Artificial Intelligence |

Dr Sean Holden
Computer Laboratory, Room FC06
Telephone extension 63725
Email: sbhil@cl.cam.ac.uk

www.cl.cam.ac.uktsbh11/

Copyright© Sean Holden 2002-2012.

Introduction: what's Al for?

What is the purpose of Atrtificial Intelligence (Al)? If yoeraphilosopheror a
psychologisthen perhaps it’s:

e To understand intelligence
e To understanaurselves

Philosophers have worked on this for at lez#t0 years. They've also wondered
about:

e Canwe do Al?Shouldwe do Al?

e |s Al impossibl@ (Note: | didn't writepossiblehere, for a good reason...)

Despite2000 years of work, there’s essentialijddly-squatin the way of results.

Introduction: what's Al for?

Luckily, we were sensible enough not to pursue degrees ilggphy—we're
scientists/engineers, so while we might haaeinterest in such pursuits, our
perspective is different:

e Brains are small (true) and apparently slow (not quite sareteit), but incred-
ibly good at some tasks—we want to understand a specific féroomputa-
tion.

o |t would be nice to be able toonstructintelligent systems.
e [t is also nice tanake and sell cool stuff

This viewseems to be the more successful. ..

Al is entering our lives almost without us being aware of it.

Introduction: now is a fantastic time to investigate Al

In many ways this is a young field, having only really got ungay in 1956 with
the Dartmouth Conference

www f or mal . st anf or d. edu/ j nt/ hi st ory/ dart nout h/ dar t nout h. ht m

e This means we can actualtjo things. It's as if we were physicists before
anyone thought about atoms, or gravity, or... ..

e Also, we know what we're trying to do igossible (Unless we think humans
don't exist. NOW STEP AWAY FROM THE PHILOSOPH&foreSOMEONE
GETS HURT!!)

Perhaps I'm being too hard on them; there was some good gnarkdSocratesvanted an algorithm fofpiety” ,
leading toSyllogisms Ramon Lull'sconcept wheeland other attempts at mechanical calculators. Rene Destart
Dualismand the idea of mind as physical system Wilhelm Leibnitz's opposing position dilaterialism (The
intermediate position: mind hysicalbutunknowablé The origin ofknowledge Francis Bacon'€mpiricism John
Locke: “Nothing is in the understanding, which was not first in theses” David Hume: we obtain rules by repeated
exposureinduction Further developed by Bertrand Russel and inGoafirmation Theorpf Carnap and Hempel.

More recently: the connection betwekmowledgeandaction? How are actionfustified? If to achieve the end you
need to achieve something intermediate, consider how tewathat, and so on. This approach was implemented in
Newell and Simon’s 195General Problem Solver (GPS)

Is Al possible?

Many philosophers are particularly keen to argue that Aimpossibl@ Why is
this? We have:

e Perception (vision, speech processing...)

e Logical reasoning (prolog, expert systems, CYC...)

e Playing games (chess, backgammon, go...)

e Diagnosis of iliness (in various contexts...)

e Theorem proving (Robbin’s conjecture...)

e Literature and music (automated writing and compositipn..

e And many more...
What's made the difference? In a nutshelie’re the first lucky bunch to get our
hands on computersind that allows us tbuild things

The simple ability tary things outhas led to huge advances in a relatively short
time. So: don’t believe the critics...

Further reading

Why do people dislike the idea that humanity might nospecial
An excellent article on why this view is much more problemahan it might
seem is:

“Why people think computers can’tfarvin Minsky. Al Magazine, volume 3
number 4, 1982.

Aside: when something is understood it stops being Al

To have Al, you need a meansiofplementinghe intelligence. Computers are (at
present) the only devices in the race. (Althougtantum computatiois looking
interesting...)

Al has had a major effect on computer science:

e Time sharing

e Interactive interpreters

e Linked lists

e Storage management

e Some fundamental ideas in object-oriented programming
e and so on...

When Al has a success, the ideas in question testbipbeing called Al

Similarly: do you consider the fact thgour phone can do speech recognitimn
be a form of Al?

The nature of the pursuit

What is Al?This is not necessarily a straightforward question.
It depends on who you ask...
We can find many definitions and a rough categorisation candmerdepending
on whether we are interested in:
e The way in which a systemctsor the way in which ithinks
e Whether we want it to do this inlaumanway or arational way.

Here, the wordational has a special meaning: it meathsing the correct thing
in given circumstances

Acting like a human

What is Al, version one: acting like a human

Alan Turingproposed what is now known as tharing Test

e A human judge is allowed to interact with an Al program via rrtieal.

e This is theonly method of interaction.

o If the judge can't decide whether the interaction is produicg a machine or
another human then the program passes the test.

In theunrestrictedTuring test the Al program may also have a camera attached,
so that objects can be shown to it, and so on.

Acting like a human

The Turing test is informative, and (very!) hard to pass.

e It requires many abilities that seem necessary for Al, siclearning.BUT:
a human child would probably not pass the test.

e Sometimes an Al system needs human-like acting abilities-exampleex-
pert systemsften have to produce explanations—hbot always

See thd.oebner Prize in Artificial Intelligence

www. | oebner . net/ Prizef/| oebner-prize. htm

10

Thinking like a human

What is Al, version two: thinking like a human

There is always the possibility that a machaming like a human does not actu-
ally think. Thecognitive modellingpproach to Al has tried to:

e Deducehow humans think-for example byintrospectionor psychological
experiments

e Copy the process by mimicking it within a program.
An early example of this approach is t&eneral Problem Solveproduced by
Newell and Simon in 1957. They were concerned with whetheobthe program
reasoned in the same manner that a human did.

Computer Science: Psychology= Cognitive Science

11

Thinking rationally: the “laws of thought”

What is Al, version three: thinking rationally

The idea that intelligence reducesradional thinkingis a very old one, going at
least as far back as Aristotle as we've already seen.

The general field ofogic made major progress in the 19th and 20th centuries,
allowing it to be applied to Al.

¢ We canrepresen@andreasonabout many different things.
e Thelogicist approach to Al.

This is a very appealing ide&lowever...

12

Thinking rationally: the “laws of thought”

Unfortunately there are obstacles to any naive applicatfdagic. It is hard to:

e Representommonsense knowledge
e Deal withuncertainty

e Reason without being tripped up bpmputational complexity

These will be recurring themes in this course, and in Al Il

Logic alone also falls short because:

e Sometimes it's necessary to act when thene@$ogical course of action.
e Sometimes inference imnecessarfreflex actions).

13

Further reading

The Fifth Generation Computer Systepmoject has most certainly earned the
badge of‘heroic failure” .

Itis an example of how much harder the logicist approachas ffou might think:

“Overview of the Fifth Generation Computer ProjecTohru Moto-oka. ACM
SIGARCH Computer Architecture News, volume 11, number 8319

14

Acting rationally

What is Al, version four: acting rationally

Basing Al on the idea o#cting rationally means attempting to design systems
that act toachieve their goalgiven theirbeliefs

Thinking about this in engineering terms, it seeatimost inevitablyto lead us
towards the usual subfields of Al. What might be needed?

e To makegood decisionin manydifferent situationsve need taepresentand

reasonwith knowledge

¢ We need to deal withatural language

¢ We need to be able folan.

¢ We needvision

¢ We needearning

And so on, so all the usual Al bases seem to be covered.

15

Acting rationally
The idea ofacting rationallyhas several advantages:

e The concepts oéiction goal andbelief can be defined precisely making the
field suitable for scientific study.

This is important: if we try to model Al systems on humans, &e’'teven propose
anysensible definition ofvhat a belief or goal is

In addition, humans are a system that is still changing aagtad to a very spe-
cific environment.

Rational actingdoes not have these limitations.

16

Acting rationally
Rational actingalso seems tmcludetwo of the alternative approaches:

o All of the things needed to pass a Turing test seem necessargtional act-
ing, so this seems preferable to theting like a humarapproach.

e The logicist approach can clearly foqpart of what’s required to act rationally,
so this seems preferable to thiginking rationallyapproach alone.

As a result, we will focus on the idea of designing systemsdbarationally.

17

Other fields that have contributed to Al

Experimental Psychology Mathematics I: logic
Hermann von Helmholtz: visual system. Aristotle’s material turned into mathematics by Boole piathematcSHElpsobatility
Wilhelm Wundt: introspection. (Experimentally dubious.) Frege: first order logic. Gambling outcomes: Cardano, Fermat, Pascal, Bernoulli, Laplace.
‘Tarski: relationship between real and logical objects. Bernoulli: degree of belief.
. . Bayes: updating beliefs using evidence.
Watson and Thorndike: Behaviourism SEKLeRaszElcor et DRl Sty
Hilbert: limits of algorithms. Modern representation of uncertainty.
Learned a lot about pigeons and rats.
ity Von Neumann and Morgenstern: combine uncertainty with

action: decision theory.

Godel: incompleteness theorem. /

Neuroscience

Stimulus and response/objective measures.
Craik: “The Nature of Explanation”

Nasty bumps on the head - we know brains
and are related.

Artificial

~*— Paul Broca: localised regions have different tasks.

Presence of neurons, although even storage of a memory
not really understood.

Linguistics

Recently: EEG, MRI etc.
Skinner's "Verba .
Noam Chomsky: bel n'ta derstanding or

A central Al concept: “Time flies like an arrow. Fruit flies like a banana’" Economics

How should I act, in the presence of adversaries, to obtain nice
stuff in the future?

Cybernetics

. How do I measure the degree of niceness?
250BC: first machine able to modify its own behaviour.

Probability + Utility = Decision Theory.
James Watt: governor for steam engines.

Small economies: game theory - sometimes it's rational to act (apparently)

Drebbel: thermostat. randomly.

Norbert Weiner and others: control theory as a mathematical subject. Belman: Operations research. Markoy decision processes, Future gains

resulting from a series of actions.
Minimisation of difference between current situation and goal.

Rational action is intractable. Herbert Simon: Satisficing is a better description
Stochastic optimal control: minimisation over time of an objective function. CRETGRTTTh

~—Al moves away from linear and continuous scenarios.

18

What's in this course?

This course introduces some of the fundamental areas thag opAl:

e An outline of the background to the subject.

e An introduction to the idea of aagent

e Solving problems in an intelligent way ksgearch

e Solving problems represented@mstraint satisfactioproblems.

e Playinggames

e Knowledge representation, and reasoning

e Planning

e Learningusingneural networks
Strictly speaking, Al | covers what is often referred to"@ood Old-Fashioned
Al". (Although “Old-Fashioned” is a misleading term.)

The nature of the subject changed a great deal when the iamperbfuncertainty
became fully appreciated. Al Il covers this more recent mzte

19

What'snotin this course?

e The classical Al programming languaga®log andlisp.
e A great deal of all the areas on the last slide!

e Perceptionvision hearingandspeech processinguch(force sensing, know-
ing where your limbs are, knowing when something is b&abte smell

e Natural language processing.

e Acting on and in the world:robotics (effectors, locomotion, manipulation),
control engineeringmechanical engineeringavigation

e Areas such agenetic algorithms/programmingwarm intelligenceartificial
immune systenandfuzzy logic for reasons that | will expand upon during the
lectures.

e Uncertaintyand much further probabilistic material. (You'll have toituantil
next year.)

20

Text book
The course is based on the relevant parts of:

Artificial Intelligence: A Modern ApproagiThird Edition (2010). Stuart Russell
and Peter Norvig, Prentice Hall International Editions.

NOTE:This is also the main recommended text for Al2.

21

Interesting things on the web

A few interesting web starting points:

The Honda Asimo robotiwr | d. honda. cont Al MO

Al at Nasa AmesS:www. nasa. gov/ cent er s/ ames/ r esear ch/ expl or i ngt heuni ver se/ spi ffy. ht i
DARPA Grand Challengehn p: / / www. dar pagr andchal | enge. com

2007 DARPA Urban Challengec's. st anf or d. edu/ gr oup/ r oadr unner

The Cyc project:wm. cyc. com

Human-like robots:ww. ai . ni t . edu/ proj ect s/ humanoi d-r obot i cs- group

Sony rObOtSZsupport . sony- eur ope. cont ai bo

NEC “PaPeRo0”:www. nec. co. j p/ product s/ r obot/ en

22

Prerequisites

The prerequisites for the course are: first order logic, salgerithms and data
structures, discrete and continuous mathematics, basiputational complexity.

DIRE WARNING:
In the lectures omachine learning will be talking aboutneural networks

This means you will need to be ableddferentiateand also handlgectors and
matrices

If you've forgotten how to do thigou WILL get lost—I guarantee it!!!

23

Prerequisites
Self test:
1. Let
n
f(wh ces ,flfn,) = Zaz”ﬁf
i=1

where they; are constants. Can you compatg/dz; wherel < j < n?

2. Let f(z1,...,x,) be a function. Now assume = ¢;(y1, ..., yn) for eachz;
and some collection of functions. Assuming all requirements for differentia-

bility and so on are met, can you write down an expressiodfoloy; where
1<5<m?

If the answer to either of these questions is “no” then itisetifor some revision.
(You have about three weeks notice, so I'll assume you kn9w it

24

And finally. ..

There are some important points to be made regarcingputational complexity

First, you might well hear the terml-completebeing used a lot. What does it
mean?

Al-complete: only solvable if you can solve Al in its entiret

For example: high-quality automatic translation from caeguage to another.

To produce a genuinely good translatiodby Dickfrom English to Cantonese
is likely to be Al complete.

25

And finally. ..

More practically, you will often hear me make the claim thaérything that’s at
all interesting in Al is at least NP-complete

There are two ways to interpret this:

1. The wrong way: “It's all a waste of tim&.OK, so it's a partly understandable
interpretation BUT the fact that the travelling salesman problem is intraetabl
does nomean there’s no such thing as a satnav.. .

2. The right way: “It's an opportunity to design nice approxition algorithms.”
In reality, the algorithms that agood in practiceare ones that try toftenfind
agoodbut not necessarilgptimalsolution, in areasonableamount of time.

in essence, a comment on a course assessment a couple digelats the effect of: “Why do you teach us this stuff if it'$ faitile?"

26

Artificial Intelligence |

Dr Sean Holden

An introduction toAgents

Copyright(© Sean Holden 2002-2012.

27

Agents

There are many different definitions for the teagentwithin Al.
Allow me to introduceEVIL ROBOT.

MUST ENSLAVE EARTH!!!
DR HOLDEN WILL BE OUR
GLORIOUS LEADER!!!!

O
o

O O Sense
00) =~
'

Act

We will use the following simple definitioran agent is any device that can sense
and act upon its environment

28

Agents

This definition can be very widely applied: to humans, roppisces of software,
and so on.
We are taking quite aapplied perspective. We want tmake thinggather than
copy humansso to be scientific there are some issues to be addressed:

e How can we judge an agent’s performance?

e How can an agent'snvironmentffect its design?

e Are there sensible ways in which to think about theictureof an agent?
Recall that we are interested in devices thettrationally, where ‘rational’ means
doing thecorrect thingundergiven circumstances

Reading:Russell and Norvig, chapter 2.

29

Measuring performance

How can we judge an agent’s performance? Any measure ofrpaaface is likely
to beproblem-specific

Example:For a chess playing agent, we might use its rating.

Example: For a mail-filtering agent, we might devise a measure of ho ive
blocks spam, but allows interesting email to be read.

Example:For a car driving agent the measure needs considerablessicption:
we need to take account of comfort, journey time, saftty

So:the choice of a performance measure is itself worthy of chmfnsideration.

30

Measuring performance

We're usually interested iexpected, long-term performance
e Expectedherformance because usually agents areonuotiscient—they don’t
infallibly know the outcome of their actions.
e It is rational for you to enter this lecture theatre even if the roof fallsdday.

An agent capable of detecting and protecting itself fromlinfaroof might be
moresuccessfuthan you, buhot morerational.

e Long-term performanceecause it tends to lead to better approximations to
what we’d consider rational behaviour.

e We probably don’t want our car driving agent to be outstaglyismooth and
safe for most of the time, but have episodesin¥ing through the local or-
phanage at 150 mph

31

Environments

How can an agent’'snvironmentffect its designExample:the environment for
a chess progranis vastly different to that for amutonomous deep-space vehi-
cle. Some common attributes of an environment have a consiéerdtuence on
agent design.

e Accessible/inaccessibledo percepts tell yowverythingyou need to know
about the world?

e Deterministic/non-deterministicdoes the future depengredictablyon the
present and your actions?

e Episodic/non-episodiis the agent run in independent episodes.
¢ Static/dynamiccan the world change while the agent is deciding what to do?

e Discrete/continuousan environment is discrete if the sets of allowable per-
cepts and actions are finite.

