 5 lt 0 8 i CMOS  a standard 5 volt, 0.8 micron, CMOS process
 micromirrors are coated with a highly reflected aluminium alloy

 each mirror is 16×16µm2

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 47

277

Digital micromirror devices II

 used increasingly in video projectors
 widely available from late 1990s
 colour is achieved using either three DMD chips or one

chip and a rotating colour filter

Electrophoretic displays I

electronic paper widely used in e-books
iRex iLiad, Sony Reader, Amazon Kindle
200 dpi passive display

278

Electrophoretic displays II

transparent capsules ~40µ diameter
 filled with dark oil
 negatively charged 1µ titanium dioxide particles

electrodes in substrate attract or repel white particles
image persists with no power consumption

279

image persists with no power consumption

Electrophoretic displays III

colour filters over
individual pixels

flexible substrate

280

flexible substrate
using plastic
semiconductors
(Plastic Logic)

281

Printers

many types of printer
 ink jet

 sprays ink onto paper

 laser printer
 uses a laser to lay down a pattern of charge on a drum; this picks

 h d t hi h i th d t th up charged toner which is then pressed onto the paper

 commercial offset printer
 an image of the whole page is put on a roller
 this is repeatedly inked and pressed against the paper to print

thousands of copies of the same thing

all make marks on paper
 essentially binary devices: mark/no mark

282

Printer resolution

laser printer
 300–1200dpi

ink jet
 used to be lower resolution & quality than laser printers

but now have comparable resolutionp

phototypesetter for commercial offset printing
 1200–2400 dpi

bi-level devices: each pixel is either on or off
 black or white (for monochrome printers)
 ink or no ink (in general)

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 48

283

What about greyscale?

 achieved by halftoning
 divide image into cells, in each cell draw a spot of

the appropriate size for the intensity of that cell
 on a printer each cell is mm pixels, allowing m2+1

different intensity levelsdifferent intensity levels
 e.g. 300dpi with 44 cells  75 cells per inch, 17

intensity levels

 phototypesetters can make 256 intensity levels in
cells so small you can only just see them

 an alternative method is dithering
 dithering photocopies badly, halftoning photocopies

well

will discuss halftoning and dithering in Image Processing section of course

284

Halftoning & dithering examples

Halftoning Dithering

285

What about colour?
generally use cyan, magenta, yellow, and black inks

(CMYK)
inks aborb colour

 c.f. lights which emit colour
 CMY is the inverse of RGB

why is black (K) necessary?
 inks are not perfect aborbers
 mixing C + M + Y gives a muddy grey, not black
 lots of text is printed in black: trying to align C, M and Y

perfectly for black text would be a nightmare

see slide 64 CMYK space

286

How do you produce halftoned colour?

 print four halftone screens, one in each colour
 carefully angle the screens to prevent interference (moiré) patterns

Standard rulings (in lines per inch)

65 lpi65 lpi

85 lpi newsprint

100 lpi

120 lpi uncoated offset paper

133 lpi uncoated offset paper

150 lpi matt coated offset paper or art paper
publication: books, advertising leaflets

200 lpi very smooth, expensive paper
very high quality publication

150 lpi  16 dots per cell
= 2400 dpi phototypesetter
(1616 dots per cell = 256

intensity levels)

287

Four colour halftone screens

Standard angles
 Cyan 15°
 Black 45°
 Magenta 75°
 Yellow 90°

Magenta, Cyan & Black
are at 30° relative to
one another

Yellow (least distinctive
colour) is at 15° relative
to Magenta and Cyan

At bottom is the moiré pattern
 this is the best possible (minimal)

moiré pattern
 produced by this optimal set of

angles
 all four colours printed in black to

highlight the effect

288

Range of printable colours

a: colour photography
(diapositive)

b: high-quality offset printing
c: newspaper printing

why the hexagonal shape?
because we can print dots which
only partially overlap making the
situation more complex than for
coloured lights

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 49

289

Beyond four colour printing

 printers can be built to do printing in more colours
 gives a better range of printable colours

 six colour printing
 for home photograph printing
 dark & light cyan, dark & light magenta, yellow, black

 eight colour printing eight colour printing
 3× cyan, 3× magenta, yellow, black
 2× cyan, 2× magenta, yellow, 3× black

 twelve colour printing
 3× cyan, 3× magenta, yellow, black

red, green, blue, orange

290

The extra range of colour

this gamut is for
so-called HiFi
colour printing
 uses cyan,

magenta yellow magenta, yellow,
plus red, green and
blue inks

291

Commercial offset printing I

 for printing thousands of copies of the same thing
 produce printing plates at high resolution (e.g. 2400dpi)

and bolt them into the printer
 often set up for five colour printing

 CMYK plus a “spot colour”
 CMYK ll t d h t h CMYK allows you to reproduce photographs
 the spot colour allows you to reproduce one particular colour

(e.g. the corporate logo) accurately without halftoning

a typical sheet-fed offset press (Heidelberg Speedmaster SM 74–5–P–H)

292

Commercial offset printing II

 the plate cylinder is where the
printing plate is held

 this is dampened and inked
anew on every pass

 the impression from the plate
cylinder is passed onto the cylinder is passed onto the
blanket cylinder

 it is then transferred it onto the
paper which passes between the
blanket and impression cylinders

 the blanket cylinder is there so
that the printing plate does not
come into direct contact with
the paper

293

Laser printer
294

Ink jet printers

continuous ink jet
(left)

piezo ink jet
(right)

thermal ink jet
or bubble jet
(left)

electrostatic ink jet
(right)

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 50

295

Dye sublimation printers: true greyscale

 dye sublimation gives true greyscale

pixel sized heater

dye sheet

special paper
direction of travel

 dye sublimes off dye sheet and onto paper in proportion to
the heat level

 colour is achieved by using four different coloured dye
sheets in sequence — the heat mixes them

 extremely expensive
 modern inkjet technology gives results of similar quality

296

Image Processing
 filtering

 convolution
 nonlinear filtering

 point processing
 intensity/colour correction

 compositing

IP

Background

2D CG

3D CG

p g
 halftoning & dithering
 compression

 various coding schemes

297

Filtering

move a filter over the image, calculating a new value
for every pixel

298

Filters - discrete convolution

convolve a discrete filter with the image to produce a
new image
 in one dimension:

f x h i f x i
i

'() () ()  






 in two dimensions:

i 
where h(i) is the filter

f x y h i j f x i y j
ji

' (,) (,) (,)   










299

Example filters - averaging/blurring

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1 1 1

1 1 1

1 1 1

 1
9Basic 3x3 blurring filter

G i 3 3 bl i filt
Gaussian 5x5 blurring filter

1 2 1

2 24

1 2 1

1
16 

1 2 4 2 1

2

4

2

1 2 4 2 1

2

4

2

6 6

6 69

9

9

9161
112 

Gaussian 3x3 blurring filter

300

Example filters - edge detection

1 1 1

0 00

-1 -1 -1

1 1 0

1 -10

0 -1 -1

1 0 -1

1 -10

1 0 -1 1 0

-10

0 1

0-1Prewitt filters

Horizontal Vertical Diagonal

1 2 1

0 00

-1 -2 -1

2 1 0

1 -10

0 -1 -2

1 0 -1

2 -20

1 0 -1

Sobel filters

Roberts filters

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 51

301

Example filter - horizontal edge detection

1 1 1 300 200 100 0

0

300

0 0 0 0 0 00

0 0 0 0 0

300

0

0

0

0

0

0

0

300

100 100 100 100 100 100

100 100 100 100 100 100

100 100 100 100 100 100

100

100

100

100

100

100

100

100

100

Horizontal edge
detection filter

Image Result

0 00

-1 -1 -1

300 300 200 100

0 100 100 100

0 0 0 0 0 0

0 0 0 0

300

0

0

0

300

0

0

0

0

0

0

0

0

0

0

300

0

0

0 0 0 100 100 100

0 0 0 0 100 100

0 0 0 0 100 100

0 0 0 0 100 100

0

0

0

0

100

100

100

100

0

0

0

0

 

302

Example filter - horizontal edge detection

original image after use of a 33 Prewitt
horizontal edge detection filter

mid-grey = no edge, black or white = strong edge

303

Median filtering

not a convolution method
the new value of a pixel is the median of the values of

all the pixels in its neighbourhood

10 15 17 21 24 27

e.g. 33 median filter

99

10 15

12

15

17 21 24

18

27

34 2

37

38 42

40 44

40 41 43 47

16 20 25

22 23 25

37 36 39

27

39

41

16 21 24

20 36

23 36 39

25
(16,20,22,23,

25,
25,36,37,39)

sort into order and take median

304

Median filter - example
original

median
filter

add shot noise

Gaussian
blur

305

Median filter - limitations

copes well with shot (impulse) noise
not so good at other types of noise

original

in this example,
median filter reduces
noise but doesn’t

add random noise

median
filter

Gaussian
blur

eliminate it

Gaussian filter
eliminates noise
at the expense of
excessive blurring

306

Point processing

each pixel’s value is modified
the modification function only takes that pixel’s value

into account

p i j f p i j' (,) { (,)}

 where p(i,j) is the value of the pixel and p'(i,j) is the
modified value

 the modification function, f (p), can perform any operation
that maps one intensity value to another

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 52

307
Point processing

inverting an image

white

f(p)

black p
black white

308
Point processing

improving an image’s contrast

white

f(p)

black p
black white

dark histogram improved histogram

309
Point processing

modifying the output of a filter
black or white = edge
mid-grey = no edge

black = edge
white = no edge
grey = indeterminate

black = edge
white = no edge

black

white

p

f(p)

black white
black

white

p

f(p)

black white

thresholding

310

Point processing: gamma correction
 the intensity displayed on a CRT is related to the voltage on the electron

gun by:

 the voltage is directly related to the pixel value:

 gamma correction modifies pixel values in the inverse manner:

i V 

V p
 gamma correction modifies pixel values in the inverse manner:

 thus generating the appropriate intensity on the CRT:

 CRTs generally have gamma values around 2.0

p p' / 1 

i V p p   '

311

Image compositing

merging two or more images together

what does this operator do?

312

Simple compositing

copy pixels from one image to another
 only copying the pixels you want
 use a mask to specify the desired pixels

the mask determines
which image is used
for each pixel

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 53

313

Alpha blending for compositing

instead of a simple boolean mask, use an alpha mask
 value of alpha mask determines how much of each image to

blend together to produce final pixel

a b d

the mask determines
how to blend the two
source pixel values

m d ma m b  ()1

314

Arithmetic operations

images can be manipulated arithmetically
 simply apply the operation to each pixel location in turn

multiplication
 used in masking

subtraction (difference)subtraction (difference)
 used to compare images
 e.g. comparing two x-ray images before and after injection

of a dye into the bloodstream

315

Difference example

- =

a b d

the two images are taken from slightly different viewpoints

take the difference between the two images black = large difference
white = no differenced a b  1 | |

where 1 = white and 0 = black

316

Halftoning & dithering

mainly used to convert greyscale to binary
 e.g. printing greyscale pictures on a laser printer
 8-bit to 1-bit

is also used in colour printing,
normally with four colours:o a y w t ou co ou s:
 cyan, magenta, yellow, black

317

Halftoning

each greyscale pixel maps to a square of binary pixels
 e.g. five intensity levels can be approximated by a 22 pixel

square
 1-to-4 pixel mapping

8-bit values that map to each of the five possibilities

0-51 52-102 103-153 154-204 205-255

318

Halftoning dither matrix

one possible set of patterns for the 33 case is:

these patterns can be represented by the dither
matrix: 7 9 5

2 1 4

6 3 8

 1-to-9 pixel mapping

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 54

319

Rules for halftone pattern design

 mustn’t introduce visual artefacts in areas of constant intensity
 e.g. this won’t work very well:

 every on pixel in intensity level j must also be on in levels > j
 i.e. on pixels form a growth sequence

 d f h  pattern must grow outward from the centre
 simulates a dot getting bigger

 all on pixels must be connected to one another
 this is essential for printing, as isolated on pixels will not print very well

(if at all)

320

Ordered dither

 halftone prints and photocopies well, at the expense of large
dots

 an ordered dither matrix produces a nicer visual result than
a halftone dither matrix

1 9 3 11

15 5 13 7ordered 15 5 13 7

4 12 2 10

14 8 16 6

16 8 11 14

12 1 2 5

7 4 3 10

15 9 6 13

ordered
dither

halftone

3 6 9 14

Exercise: phototypesetters may use halftone cells up to size16x16, with 256 entries;
either construct a halftone dither matrix for a cell that large or, better, an algorithm to generate
an appropriate halftone dither matrix

321

1-to-1 pixel mapping

a simple modification of the ordered dither method
can be used
 turn a pixel on if its intensity is greater than (or equal to)

the value of the corresponding cell in the dither matrix

m
de g

1 9 3 11

15 5 13 7

4 12 2 10

14 8 16 6

0 1 2 3

0
1
2
3

n

dm n,

q p

b q d

i j i j

i j i j i j

, ,

, , ,()



 

div

mod mod

15

4 4

quantise 8 bit pixel value

find binary value

e.g.