32

Environments

All of this assumes there is only one agent.

When multiple agents are involved we need to consider:

e Whether the situation isompetitiveor cooperative
e Whethercommunicatiomequired?

An example of multiple agents:

news.bbc.co.uk/1/hi/technology/3486335.stm

33

Basic structures for intelligent agents

Are there sensible ways in which to think about #teictureof an agent? Again,
this is likely to beproblem-specificalthough perhaps to a lesser extent.

So far, an agent is based on percepts, actions and goals.
Example:Aircraft piloting agent.

Percepts:sensor information regarding height, speed, enggtggudio and video
inputs, and so on.

Actions: manipulation of the aircraft’s controls.
Also, perhaps talking to the passengeis

Goals: get to the necessary destination as quickly as possiblemitttmal use of
fuel, without crashingetc

34

Programming agents

A basic agent can be thought of as working on a straightfatwaderlying pro-
cess:

e Gather perceptions

e Updateworking memoryo take account of them.

e On the basis of what's in the working memocioose an actioto perform.

e Updatethe working memory to take account of this action.

e Do the chosen action.

Obviously, this hides a great deal of complexity.

Also, it ignores subtleties such as the fact that a perceghiarrive while an
action is being chosen.

35

Programming agents

We'll initially look at two hopelessly limited approachdscause they do suggest
a couple of important points.

Hopelessly limited approach number dse a table to map percept sequences to
actions. This can quickly be rejected.

e The table will behugefor any problem of interest. Abou!?° entries for a
chess player.

e We don't usually know how to fill the table.
e Even if we allow table entries to Hearnedit will take too long.
e The system would have rautonomy

We can attempt to overcome these problems by allowing agergsson

Autonomyis an interesting issue though...

36

Autonomy

If an agent’'s behaviour depends in some manner owvits experience of the
world via its percept sequence, we say igigonomous

e An agent using only built-in knowledge would seem not to becsssful at Al
in any meaningful sense: its behaviour is predefined by g&mder.

e On the other handomebuilt-in knowledge seems essential, even to humans.

Not all animals are entirely autonomous.

For example:dung beetles.

37

Reflex agents

Hopelessly limited approach number Ry extractingpertinent information and
usingrulesbased on this.

Condition-action rulesi f a certainstateis observed hen perform somection

Some points immediately present themselves regangimgeflex agents are un-
satisfactory:
e \We can't always decide what to do based ondhient percept

e However storingall past percepts might be undesirable (for example requiring
too much memory) or just unnecessary.

¢ Reflex agents don’t maintain a description of gtate of their environment
e ...however this seems necessary for any meaningful Al. ¢den automating
the task of driving.)

This is all the more important as usually percepts don'tytell everything about
the state

38

Keeping track of the environment

It seems reasonable that an agent should maintain:

e A description of the current state of its environment
e Knowledge of how the environmenhanges independently of the agent
e Knowledge of how the agentactions affect its environment

This requires us to dlknowledge representati@ndreasoning

39

Goal-based agents

It seems reasonable that an agent should choose a ratiamskcof action de-
pending on itgoal.

¢ If an agent has knowledge of how its actions affect the envirent, then it
has a basis for choosing actions to achieve goals.

e To obtain asequencef actions we need to be ablesearchand toplan.

This isfundamentally differerfrom a reflex agent.

For example:by changing the goal you can change the entire behaviour.

40

Goal-based agents

We now have a basic design that looks something like this:

Percept

Update

‘ Description: current environment

Update

‘ Description: effect of actions

h—

‘ Description: behaviour of environment }»—»

Description of Goal

Infer

Action/Action sequence

41

Utility-based agents

Introducing goals is still not the end of the story.

There may benanysequences of actions that lead to a given goal,samde may
be preferable to others

A utility function maps a state to a number representing the desirability of tha
state.

e \We can trade-of€onflicting goalsfor example speed and safety.

e If an agent has several goals and is not certain of achievipgfithem, then
it can trade-off likelihood of reaching a goal against theidility of getting
there.

Maximising expected utilitpver time forms a fundamental model for the design
of agents. However we don'’t get as far as that until Al I1.

42

Learning agents

It seems reasonable that an agent shtaddn from experience
Percept
e !
3 Update 3
! ‘ Description: current environment Lti !
I I

‘ Description: effect of actions

=

' |
Update ‘ A - - F :
Feedback— Learner ! Description: behaviour of environment — !

Action/Action sequence

43

Learning agents

This requires two additions:
e The learner needs some form feedbackon the agent’s performance. This
can come in several different forms.
e In general, we also need a meangeherating new behavioun order to find
out about the world.

This in turn implies a trade-off: should the agent spend taxgloitingwhat it's
learned so far, oexploringthe environment on the basis that it might learn some-
thing really useful?

44

What have we learned? (No pun intended...)

Thecrucial things that should be taken away from this lecture are:

e The nature of an agent depends oreitsironmentindperformance measure
e We're usually interested iexpected, long-term performance

e Autonomy requires that an agent in some way behdegending on its expe-
rience of the world

e There is anatural basic structur@n which agent design can be based.
e Consideration of that structure leads naturally to thedoastas covered in this
course.

Those basic areas afdenowledge representation and reasoning, search, planning
and Iearning ©Oh, and finally, we've learned NOT TO MESS WITEVIL ROBOT... he’s a VERY BAD ROBOT!

45

Atrtificial Intelligence |

Dr Sean Holden

Notes onproblem solving by search

Copyright(© Sean Holden 2002-2012.

46

Problem solving by search

We begin with what is perhaps the simplest collection of Ahtg@ques: those al-
lowing anagentexisting within arenvironmento searchfor asequence of actions
thatachieves a goal

The algorithms can, crudely, be divided into two kindsinformedandinformed

Not surprisingly, the latter are more effective and so wetlk at those in more
detail.

Reading:Russell and Norvig, chapters 3 and 4.

47

Problem solving by search

As with any area of computer science, some degregbsfractionis necessary
when designing Al algorithms.

Search algorithmspply to a particularly simple class of problems—we need to
identify:
¢ An initial state what is the agent’s situation to start with?

e A set of actionsthese are modelled by specifying what state will result on
performing any available action from any known state.

e A goal test we can tell whether or not the state we're in correspondstoedh

Note that the goal may be described by a property rather thaxglicit state or
set of states, for examptdheckmate

48

Problem solving by search

A simple examplethe 8-puzzle

Start State
4 Action 3
—
7
@ 2Action5
5 @ — Goal State

Further actions
OEs BEE

(A good way of keeping kids quiet...)

49

Problem solving by search

Start state:a randomly-selected configuration of the numblets 8 arranged on
a3 x 3 square grid, with one square empty.

Goal state:the numbers in ascending order with the bottom right squagye

Actions: | eft, ri ght, up, down. We can move any square adjacent to the
empty square into the empty square. (It's not always passbthoose from all
four actions.)

Path cost:1 per move.

The 8-puzzle is very simple. However general sliding block pagzire a good
test case. The general problem is NP-complete. 5Thes version has about)?
states, and a random instance is in fact quite a challenge.

50

Problem solving by basic search

EVIL ROBOT has found himself in an unfamiliar building:

Evil Robot /"O %

X Teleport

|‘ [oo

He wants théDDIN (Oblivion Device of Indescribable Nastiness)

51

Problem solving by search

Start state:EVIL ROBOT is in the top left corner.
Goal state:EVIL ROBOT is in the area containing the ODIN.

Actions: | eft, ri ght, up, down. We can move as long as there’'s no wall in
the way. (Again, it's not always possible to choose from alirfactions.)

Path cost:1 per move. If you step on a teleport then you move to the other on
with a cost of0.

52

Problem solving by search

Problems of this kind are very simple, but a surprisinglgéanumber of applica-

tions have appeared:

e Route-finding/tour-finding.

e Layout of VLSI systems.

e Navigation systems for robots.

e Sequencing for automatic assembly.
e Searching the internet.

e Design of proteins.

and many others...

Problems of this kind continue to form an active research.are

53

Problem solving by search

It's worth emphasising that a lot of abstraction has takeeghere:

e Can the agent know it’s current state in full?

e Can the agent know the outcome of its actions in full?
Single-state problemghe state is always known precisely, as is the effect of any
action. There is therefore a single outcome state.

Multiple-state problemsThe effects of actions are known, but the state can not
reliably be inferred, or the state is known but not the effextthe actions.

Both single and multiple state problems can be handled ubiege search tech-
nigues. In the latter, we must reason about the set of steésve could be in:

e In this case we have an initiaktof states.

e Each action leads to a furthsetof states.

e The goal is a set of statedl of which are valid goals.

54

Problem solving by search

Contingency problems

In some situations it is necessary to perform sensihge the actions are being

carried out in order to guarantee reaching a goal.

(I's good to keep your eyes open while you cross the road!)

This kind of problem requireglanningand will be dealt with later.

55

Problem solving by search

Sometimes it is actively beneficial to act and see what happather than to try
to consider all possibilities in advance in order to obtapegect plan.

Exploration problems

Sometimes you haveo knowledge of the effect that your actions have on the
environment.

Babies in particular have this experience.
This means you need to experiment to find out what happens wheact.

This kind of problem requiresinforcement learnindgor a solution. We will not
cover reinforcement learning in this course. (Althouglsiini Al 11.)

56

Search trees

The basic idea should be familiar from yofilgorithms I course, and also from
Foundations of Computer Science

o We build atreewith the start state as root node.

e A node isexpandedy applying actions to it to generate new states.

e A pathis asequence of actiorthat lead from state to state.

e The aim is to find aoal statewithin the tree.

e A solutionis a path beginning with the initial state and ending in a gteatle.
We may also be interested in thath costas some solutions might be better than
others.

Path cost will be denoted ky

57

B H—>=
D
jgZ I ({5 1 ——
d0E,” FaE nEn=
D |BoE=
Up
Start State
I —
ft
@Down ;’@
EE—EEE_ [EHE
Up \
Left DOVE /
B |E 6|3 &) =
|
Right @

C
°

=
EE =
=l

58

Search trees versus search graphs

We need to make an important distinction betwsearch treesndsearch graphs
For the time being we assume that it'trae as opposed to graph that we're
dealing with.

as opposed to

(There is a good reason for this, which we’ll get to in a momeént

In atreeonly one pathcan lead to a given state. Irgaapha statecan be reached
via possiblymultiple paths

59

Search trees

Basic approach:

e Test the root to see if it is a goal.

o If not thenexpandit by generating all possible successor states according to
the available actions.

e If there is only one outcome state then move to it. Otherwisgose one of
the outcomes and expand it.

e The way in which this choice is made definesearch strategy

e Repeat until you find a goal.

The collection of states generated but not yet expandedlledctoe fringe or
frontier and is generally stored agjaeue

60

The basic tree-search algorithm

In pseudo-code, the algorithm looks like this:

function treeSearch {
fringe = queue containing only the start state;
while() {
if (enmpty(fringe))
return fail;
node = head(fringe);
if (goal (node))
return sol ution(node);
fringe = insert(expand(node), fringe);
}
}

Thesearch strategys set by using @riority queue

The definition ofpriority then sets the way in which the tree is searched.

61

The basic tree-search algorithm

@ Expanded
O In the fringe, but not expande:

. Not yet investigated

62

The basic tree-search algorithm

We can immediately define some familiar tree search algosth

e New nodes are added to thead of the queu€T his isdepth-first search

e New nodes are added to ttal of the queueThis isbreadth-first search

We will not dwell on these, as they are batbmpletely hopeless practice.
Why is that?

63

The performance of search technigues

How might we judge the performance of a search technique?

We are interested in:

e Whether a solution is found.
e Whether the solution found is a good one in terms of path cost.
e The cost of the search in terms of time and memory.

So
the total cost= path cost+ search cost

If a problem is highly complex it may be worth settling fosab-optimal solution
obtained in ashort time

We are also interested in:
Completenessdoes the strategguaranteea solution is found?
Optimality: does the strategy guarantee thatltkestsolution is found?

Once we start to consider these, things get a lot more irtbeges

64

Breadth-first search

Why is breadth-first search hopeless?

e The procedure isompleteit is guaranteed to find a solution if one exists.

e The procedure isptimalif the path cost is a non-decreasing function of node-

depth.
e The procedure haxponential complexity for both memory and tirAdranch-
ing factorb requires

bd+1_1
Lb+ b+ 04+ b = -

nodes if the shortest path has degth

In practice it is thanemoryrequirement that is problematic.

65

Depth-first search

With depth-first search: for a given branching fackand depthi the memory
requirement i$D(bd).

This is because we need to staredes on the current patiindthe other unex-
panded nodes

The time complexity i) (b?). Despite this, if there anmany solutionsve stand a
chance of finding one quickly, compared with breadth-firarcle.

66

Backtracking search

We can sometimes improve on depth-first search by usagtracking search
e If each node knows how tgenerate the next possibilithen memory is im-
proved toO(d).

e Even better, if we can work byaking modificationt astate descriptiothen
the memory requirement is:

— One full state description, plus...
—... O(d) actions (in order to be able tmdoactions).

How does this work?

67

No backtracking With backtracking
Trying: up, down, | eft,ri ght: If we have:
[63| E@(Em
EEE //' EE
up)/ we can undo this to obtain
(6] @@
BEE BEE
up Joun + \ and applydown to get
(87|67 7| || 6T) | 6T 2] [[

and soon...

68

Depth-first, depth-limited, and iterative deepening searc

Depth-first search is clearly dangerous if the treeeis/ deep or infinite
Depth-limited searchsimply imposes a limit on depth. For example if we're
searching for a route on a map withcities we know that the maximum depth
will be n. However:

o We still risk finding a suboptimal solution.

e The procedure becomes problematic if we impose a depth thmit is too

small.

Usually we do not know a reasonable depth limit in advance.

Iterative deepening searctepeatedly runs depth-limited search for increasing
depth limits0, 1, 2, . ..

69

Iterative deepening search

Iterative deepening search

¢ Essentially combines the advantages of depth-first anditirdst search.

e It is complete and optimal.

¢ |t has a memory requirement similar to that of depth-firstctea
Importantly, the fact that you're repeating a search proseveral times is less
significant than it might seem.

It's still not a good practical method, but it does point us in the doaaif one...

70

Iterative deepening search

Iterative deepening depends on the fact thatvast majority of the nodes in a tree
are in the bottom level

e |n a tree with branching factdrand depthi the number of nodes is
pi+l _
b—1
e A complete iterative deepening search of this tree gerethe final layer

once, the penultimate layer twice, and so on down to the vauth is gener-
atedd + 1 times. The total number of nodes generated is therefore

folbyd) = (d+1)+db+ (d— 16>+ (d—2)b> + - - - + 267 + !

filb,d) =14+b+ >+ b 4+ b =

71

Iterative deepening search

Example:

e Forb =20 andd = 5 we have
f1(b,d) = 3,368,421
fo(b, d) = 3,545, 706
which represents apercent increase with iterative deepening search.

e The overhead gemallerasb increases. However the time complexity is still
exponential.

72

Iterative deepening search

Further insight can be gained if we note that
fa(b,d) = f1(b,0) + fi(b, 1) + -+ + fi(b,d)
as we generate the root, then the tree to dépémd so on. Thus
d pi+l _ 1

d
flbid) =) filbi) =D ——
i=0

=0

d

d
:b_%Zb”l—lzb_% KZbi*l) —(d+1)

=0 =0

Noting that
d

bfi(b,d) =b+b*+---+ 0 = me
i=0

we have ; Q41
0 L
fo(b,d) = mfl(bv d) — b—1

S0 fo(b, d) is about equal tg, (b, d) for largeb.

73

Bidirectional search

In some problems we can simultaneously search:
forward from thestart state

backwardfrom thegoal state

until the searches meet.

This is potentially a very good idea:

o If the search methods have complexityv?) then...
e ...we are converting this 10 (2b%/%) = O(b%/?).

(Here, we are assuming the branching factdrirsboth directions.)

74

Bidirectional search - beware!

e It is not always possible to generate efficierhgdecessoras well as succes-
sors.

o If we only have thaedescriptionof a goal, not arexplicit goal then generating
predecessors can be hard. (For example, consider the ¢cafa@ckmatg

e We need a way of checking whether or not a node appears otlteesearch.

e ... and the figure oD (b%/?) hides the assumption that we canamstant time
checking for intersection of the frontiers. (This may begioke using a hash
table).

¢ We need to decide what kind of search to use in each half. Fongbe, would
depth-first searctbe sensible? Possibly not...

¢ ...to guarantee that the searches meet, we need to stdne abhdles of at least
one of the searches. Consequently the memory requirementis).

75

Uniform-cost search

Breadth-first search finds ttehallowestsolution, but this is not necessarily the
bestone.

Uniform-cost searclis a variant. It uses theath costp(n) as the priority for the
priority queue.

Thus, the paths that are apparently best are explored firdtihee best solution
will always be found if

Vn (Vn' € successofs) . p(n') > p(n))

Although this is still not a good practical algorithm, it dogoint the way forward
to informed search...

76

Repeated states

With many problems it is easy to waste time by expanding nddashave ap-
peared elsewhere in the tree. For example:

The sliding blocks puzzle for example suffers this way.

7

Repeated states

For example, in a problem such as finding a route in a map, waléref the
operators areeversible this is inevitable.
There are three basic ways to avoid this, depending on hovtrpde off effec-
tiveness against overhead.

e Never return tdhe state you came fram

e Avoid cycles: never proceed tostate identical to one of your ancestors

e Do not expandany state that has previously appeared

Graph searchis a standard approach to dealing with the situation. It tise$ast
of these possibilities.

78

Graph search

In pseudocode:

function graphSearch() {
closed = {};
fringe = queue containing only the start state;
while () {
if (enpty(fringe))
return fail;
node = head(fringe);
i f goal (node)
return sol uti on(node);
if (node not a nenber of closed) {
cl osed = cl osed + node;
fringe = insert(expand(node), fringe); // See note...
}
}
}

Note:if node is incl osed then it must already have been expanded.

79

Graph search

There are several points to note regarding graph search:

1. Theclosed listcontains all the expanded nodes.

2. The closed list can be implemented using a hash table.

3. Both worst case time and space are now proportional toitleeof the state
space.

4. Memory: depth first and iterative deepening search are no longaarisgace
as we need to store the closed list.

5. Optimality: when a repeat is found we are discarding the new possibilép e
if it is better than the first one.

e This never happens for uniform-cost or breadth-first seaiithh constant
step costs, so these remain optimal.

e Iterative deepening search needs to check which solutitwetier and if
necessary modify path costs and depths for descendante oépleated
state.

80

Search trees
Everything we've seen so far is an exampleuoafnformedor blind search—we
only distinguish goal states from non-goal states.
(Uniform cost search is a slight anomaly as it uses the pathasoa guide.)
To perform well in practice we need to emplmformedor heuristicsearch.

This involves exploiting knowledge of ttdistance between the current state and
agoal

81

Problem solving by informed search

Basic search methods make limited use of amyblem-specific knowledgee
might have.
¢ We have already seen the conceppath costp(n)

p(n) = cost of path (sequence of actions) from the start state to

e \We can now introduce aevaluation functionThis is a function that attempts
to measure thdesirability of each node

The evaluation function will clearly not be perfect. (If &,ithere is no need to
search.)

Best-first searclsimply expands nodes using the ordering given by the evaluat
function.

82

Greedy search

We've already seepath costused for this purpose.
e This is misguided as path cost is not in genelisgdctedin any sense¢oward

the goal

e A heuristic functionusually denoted(n) is one thaestimateshe cost of the
best path from any nodeto a goal.

e If nis a goal therh(n) = 0.

Using a heuristic function along with best-first search gius thegreedy search
algorithm.

83

Example: route-finding

Example:for route finding a reasonable heuristic function is

h(n) = straight line distance from to the nearest goal

W) =v5

Accuracy here obviously depends on what the roads are féadly

84

Example: route-finding

Greedy search suffers from some problems:

o Its time complexity isO(b?).
o Its space-complexity i©(b%).
e |t is not optimal or complete.
BUT: greedy searchanbe effective, provided we have a gob(h).

Wouldn't it be nice if we could improve it to make it optimal@oeomplete?

85

A* search

Well, we can.

A* searchcombines the good points of:

e Greedy search—by making use/gf).
e Uniform-cost search—by being optimal and complete.

It does this in a very simple manner: it uses path g¢si and also the heuristic
functionh(n) by forming
f(n) =p(n) + h(n)
where
p(n) = cost of pathton
and
h(n) = estimated cost of best pafitom n

So: f(n) is the estimated cost of a patiroughn.

86

A* search
A* search:

o A best-first search using(n).

e |t is both complete and optimal...

e ...provided that. obeys some simple conditions.
Definition: anadmissible heuristié.(n) is one thanever overestimatethe cost
of the best path from to a goal. So if:'(n) denotes thactualdistance fronm to
the goal we have

Vn.h(n) < KW (n).

If h(n) is admissible thekree-searchA* is optimal.

87

A* tree-search is optimal for admissiliién)

To see thatd* search is optimal we reason as follows.

Let Goaky be an optimal goal state with

f(Goabpy) = p(Goaby) = fopt
(becausé:(Goaky) = 0). Let Goab be a suboptimal goal state with

f(Goab) = p(Goab) = fo > fopt
We need to demonstrate that the search can never selegt Goal

88

A* tree-search is optimal for admissililén)

At some point Goalis in the fringe.

Can it be selected before?

89

A* tree-search is optimal for admissililén)

Letn be a leaf node in the fringe on an optimal path to Gaabo
Jopt= p(n) + h(n) = f(n)
becausé is admissible.
Now say Goal is chosen for expansidoeforen. This means that
f(n) > f
so we've established that
fopt > f? = p(Goab)-
But this means that Gagl is not optimal: a contradiction.

90

A* graph search

Of course, we will generally be dealing witliaph search
Unfortunately the proof breaks in this case.
e Graph search cadiscard an optimakoute if that route is not the first one
generated.

e We could keepnly the least expensive patfihis means updating, which is
extra work, not to mention messy, but sufficient to insuremality.

e Alternatively, we can impose a further condition bfm) which forces the best
path to a repeated state to be generated first
The required condition is calledonotonicity As
monotonicity— admissibility

this is an important property.

91

Monotonicity

Assumeh, is admissible. Remember thatn) = p(n) + h(n) so if n’ follows n

p(n') = p(n)

and we expect thdt(n") < h(n) although this does not have to be the case.

Heref(n) =9andf(n') =7sof(n') < f(n).

92

Monotonicity

Monotonicity:

e If it is always the case that(n') > f(n) thenh(n) is calledmonotonic
e h(n) is monotonic if and only if it obeys thgiangle inequality
h(n) < costn —= n/) + h(n/)
If h(n) is not monotonic we can make a simple alteration and use

f(n') = max{f(n),p(n’) + h(n')}

This is called thgpathmaxequation.

93

The pathmax equation

Why does the pathmax equation make sense?

The fact thatf(n) = 9 tells us the cost of a path throughis at least9 (because
h(n) is admissible).

Butn’ is on a path through:. So to say thaf(n’) = 7 makes no sense.

94

A* graph search is optimal for monotonic heuristics

A* graph search is optimal for monotonic heuristics.

The crucial fact from which optimality follows is that if(n) is monotonic then
the values off (n) along any path are non-decreasing.

Assume we move from to n’ using actiom:. Then
Va . p(n') = p(n) + costn - n')
and using the triangle inequality
h(n) < costn - n/) + h(n/) 1)
Thus

p() + b

(n) + costn - n/) + h(n')
(n) + h(n)
(n)

where the inequality follows from equation 1.

fn)

AV

p
p
f

95

A* graph search is optimal for monotonic heuristics

We therefore have the following situation:

You can't deal with?’ until everything with

f(n") < f(n') has been dealt with.

Consequently everything witli(n”) < fo gets explored. Then one or more
things with fop get found (not necessarily all goals).

96

A* search is complete

A* search is complete provided:

1. The graph has finite branching factor.
2. There is a finite, positive constansuch that each operator has cost at least

Why is this? The search expands nodes according to incedsir). So: the
only way it can fail to find a goal is if there are infinitely mangdes withf (n) <
f(Goal).

There are two ways this can happen:

1. There is a node with an infinite number of descendants.
2. There is a path with an infinite number of nodes but a finith past.

97

Complexity

e A* search has a further desirable property: @ggsimally efficient

e This means that no other optimal algorithm that works by troieting paths
from the root can guarantee to examine fewer nodes.

e BUT: despite its good properties we're not done yet...

o .. A* search unfortunately still has exponential time compjexitmost cases
unlessh(n) satisfies a very stringent condition that is generally uisée

[h(n) = B (n)| < O(log h'(n))
whereh/(n) denotes theeal cost fromn to the goal.

e As A* search also stores all the nodes it generates, once agsigaherally
memory that becomes a problem before time

98

IDA* - iterative deepeningl* search

How might we improve the way in which* search uses memory?

o |terative deepening search used depth-first search withiadn depth that is
gradually increased.

e IDA* does the same thingith a limit on f cost

Acti onSequence ida() {
root = root node for problem
float fLimt = f(root);
while() {
(sequence, fLimt) = contour(root,fLimt, enptySequence);
if (sequence != enptySequence)
return sequence;
if (fLimt == infinity)
return enptySequence;

99

IDA* - iterative deepeningl* search

The functioncont our searches from a given nodss far as the specifiefllimit.
It returns either a solution, or threext biggesvalue of f to try.

(ActionSequence, fl oat) contour(Node node, float fLimt, ActionSequence s)
float nextF = infinity;
if (f(node) > fLimt)
return (enptySequence, f(node));
Acti onSequence s’ = addToSequence(node, s);
if (goal Test (node))
return (s’ ,fLimt);
for (each successor n’ of node) {
(sequence, newr) = contour(n’,fLimt,s");
if (sequence != enptySequence)
return (sequence,fLimt);
next F = mi ni mun(next F, newF) ;
}

return (enptySequence, nextF);

100

IDA™ - iterative deepeningl* search

This is a little tricky to unravel, so here is an example:

Initially, the algorithm looks ahead and finds themallestf cost that isgreater
thanits currentf cost limit. The new limit ist.

101

IDA* - iterative deepeningl* search

IDA™ - iterative deepeningl* search

It now does the same again:

Anything with f costat mostequal to the current limit gets explored, and the

algorithm keeps track of themallestf cost that igreater thanits current limit.
The new limit is5.

102

And again:

The new limitis7, so at the next iteration the three arrowed nodes will becerpl

103

IDA* - iterative deepeningl* search

Properties of IDA:

e |t is complete and optimal under the same conditiond’as
e It is often good if we have step costs equal to

e |t does not require us to maintain a sorted queue of nodes.
e |t only requiresspace proportional to the longest path

e The time taken depends on the number of valuean take.

If h takes enough values to be problematic we can incrédsea fixede at each
stage, guaranteeing a solution at moarse than the optimum.

104

Recursive best-first search (RBFS)

Another method by which we can attempt to overcome memorigdtians is the
Recursive best-first search (RBFS)

Idea: try to do a best-first search, but only usear spaceby doing a depth-first
search with a few modifications:
1. We remember thé(n’) for the best alternative nodée we've seen so far on
the way to the node we're currently considering.
2. Ifnhasf(n) > f(n'):
e We go back and explore the best alternative...

e ...and as we retrace our steps we replaceftltest of every node we've
seen in the current path witf(n).

The replacement of values as we retrace our steps provides a means of remem-
bering how good a discarded path might be, so that we caryeasikn to it later.

105

Recursive best-first search (RBFS)

Note: for simplicity a parameter for the path has been omitted.

function RBFS(Node n, Float fLimt) {

}

if (goaltest(n))

return n;
if (n has no successors)
return (fail, infinity);

for (each successor n’ of n)
f(n) = mximun(f(n), f(n));
while() {
best = successor of n that has the smallest f(n');
if (f(best) > fLint)
return (fail, f(best));
next Best = second snallest f(n') value for successors of n;
(result, f') = RBFS(best, minimn(fLinmt, nextBest));
f(best) =f";
if (result !'= fail)
return result;

}

IMPORTANTf (best) is modifiedwhenRBFS produces a result.

106

Recursive best-first search (RBFS): an example

This function is called usin@BFS(start State, infinity) to begin the
process.

Function call numbet:

fLimit, = oo

5
~_ nextBest =5

\ S / \ /

/ \ /

\ /

Now perform the recursive function caliesult, /') = RBFSbest, 5)
so f(best) takes the returned valyg

107

Recursive best-first search (RBFS): an example

Function call numbeg?:

3 fLimit, = oo
fLimit, =5

5
~_ nextBest =5

\ /

\ /

\ /

Now perform the recursive function cdliesult, /') = RBFSbest, 5)

so f(best) takes the returned valyg

108

Recursive best-first search (RBFS): an example

Function call numbes:

fLimit, = 0o
fLimit, = 5
imit; =

5
~_ nextBest =5

/ \ /
® © ¢ ¢
nextBest = 11 best

Now f(best) > fLimit 3 so the function call returndail, 10) into (result, f’) and
f(best) = 10.

109

Recursive best-first search (RBFS): an example

The while loop for function calk now repeats:

fLimit, = oo

fLimit, =5
4 replaced by
7 5 -
PN RONS nextBest = 5

5 replaced byl(

Now f(best) > fLimit, so the function call return§ail, 9) into (result, /') and
f(best) =9.

110

Recursive best-first search (RBFS): an example

The while loop for function call now repeats:

3 fLimit; = oo

5 replaced byl

4 replaced by
7 5
e \n\extBest =7 best

We do a further function call to expand the new best node, arahs.

111

Recursive best-first search (RBFS)

Some nice properties:
e If 1 is admissible then RBFS is optimal.
e Memory requirement i&)(bd)
e Generally more efficient than IDA
And some less nice ones:
e Time complexity is hard to analyse, but can be exponential.

e Can spend a lot of timee-generating nodes

112

Other methods for getting around the memory problem

To some extent IDAand RBFS throw the baby out with the bathwater.

e They limit memory too harshly, so...

e ...we can try to usall available memory

MA* and SMA" will not be covered in this course...

113

Local search

Sometimes, it's only thgoalthat we're interested in. Thgathneeded to get there
is irrelevant.

e For example: VLSI layout, factory design, vehicle routiregitomatic pro-
gramming...

e We are now simply searching for a node that is in some streskbest

e This is also known asptimisation

This leads to the remarkably simple conceploafal search

114

Local search

Instead of trying to find a path from start state to goal, wd@epthelocal area
of the graph, meaning those nodes one edge away from the dreeatue

We assume that we have a functifn) such thatf(n’) > f(n) indicatesn’ is
preferable ton.

115

Then-queens problem

You may be familiar with thei-queens problem

M

Find an arrangement af queens on an by n board such that no queen is attack-
ing another.

In the Prolog course you may have been tempted to generateifaions of row
numbers and test for attacks.

This is ahopeless strategipr largen. (Imaginen ~ 1,000, 000.)

116

Then-queens problem

We might however consider the following:
e A state (node) is a permutation of 1,...,n}, denoting the rows that the
gueens appear on.

e \We move from one node to another by movingjragle queetio anyalternative
row.

¢ We definef(n) to be the number of pairs of queens attacking one-another in
the new positioA (Regardless of whether or not the attack is direct.)

2Note that we actually want tminimizef here. This is equivalent to maximizingf, and | will generally use whichever seems more appropriate.

117

Then-queens problem

Here,n = {4,3,2,8,6,2,4,1} and thef values for the undecided queen are
shown.

M

U M
5 M

As we can choose which queen to move, each node in facithasighbours in
the graph.

118

Hill-climbing search

Hill-climbing searchis remarkably simple:

CGenerate a start state n.

while () {
Generate the N neighbours {n_1,..., n_N} of n;
if (max(f(n_i)) <= f(n)) return n;
n =n_ maximzing f(n_i);

}

In fact, that looks so simple that it's amazing the algoritisrat all useful.

In this version we stop when we get to a node with no betterhtiigr. We might
alternatively allowsideways movdsy changing the stopping condition:

if (max(f(n_.i)) < f(n)) return n;

Why would we consider doing this?