322

Error diffusion

error diffusion gives a more pleasing visual result than
ordered dither

method:
 work left to right, top to bottom
 map each pixel to the closest quantised value map each pixel to the closest quantised value
 pass the quantisation error on to the pixels to the right

and below, and add in the errors before quantising these
pixels

323

Error diffusion - example (1)

map 8-bit pixels to 1-bit pixels
 quantise and calculate new error values

8-bit value

fi,j

1-bit value

bi,j

error

ei,j

0-127 0 f i j,

 each 8-bit value is calculated from pixel and error values:

128-255 1 f i j,  255

f p e ei j i j i j i j, , , ,   
1
2 1

1
2 1

in this example the errors
from the pixels to the left
and above are taken into
account

324

Error diffusion - example (2)

107 100

60 80

+30

107 100

60 80

0

+30

original image process pixel (0,0) process pixel (1,0)

process pixel (0,1) process pixel (1,1)

107 100

0 110

+30 +55

+55

0

1

137 100

0 0

+55

-59

-59
1 96

0 0

0
-59 +48

+48

process pixel (0,1) process pixel (1,1)

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 55

325

Error diffusion

 Floyd & Steinberg developed the error diffusion method in
1975
 often called the “Floyd-Steinberg algorithm”

 their original method diffused the errors in the following
proportions:

pixels that have

7
16

1
165

16

3
16

pixels still to
be processed

pixels that have
been processed

current pixel

326

Halftoning & dithering — examples
ordered dither error diffusedoriginal

halftoning
(44 cells)

halftoning
(55 cells)

thresholding

327

Halftoning & dithering — examples

original

halftoned with a very
fine screen

ordered dither

the regular dither
pattern is clearly
visible

error diffused

more random than
ordered dither and
therefore looks more
attractive to the
human eye

thresholding

<128  black

128  white

halftoning

the larger the cell size, the more intensity levels
available

the smaller the cell, the less noticable the
halftone dots

328

Encoding & compression

introduction
various coding schemes

 difference, predictive, run-length, quadtree

transform coding
 Fourier cosine wavelets JPEG Fourier, cosine, wavelets, JPEG

329

What you should note about image data

there’s lots of it!
 an A4 page scanned at 300 ppi produces:

 24MB of data in 24 bit per pixel colour
 1MB of data at 1 bit per pixel

 the Encyclopaedia Britannica would require 25GB at 300 ppi, 1
bit per pixelbit per pixel

adjacent pixels tend to be very similar

compression is therefore both feasible and necessary

330

Encoding - overview

 mapper
 maps pixel values to some other set of values
 designed to reduce inter-pixel redundancies

Mapper Quantiser
Symbol
encoder

image
encoded

image

fewer
bits than
original

 quantiser
 reduces the accuracy of the mapper’s output
 designed to reduce psychovisual redundancies

 symbol encoder
 encodes the quantiser’s output
 designed to reduce symbol redundancies

all three
operations are

optional

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 56

331

Lossless vs lossy compression

lossless
 allows you to exactly reconstruct the pixel values from the

encoded data
 implies no quantisation stage and no losses in either of the other

stages

llossy
 loses some data, you cannot exactly reconstruct the

original pixel values

332

Raw image data

can be stored simply as a sequence of pixel values
 no mapping, quantisation, or encoding

5 54 5 18 5 30 16 69 43 58 40 33 18 13 16 3 16 9 7 189 119 69 44 60 42 68 161 149 70 37 48 35 57 2
56 12 15 64 41 21 14 4 3 218 57 64 6 54 57 46 118 149 140 32 45 39 24 199 156 81 16 12 29 12 15 42
130 168 124 174 38 59 50 9 65 29 128 22 192 125 147 29 38 22 198 170 78 42 41 43 43 46 163 188 1
27 57 24 40 24 21 43 37 44 163 110 100 74 51 39 31 232 20 121 50 55 10 186 77 111 112 40 86 186
81 7 32 18 136 78 151 159 187 114 35 18 29 233 3 86 35 87 26 42 52 14 13 13 31 50 73 20 18 22 81
152 186 137 80 131 47 19 47 24 66 72 29 194 161 63 17 9 8 29 33 33 38 31 27 81 74 74 66 38 48 65
66 42 26 36 51 55 77 229 61 65 11 28 32 41 35 36 28 24 34 138 130 150 109 56 37 30 45 38 41 157 1
44 110 176 71 36 30 25 41 44 47 60 20 11 19 16 155 156 165 125 69 39 38 48 38 22 18 49 107 119 1
43 32 44 30 26 45 44 39 33 37 63 22 148 178 141 121 76 55 44 42 25 13 17 21 39 70 47 25 57 93 121

3232 pixels 1024 bytes

39 11 128 137 61 41 168 170 195 168 135 102 83 48 39 33 19 16 23 33 42 95 43 121 71 34 39 40 38 4
168 137 78 143 182 189 160 109 104 87 57 36 35 6 16 34 41 36 63 26 118 75 37 41 34 33 31 39 33 15
95 21 181 197 134 125 109 66 46 31 3 33 38 42 33 38 46 12 109 25 41 36 34 36 34 34 37 174 202 210
148 132 101 79 58 41 32 0 11 26 53 46 45 48 38 42 42 38 32 37 36 37 40 30 183 201 201 152 92 67 2
41 24 15 4 7 43 43 41 50 45 10 44 17 37 41 37 33 31 33 33 172 180 168 112 54 55 11 182 179 159 89
48 39 48 46 12 25 162 39 37 28 44 49 43 41 58 130 85 40 49 14 212 218 202 162 98 60 75 8 11 27 38
195 40 45 34 41 48 61 48 42 61 53 35 30 35 178 212 182 206 155 80 70 30 6 14 39 36 53 43 45 8 6 18
35 59 49 31 79 73 78 62 81 108 195 175 156 112 60 53 6 11 22 42 49 51 48 49 3 16 184 77 83 156 36
63 80 65 73 84 157 142 126 77 51 9 12 27 32 142 109 89 56 8 6 169 178 80 240 231 71 36 30 28 35 5
90 55 42 2 3 37 37 192 155 129 101 106 72 65 19 157 168 195 192 157 110 132 39 40 38 35 38 42 51
48 41 89 197 174 144 138 98 92 56 45 69 161 199 46 65 187 79 131 64 41 96 46 38 37 42 47 44 56 47
165 173 142 103 81 59 58 41 96 78 204 54 42 52 125 118 45 102 39 55 17 57 62 45 60 46 39 188 69 6
135 81 84 72 60 43 47 40 209 158 83 154 232 211 186 162 156 167 223 190 58 201 175 101 104 124
162 118 89 81 63 48 39 33 12 209 162 71 152 210 250 176 58 201 191 147 188 160 147 147 166 79 6
137 110 101 83 70 70 48 34 37 2 182 121 157 83 101 104 76 65 194 155 136 156 202 162 173 64 84 8
130 123 106 77 63 49 37 39 36 26 189 165 119 123 131 24 70 85 229 154 215 176 92 141 223 20 73 4
99 83 71 49 35 36 30 30 23 151 58 169 33 12 99 22 76 234 156 180 219 108 30 128 59 26 27 26 47 12
45 38 52 55 11 112 128 40 35 40 21 126 65 179 162 156 158 201 145 44 35 18 27 14 21 23 0 101 78 7
162 155 220 174 27 17 20 173 29 160 187 172 93 59 46 121 57 14 50 76 69 31 78 56 82 76 64 66 66 5
69 26 20 33 160 235 224 253 29 84 102 25 78 22 81 103 78 158 192 148 125 68 53 30 29 23 18 82 13

333

Symbol encoding on raw data

pixels are encoded by variable length symbols
 the length of the symbol is determined by the frequency of

the pixel value’s occurence

p P p() Code 1 Code 2
e.g.

(an example of symbol encoding)

0
1
2
3
4
5
6
7

0.19
0.25
0.21
0.16
0.08
0.06
0.03
0.02

000
001
010
011
100
101
110
111

11
01
10

001
0001

00001
000001
000000

p p()

with Code 1 each pixel requires 3 bits
with Code 2 each pixel requires 2.7 bits

Code 2 thus encodes the data in
90% of the space of Code 1

334

Quantisation as a compression method

quantisation, on its own, is not normally used for
compression because of the visual degradation of the
resulting image

however, an 8-bit to 4-bit quantisation using error
diffusion would compress an image to 50% of the

(an example of quantisation)

p g
space

335

Difference mapping

 every pixel in an image will be very similar to those either side
of it

 a simple mapping is to store the first pixel value and, for every
other pixel, the difference between it and the previous pixel

(an example of mapping)

67 73 74 69 53 54 52 49 127 125 125 126

67 +6 +1 -5 -16 +1 -2 -3 +78 -2 0 +1

336

Difference mapping - example (1)

Difference
Percentage

of pixels

0 3.90%
-8..+7 42.74%

-16..+15 61.31%
-32..+31 77.58%
-64..+63 90.35%

-128..+127 98.08%
-255..+255 100.00%

this distribution of values will work well with a
variable length code

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 57

337

Difference mapping - example (2)

-8..+7 0XXXX 5 42.74%

-40..-9 10XXXXXX 8 38.03%

Difference
value Code

Code
length

Percentage
of pixels

this is a very simple variable length code
(an example of mapping and symbol encoding combined)

+8..+39

-255..-41 11XXXXXXXXX 11 19.23%
+40..+255

7.29 bits/pixel
91% of the space of the original image

338

Predictive mapping

 when transmitting an image left-to-right top-to-bottom, we already
know the values above and to the left of the current pixel

 predictive mapping uses those known pixel values to predict the
current pixel value, and maps each pixel value to the difference
between its actual value and the prediction

(an example of mapping)

e.g. p p pi j i j i j, , ,  
1
2 1

1
2 1

prediction

difference - this is what we transmit

d p pi j i j i j, , ,  

339

Run-length encoding

based on the idea that images often contain runs of
identical pixel values
 method:

 encode runs of identical pixels as run length and pixel value
 encode runs of non-identical pixels as run length and pixel values

(an example of symbol encoding)

34 36 37 38 38 38 38 39 40 40 40 40 40 49 57 65 65 65

34 36 37 38 39 40 49 57 653 4 1 5 2 4

65

original pixels

run-length encoding

340

Run-length encoding - example (1)

 run length is encoded as an 8-bit value:
 first bit determines type of run

 0 = identical pixels, 1 = non-identical pixels
 other seven bits code length of run

 binary value of run length - 1 (run length 1,…,128})

 pixels are encoded as 8-bit values pixels are encoded as 8 bit values

 best case: all runs of 128 identical pixels
 compression of 2/128 = 1.56%

 worst case: no runs of identical pixels
 compression of 129/128=100.78% (expansion!)

341

Run-length encoding - example (2)

 works well for computer generated imagery
 not so good for real-life imagery
 especially bad for noisy images

19.37% 44.06% 99.76%
compression ratios

342

CCITT fax encoding

fax images are binary
 transmitted digitally at relatively low speed over the

ordinary telephone lines
 compression is vital to ensuring efficient use of bandwidth

1D CCITT group 3g p
 binary image is stored as a series of run lengths
 don’t need to store pixel values!

2D CCITT group 3 & 4
 predict this line’s runs based on previous line’s runs
 encode differences

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 58

343

Transform coding

-4.5

= 76

+4 5

+0

79 73 63 71 73 79 81 89

 transform N pixel values into
coefficients of a set of N basis
functions

 the basis functions should be chosen
so as to squash as much information +4.5

+1.5

-2

+1.5

+2

q
into as few coefficients as possible

 quantise and encode the coefficients

344

Mathematical foundations

each of the N pixels, f(x), is represented as a
weighted sum of coefficients, F(u)

f x F u H u x
u

N

() () (,)





0

1

0 1 2 3 4 5 6 7
e.g. H(u,x) x

H(u,x) is the array
of weights

0 1 2 3 4 5 6 7
0 +1 +1 +1 +1 +1 +1 +1 +1
1 +1 +1 +1 +1 -1 -1 -1 -1
2 +1 +1 -1 -1 +1 +1 -1 -1
3 +1 +1 -1 -1 -1 -1 +1 +1
4 +1 -1 +1 -1 +1 -1 +1 -1
5 +1 -1 +1 -1 -1 +1 -1 +1
6 +1 -1 -1 +1 +1 -1 -1 +1
7 +1 -1 -1 +1 -1 +1 +1 -1

g ()

u

345

Calculating the coefficients

the coefficients can be calculated from the pixel
values using this equation:

F u f x h x u
x

N

() () (,)





0

1
forward

transform

 compare this with the equation for a pixel value, from the
previous slide:

f x F u H u x
u

N

() () (,)





0

1
inverse

transform

346

Walsh-Hadamard transform

“square wave” transform
 h(x,u)= 1/N H(u,x)

0

1

2

8

9

10
the first sixteen

invented by Walsh (1923) and Hadamard (1893) - the two variants give the same results for N a power of 2

3

4

5

6

7

11

12

13

14

15

the first sixteen
Walsh basis

functions

(Hadamard basis
functions are the same,

but numbered differently!)