119

Hill-climbing search: the reality

In reality, nature has a number of ways of shapjhtp complicate the search
process.

f(n) Global maximum Local maxima

Shoulder

Plateau

Sidewaysnoves allow us to move acroptateausandshoulders

However, should we ever find lacal maximunmthen we’ll return it: we won't
keep searching to findglobal maximum

120

Hill-climbing search: the reality

Of course, the fact that we're dealing witlyaneral graphmeans we need to think
of something like the preceding figure, but ivery large number of dimensions
and this makes the problemuch harder

There is a body of techniques for trying to overcome suchlprob. For example:
e Stochastic hill-climbingChoose a neighbour at random, perhaps with a prob-

ability depending on itg value. For example: leV(n) denote the neighbours
of n. Define

N'(n)={n" € N(n)|f(n) > f(n)}
N~ (n)={n" € N(n)|f(n') < f(n)}.
Then
if " € N~(n)

Pr(o) - {

N

(f(n) — f(n)) otherwise

121

Hill-climbing search: the reality

e First choice: Generate neighbours at random. Select the first one thattées be
than the current one. (Particularly good if nodes hanasy neighbout$

e Random restartsRun a proceduré times with a limit on the time allowed for
each run.
Note: generating a start state at random may itself not be stfaigverd.

e Simulated annealingSimilar to stochastic hill-climbing, but start with lots of
random variation anceduce it over time
Note: in some cases this fgovablyan effective procedure, although the time
taken may be excessive if we want the proof to hold.

e Beam searchMaintain & nodes at any given time. At each search step, find
the successors of each, and retain the béisim all the successors.
Note: this isnotthe same as random restarts.

122

Gradient ascent and related methods

For some problenis—we do not have a search graph, butantinuous search
space

Typically, we have a functiorf(x) : R” — R and we want to find

Xopt = argmax f(x)
X

3For the purposes of this course, theining of neural networkss a notable example.

123

Gradient ascent and related methods

In a single dimension we can clearly try to solve

df(x) _
dz
to find thestationary pointsand use
(1)
dx?
to find a globalmaximum In multiple dimensionghe equivalent is to solve
9f(x)
\Y =——>=0
Fix) = =52
where
Of(X) _ ot ofx) . ofx)
ox dxy Jdxo Dy,
and the equivalent of the second derivative iskessianmatrix
%) A’ .. A
[)T% Or10x9 Jx10xy,
o) A . A
H — 0x90x] ()T% Ox0my,
orfx) A .. Ax)

Orpdxry Orpdxo 0x2

124

Gradient ascent and related methods

However this approach is usualipt analytically tractableegardless of dimen-
sionality.

The simplest way around this is to emplgsadient ascent

e Start with a randomly chosen poigg.
e Using a smalbktep size, iterate using the equation

Xi+1 = X; + EVf(XJ
This can be understood as follows:

¢ At the current poink; the gradien¥ f(x;) tells us thedirectionandmagnitude
of the slope ak;.

e Adding eV f(x;) therefore moves ussmall distance upward

This is perhaps more easily seen graphically. ..

125

Gradient ascent and related methods

Here we have a simplgarabolic surface

c=01
50— v

-50 0 50
o -50 -50 . z

With € = 0.1 the procedure is clearly effective at finding the maximum.

Note however thathe steps are smallnd in a more realistic probleihmight
take some time. ..

126

Gradient ascent and related methods

Simply increasing the step sizean lead to a different problem:

/
50] 50
& o B
/
50 [

We can easily jump too far. ..

127

Gradient ascent and related methods

There is a large collection of more sophisticated methodsekample:

e Line searchincrease until f increasesand minimise in the resulting interval.
Then choose a new direction to move i@onjugate gradientsthe Fletcher-
ReevesandPolak-Ribieremethods etc.

e UseH to exploit knowledge of the local shape ff For example th&lewton-
RaphsorandBroyden-Fletcher-Goldfarb-Shanno (BFG8gthods etc.

128

Artificial Intelligence |

Dr Sean Holden

Notes ongames (adversarial search)

Copyright© Sean Holden 2002-2012.

129

Solving problems by search: playing games

How might an agent act whethe outcomes of its actions are not knolaatause
anadversary is trying to hinder#t

e This is essentially a more realistic kind of search probleoanse we do not
know the exact outcome of an action.

e This is a common situation wheataying gamesin chess, draughts, and so on
an opponentespondgo our moves.

e We don't know what their response will be, and so the outcofrmiomoves
is not clear.

Game playing has been of interest in Al because it providedeadisationof a
world in which two agents act teduceeach other’s well-being.

130

Playing games: search against an adversary

Despite the fact that games are an idealisation, game pl@gn be an excellent
source of hard problems. For instance with chess:

e The average branching factor is roughly
e Games can reacl moves per player.
¢ So a rough calculation gives the search 8&€° nodes.

e Even if only different, legal positions are considered atsout10%.
So: in additionto the uncertainty due to the opponent:

e We can’t make a complete search to find the best move...

e ... SO we have to act even though we're not sure about thetiagttb do.

131

Playing games: search against an adversary

And chess isn’t even very hard:

e Gois muchharder than chess.

e The branching factor is abo@60.

Until very recently it has resisted all attempts to produg@ed Al player.

See:
senseis.xmp.net/?MoGo

and others.

132

Playing games: search against an adversary

It seems that games are a step closer to the complexitieseimthien the world
around us than are the standard search problems consiaefed s

The study of games has led to some of the most celebratedapptis and tech-
niques in Al.

We now look at:

e How game-playing can be modelledsesarch
e Theminimax algorithnfor game-playing.
e Some problems inherent in the use of minimax.

e The concept ofr — 3 pruning

Reading:Russell and Norvig chapter 6.

133

Perfect decisions in a two-person game

Say we have two players. Traditionally, they are caléak andMin for reasons
that will become clear.

o We'll usenoughts and crossess an initial example.

e Max moves first.

e The players alternate until the game ends.

¢ At the end of the game, prizes are awarded. (Or punishmengeadered—
EVIL ROBOT is starting up his favourite chainsaw...)

This is exactly the same game format as chess, Go, draughtaon.

134

Perfect decisions in a two-person game

Games like this can be modelled as search problems as follows

e There is annitial state

Max to move

e There is a set obperators Here, Max can place a cross in any empty square,
or Min a nought.

e There is aterminal test Here, the game ends when three noughts or three
crosses are in a row, or there are no unused spaces.

e There is autility or payoff function. This tells us, numerically, what the out-
come of the game is.

This is enough to model the entire game.

135

Perfect decisions in a two-person game

We canconstruct a tre¢o represent a game. From the initial state Max can make
nine possible moves:

Then it's Min’s turn...

136

Perfect decisions in a two-person game

For each of Max’s opening moves Min has eight replies:

And so on...

This can be continued to represatitpossibilities for the game.

137

Perfect decisions in a two-person game

{ X |0
X|O|X]| -1
X|O|X XXO ®) X
X|O]O|+1
X|0|O]|0 <o
O XX

At the leaves a player has won or there are no spaces. Leavkxballedusing
the utility function.

138

Perfect decisions in a two-person game

How can Max use this tree to decide on a move? Consider a monhesitree:

Labels on the leaves denote utility.
High values are preferred by Max.
Low values are preferred by Min.

4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4

If Max is rational he will play to reach a position with théggest utility possible

But if Min is rational she will play taninimisethe utility available to Max.

139

The minimax algorithm

There are two moves: Max then Min. Game theorists would bl dne move,
or two ply deep.

The minimax algorithmallows us to infer the best move that the current player
can make, given the utility function, by working backwardrfr the leaves.

4 5 20 20 15 7 4 10 9 5 8 5

As Min plays the last move, shainimiseghe utility available to Max.

140

The minimax algorithm

Min takes the final move:

¢ If Min is in game positionl, her best choice is move So from Max’s point
of view this node has a utility df.

¢ If Min is in game positior2, her best choice is movg So from Max’s point
of view this node has a utility df.

e If Min is in game positiors, her best choice is move So from Max’s point
of view this node has a utility of.

¢ If Min is in game positiond, her best choice is move So from Max’s point
of view this node has a utility of.

141

The minimax algorithm

Moving one further step up the tree:

4 5 2 20 20 15 6 7 1 4 10 9 5 8 5

We can see that Max’s best opening move is m\as this leads to the node with
highest utility.

142

The minimax algorithm

In general:
e Generate the complete tree and label the leaves accordihg ttility func-
tion.

e Working from the leaves of the tree upward, label the nodgsedding on
whether Max or Min is to move.

o If Min is to move label the current node with thenimumutility of any de-
scendant.

o If Max is to move label the current node with tiheaximumutility of any
descendant.

If the game i ply and at each point there agavailable moves then this process
has (surprise, surpris€)(¢”) time complexity and space complexity linearzn
andg.

143

Making imperfect decisions

We need to avoid searching all the way to the end of the Bee.

e \We generate only part of the tree: instead of testing whethewde is a leaf
we introduce aut-off test telling us when to stop.

e Instead of a utility function we introduce a&valuation functiorfor the evalu-
ation of positions for an incomplete game.

The evaluation function attempts to measure the expecibty of the current
game position.

144

Making imperfect decisions

How can this be justified?

e This is a strategy that humans clearly sometimes make use of.
e For example, when using the conceptadterial valuein chess.

e The effectiveness of the evaluation functiorcigtical...

e ... but it must be computable in a reasonable time.

e (In principle it could just be done using minimax.)

The importance of the evaluation function can not be undtdt—it is probably
the most important part of the design.

145

The evaluation function

Designing a good evaluation function can be extremely yrick

e Let's say we want to design one for chess by giving each pisceaterial
value: pawn =1, knight/bishop =3, rook =5 and so on.

e Define the evaluation of a position to be the difference betwthe material
value of black’s and white’s pieces

evalposition = > valueofp, — Y valueofg

black’s piecey); white’s pieces;

This seems like a reasonable first attempt. Why might it gag®o

146

The evaluation function

Consider what happens at the start of a game:

e Until the first capture the evaluation function givieso in fact we have aat-
egorycontaining many different game positions with equal estadatility.

e For example, all positions where white is one pawn ahead.

e The evaluation function for such a category should perheypesent the prob-
ability that a position chosen at random from it leads to a win

So in fact this seems highly naive...

147

The evaluation function

Ideally, we should considéndividual positions

If on the basis of past experience a position has 50% chaneenoing, 10%
chance of losing and 40% chance of reaching a draw, we migatigan evalua-
tion of

evalposition) = (0.5 x 1) + (0.1 x —1) + (0.4 x 0) = 0.4.

Extending this to the evaluation of categories, we showdd theight the positions
in the category according to their likelihood of occurring.

Of course, walon't knowwhat any of these likelihoods are...

148

The evaluation function

Using material value can be thought of as giving wgeaghted linear evaluation
function

evalposition =y " wf;
i=1

where thew; are weightsand thef; represenfeaturesof the position. In this

example
fi = value of theith piece

w; = number ofjth pieces on the board

where black and white pieces are regarded as different anf] re positive for
one and negative for the other.

149

The evaluation function

Evaluation functions of this type are very common in gamgipia
There is no systematic method for their design.

Weights can be chosen by allowing the game to play itself aidgdearning
techniques to adjust the weights to improve performance.

By using more carefully crafted features we can gliféerent evaluation$o indi-
vidual positions

150

a — B pruning

Even with a good evaluation function and cut-off test, thesticomplexity of the
minimax algorithm makes it impossible to write a good chesg@mm without
some further improvement.

e Assuming we have 150 seconds to make each move, for chess we b®
limited to a search of abodtto 4 ply whereas...

e ...even an average human player can masage.

Luckily, it is possible to prune the search tne&hout affecting the outcorrend
without having to examine all of.it

151

« — (B pruning

Returning for a moment to the earlier, simplified example:

4 5 2 20 20 15 6 7 1 4 10 9 5 8 5

The search is depth-first and left to right.

152

a — 3 pruning

The search continues as previously for the firltaves.

Then we note: iMax plays move3 thenMin can reach a leaf with utility at most
1.

So: we don't need to search any further under Max’s opening movéhis is
because the search hakeady establishedhat Max can do better by making
opening move.

153

a — B pruning in general

Remember that this searchdepth-first We're only going to use knowledge of
nodes on the current path

= m tells us that the
a—=m A = Player

value of this node i$> m.
value> m v
- = Opponent

The value ofx is updated as

the search progresses.

While searching under this node
we find that the opponent can force
a score ofi.

value> m’

If n < m we can stop. There is a
better choice earlier in the game.

If n < m’ we can stop. The player
Searching here establishes that maximises and will never move here.
the opponent can force a score

of m/.

So:once you've established thatis sufficiently small, you don’t need to explore
any more of the corresponding node’s children.

154

« — § pruning in general

The situation is exactly analogous if wevap player and opponeirt the previous
diagram.

The search is depth-first, so we're only ever lookingre path through the tree
We need to keep track of the valuesaind s where
a = thehighestutility seen so far on the path fdédax

B8 = thelowestultility seen so far on the path fddlin
AssumeMax begins Initial values fora and are

and

155

a — § pruning in general

So: we start with the function call
player(—oo, +00, root)

The following function implements the procedure suggestethe previous dia-
gram:

playera, 4, n){
if (n is at the cut-off poiny return evaluatiofn);
value= —o0;
for(each successer of n){
value= maxvalue opponenfc, 5, 7'));
if (value> §) return value;
if(value> «a) a = value;
}

return value

}

156

a — [pruning in general

The functionopponent is exactly analogous:

opponento, 3, n){

if (n is at the cut-off poiny return evaluatiofm);
value= +oc;
for(each successer of n){
value= min(value player«, 3,n'));
if (value< «) return value;
if (value<) 8 = value;
}
return value

}

Note: the semantics here is that parameters are passed to fisloyiealue

157

a — B pruning in general

Applying this to the earlier example and keeping track ofvhkies fora and 3
you should obtain:

Return2

Returnl

4 5 2 20 20 15 6 7 1

158

How effective isa — 3 pruning?

(Warning: the theoretical results that follow are somewtiedlised.)

A quick inspection should convince you that tbeder in which moves are ar-
ranged in the tree is critical.

So, it seems sensible to try good moves first:
o If you were to have a perfect move-ordering technique then 5 pruning
would beO(¢"/?) as opposed t®(¢”).
« s0 the branching factor would effectively bg; instead of.
o We would therefore expect to be able to search alwa as many moves as
before

However, this is not realistic: if you had such an orderirghtéque you'd be able
to play perfect games!

159

How effective isac — 3 pruning?

If moves are arranged at random thenr- 3 pruning is:

e O((g/ log q)*) asymptotically wherg > 1000 or...

e ...aboutO(¢*/*) for reasonable values qf
In practice simple ordering techniques can get close todkedase. For example,
if we try captures, then threats, then moves forwet

Alternatively, we can implement an iterative deepeningapph and use the order
obtained at one iteration to drive the next.

160

A further optimisation: the transposition table

Finally, note that many games correspondjtaphsrather thartreesbecause the
same state can be arrived at in different ways.

e This is essentially the same effect we saw in heuristic $earecall graph
searchversugree search
e |t can be addressed in a similar way: store a state with itsiaitan in a hash
table—generally called iansposition table-the first time it is seen.
The transposition table is essentially equivalent todlused listintroduced as
part of graph search.

This can vastly increase the effectiveness of the searadepspbecause we don’t
have to evaluate a single state multiple times.

161

Atrtificial Intelligence |

Dr Sean Holden

Notes onconstraint satisfaction problems (CSPs)

Copyright(© Sean Holden 2002-2012.

162

Constraint satisfaction problems (CSPs)

The search scenarios examined so far seem in some waysstensatiy.

e States were represented usingaalitrary andproblem-specificlata structure.
e Heuristics were alsproblem-specific

e |t would be nice to be able tvansformgeneral search problems intstan-
dard format

CSPsstandardise¢he manner in which states and goal tests are represented...

163

Constraint satisfaction problems (CSPs)

By standardising like this we benefit in several ways:

e \We can devisgeneral purposelgorithms and heuristics.

¢ \We can look at general methods for exploring sreictureof the problem.

e Consequently itis possible to introduce techniquesl&momposingroblems.

e We can try to understand the relationship betweersthectureof a problem
and thedifficulty of solving it

Note: another method of interest in Al that allows us to do simifangs involves
transforming to gropositional satisfiabilityoroblem. We'll see an example of
this in Al I1.

164

Introduction to constraint satisfaction problems

We now return to the idea of problem solving by search and eaihfrom this
new perspective.

Aims:
e To introduce the idea of a constraint satisfaction probl&8F) as a general
means of representing and solving problems by search.
e To look at abacktracking algorithrmior solving CSPs.
e To look at someyeneral heuristicgor solving CSPs.
e To look atmore intelligent ways of backtracking

Reading:Russell and Norvig, chapter 5.