347

2D transforms

 the two-dimensional versions of the transforms are an extension
of the one-dimensional cases

F u f x h x u
N

() () (,)



1

F u v f x y h x y u v
NN

(,) (,) (, , ,)



11

one dimension two dimensions

forward transform

f
x

() () (,)



0

f x F u H u x
u

N

() () (,)





0

1

F u v f x y h x y u v
yx

(,) (,) (, , ,)



00

f x y F u v H u v x y
v

N

u

N

(,) (,) (, , ,)









0

1

0

1

inverse transform

348

2D Walsh basis functions

 these are the Walsh basis
functions for N=4

 in general, there are N2 basis  in general, there are N basis
functions operating on an NN
portion of an image

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 59

349

Discrete Fourier transform (DFT)

forward transform:

inverse transform:

F u f x
e

N

i ux N

x

N

() ()
/









2

0

1 

f x F u e i xu N
N

() () /


 2
1



 thus:

f x F u e
u

() ()



0

h x u e

H u x e

N
i ux N

i xu N

(,)

(,)

/

/





1 2

2





350

DFT – alternative interpretation

 the DFT uses complex coefficients to represent real pixel
values

 it can be reinterpreted as:





2

0

))(2cos()()(
N

u

uuxuAxf 

 where A(u) and (u) are real values

 a sum of weighted & offset sinusoids

0u

351

Discrete cosine transform (DCT)

forward transform:

inverse transform:








 1)12(

)()()(
N ux

f


f x F u u
x u

Nu

N

() () ()cos
() 









  2 1
20

1










 


0 2

)12(
cos)()()(

x N

ux
xxfuF



where:










}1,2,1{

0
)(

2

1

Nz

z
z

N

N




352

DCT basis functions
the first eight DCT basis
functions showing the
values of h(u,x) for N=8

0

1

353

Haar transform: wavelets

 “square wave” transform, similar to Walsh-Hadamard
 Haar basis functions get progressively more local

 c.f. Walsh-Hadamard, where all basis functions are global

 simplest wavelet transform

354

Haar basis functions

0

1

2

3

8

9

10

11

the first sixteen Haar basis functions

3

4

5

6

7

11

12

13

14

15

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 60

355

Karhunen-Loève transform (KLT)
“eigenvector”, “principal component”, “Hotelling” transform

based on statistical properties of the image source
theoretically best transform encoding method
but different basis functions for every different image

source
if we assume a statistically random image source

 all images are then equally likely

 the KLT basis functions are very similar to the DCT basis
functions
 the DCT basis functions are much easier to compute and use

 therefore use the DCT for statistically random image
sources

first derived by Hotelling (1933) for discrete data; by Karhunen (1947) and Loève (1948) for continuous data

356

JPEG: a practical example

compression standard
 JPEG = Joint Photographic Expert Group

three different coding schemes:
 baseline coding scheme

 based on DCT, lossy
 adequate for most compression applications

 extended coding scheme
 for applications requiring greater compression or higher precision

or progressive reconstruction

 independent coding scheme
 lossless, doesn’t use DCT

357

JPEG sequential baseline scheme

 input and output pixel data limited to 8 bits
 DCT coefficients restricted to 11 bits
 three step method

DCT
transform

Quantisation
Variable
length

di

image

JPEG
encoded

image

transform
encoding

the following slides describe the steps involved in the JPEG
compression of an 8 bit/pixel image

358

JPEG example: DCT transform

subtract 128 from each (8-bit) pixel value
subdivide the image into 88 pixel blocks
process the blocks left-to-right, top-to-bottom
calculate the 2D DCT for each block

image 2D DCT

the most important
coefficients are in the
top left hand corner

359

JPEG example: quantisation

quantise each coefficient, F(u,v), using
the values in the quantisation matrix
and the formula:


F u v

F u v
Z u v

(,)
(,)
(,)

 





round

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

Z u v(,)

 reorder the quantised values in a
zigzag manner to put the most
important coefficients first

72 92 95 98 112 100 103 99

360

JPEG example: symbol encoding

the DC coefficient (mean intensity) is coded relative to
the DC coefficient of the previous 88 block

each non-zero AC coefficient is encoded by a variable
length code representing both the coefficient’s value and
the number of preceding zeroes in the sequencep g q
 this is to take advantage of the fact that the sequence of 63 AC

coefficients will normally contain long runs of zeroes

Computer Graphics & Image Processing Lent Term 2012

©1996–2012 Neil A. Dodgson 61

361

Course Structure – a review
Background [3L]

 images, human vision, displays

2D computer graphics [4L]
 lines, curves, clipping, polygon filling,

transformations

3D computer graphics [6L] 2D CG IP

3D CG

3D computer graphics [6L]
 projection (3D2D), surfaces, clipping,

transformations, lighting, filling, ray tracing,
texture mapping

Image processing [3L]
 filtering, compositing, half-toning, dithering,

encoding, compression

Background

362

What next?

Advanced graphics
 Modelling, splines, subdivision surfaces, complex geometry,

more ray tracing, radiosity, animation

Human-computer interaction
 Interactive techniques, quantitative and qualitative q q q

evaluation, application design

Information theory and coding
 Fundamental limits, transforms, coding

Computer vision
 Inferring structure from images

363

And then?

Graphics
 multi-resolution modelling
 animation of human behaviour
 æsthetically-inspired image processing

HCIHCI
 large displays and new techniques for interaction
 emotionally intelligent interfaces
 applications in education and for special needs
 design theory

http://www.cl.cam.ac.uk/research/rainbow/

Computer Graphics
 & Image Processing: Exercises

Computer Laboratory

Introduction
Some of these exercises were written by three computer graphics supervisors in 1997.
Subsequently extra exercises have been added, along with all past examination
questions up to 2000. Credit for the original set of questions goes to Dr Chris Faigle,
Dr James Gain, and Dr Jonathan Pfautz. Any mistakes remain the problem of Professorr
Dodgson.
There are four sets of exercises, one for each of the four parts of the course. Each set of
exercises contains four sections:

W. Warmups
These are short answer questions that should only take you a few minutes each.

P. Problems
These are geared more towards real exam questions. You should make sure that you
can answer these.

E. Old Exam Problems
These are relevant problems from exams before 2000. You should definitely make sure
that you can answer these. All exam questions from 2000 onwards are relevant also.
These may be found on the Lab’s website.

F. Further Problems
These are harder problems that will be worth your while to answer if you find the
other stuff too easy.

Information for supervisors
Be selective: do not set your supervisees every single question from each part — that

would overload them.
Do not feel that you have to give one supervision on each part: choose your questions

with regard to when your supervisions fall relative to the lectures.
You can specify questions as: Part/Section/Question. For example: 2/W/1.
Solution notes. Starred exercises () have solution notes. Doubly starred exercises

() (these are all pre-2000 exam questions) have model answers marked by Dr
Dodgson according to the official marking scheme. Some post-2000 exam questions
have solution notes. All of these are available to supervisors only from the student
administration office.

Computer Graphics & Image Processing Exercises Page 1

Part 1: Background

W. Warmups
1. [moved elsewhere]
2. Suppose you are designing a user interface for someone who is colour blind.

Describe how some user interface of your choice should be suitably modified.
3. Why is it better to look at stars and comets slightly off-centre rather than looking

directly at them?
4. In a CAD system blue would be a poor choice for the colour of an object being

designed. Why is this?
5. In New Zealand, warning road signs are black on yellow, it being alleged that

this is easier to see than black on white. Why might this be true?

P. Problems
1. Colour Spaces. Explain the use of each of the following colour spaces: (a) RGB;

(b) XYZ; (c) HLS; (d) Luv
2. Monitor Resolution. Calculate the ultimate monitor resolution (i.e. colour

pixels/inch) at which point better resolution will be indistinguishable.
3. CRTs. Explain the basic principles of a Cathode Ray Tube as used for television.
4. Pixels. Why do we use square pixels? Would hexagonal pixels be better? What

about triangles? Do you see any difficulties building graphics hardware with these
other two schemes?

5. Additive vs Subtractive. Explain the difference between additive colour (RGB) and
subtractive colour (CMY). Where is each used and why is it used there?

E. Old Exam Problems
1. [94.3.8] (a) Explain how a shadow mask cathode ray tube works. What do you

think some of the manufacturing difficulties might be? (b) What might be the point
of extending the scheme to accommodate five electron guns?

2. [97.6.4 first part] It is convenient to be able to specify colours in terms of a
three-dimensional co-ordinate system. Three such co-ordinate systems are: RGB,
HLS, L*a*b*.
Choose two of these three co-ordinate systems.
For each of your chosen two:
(a) describe what each of the three co-ordinates represents
(b) describe why the co-ordinate system is a useful representation of colour

3. [98.6.4 first part] An inventor has recently developed a new display device: it is
a transparent panel with a rectangular array of square pixels. The panel is tinted
with a special ink which allows each pixel to range from totally transparent to
transmitting only the colour of the ink. Each pixel has an 8-bit value. For example,
if the ink is blue then a pixel value of 0 would be totally transparent, 255 totally
blue (only blue light transmitted) and 100 a light blue.

The inventor has recently found that he can make the special ink in any colour he
likes, but that each panel can be tinted with only one of these colours. He proposes
to use three inks in three panels to make a 24-bit colour display: a red-tinted panel,

light light
diffuser

panel viewer

Computer Graphics & Image Processing Exercises Page 2

a green-tinted panel and a blue-tinted panel will be stacked up to make a full-colour
display (see picture). A value of (0,0,0) will thus be white (transparent), (255,0,0)
red and (255,255,255) black.

Explain why this will not work. [4]
Modify the three-panel design so that it will work. [3]
In common with other 24-bit “full-colour” displays (for example CRT, LCD), your
display cannot display every colour which a human can perceive. Why not? [3]

4. [99.5.4 first part] A company wishes to produce a greyscale display with pixels
so small that a human will be unable to see the individual pixels under normal
viewing conditions. What is the minimum number of pixels per inch required to
achieve this? Please state all of the assumptions that you make in calculating your
answer. [Note: it may be helpful to know that there are 150 000 cones per square
millimetre in the human fovea, and that there are exactly 25.4 millimetres in an
inch. [6]
If the pixels could be only black or white, and greyscale was to be achieved by
halftoning, then what would the minimum number of pixels per inch be in order
that a human could not see the halftone dots? Again, state any assumptions that you
make. [2]

F. Further Problems
1. Liquid Crystal Displays. Explain how a liquid crystal display works.
2. Head Mounted Display. Ivan Sutherland described, in 1965, the “Ultimate

Display”. This display was to match all of the human senses so that the display
images were indistinguishable from reality. He went on to build the world’s first
head-mounted display (HMD) over the next few years. Needless to say, he was far
from accomplishing his goal.
You are to work out the flat-screen pixel resolution (height and width) necessary for
an Ultimate HMD (that is, so that the display seems to match the real world) given
the following information:
 viewing distance: 10 cm
 human visual acuity: 1 minute of visual arc
 human vertical field of view: 100°
 human horizontal field of view: 200°
Give at least five assumptions that have been made in your calculations (and in the
question itself!).

3. Why is the sky blue? [Hints: Why might it be blue? Why are sunsets red? Are the
red of a sunset and the blue of the sky related?]

4. Printing. Select one of (a) laser printing, (b) ink jet printing, (c) offset printing. Find
out how it works and write a 1000 word description which a 12 year old could
understand.

5. Displays. Find out in detail and explain how either (a) a plasma display or (b) a
DMD display works.

light light
diffuser

viewer

red
panel

green
panel

blue
panel

Computer Graphics & Image Processing Exercises Page 3

Part 2: 2D Computer Graphics

W. Warmups
1. GUIs. How has computer graphics been affected by the advent of the graphical

user interface?
2. Matrices. Give as many reasons as possible why we use matrices to represent

transformations. Explain why we use homogeneous co-ordinates.
3. BitBlt. What factors do you think affect the efficiency of BitBlt’s ability to move

images quickly?

P. Problems
1. Circle Drawing. Give the circle drawing algorithm, in detail, for the first octant.

Prove that it works by checking it on a circle of radius 6.
2. Oval Drawing. (a) In slide 124 of the notes Dr. Dodgson writes that one must use

points of 45° slope to divide the oval into eight sections. Explain what is meant by
this and why it is so.

3. Line Drawing. On paper run Bresenham’s algorithm (slide 112) for the line running
from (0,0) to (5,3).

4. Subdivision. If we are subdividing Bézier curves in order to draw them, how do
we know when the curve is within a given tolerance? (i.e. what piece of mathematics
do we need to do to check whether or not we are within tolerance?)

5. Bézier cubics. Derive the conditions necessary for two Bézier curves to join with (a)
just C0-continuity; (b) C1-continuity; (c) C2-continuity. Why would it be difficult
(if not impossible) to get three Bézier curves to join in sequence with C2-continuity
at the two joins?

6. Triangle drawing. Describe, in detail, an algorithm to fill a triangle. Show that it
works using the triangle with vertices (0,0), (5,3) and (2,5).

7. Triangle drawing. Implement an algorithm to fill triangles. Demonstrate it working.
8. Bézier cubics. Implement the Bézier curve algorithm on slides 133–137.

Demonstrate it working.
9. Lines & circles. Implement the Midpoint line and circle drawing algorithms.

Demonstrate them working.

E. Old Exam Problems
1. [96.5.4] Consider the control of detail in a curve represented as a sequence of

straight line segments. Describe how Douglas and Pücker's algorithm might be used
to remove superfluous points.
Describe how Overhauser interpolation can be used to introduce additional points.

2. [95.5.4] Why are matrix representations used to describe point transformations
in computer graphics?
Describe how to represent three different 2D transformations as matrices.
Explain how to derive a sequence of transformations to achieve the overall effect of
performing a 2D rotation about an arbitrary point.

3. [97.4.10] Describe an algorithm to draw a straight line using only integer
arithmetic. You may assume that the line is in the first octant, that the line starts
and ends at integer co-ordinates, and that the function setpixel(x,y) turns on the
pixel at location (x,y).
Explain how straight lines can be used to draw Bézier cubic curves.