165

Constraint satisfaction problems

We have:

e A set ofn variablesVy, Vs, ..., V.
e For eachV; adomainD; specifying the values thaf can take.
e A set ofm constraintsC, Cs, ..., C,,.

Each constraint’; involves a set of variables and specifiesalowable collection
of values

¢ A stateis an assignment of specific values to some or all of the vimsab
e An assignment isonsistentf it violates no constraints.

e An assignment isompletsf it gives a value to every variable.

A solutionis a consistent and complete assignment.

166

Example

We will use the problem ofolouring the nodes of a grapds a running example.

Each node corresponds tovariable We have three colours and directly con-
nected nodes should have different colours.

167

Example
This translates easily to a CSP formulation:

e The variables are the nodes
Vi = node:

e The domain for each variable contains the values black, medcgan
D;={B,R,C}

e The constraints enforce the idea that directly connectei@sionust have dif-
ferent colours. For example, for variablésandV; the constraints specify

(B,R),(B,C),(R,B),(R,C),(C,B),(C,R)

e VariableV; is unconstrained.

168

Different kinds of CSP

This is an example of the simplest kind of CSP: itliscretewith finite domains
We will concentrate on these.

We will also concentrate obinary constraintsthat is, constraints betwegmirs
of variables

e Constraints on single variablessrary constraints—-can be handled by ad-
justing the variable’s domain. For example, if we don’t wahto bered, then
we just remove that possibility fror;.

e Higher-order constraint@pplying to three or more variables can certainly be

considered, but...

e ..when dealing with finite domains they can always be cdadeto sets of
binary constraints by introducing extaaixiliary variables

How does that work?

169

Auxiliary variables

Example:three variables each with domafis, R, C'}.
A single constraint
(C'/ C? C)’ (R7 B? B)’ (B7 R7 B)? <B7 B? R)

W
— A=3 Va
Vs

The original constraint connects all
three variables.

New, binary constraints:

Introducing auxiliary variablel with domain{1, 2, 3,4} allows us to convert this
to a set of binary constraints.

170

Backtracking search

Consider what happens if we try to solve a CSP using a simplaique such as
breadth-first search

The branching factor iad at the first step, for variables each witkl possible
values.
Step2: (n—1)d
Step 3: (n—2)d | Number of leaves- nd x (n —1)d x --- x 1
: = nld"
Stepn: d
BUT: only d" assignments are possible.

The order of assignment doesn’t matter, and we should assigme variable at a
time.

171

Backtracking search

Using the graph colouring example:

The search now looks something like this...

[1=8 1=R 1=C]

N
11l
‘3<
N =
TRl
0 W
N =
Il

o]

1o
PP ole)

WN P
11
WX w

(RN
W=
0o
0w

...and new possibilities appear.

172

Backtracking search

Backtracking search searches depth-first, assigning kesiagable at a time, and
backtracking if no valid assignment is available.

TR wWN e
(NN TRNT]
DWOD®

Nothing is available for 7, so
either assign 8 or backtrack

1

Rather than using problem-specific heuristics to try to muprsearching, we can
now explore heuristics applicable generalCSPs.

173

Backtracking search

Resul t backTrack(problem ({
return bt ([], problem;
}

Result bt (assignmentlList, problem {
if (assignnmentList is conplete)
return assignmentlList;
next Var = get Next Var (assi gnnent Li st, problem;
for (all v in orderVariabl es(nextVar, assignnentList,
if (v is consistent with assignnentlList) {
add "nextVar = v" to assignnentList;
solution = bt(assignnmentList, problen);
if (solutionis not "fail")
return sol ution;
renove "nextVar = v" from assi gnmentLi st;
}
}
return "fail";

}

174

pr obl

Backtracking search: possible heuristics

There are several points we can examine in an attempt tonogeieral CSP-
based heuristics:

e In what order should we try tassign variable®

e In what order should we try tassign possible valugs a variable?
Or being a little more subtle:

e What effect might the values assigned so far have on latemated assign-
ments?

e When forced to backtrack, is it possible to avoid the sanmertaiater on?

175

Heuristics I: Choosing the order of variable assignmentsvatues

Say we havé = Band2 =R

At this point there inly one possible assignment
for 3, whereas the others have more flexibility.

Assigning such variablefirst is called theminimum remaining values (MRV)
heuristic.

(Alternatively, themost constrained variabler fail first heuristic.)

176

Heuristics I: Choosing the order of variable assignments\atues

How do we choose a variable to begin with?

The degree heuristichooses the variable involved in the most constraints on as

yet unassigned variables.

7-

6
\\5 Start with 3, 5 or 7.

1

MRYV is usually better but the degree heuristic is a good teaker.

177

Heuristics I: Choosing the order of variable assignmentsvatues

Once a variable is chosen,what order should values be assigrred

Choosingl = C'is bad as it removes
the final possibility for3.

i,

The heuristic prefers 1=B

1

Theleast constraining valubeuristic chooses first the value that leaves the max-
imum possible freedom in choosing assignments for the bie'aneighbours.

178

Heuristics Il: forward checking and constraint propagatio

Continuing the previous slide’s progress, now add C'.

\ Cis ruled out as an assignment

1 2and 3.

Each time we assign a value to a variable, it makes sensedtedbht value from

the collection ofpossible assignments to its neighbours

This is calledforward checking It works nicely in conjunction with MRV.

179

Heuristics II: forward checking and constraint propagatio

We can visualise this process as follows:

1 2 3 4 5 6 7 8
Start | BRC' | BRC | BRC' | BRC | BRC' | BRC' | BRC' | BRC
2=B| RC | = RC | RC | BRC |BRC | BRC | BRC
3=R| C = =R | RC | BC |BRC| BC |BRC
6=B| C = =R | RC C =B C | BRC
5=C| C = =R R =C |=B ! BRC

At the fourth stefy hasno possible assignments left

However, we could have detected a problem a little eatlier..

180

Heuristics II: forward checking and constraint propagatio

...by looking at step three.

1 2 3 4 5 6 7 8
Start | BRC' | BRC' | BRC | BRC' | BRC | BRC' | BRC' | BRC
2=B| RC | =B | RC | RC |BRC|BRC |BRC|BRC

3=R| C = = RC | BC | BRC| BC | BRC
6=B| C = = RC c = C | BRC
5=C| C = =R R =C | = ! BRC

o At step three) can beC only and7 can beC only.
e But5 and7 are connected.
e SO we can't progress, but this hasn’t been detected.

o |deally we want to da@onstraint propagation

Trade-off:time to do the search, against time to explore constraints.

181

Constraint propagation

Arc consistency:
Consider a constraint as beidgected For examplel — 5.

In general, say we have a constraint- j and currently the domain efis D; and
the domain ofj is D;,.

1 — j is consistentf
Vd € D;,3d" € D; such that — j is valid

182

Constraint propagation

Example:
In step three of the tabld), = {R, C'} andD; = {C'}.

e 5 — 4 in step three of the table consistent

e 4 — 5 in step three of the tabls not consistent

4 — 5 can be made consistent by deletifidrom D,.

Or in other words, regardless of what you assignyou’ll be able to find some-
thing valid to assign tg.

183

Enforcing arc consistency

We can enforce arc consistency each time a variaisl@ssigned.

¢ We need to maintain eollection of arcs to be checked
e Each time we alter a domain, we may have to include furthes iarthe col-
lection.
This is because if — j is inconsistent resulting in a deletion frof we may as
a consequence make some Ares ¢ inconsistent.

Why is this?

184

Enforcing arc consistency

k1 i — j is not consistent so
deleteB from the domain

ko O\ of i.
. })—»O
f .

J
{Rr. B} {B
kx O . ; ki Of))
VK Q VK g
{R} ki — i is consistent bqt {R} ki — iisno Iongerconssten.l
ki = R can only be paired becausé: = R can not be paired
withi = B. withi = R.

e | — j inconsistent means removing a value frém
e 3d € D, such that there is no validl € D, so deletel € D;.

However some” € D, may only have been pairable with

We need to continue until all consequences are taken care of.

185

The AC-3 algorithm

NewDomai ns AC-3 (problem {
Queue toCheck = all arcs i->;
while (toCheck is not enpty) {
i-> = next(toCheck);
if (renovelnconsistencies(D,D)) {
for (each k that is a neighbour of i)
add k->i to toCheck;
}
}
}

Bool renovel nconsi stenci es (domainl, domain2) {
Bool result = false;
for (each d in domainl) {
if (nod indomain2 valid with d) {
remove d from domai nl;
result = true;
}
}

return result;

}

186

Enforcing arc consistency

Complexity:

e A binary CSP withn variables can havé(n?) directional constraints — j.

e Any i — j can be considered at mastimes wherel = max; | Dy| because
only d things can be removed from;.

e Checking any single arc for consistency can be dor@(ift).

So the complexity i£)(n’d%).
Note: this setup includes 3SAT.

Consequencewe can't check for consistency in polynomial time, which gests
this doesn’t guarantee to find all inconsistencies.

187

A more powerful form of consistency

We can define a stronger notion of consistency as follows:

e Given:anyk — 1 variables and any consistent assignment to these.

e Then:We can find a consistent assignment to attyvariable.

This is known ag:-consistency

Strongk-consistencyequires the we bé-consistentk — 1-consistenetcas far
down asl-consistent.

If we can demonstrate strongconsistency (where as usualis the number of
variables) then an assignment can be foun@(nd).

Unfortunately, demonstrating stromgconsistency will bevorst-case exponen-
tial.

188

Backjumping

The basic backtracking algorithm backtracks totest recent assignmenthis
is known aschronological backtrackinglt is not always the best policy:

Say we've assigned = B, 3 = R, 5 = C and4 = B and now we want to
assign something to. This isn't possible so we backtrack, however re-assigning
4 clearly doesn't help.

189

Backjumping
With some careful bookkeeping it is often possiblgump back multiple levels
without sacrificing the ability to find a solution.
We need some definitions:
¢ When we set a variablg to some valuel € D; we refer to this as thassign-
mentA; = (V; «+ d).

e A partial instantiationl;, = {A4;, A, ..., Ay} is aconsistentset of assign-
ments to the first variables...

e ... whereconsistenmeans that no constraints are violated.

Henceforth we shall assume that variables are assigned ortkerty, 5, ..., V,
when formally presenting algorithms.

190

Gaschnig’s algorithm

Gaschnig’s algorithnworks as follows. Say we have a partial instantiatipn
e When choosing a value fdr;,; we need to check that any candidate value
d € Dy, is consistent with;.

e When testing potential values fal we will generally discard one or more
possibilities, because they conflict with some membéf, of

o We keep track of thenost recent assignment; for which this has happened.

Finally, if novalue forV} is consistent with/;, then we backtrack td;.

If there are no possible values left to try figr then we backtrackhronologically

191

Gaschnig’s algorithm

Example:

7=0 7 =0

Backtrack to 5

If there’s no value left to try fob then backtrack t@ and so on.

192

Graph-based backjumping

This allows us to jump back multiple levelghen we initially detect a conflict
Can we do better than chronological backtrackingreaftef
Some more definitions:

e We assume an orderirig, 4, . .., V,, for the variables.

e GivenV’ = {1}, Vs, ..., V,.} wherek < n theancestorof V., are the mem-
bers ofl’’ connected td/, ., by a constraint.

e TheparentP(V) of V., is its most recent ancestor.

The ancestors for each variable can be accumulated as mssighare made.

Graph-based backjumpirgacktracks to thearentof V. ;.

193

Graph-based backjumping

1 1

49 (5}

1

59 (3} 5 {3}//

3I>{1}3 {13 3¢ {1}

At this point, backjump to thearentfor 7, which is5.

194

{1,3,5)

{1,3,4,8}

Backjumping and forward checking

If we useforward checkingsay we’re assigning tbj; by makingVj..; = d:

e Forward checking removes from the D; of all V; connected td/,,; by a
constraint.
¢ When doing graph-based backjumping, we’d also Edd to the ancestors of
V.
In fact, use of forward checking can make some forms of bagjngredundant

Note:there are in fact many ways of combiniognstraint propagationvith back-
jumping and we will not explore them in further detail here.

195

Backjumping and forward checking

.- 2?7 Ancestors

1-4

2-{13,4}

4 3-{1}

4-§)

5-{3}

6-1{5}

7-{1,3,

:8 8-0

1

1 2 3 4 5 6 7 8

Start | BRC | BRC | BRC' | BRC | BRC | BRC | BRC | BRC
1=B| =B | RC RC | BRC | BRC | BRC'| RC | BRC
3=R| =8 C =R |BRC| BC |BRC| C |BRC
5=C| =B C =R | BR | =C | BR ! BRC
4=B| =B C =R | BR | =C | BR ! BRC

Forward checking finds the probldpefore backtracking does

196

Graph-based backjumping

We're not quite done yet though. What happens wtheme are no assignments
left for the parent we just backjumped’to

Backjumping fromV; to V} is fine. However we shouldn’t then just backjump to
V4, because changinig; could fix the problem av~.

197

Graph-based backjumping

To describe an algorithm in this case is a little involved.

Leaf dead-end variablg; ix ?7?

Leaf dead-end
Is.

Given an instantiatiod; andV}.. 4, if there is no consistent € Dy, we call [, a
leaf dead-endndV.,, aleaf dead-end variable

198

Graph-based backjumping

Also

Leaf dead-end variablg;
Ve

Vs

Internal dead-end
I,.

Vi 1?77 Internal dead-end variablé

Leaf dead-end
Is.

Vs

If V; was backtracked to from a later leaf dead-end and there angon® values
to try for V; then we refer to it as aimternal dead-end variabland call/;_; an
internal dead-end

199

Graph-based backjumping

To keep track of exactly where to jump to we also need the digfirs:
e Thesessiorof a variablel” begins when the search algorithm visits it and ends
when it backtracks through it to an earlier variable.

e Thecurrent sessionf a variablel is the set of all variables visiting during its
session.

e In particular, the current session for anycontainsy/.
e Therelevant dead-ends for the current sessi{V') for a variablel” are:

1. If V is a leaf dead-end variable thé&tV') = {V'}.
2. If V- was backtracked to from a dead-értithen R(V) = R(V') U R(V").

And we're not done yet...

200

Graph-based backjumping

Example:

Session of; = {V}. -~
R(V7) = {Vz} /\‘

Session start

Session of/; = {Vy, Vs, Vs, V2 }.

Session start R(Vi) = {V}

As expected, the relevant dead-endWois {V}.

201

Graph-based backjumping

One more bunch of definitions before the pain stops.1&dy a dead-end:
e Theinduced ancestorsd(V},) of V;, are defined as

ind(V,) = {Vi,Vo,..., Viii} N U ancestor§/)
VeR(V)

e Theculprit for V}, is the most recent” € ind(V},).

Note that these definitions depend BfV},).
FINALLY: graph-based backjumpirmackjumps to the culprit

202

Graph-based backjumping

Example:

Backjump fromV;
to V.

| Session of; = {V,, Vs, Vs, V7).
Nothing left to try! R(V)) = {Vi}

ind(va) = {VA}

As expected, we back jump g instead ofi,. Hooray!

203

Conflict-directed backjumping

Gaschnig’s algorithm and graph-based backjumping casob#inedo produce
conflict-directed backjumping

We will not explore conflict-directed backjumping in thisucee.

For considerable further detail on algorithms for CSPs see:

“Constraint Processing,” Rina Dechter. Morgan Kaufmani©Q3.

204

Varieties of CSP

We have only looked atiscreteCSPs witHinite domains These are the simplest.
We could also consider:
1. Discrete CSPs withnfinite domains
¢ \We need &onstraint languageFor example
Vi < Vip+5
e Algorithms are available for integer variables and lineamatraints.
e There isno algorithmfor integer variables and nonlinear constraints.

2. Continuous domains—using linear constraints definimyew regions we have
linear programming This is solvable in polynomial time in.

3. We can introducereference constraints addition toabsolute constraints
and in some cases afjective function

205

Atrtificial Intelligence |

Dr Sean Holden

Notes orknowledge representation and reasoning using first-ordgicl (FOL)

Copyright(© Sean Holden 2002-2012.

206

Knowledge representation and reasoning using FOL

We now look at how an agent mighgpresentknowledge about its environment
using first order logic (FOL), angtasonwith this knowledge to achieve its goals.

Aims:
e To show how FOL can be usedrepresent knowledgabout an environment in
the form of bothbackground knowledgendknowledge derived from percepts

e To show how this knowledge can be usedi&rive non-perceived knowledge
about the environment usinglaeorem prover

e To introduce thesituation calculusand demonstrate its application in a simple
environment as a means by which an agent can work out whatnexto

207

Interesting reading

Reading:Russell and Norvig, chapters 7 to 10.

Knowledge representation based on logic is a vast subjelotamit be covered in
full in the lectures.

In particular:

e Techniques for representirigrther kinds of knowledge
e Techniques for moving beyond the idea dfituation

e Reasoning systems basedaategories

e Reasoning systems usidgfault information

e Truth maintenance systems

Happy reading :-)

208

Knowledge representation and reasoning

Earlier in the course we looked at whatagentshould be able to do.

It seems that all of us—and all intelligent agents—shoulellagical reasoning
to help us interact successfully with the world.

Any intelligent agent should:
e Possesknowledgeabout theenvironmenand aboubhow its actions affect the
environment

e Use some form ofogical reasoningto maintainits knowledge agpercepts
arrive.

e Use some form ofogical reasoningo deduce actionso perform in order to
achievegoals

209

Knowledge representation and reasoning

This raises some important questions:

e How do we describe the current state of the world?

e How do we infer from our percepts, knowledge of unseen pdrtissoworld?

e How does the world change as time passes?

e How does the world stay the same as time passes?f(dime problen)

e How do we know the effects of our actions? (Tdualificationandramifica-
tion problems)

We’ll now look at one way of answering some of these questions

210

Logic for knowledge representation

FOL (arguably?) seems to provide a good way in which to reqmiethe required
kinds of knowledge:

e |t is expressive-anything you can program can be expressed.

e Itis concise

e [t is unambiguous

e |t can be adapted tdifferent contexts

e It has aninference procedutealthough a semidecidable one.

In addition is has a well-definexy/ntaxandsemantics

211

Logic for knowledge representation

Problem:it's quite easy to talk about things likeet theoryusing FOL. For exam-
ple, we can easily write axioms like

VS VS . (Vz.(zeSezes) =85=5)

But how would we go about representing the propositionithaiu have a bucket
of water and throw it at your friend they will get wet, have arfpuon their head
from being hit by a bucket, and the bucket will now be emptydamded®

More importantly, how could this be represented within aevitamework for
reasoning about the world?

It's time to introduce my friendThe Wumpus

212

Wumpus world

As a simple test scenario for a knowledge-based agent wanaile use of the
Wumpus World

o ©
QO

Evil Robot

The Wumpus World is a 4 by 4 grid-based cave.

EVIL ROBOT wants to enter the cave, find some gold, and get out again un-

scathed.

213

Wumpus world

The rules ofWumpus World
e Unfortunately the cave contains a number of pits, whigliL ROBOT can
fall into. Eventually his batteries will fail, and that'se¢tend of him.

e The cave also contains the Wumpus, who is armed with stateeodutEvil
Robot Obliteration Technology

e The Wumpus itself knows where the pits are and never faltsane.

214

Wumpus world

EVIL ROBOT can move around the cave at will and can perceive the follgwin
¢ In a position adjacent to the Wumpus, a stench is perceivddimpuses are
famed for theilack of personal hygieng
e |n a position adjacent to a pit,laeezes perceived.
e In the position where the gold is, a = ' is perceived.
e On trying to move into a wall, aumpis perceived.
e On killing the Wumpus &creamis perceived.
In addition,EVIL ROBOT has a single arrow, with which to try to kill the Wum-
pus.

“Adjacent” in the following doesotinclude diagonals.

215

Wumpus world

So we have:
Percepts:st ench, breeze, glitter, bunp,scream
Actions:f orwar d, t urnLeft,turnRi ght,grab,rel ease,shoot,clinb.

Of course, our aim now igot just to design an agent that can perform well in a
single cave layout.

We want to design an agent that asuallyperform wellregardles=of the layout
of the cave.

216

Some nomenclature

The choice of knowledge representation language tendsitbttetwo important
commitments:

e Ontological commitmentsvhat does the world consist of?

e Epistemological commitment&hat are the allowable states of knowledge?
Propositional logic is useful for introducing some fundamaé ideas, but its on-

tological commitment—that the world consists of facts—stimes makes it too
limited for further use.

FOL has a different ontological commitment—the world cstsbffacts objects
andrelations

217

Logic for knowledge representation

The fundamental aim is to construckaowledge basgB containing acollection
of statementabout the world—expressed in FOL—such thsé¢ful things can be
derivedfrom it.

Our central aim is to generate sentences thatraee if the sentences in the
are true

This process is based on concepts familiar from your intrazhy logic courses:

e Entailment:kB |= a means that th&B entailsa.

e Proof: KB -; & means thaty is derived from the&kB usingi. If 7 is soundthen
we have groof.

e i is soundif it can generate only entailed.
e ; is completdf it can find a proof forany entaileda.

218

Example: Prolog

You have by now learned a little about programmindmlog. For example:

concat ([],L,L).
concat([H T],L,[HL2]) :- concat(T,L,L2).

is a program to concatenate two lists. The query
concat([1,2,3],[4,5],X).
results in

X=1[1 2 3, 4, 5].

What's happening here? Well, Prolog is jusnhare limited form of FOlso...

219

Example: Prolog

... we are in fact doing inference fronka:
e The Prolog programme itself is thes. It expresses somienowledge about
lists.
e The query is expressed in such a way addédve some new knowledge
How does this relate to full FOL? First of all the list notatis nothing busyntac-

tic sugar. It can be removed: we define a constant caleght y and a function
calledcons.

Now|[1, 2, 3] justmeans cons(1, cons(2, cons(3, enpty)))) which
is aterm in FOL.

| will assume the use of the syntactic sugar for lists from onow

220

Prolog and FOL

The program when expressed in FOL, says

Vz.concat (enpty,z,z) A
Vh,t,l1,ly.concat (¢, 11, 1l;) = concat (cons(h,t),l;,cons(h, i)

The rule is simple—given a Prolog program:

e Universally quantify all the unbound variables in each lofehe programand

e ... form the conjunction of the results

If the universally quantified lines arg,, Lo, ..., L, then the Prolog programme
corresponds to thikB
KB=IL{ALyA---AL,

Now, what does the query mean?

221

Prolog and FOL

When you give the query

concat([1,2,3],[4,5],X).

to Prolog it responds btyying to provethe following statement
KB = Jz.concat ([1,2,3],[4,5], z)

So: it tries to prove that th&B implies the queryand variables in the query are
existentially quantified.

When a proof is found, it suppliesvalue forz thatmakes the inference true

222

Prolog and FOL

Prolog differs from FOL in that, amongst other things:

e It restricts you to usindgdorn clauses
e Its inference procedure is nofall-blown proof procedure

e |t does not deal wittnegationcorrectly.

Howeverthe central idea also works for full-blown theorem provers

If you want to experiment, you can obtafmover9from
http://ww. cs. unm edu/ ~nccune/ mace4d/

We'll see a brief example now, and a more extensive exampte oée later, time
permitting...

223

Prolog and FOL

Expressed in Prover9, the above Prolog program and quekylilaothis:

set (prol og_styl e_variabl es).

% This is the translated Prolog programfor |ist concatenation.
% Prover9 has its own syntactic sugar for lists.

formul as(assunptions).
concat([], L, L).
concat (T, L, L2) -> concat([H T], L, [HL2]).
end_of _list.
% This is the query.
forml as(goal s).

exists X concat([1, 2, 3], [4, 5], X).
end_of _list.

Note: it is assumed thatnbound variables are universally quantified

224

Prolog and FOL
You can try to infer a proof using

prover9 -f file.in

and the result is (in addition to a lot of other information):

1 concat(T,L,L2) -> concat([H T],L,[H L2]) # |abel (non_clause). [assunption].
2 (exists X concat([1,2,3],[4,5],X)) # |abel (non_clause) # |abel (goal). [goal].
3 concat([],A A). [assunption].

4 -concat(A B, C) | concat([D:A,B,[D:C). [clausify(1l)].

5 -concat([1,2,3],[4,5],A). [deny(2)].

6 concat([A],B,[A:B]). [ur(4,a3,a)].

7 -concat([2,3],[4,5],A). [resolve(5,a,4,b)].

8 concat ([A, B],C [ABC). [ur(4,a6,a)].

9 $F. [resolve(8,a,7,a)].

This shows that a proof is found but doesn’t explicitly giveadue for X—we’'ll
see how to extract that later...

225

The fundamental idea

So thebasic ideas: build akB that encodeknowledge about the worltheeffects
of actionsand so on.

TheKB is a conjunction of pieces of knowledge, such that:

e A query regarding what our agent shouldahn be posed in the form

dJactionList .Goal (... actionList ...)
e Proving that
KB = JactionList .Goal (... actionList ...)

instantiatesct i onLi st to anactual list of actionghat will achieve a goal
represented by th@oal predicate.

We sometimes use the notatiagk andtell to refer toqueryingandadding to
thekB.

226

Using FOL in Al: the triumphant return of the Wumpus

We want to be able tepeculateabout the past and abgoubssible futuresSo:

QO
QO

Evil Robot

¢ We includesituationsin the logical language used by B.
e We includeaxiomsin ourXB that relate to situations.

This gives rise teituation calculus

227

Situation calculus

In situation calculus

e The world consists of sequencessitiiations

e Over time, an agent moves from one situation to another.

e Situations are changed as a resulacfions
In Wumpus World the actions aréor war d, shoot ,gr ab,cl i nb,rel ease,
turnRi ght,turnLeft.

e A situation argumenis added to items that can change over time. For example

At(location s)
Items that can change over time are caflegnts

e A situation argument is not needed for things that don’t geanThese are
sometimes referred to &ernalor atemporal

228

Representing change as a result of actions

Situation calculus uses a function
resulfacti on,s)

to denote tha@ewsituation arising as a result of performing the specifietbadh
the specified situation.

resul{grab, sg) = s1
resul{turnLeft, s;) = s9
resul{shoot, so) = s3
resul{forward, s3) = s4

229

Axioms I: possibility axioms

The first kind of axiom we need in BB specifieswhen particular actions are
possible

We introduce a predicate
Possact i on, s)
denoting that an action can be performed in situation
We then need possibility axionfor each action. For example:
At(l, s) A Available(gol d, [, s) = Possggrab, s)

Remember thatnbound variables are universally quantified

230

Axioms lI: effect axioms

Given that an action results in a new situation, we can inice@ffect axiomso
specify the properties of the new situation.

For example, to keep track of whetheYIL ROBOT has the gold we neeeffect
axiomsto describe the effect of picking it up:

Posggrab, s) = Havegol d, resul{grab, s))
Effect axioms describe the way in which the woclthnges
We would probably also include
—Havegol d, sy)
in theKB, wheres is thestarting state

Important we are describingvhat is truein the situation that result§rom per-
forming an actiorin agiven situation

231

Axioms IlI: frame axioms

We needrame axiomgo describehe way in which the world stays the same
Example:
Havego, s) A
—(a = release Ao =gol d) A —(a = shoot Ao=arrow)
= Havdo, resul{a, s))

describes the effect dfaving something and not discarding it
In a more general setting such an axiom might well look déffer For example
—Havgo, s) A

(a # grab(o) vV —(Availablgo,s) A Portabl¢o)))
= —Have(o,resul{a, s))

describes the effect ofot having something and not picking it.up

232

The frame problem

Theframe problenhas historically been a major issue.

Representational frame problera large number of frame axioms are required to
represent the many things in the world which will not changéhe result of an
action.

We will see how to solve this in a moment.

Inferential frame problemwhen reasoning about a sequence of situations, all the
unchanged properties still need to be carried through alsteps.

This can be alleviated usinganning systemthat allow us to reason efficiently
when actions change only a small part of the world. Therelaeather remedies,
which we will not cover.

233

Successor-state axioms

Effect axioms and frame axioms can be combined sufccessor-state axioms
One is needed for each predicate that can change over time.

Action a is possible=-
(true in new situation<—-
(you did something to make it true
it was already true and you didn’t make it false

For example

Possa, s) =
(Haveo, resulta, s)) <= ((a = grab A Available(o,s) v
(Haveo,s) A —(a =release A o=gol d) A
—(a = shoot A o=arrow))))

234

Knowing where you are

If sqis the initial situation we know that
At((1,1), s0)

| amassuminghat we've added axioms allowing us to deal with the numbéos
5 and pairs of such numberi&Exercise: do this.)

We need to keep track of what way we're facing. Say north &uth is2, east is
1 and west is.
facing(sy) = 0

We need to know how motion affects location
forwardResulf(z,y),nort h) = (z,y + 1)
forwardResulf(z,y), east) = (z + 1, y)

and
At(l, s) = goForwards) = forwardResulfl, facing(s))

235

Knowing where you are

The concept of adjacency is very important in the Wumpusavorl
Adjacent!,, l;) <= 3d forwardResultl;, d) = [,
We also know that the cave 4sby 4 and surrounded by walls
WallHerg(z,y)) <= (z=0Vy=0Vz=5Vy=25)

Itis only possible to change location by moving, and thisyambrks if you're not
facing a wall. So...
...we need a successor-state axiom:
Possa, s) =
At(l, resulfa, s)) < (I = goForwards)

N a = forward

A —~WallHerg())

V (At(l, s) A a # forward)

236

Knowing where you are

It is only possible to change orientation by turning. Agair, need a successor-
state axiom
Possa, s) =
facingresulta, s)) = d <—
(a = turnRight A d = modfacing(s) + 1,4))
V (@ = turnLeft A d = modfacing(s) — 1,4))
V (facing(s) = d A a # turnRight A a # turnleft)

and so on...

237

The qualification and ramification problems

Qualification problemwe are in general never completely certain what conditions
are required for an action to be effective.

Consider for example turning the key to start your car.
This will lead to problems if important conditions are oradtfrom axioms.

Ramification problemactions tend to have implicit consequences that are large i
number.

For example, if | pick up a sandwich in a dodgy sandwich shapilllalso be
picking up all the bugs that live in it. | don’t want to modelgtexplicitly.

238

Solving the ramification problem

The ramification problem can be solved tpdifying successor-state axioms
For example:
Possga, s) =
(At(o,1, resulfa, s)) <
(a=go(l',1) A
[o=robot Vv Hagrobot ,o,s)])V
(At(o,1,5) A
[a=gol,l") AN LAT" A
{o =robot v Hagrobot o, s)}]))
describes the fact that anythiigyIL ROBOT is carrying moves around with him.

239

Deducing properties of the world: causal rules

If you know where you are, then you can think abplscesrather than jussitu-
ations

Synchronic ruleselate properties shared by a single state of the world.

There are two kindscausalanddiagnostic

Causal rules some properties of the world will produce percepts.
WumpusAti;) A Adjacent!;, l;) = StenchAtl,)

PitAt(l;) A Adjacent!, l,) = BreezeAtl,)
Systems reasoning with such rules are knowmasdel-basedeasoning systems.

240

Deducing properties of the world: diagnostic rules General axioms for situations and objects

Diagnostic rulesinfer properties of the world from percepts. Note in FOL, if we have two constantsobot andgol d then an interpretation
For example: is free to assign them to be the same thing.
At(l,s) N Breezg¢s) — BreezeAfl) This is not something we want to allow.
At(l,s) A Stench(s) = St enchAt (1) Unique names axiomstate that each pair of distinct items in our model of the
These may not be very strong. world must be different
r obot +# gol d

The difference between model-based and diagnostic reggcan be important.
For example, medical diagnosis can be done based on symptob@sed on a
model of disease.

robot £ arrow
r obot #wunpus

wunpus # gol d
241 242
General axioms for situations and objects General axioms for situations and objects
Unique actions axiomstate that actions must share this property, so for each pair The situations arerderedso
of actions
go(l,') #grab sy # resulta, s)

go(l,1') # dr op(o) and situations ardistinctso
E resulta, s) = resulfd’,s') <= a=d As=+
drop(o) # shoot
; Strictly speaking we should be usingreany-sortedrersion of FOL.
and in addition we need to define equality for actions, so &heaction In such a system variables can be divided sdotswhich are implicitly separate
gO(l, l/) _ go(l”,l’”) — =" Al =1" from one another.
drop(o) =drop(d) <= o=0

243 244

The start state

Finally, we're going to need to specifyhat’s true in the start state

For example
At(r obot ,[1,1], s0)
At(\/\Un‘pUS, [37 4]- 50)
Hagr obot ,arr ow, s;)
and so on.

245

Sequences of situations

We know that the function result tells us about the situatEsulting from per-
forming an action in an earlier situation.