Computer Graphics & Image Processing Exercises Page 4

4. [98.5.4] Describe an algorithm for clipping a line against a rectangle. [9]

Show that it works using the above three examples. [3]

The above diagram shows a complicated 2D transformation applied to a unit
square. The overall transformation can be described in terms of a number of simpler
transformations. Describe each of these simple transformations and give a matrix
representation of each using homogeneous coordinates. [6]
Use the matrices from the previous part to find the (x,y) coordinates of point A', the
image of point A under the overall transformation. [2]

5. [99.4.10 first part] Give the formula for a Bézier cubic curve. Derive the
conditions necessary for two Bézier cubic curves to join with (i) just C0-continuity
and (ii) C1-continuity. Give a geometric interpretation of each condition in terms of
the locations of control points. Explain (mathematically) why a Bézier cubic curve is
guaranteed to lie within the convex hull of its control points. [8]

6. [99.6.4 second part] Describe an algorithm which clips an arbitrary polygon
against an arbitrary convex polygon (in 2D). [8]
Will your algorithm correctly clip an arbitrary polygon against an arbitrary non-
convex polygon? If so, explain why and demonstrate an example which illustrates
that it does work in such cases. If not, explain why not and outline how your
algorithm could be extended to perform clipping in such [4]

F. Further Problems
1. Bernstein Polynomials. Prove that the Bernstein polynomials sum to 1.
2. Polygon Filling. Explain in detail how a polygon filling algorithm works including

details of how to interpolate along the edges and how to maintain the necessary
data structures.

3. Polygon Filling. Implement the polygon filling algorithm, including clipping the
polygon, and demonstrate it working on a number of polygons.

4. Bézier cubics. An alternative way of implementing cubics would be to modify the
algorithm on slide 134 to say:
 IF (P0 and P3 are less than a pixel apart) THEN
 draw that pixel
 ELSE…
Implement both this algorithm and the algorithm on slide 134 and compare their
output.

x

y

1
1

2

2

B(0,0)

A(0,1) B'(3,2)

A'
30˚

Computer Graphics & Image Processing Exercises Page 5

Part 3: 3D Computer Graphics

W. Warmups
1. Texture Mapping. Are there any problems with texture mapping onto a sphere?
2. <3/W/2 deleted in 1999 because the course no longer covers this material>
3. Shading Model. Do you see any problems with the naïve shading model? Can

you suggest anything to improve its faults?
4. Illumination. Describe the following in terms of illumination: ambient, diffuse,

specular.
5. Phong. Describe how Phong’s specular reflection models real specular reflection.

Why is it only a rough approximation? Why is it useful?
6. Level of Detail. You are given several representations of each object in your 3D

scene. When you render the scene, you know all of the world/viewing parameters
necessary. Describe several (at least three) ways to determine which representation
to choose for each object.

7. Coordinate Systems. Draw pictures to show what is meant by:
 object coordinates,
 world coordinates,
 viewing coordinates,
 screen coordinates.

8. Projections. Illustrate the difference between orthographic (parallel) and
perspective projection.

9. Triangle mesh approximations. We use a lot of triangles to approximate stuff in
computer graphics. Why are they good? Why are they bad? Can you think of any
alternatives?

P. Problems
1. Projection. Draw and explain two different scenes which have the same projection

as seen by the viewer. What other cues can you give so that the viewer can
distinguish the depth information.

2. 3D Transformations. The Rainbow Graphics Group has available a simple robot
arm. This robot arm has, for the purposes of this question, the following
characteristics:
• Two joints, a shoulder joint and an elbow joint. The shoulder joint is connected
by a 2-unit length upper arm to the elbow joint, which in turn is connected by a
single unit lower arm to the hand.

 shoulder elbow hand
• The joints can only rotate in the xy-plane.
• The shoulder joint is attached to a z-axis vertical slider, which can raise or lower
the entire robot arm, but is not able to translate it in the xy-plane.
• The initial position of the arm is:
 shoulder joint: position (0,0,0), rotation 0°
 elbow joint: position (2,0,0), rotation 0°
 hand: position (3,0,0)
There is a soft drink can located at position (1,1,1). The robot hand must touch this
can. Specify the transformation matrices of the joints needed to achieve this.

3. Perspective Projection Geometry. (a) Give a matrix, in homogeneous co-ordinates,
which will project 3D space onto the plane z=d with the origin as centre of
projection. (b) Modify this so that it gives the same x and y as in (a), but also gives

Computer Graphics & Image Processing Exercises Page 6

1/z as the third co-ordinate. (c) Now give a matrix, based on the one in (a), which
projects onto the plane z=d with an arbitrary point as centre of projection.

4. Bounding Volumes. For a cylinder of radius 2, with endpoints (1,2,3) and (2,4,5),
show how to calculate: (a) an axis-aligned bound box, (b) a bounding sphere.

5. Depth Interpolation. Prove that depth interpolation is correct as given in the notes.
6. BSP Tree. Break down the following (2D!) lines into a BSP-tree, splitting them if

necessary.
(0, 0)→(2, 2), (3,4)→(1, 3), (1, 0)→(-3, 1), (0, 3)→(3, 3) and (2, 0)→(2, 1)

7. Sphere Subdividing. We often use triangles to represent a sphere. Describe two
methods of generating triangles from a sphere.

8. Compare and Contrast. Compare and contrast: texture mapping, bump mapping
and displacement mapping (you will need to do a bit of background reading).

9. Shading. Develop pseudocode for algorithms that shade a triangle according to:
(a) Gouraud shading.
(b) Phong shading.
You can use the scan line polygon fill algorithm as a starting point. Detail your
inputs and outputs explicitly.

10.Rendering. Compare the computation and memory requirements of the following
rendering algorithms:
(a) z-Buffer
(b) Ray tracing
State explicitly any assumptions that you make (e.g. the resolution of the screen).
Present your results both numerically and in graph form (with number of polygons
on the x-axis).

11. Bézier Joins. Explain the three types of joins for Bézier curves and Bézier patches.
12. 3D Clipping. (a) Compare the two methods of doing 3D clipping in terms of

efficiency. (b) How would using bounding volumes improve the efficiency of these
methods?

13. Rotation.
Show how to perform 2D rotation around an arbitrary point.
Show how to perform 3D rotation around an arbitrary axis parallel to the x-axis.
Show how to perform 3D rotation around an arbitrary axis.

14. 3D Polygon Scan Conversion
Describe a complete algorithm to do 3D polygon scan conversion, including details
of clipping, projection, and the underlying 2D polygon scan conversion algorithm.

E. Old Exam Problems
1. [96.6.4] What are homogeneous coordinates? How can they be used in computer

graphics to model (a) translation? and (b) simple perspective?
2. [95.4.8] (a) Explain the purpose of the A-buffer in rendering a sequence of images

into the framestore. (b) Exhibit an example that shows an advantage over the use of
a z-buffer.

3. [95.6.4] In ray tracing a large computational cost is associated with determining
ray-object intersections. Explain how the use of bounding volumes and space
subdivision methods may reduce this cost.

4. [94.5.4] (a) Discuss sampling artifacts and their effect on image quality on a
raster display. (b) What can be done to reduce or eliminate them?

5. [97.5.2] Describe the z-buffer polygon scan conversion algorithm.
Explain how the A-buffer improves on the z-buffer.

Computer Graphics & Image Processing Exercises Page 7

6. [98.4.10] In ray tracing, ambient, diffuse and Phong’s specular shading can be
used to define the colour at a point on a surface. Explain what each of the three
terms refers to, and what real effect each is trying to model. [9]
The diagram below represents a scene being ray traced. The circles may be taken to
represent the cross-sections of spheres. In answering the remaining parts of this
question you should use copies of the diagram below (see page 10).
A particular ray from the eyepoint O has been found to have its closest intersection
with an object at point P. Show, on a diagram, all subsequent rays and vectors
which must be found in order to calculate the shading at point P. Explain the
purpose of each one.
Assume that:
• each object has ambient, diffuse and specular reflections,
 but is not a perfect reflector
• each object is opaque
• all rays and vectors lie in the plane of the paper
• we are not using distributed ray tracing [8]
Assume now that all of the objects are perfect reflectors (in addition to having
ambient, diffuse and specular reflection). Show, on a separate diagram, the extra
rays which need to be calculated and explain the purpose of each one. [3]

[Note: in 1998 about half of the attempts at this question were wildly wrong. Please
check your answer to ensure that a computer would actually be able to perform the
calculations that you draw on your diagrams.]

7. [99.4.10 second part] Basic ray tracing uses a single sample per pixel. Describe
four distinct reasons why one might use multiple samples per pixel. Explain the
effect that each is trying to achieve, and outline the mechanism by which it achieves
the effect. [8]
Describe the differences in the computational complexity of the depth sort and
binary space partition (BSP) tree algorithms for polygon scan conversion. If you
were forced to choose between the two algorithms for a particular application, what
factors would be important in your choice [4]

8. [99.6.4 first part] You have a cone of height one unit; apex at the origin; and
base of diameter one unit centred on the negative z-axis. You wish to transform this
cone so that the apex is at (-1,3,7), the base is centred at (2,7,-5), and the base’s
radius is four units. What transformations are required to achieve this and in what
order should they be performed? [8]

Light 1

Light 2

Light 3

O P

Computer Graphics & Image Processing Exercises Page 8

F. Further Problems
1. Snell’s Laws. Look up Snell’s laws and address how they relate to ray tracing.
2. Ray Tracing Bézier Patches. Can you suggest how we might ray-trace a Bézier

patch?
3. Bézier Patches. Describe how you would form a good approximation to a cylinder

from Bézier patches. Draw the patches and their control points and give the co-
ordinates of the control points.

4. Bézier Patches. Given the following sixteen points, calculate the first eight of the
next patch joining it as t increases so that the join has continuity C1. Here the
points are listed with s=0, t=0 on the bottom left, with s increasing upwards and t
increasing to the right.
 (-.2, 3.4, .3) (1, 3.1, -.2) (2, 2.6, -.2) (3.1, 2.8, .2)
 (0, 1.2, .4) (1.2, 2.0, 1.2) (1.4, 1.9, -.2) (2.7, 1.8, .2)
 (.2, 1, -.2) (1.1, .8, .5) (1.4, 1.0, 0) (3.1, 1.1, -.2)
 (0, 0, 0) (1, 0, .5) (2, .2, .4) (2.7, 0, -.2)

5. Web 3D Language. Describe some features that you think might be important in a
language designed to describe 3D scenes and be used across the web.

6. Rotations. Define and then compare and contrast the following methods of
specifying rotation in 3D. [you will need to look these up]
(a) Quaternions
(b) Euler Angles

7. DOOM-Style Rendering. Describe the enhancements and restrictions that the
DOOM rendering engine employs to improve efficiency in the interests of
interactivity. Define any terms (such as texture-mapping) that you might use. A
useful starting point for your research is <http://www.gamers.org/dEngine/doom/>.

8. Improved shading models. Find out about the Cook-Torrance shading model and
explain how this improves on the naïve diffuse+specular+ambient model (slide
251).

9. Improved shading models. Find out about the bi-directional reflectance distribution
function (BRDF) and explain how this improves on the naïve
diffuse+specular+ambient model (slide 251).

Part 4: Image Processing

P. Problems
1. Image Coding Schemes. Describe the following image encoding schemes:

(a) GIF
(b) JPEG
Show their operation with a suitable small sample image. Compare and contrast
them (note that GIF file encoding is not in the notes so this requires some research).

2. Image Coding. Explain each of the three stages of image coding, as presented in the
notes, and why each helps to reduce the number of bits required to store the image.

3. Error Diffusion. Compare the two methods of Error Diffusion described in the
notes, with the aid of a sample image.

Computer Graphics & Image Processing Exercises Page 9

E. Old Exam Questions
1. [96.4.10] An image processing package allows the user to design 3 × 3

convolution filters. Design 3 × 3 filters to perform the following tasks:
(a) Blurring
(b) Edge detection of vertical edges
Choose one of the two filters (a) or (b) from the previous part. Explain how it
works, using the following image as an example (you may round off any calculated
values to the nearest integer).
 100 100 100 0 0 0
 100 100 100 0 0 0
 100 100 100 0 0 0
 100 100 100 100 100 100
 100 100 100 100 100 100
 100 100 100 100 100 100

2. [97.6.4 second part] Draw either:
(i) the first eight one-dimensional Haar basis functions
or
(ii) the first eight one-dimensional Walsh-Hadamard basis functions
Calculate the co-efficients of your eight basis functions from the previous part for
the following one-dimensional image data:
 12 16 20 24 24 16 8 8
Explain why, in general, the Haar or Walsh-Hadamard encoded version of an image
is preferable to the original image for storage or transmission.

3. [98.6.4 second part] In image compression we utilise three different
mechanisms to compress pixel data:
(a) mapping the pixel values to some other set of values
(b) quantising those values
(c) symbol encoding the resulting values
Explain each mechanism, why it helps us to compress the image, and whether
(giving reasons) the resulting image noticeably differs. [10]

4. [99.5.4 second part] A company produces a display device with two-bit
greyscale (that is: four different shades of grey). Describe an error-diffusion
algorithm which will convert an eight-bit greyscale image into a two-bit image
suitable for display on this device. [Note: the two images must have the same
number of pixels.] [7]
Illustrate that your algorithm works using the following test image. [2]
 200 40
 250 220
You are asked to design a 4×4 ordered dither matrix. What rules will you follow in
the design? [3]

F. Further Problems
1. JPEG2000. Find out how the wavelet-based JPEG2000 image compression method

works and write a concise description.

Computer Graphics & Image Processing Exercises Page 10

Copies of the diagram for answering 3/E/6 [96.4.10]

Light 1

Light 2

Light 3

O P

Light 1

Light 2

Light 3

O P

Light 1

Light 2

Light 3

O P