How can this help us findequences of actions to get things d®ne

Define
Sequencg],s,s’) = s = s
Sequencgal, s, s') = Possa, s) A s = resulta, s)
Sequencg :: as, s,s') = 3t . Sequencgal, s, t) A Sequencgs, t, s')

To obtain asequence of actions that achiev&sal s) we can use the query

Ja 3s . Sequence, sy, s) A Goal’s)

246

Knowledge representation and reasoning

It should be clear that generating sequences of actionsfbyeimce in FOL is
highly non-trivial.

Ideally we'd like to maintain aexpressivéanguage whilgestrictingit enough to
be able to do inferencefficiently

Further aims
e To give a brief introduction teemantic networkandframesfor knowledge
representation.
e To see hownheritancecan be applied as a reasoning method.
e To look at the use ofules for knowledge representation, along withrward
chainingandbackward chainindor reasoning.

Further reading The Essence of Artificial IntelligencAlison Cawsey. Prentice
Hall, 1998.

247

Frames and semantic networks

Frames and semantic networks represent knowledge in thedbeclasses of ob-
jectsandrelationships between them

e Thesubclassaandinstancerelationships are emphasised.

e We formclass hierarchie$n which inheritanceis supported and provides the
maininference mechanism

As a result inference is quite limited.
We also need to be extremely careful absemantics

The only major difference between the two ideasdgational

248

Example of a semantic network

has

Ear problem:

has

249

Frames

Frames once again support inheritance througlstitelass relationship

Rock musician

Musician
subclass: Musician subclass: Person
has: ear problems has: instrument
hairlength: long
volume: loud

has, hai r| engt h, vol une etcareslots
I ong, | oud,i nstrunent etcareslot values

These are a direct predecessoobfect-oriented programming languages

250

Defaults

Both approaches to knowledge representation are abledgpio@tedefaults

Rock musician . .
Dementia Evilperson

subclass: Musician subclass: Rock musicial

has: _ ear problems hairlength: short
hairlength: long image: gothic
*volume: loud

Starred slots argypical valuesassociated with subclasses and instances;dout
be overridden

251

Multiple inheritance

Both approaches can incorporatltiple inheritanceat a cost:

Rock musician Classical musician

instance instance

Cornelius Cleverchap,

e What ishai r | engt h for Cor nel i us if we're trying to use inheritance to
establish it?

e This can be overcome initially by specifying which classnikérited fromin
preferencevhen there’s a conflict.

e But the problem is still not entirely solved—what if we waatgrefer inheri-
tance of some things from one class, but inheritance of sthhem a different
one?

252

Other issues

¢ Slots and slot values can themselves be frames. For exddapient i a may
have an instrument slot with the val& ectri ¢ har p, which itself may
have properties described in a frame.

e Slots can havepecified attributes=or example, we might specify thatst r unent
can have multiple values, that each value can only be amiosiatfl nst r unent ,
that each value has a slot calledned_by and so on.

e Slots may contain arbitrary pieces of program. This is kn@asprocedural
attachment The fragment might be executed to return the slot’s value, o
update the values in other slat

253

Rule-based systems

A rule-based system requires three things:

1. Asetofi f -t hen rules. These denote specific pieces of knowledge about the
world.

They should be interpreted similarly to logical implicatio

Such rules denotevhat to door what can be inferredinder given circum-
stances.

2. A collection offactsdenoting what the system regards as currently true about
the world.

3. Aninterpreter able to apply the current rules in the lighthe current facts.

254

Forward chaining

The first of two basic kinds of interpretéegins with established facts and then
applies rules to them

This is adata-drivenprocess. It is appropriate if we know thétial facts but not
the required conclusion.

Example: XCON—used for configuring VAX computers.

In addition:

¢ We maintain avorking memorytypically of what has been inferred so far.

¢ Rules are ofterrondition-action ruleswhere the right-hand side specifies an
action such as adding or removing something from working orgnprinting
a messagetc

e In some cases actions might be entire program fragments.

255

Forward chaining

The basic algorithm is:

1. Find all the rules that can fire, based on the current wgrkiemory.
2. Select a rule to fire. This requireganflict resolution strategy
3. Carry out the action specified, possibly updating the wgrknemory.

Repeat this process until eitheo rules can be usear ahalt appears in the work-
ing memory.

256

Example

Condition—action rules

dry_mouth —> ADD thirsty
thirsty —=> ADD get_drink

get_drink AND no_work —> ADD go_bar
working —> ADD no_work
no_work —> DELETE working

Working memory Interpreter

dry_mouth
working

257

Example
Progress is as follows:

1. The rule
dry nouth = ADDthirsty

fires adding hi r st y to working memory.

2. The rule
thi rsty =— ADD get dri nk

fires addingget _dr i nk to working memory.

3. The rule
wor ki ng = ADD no wor k

fires addingho_wor k to working memory.

4. The rule
get _dri nk AND no wor k = ADD go _bar

fires, and we establish that it's time to go to the bar.

258

Conflict resolution

Clearly in any more realistic system we expect to have to déthl a scenario
wheretwo or more rules can be fired at any one time

e Which rule we choose can clearly affect the outcome.

¢ We might also want to attempt to avoid inferring an abundasfagseless in-
formation.

We therefore need a meansresolving such conflicts

259

Conflict resolution

Commonconflict resolution strategiesre:

e Prefer rules involving more recently added facts.
o Prefer rules that ammore specificFor example
pati ent coughi ng = ADD | ung pr obl em
is more general than
pati ent coughi ng AND pati ent snmoker — ADD | ung_cancer .
This allows us to define exceptions to general rules.
o Allow the designer of the rules to specify priorities.

o Fire all rulessimultaneoushky-this essentially involves following all chains of
inference at once.

260

Reason maintenance

Some systems will allow information to be removed from thekirmg memory if
it is no longerjustified

For example, we might find that
pati ent coughi ng

and
pati ent _snoker

are in working memory, and hence fire
pati ent coughi ng AND pati ent smoker —> ADD | ung _cancer

but later infer something that caugest i ent _coughi ng to bewithdrawnfrom
working memory.

The justification fol ung_cancer has been removed, and so it should perhaps
be removed also.

261

Pattern matching
In general rules may be expressed in a slightly more flexiie finvolvingvari-
ableswhich can work in conjunction witpattern matching
For example the rule
coughs(X) AND snoker (X) = ADD | ung_cancer (X)
contains the variablé&’.
If the working memory containsoughs (neddy) andsnoker (neddy) then
X = neddy

provides a match and
| ung_cancer (neddy)

is added to the working memory.

262

Backward chaining

The second basic kind of interpreter begins witjoal and finds a rule that would
achieve it.

It then worksbackwards trying to achieve the resulting earlier goals in the suc-
cession of inferences.

Example: MYCIN—medical diagnosis with a small number of dibions.

This is agoal-drivenprocess. If you want ttest a hypothesisr you have some
idea of a likely conclusion it can be more efficient than fordvehaining.

263

Example

Working memory Goal

dry_mout h
g07bar
To establistgo_bar we have to
get drink| estaplistget _dri nk andno_wor k.
no_wor k
These are the new goals.

Thirst Try first to establislyet _dr i nk. This
no._wor ky can be done by establishindi r sty.

i

t hi r sty can be established by establishing

dry mout dry_mout h. This is in the working memory
no_wor k)
so we're done.

N

Finally, we can establisho_wor k by
establishingwor ki ng. This is in the working

wor ki n
. memory so the process has finished.

H

264

Example with backtracking

If at some point more than one rule has the required conciubien we cafack-
track.

Example: Prolog backtracks, and incorporates pattern matching. It orders a
tempts according to the order in which rules appear in thgraro.

Example: having added
upearly — ADD tired

and
tired AND | azy — ADD go bar

to the rules, andip_ear | y to the working memory:

265

Example with backtracking

Working memory Goal

dry_mout h
wor ki ng
up-early

Attempt to establisigo_bar
by establishing i r ed and
| azy.

This can be done by establishing

up_early|up_earlyandl azy.
I'azy up_ear | y is in the working memory

so we're done.

We can not establisgazy

| azy and so we backtrack and try a
different approach.

get _drink
no_wor k

thirsty
no_wor k
dry_nmout h
no_wor k

wor ki ng

H

266

Process proceeds as before

Artificial Intelligence |

Dr Sean Holden

Notes onplanning

Copyright(© Sean Holden 2002-2012.

267

Problem solving is different to planning

In search problemsve:

e Represent stateand a state representation contagmerythingthat’s relevant

about the environment.

e Represent actiondy describing a new state obtained from a current state.

e Represent goalsall we know is how to test a state either to see if it's a goal,

or using a heuristic.

e A sequence of actions is a ‘plarBut we only considesequences of consecu-

tive actions

Search algorithms are good for solving problems that fitftaimework. However
for more complex problems they may fail completely...

268

Problem solving is different to planning

Representing a problem such &g out and buy some piess hopeless:

e There aré¢oo many possible actiora each step.

e A heuristic can only help you rank states. In particular ieslmot help you
ignoreuseless actions.

e We are forced to start at the initial state, but you have tckvemt how to get
the pies—that is, go to town and buy them, get online and find a web ke t
sells piesstc—before you can start to do.it

Knowledge representation and reasoning might not helgeigithough we end
up with a sequence of actions—a plan—there is so much fléyibilat complex-
ity might well become an issue.

269

Introduction to planning

We now look at how an agent migbbnstruct a plarenabling it to achieve a goal.

Aims

e To look at how we might update our conceptobwledge representation and
reasoningto apply more specifically to planning tasks.

e To look in detail at the basipartial-order planning algorithm

Reading Russell and Norvig, chapter 11.

270

Planning algorithms work differently

Difference 1
e Planning algorithms usespecial purpose languageoften based on FOL or
a subset— to represent states, goals, and actions.
e States and goals are described by sentences, as might lmeskdwrut...
e ...actions are described by stating th@econditionsand theireffects

So if you know the goal includes (maybe among other things)
Havepi e)

and action Buyr) has an effect Have) then you know that a plaimcluding
Buy(pi e)

might be reasonable.

271

Planning algorithms work differently

Difference 2
e Planners can add actionsaaty relevant point at all between the start and the
goal, not just at the end of a sequence starting at the start state.

e This makes sense: | may determine that Haee Keys) is a good state to be
in without worrying about what happens before or after figdimem.

¢ By making an important decision like requiring Hagar Keys) early on we
may reduce branching and backtracking.

e State descriptions are not complete—Haa Keys) describes alass of
states—and this adds flexibility.

Sa you have the potential to search béhwardsandbackwardswithin the same
problem.

272

Planning algorithms work differently

Difference 3
It is assumed that most elements of the environmenhaependent of most other
elements
e A goalincluding several requirements can be attacked wdikiide-and-conquer
approach.
e Each individual requirement can be fulfilled using a subplan

e ...and the subplans then combined.

This works provided there is not significant interactionden the subplans.

Remember: thérame problem

273

Running example: gorilla-based mischief

We will use the following simple example problem, which asdzhon a similar
one due to Russell and Norvig.

The intrepid little scamps in th€ambridge University Roof-Climbing Society
wish to attach annflatable gorillato the spire of &cFamous College To do this
they need to leave home and obtain:

¢ An inflatable gorilla these can be purchased from all good joke shops.

e Some ropeavailable from a hardware store.

o A first-aid kit also available from a hardware store.

They need to return home after they've finished their shappin

How do they go about planning thgally escapad@

274

The STRIPS language

STRIPS:“Stanford Research Institute Problem Solvé970).

States are conjunctionsof ground literals They must not includéunction sym-

bols
At(home) A —Haveggori | | a)

A ~Haver ope)
A —~Haveki t)
Goals areconjunctionf literals where variables are assunmedstentially quan-
tified.
At(z) A Sellgz,gorilla)
A planner finds a sequence of actions that when performed srtakegoal true.
We are no longer employing a full theorem-prover.

275

The STRIPS language

STRIPS represents actions usimgerators For example

At(z), Path{z, y)

Go(y)

At(y), ~At(z)

Op(Action: Gay), Pre: Atz) A Pathz, y), Effect: At(y) A —At(z))
All variables are implicitly universally quantified. An oor has:

e An action descriptionwhat the action does.

e A precondition what must be true before the operator can be usedori
junction of positive literals

e An effect what is true after the operator has been usedcoAjunction of
literals.

276

The space of plans

We now make a change in perspective—we seargitan space

e Start with anempty plan

e Operate on itto obtain new plans. Incomplete plans are cafjedtial plans
Refinement operatoedd constraints to a partial plan. All other operators are
calledmadification operators

e Continue until we obtain a plan that solves the problem.
Operations on plans can be:

e Adding a step
e Instantiating a variable
e Imposing an orderinghat places a step in front of another.

e and soon...

277

Representing a plan: partial order planners

When putting on your shoes and socks:

e |t does not mattewhether you deal with your left or right foot first.
e |t does mattethat you place a sock dveforea shoe, for any given foot.

It makes sense in constructing a plamt to make anycommitmento which side
is done firstif you don’t have to

Principle of least commitmento not commit to any specific choices until you
have to. This can be applied both to ordering and to instéotiaf variables. A
partial order plannerallows plans to specify that some steps must come before
others but others have no ordering. liAearisation of such a plan imposes a
specific sequence on the actions therein.

278

Representing a plan: partial order planners

A plan consists of:

1. Aset{S;, 5,,...,S,} of steps Each of these is one of the availablgerators

2. A set ofordering constraintsAn ordering constraint; < S; denotes the fact
that stepS; must happen before stefy. S; < S; < S; and so on has the
obvious meaning.S; < S; doesnot mean thatS; mustimmediatelyprecede

3. A set of variable bindings = = wherev is a variable and is either a variable
or a constant.

4. A set ofcausal linksor protection intervalsS; S;. This denotes the fact
that the purpose df; is to achieve the preconditiarfor S;.

A causal link isalwayspaired with an equivalent ordering constraint.

279

Representing a plan: partial order planners

Theinitial plan has:

e Two steps, called Start and Finish.
e a single ordering constraint StartFinish.
e No variable bindings

e No causal links
In addition to this:

e The step Start has no preconditions, and its effect is the stae for the
problem.

e The step Finish has no effect, and its precondition is thé goa

o Neither Start or Finish has an associated action.

We now need to consider what constitutesodution..

280

Solutions to planning problems

A solution to a planning problem is ampmpleteandconsistenpartially ordered
plan.

Complete each precondition of each stepeishievedby another step in the solu-
tion.

A preconditionc for S is achieved by a ste§' if:

1. The precondition is an effect of the step
S" < S andc € Effect.S’)
and...

2. ... there imo otherstep thatcould cancel the precondition. That is, ity
exists where:

e The existing ordering constraints allat to occurafter S’ butbeforesS.
e —c € EffectgS”) .

281

Solutions to planning problems

Consistent no contradictions exist in the binding constraints or ia groposed
ordering. That is:

1. For binding constraints, we never have: X andv = Y for distinct constants
X andY.

2. For the ordering, we never hage< S’ andS’ < S.
Returning to the roof-climber’'s shopping expedition, hierthe basic approach:

e Begin with only theSt ar t andFi ni sh steps in the plan.
e At each stage add a new step.

e Always add a new step such thatcarrently non-achieved precondition is
achieved

e Backtrack when necessary.

282

An example of partial-order planning

Here is thanitial plan:

Start

At (Hone) ASel I s(JS, G|ASel I s(HS, R) ASel | s(HS, FA)

At (Hone) A Have(Q) A Have(R) AHave(FA)

Fi ni sh

Thin arrows denote ordering.

283

An example of partial-order planning

There arédwo actions available

At (z) At (z),Sel | s(z,y)
Go(y) Buy (y)
At (y), At (z) Have(y)

A planner might begin, for example, by adding a BByaction in order to achieve
the HaveéG) precondition of Finish.

Note the following order of events is by no means the only onelaki to a
planner.

It has been chosen for illustrative purposes.

284

An example of partial-order planning

Incorporating the suggested step into the plan:

Start

At (Home) ,Sel 1 5(JS, @ . Sel | s(HS, R), Sel | s(HS, FA)
At (2).§el 1 5(2,6)

Buy(G

At (Hone) ,Have(G ,Have(R),Have(FA)

Fi ni sh

Thick arrows denote causal links. They always have a thmmatmderneath.

Here the nevBuy step achieves the Hal@ precondition of Finish.

285

An example of partial-order planning

The planner can now introduce a second causal link from &iaatchieve the
Sellgz, G) precondition of BuyG).

Start

At (Hone),Sel I s(JS, §\Sel | s(HS, R, Sel | s(HS, FA)

At (JS),Sel 1 s(JS, §

Buy(Q

At (Hone) ,Have(G) ,Have(R) . Have(FA)

Fi ni sh

286

An example of partial-order planning

The planner’s next obvious move is to introduce a Go stepligeae the AtJS)
precondition of BuyG).

Start

At (z) At (Hore) ,Sel I s(JS, W . Sel | s(HS, R),Sel | s(HS, FA)

At (JS),Sel I s(JS, G

Buy(Q

!

At (Hone) ,Have(G ,Have(R),Have(FA)

Fi ni sh

And we continue...

287

An example of partial-order planning

Initially the planner can continue quite easily in this mann

¢ Add a causal link from Start to GdS) to achieve the Atr) precondition.

e Add the step BugR) with an associated causal link to the HERpprecondi-
tion of Finish.

e Add a causal link from Start to BUR) to achieve the Sel(siS, R) precondi-
tion.

But then things get more interesting...

288

An example of partial-order planning

Start

At (Hore) At (Home) ,Sel | s(JS\G), Sel . R) . Sel | s(HS, FA)

Go(JS)

At (JS),Sel I s(JS,) At (HS), Sel Ts(HS, R)

Buy(G Buy(R)

At(l—bne),Hav!G),HaW

Fini sh

At this point it starts to get tricky...
The AtHS) precondition in BuyR) is not achieved.

289

An example of partial-order planning

Start

i At (z)
At (Home) At (Hone) ,Sel 1 s(JS, §) . Sel HS, R),Sel | s(HS, FA)
Go(HS)
Co(JS)
—At ()
At (JS),Sel I s(JS, G Sel I s(HS, R), A (HS)
Buy (G Buy(R)

At (Hone) ,Have(G ,Have(R) ,Have(FA)

Fi ni sh

The AtHS) precondition is easy to achievBut if we introduce a causal link from
Startto Go(HS) then we risk invalidating the precondition f@0(JS).

290

An example of partial-order planning

A step that might invalidate (sometimes the waidbberis employed) a previ-
ously achieved precondition is calledhraeat

N —C
P Demotior

/ —c

/
c / c \iromouon

/ Threat
AV4 N I

A planner can try to fix a threat by introducing an orderingsteaint.

291

An example of partial-order planning

The planner could backtrack and try to achieve thecAprecondition using the
existing G4JS) step.

Start

At(JS)
At (Hone At (Hore) , Sel 1 5(JS, N9, SSTHS, R) , Sel | s(HS, FA)
S //,r"/"/ﬁAI(JS)
A9 Sl 1SUS. G sells(hs R ALK
Buy(9 [Buy(R)

/

At (Hone) ,Have(G ,Have(R),Have(FA)

Fi ni sh

This involves a threat, but one that can be fixed using pramoti

292

The algorithm

Simplifying slightly to the case where there are variables
Say we have a partially completed plan and a set of the préoomsithat have
yet to be achieved.

e Select a preconditiop that has not yet been achieved and is associated with
an actions.

e At each stag¢he partially complete plan is expanded into a new collettib
plans

e To expand a plan, we can try to achieveeither by using an action that’s
already in the plan or by adding a new action to the plan. Imegitase, call
the actionA.

We then try to construct consistent plans whédrachieves.

293

The algorithm
This works as follows:

e Foreach possible way of achievipg

— Add Start< A, A < Finish, A < B and the causal link % B to the plan.

— If the resulting plan is consistent we're done, othervgeaerate all possi-
ble ways of removing inconsistencigg promotion or demotion ankeep
any resulting consistent plans

At this stage:

e If you haveno further preconditions that haven't been achietieenany plan
obtained is valid

294

The algorithm

But how do we try teenforce consisten@y

When you attempt to achieyeusing A:

e Find all the existing causal linkd’ 5 B’ that areclobberedby A.

e For each of those you can try addidg< A’ or B’ < A to the plan.

e Find all existing actiong’ in the plan that clobber theewcausal link4 % B.
e For each of those you can try addiég< A or B < C to the plan.

e Generateevery possible combinatioim this way and retain any consistent
plans that result.

295

Possible threats

What about dealing withiariables?
If at any stage an effectAt(x) appears, is it a threat to AtS)?
Such an occurrence is calleghassible threatind we can deal with it by introduc-
ing inequality constraintsin this caser # JS.
e Each partially complete plan now has a $edf inequality constraints associ-
ated with it.

e An inequality constraint has the form+# X wherev is a variable and\ is a
variable or a constant.

e Whenever we try to make a substitution we chddo make sure we won't
introduce a conflict.

If we would introduce a conflict then we discard the partially compleitzh as
inconsistent.

296

Artificial Intelligence |

Dr Sean Holden

Notes onmachine learning using neural networks

Copyright© Sean Holden 2002-2012.

297

Did you heed the DIRE WARNING?

At the beginning of the courdesuggested making sure you can answer the fol-
lowing two questions:

1. Let

n

f(xh"'axﬂ) = ZQ,I',Z

1=1
where thesy; are constants. Compudy /dz; wherel < j < n?
Answer:As
flxy, ... @) = alx%+-~-+a‘jx§+---—|—anx72l
only one term in the sum depends .o so all the other terms differentiate to
give0 and
of

o,

= QCL‘]‘I]'

298

Did you heed the DIRE WARNING?

2. Let f(xy,...,z,) be afunction. Now assume = g;(y1,...,yn) for eachz;
and some collection of functions. Assuming all requirements for differentia-
bility and so on are met, can you write down an expressiod foidy; where
1<j<m?

Answer:this is just thechain rulefor partial differentiation

8_f B n a_f@g]
dyj = 0g;y;

299

Supervised learning with neural networks

We now look at how an agent miglgarn to solve a general problem by seeing
examples

Aims
e To present an outline afupervised learnings part of Al.
e To introduce much of the notation and terminology used.

e To introduce the classicalerceptron

e To introducemultilayer perceptronsand thebackpropagation algorithnfior
training them.

Reading Russell and Norvig chapter 20.

300

An example

A common source of problems in Al medical diagnosis

Imagine that we want to automate the diagnosis dfarbarrassing Diseageall
it D) by constructing a machine:

Measurementtaken from the _ 1if the patient suffers fronD
patient: heart rate, blood pressure, ——=1 Machine " 0 otherwise
presence of green spat:

Could we do this byexplicitly writing a progranthat examines the measurements
and outputs a diagnosis?

Experience suggests that this is unlikely.

301

An example, continued...

An alternative approach: each collection of measuremeantsbe written as a

vector,

XT:(LL‘l Ty v Ty)

where,

z; = heart rate

9 = blood pressure

z3 = 1if the patient has green spots
0 otherwise

and so on

(Note it's a common convention that vectors a@umn vectordy default. This
is why the above is written asteansposé

302

An example, continued...

A vector of this kind contains all the measurements for alsipgtient and is
called afeature vectoor instance

The measurements aaétributesor features

Attributes or features generally appear as one of three bhgses:

e Continuous z; € [Tmin, Tmay Wherezmin, tmax € R.
e Binary: z; € {0,1} orz; € {—1,+1}.
e Discrete z; can take one of a finite number of values, say {X,..., X,}.

303

An example, continued...

Now imagine that we have a large collection of patient his®(n in total) and
for each of these we know whether or not the patient suffenad D.
e Theith patient history gives us an instance

e This can be paired with a single bit3-er 1—denoting whether or not thith
patient suffers fromD. The resulting pair is called aexampleor alabelled
example

e Collecting all the examples together we obtaitnaaning sequence
s = ((x1,0), (x2,1),..., (Xm,0))

304

An example, continued...

In supervised machine learning we aim to desit¢geaning algorithmwhich takes
s and produces hypothesis..

§ ————| Learning Algorithm |——s "

Intuitively, a hypothesis is something that lets us diagmesvpatients.
This isSIMPORTANT we want to diagnose patients tithé system has never seen

The ability to do this successfully is callggneralisation

305

An example, continued...

In fact, a hypothesis is justfanctionthat mapsnstancego labels

Classifier
Attribute vector =——————= h(x) [——— Label

X

As h is afunctionit assigns a label tanyx andnot just the ones that were in the
training sequence

What we mean by &bel here depends on whether we're doitigssificationor
regression

306

Supervised learning: classification

In classificationwe’re assigning to one of a sefwy, . . . ,w.} of ¢ classes

For example, ik contains measurements taken from a patient then there beght
three classes:

wy = patient has disease
wo = patient doesn’'t have disease
ws = don’t ask me buddy, I'm just a computer!

Thebinary case above also fits into this framework, and we’ll often &ise to
the case of two classes, denotédandCs.

307

Supervised learning: regression

In regressionwe’re assigning to areal numberh(x) € R.

For example, ik contains measurements taken regarding today’s weathenthe
might have

h(x) = estimate of amount of rainfall expected tomorrow

For the two-class classification problem we will also reea situation somewhat

between the two, where
h(x) = PrixisinC))

and so we would typically assigato classC if h(x) > 1/2.

308

Summary

We don’t want to designh explicitly.

Attribute vector h(x) Label
X

Training sequence
S

So we use &earner L to infer it on the basis of a sequencef training examples

309

Neural networks

There is generally a sét of hypotheses from which is allowed to select
Lis)y=heH
‘H is called thehypothesis space

The learner can output a hypothesis explicitly or—as in #eeomf aneural net-
work—it can output a vector
wh= (wr wy - wy)

of weightswhich in turn specifyh,

wherew = L(s).

310

Types of learning

The form of machine learning described is calegbervised learning

This introduction will concentrate on this kind of learnirlg particular, the liter-
ature also discusses:

1. Unsupervised learning
2. Learning usingnembership querieandequivalence queries

3. Reinforcement learning

Some of this further material will be covered in Al 2.

311

Some further examples

e Speech recognition

e Decidingwhether or not to give credit

e Detectingcredit card fraud

¢ Deciding whether tdouy or sell a stock optian
e Deciding whether &umour is benign

e Data mining extracting interesting but hidden knowledge from exigtilarge
databases. For example, databases contafimagcial transactionr loan
applications

e Deciding whethedriving conditions are dangerous

e Automatic driving (See Pomerleau, 1989, in which a car is driven for 90
miles at 70 miles per hour, on a public road with other carsqmg but with
no assistance from humans.)

312

This is very similar to curve fitting

This process is in fact very similar turve fitting

Think of the process as follows:

e Nature picks a’ € H but doesn't reveal it to us.

o Nature then shows us a training sequesneere eack; is labelled ag/(x;)+
¢; Whereg; is noise of some kind.

Our job is to try to infer what)' is on the basis of only.

This is easy to visualise in one dimensiat’s just fitting a curve to some points

313

Curve fitting

Example if H is the set of all polynomials of degr&ghen nature might pick
1. 1
h'(z) = 51‘3 - gIQ + 2z — 3

/

The line is dashed to emphasise the fact tiatdon't get to see.it

314

Curve fitting

We can now usé’ to obtain a training sequensen the manner suggested..

Here we have,
ST = (('7;17 y1)7 (.7127 ?/2)> RN} ('7"7717 ym))

where each; andy; is a real number.

315

Curve fitting

We’'ll use alearning algorithmZ that operates in a reasonable-looking way: it

picks anh € H minimising the following quantity,

m

E = Z(h(cm) — yi)?

In other words

m

h = L(s) = argmin th_jZ
(5) = argmr ;u) vi)

Why is this sensible?

1. Each term in the sum isif h(z;) is exactlyy;.
2. Each ternincreasess the difference betweérix;) andy; increases.

3. We add the terms for all examples.

316

Curve fitting

If we pick h using this method then we get:

The chosert is close to the targét’, even though it was chosesing only a small
number of noisy examples

It is not quite identical to the target concept.

However if we were given a new poigt and asked to guess the valéx’) then
guessingi(x’) might be expected to do quite well.

317

Curve fitting
Problem we don’t knowwhat H nature is using What if the one we choose
doesn’t match? We can maker # ‘bigger’ by defining it as
H = {h: his apolynomial of degree at mos}

If we use the same learning algorithm then we get:

The result in this case is similar to the previous ohés again quite close t@’,
but not quite identical.

318

Curve fitting

So what'’s the problemRepeating the process with,
H = {h: his a polynomial of degree at mos}

gives the following:

In effect, we have madeur H too ‘small’. It does not in fact contain any hypoth-
esis similar taw'.

319

Curve fitting

So we have to make huge, right? WRONG!!With
‘H = {h : his a polynomial of degree at maoxi}

we get:

BEWARE!!This is known a®verfitting

320

Curve fitting

An experiment to gain some further insighsing
1

Vw_Ls Lo, 1s 35
=0 S b g3 22 o 2
07 Tt Tt Tyt Tt ey

as the unknown underlying function.

W(a)

We can look at howhe degree of the polynomial the training algorithm can autp
affects the generalisation ability of the resultihg

We use the same training algorithm, and we train using
‘H = {h : his a polynomial of degree at mos}

for values ofd ranging froml to 30

321

Curve fitting

e Each time we obtain ah of a given degree—call it,—we assess its quality
using a furtherl00 inputsx; generated at randorand calculating

100
1

ald) = 5 D (W) — ha(x)?

1=1

e As the valueg;(d) are found using inputs that are not necessarily included in

the training sequendbey measure generalisation

e To smooth out the effects of the random selection of exampkesepeat this
process 00 times and average the valugg).

322

Curve fitting
Here is the result:

Log of average q
30
25
20 .
15
10
5

5 10 15 20 25 30 d

Clearly: we need to choosk sensibly if we want to obtaigood generalisation
performance

323

The perceptron
The example just given illustrates much of what we want to ttowever in
practice we deal witmore than a single dimension

The simplest form of hypothesis used is fivear discriminant also known as
theperceptron Here

m
hiw:;x) =0 (u}o + Z wm) = o (wy + wiTy + WoLy + -+ - + Wpky)
i=1

So: we have $inear functionmodified by theactivation functiony.

The perceptron’s influence continues to be felt in the reaadtongoing develop-
ment ofsupport vector machines

324

The perceptron activation function |

There are three standard forms for the activation function:

1. Linear. for regression problemae often use
o(z) ==z
2. Step for two-class classification probleme often use

oz = C, otherwise.

3. Sigmoid/Logisticfor probabilistic classificatiorwe often use
1

PrixisinC)) =o(z) = Tropa)

Thestep functions important but the algorithms involved are somewhat diffé
to those we’ll be seeing. We won't consider it further.

Thesigmoid/logistic functiomplays a major role in what follows.

325

The sigmoid/logistic function

; ; N 1 - . . N
The logistic function o(2) = o Logistic o(z) applied to the output of a linear function

09 =
(KEIIESS
08 t Nf,
07 : 08
06 < os
Tos é 04
0.4 & /
o2{ A "0'0) ‘
) s
03 AN ()
0 B
AN
02 * 5 &?&w&'z"gg’ 10
01 0 ‘
%0 5 [) 5 10 Input 2, -10 -10 Input ;
326

Gradient descent

A method fortraining a basic perceptroworks as follows. Assume we're dealing
with aregression problerand usingr(z) = .

We define a measure efror for a given collection of weights. For example

m

E(w) = (4 — h(w;x)))?

i=1
Modifying our notation slightly so that

xI=(1a 2y -)
wl = (wy w; wy -+ wy)
lets us write .
Ew) = 3 (5 - w'x,)?
i=1
327

Gradient descent

We want tominimiseE (w).
One way to approach this is to start with a randegand update it as follows:

OF(w)
ow

Wil =Wy — 1)

Wi

where

OE(W) [op(w) 0E(w) oBw) \
ow - dw ow;, 0wy,

andr is some small positive number.
The vector
OF(w)
ow
tells us thedirection of the steepest decreasefifw).

328

Gradient descent

With

we have

wherex " is the jth element of;.

329

Gradient descent

The method therefore gives the algorithm

m

Wil = Wi+ 2772 (Uz - Wt,TXz') X;
i=1

Some things to note:

e In this caseF’(w) is parabolicand has anique global minimurandno local
minimaso this works well.

e Gradient descenin some form is a very common approach to this kind of
problem.

e We can perform a similar calculation father activation functiongnd for
other definitions forz(w).

e Such calculations lead different algorithms

330

Perceptrons aren’t very powerful: the parity problem

There are many problems a perceptron can't solve.

We need a network that compute®re interesting functions

331

The multilayer perceptron

Eachnodein the network is itself a perceptron:

2 =1

21

¢ Weightsw,; connect nodes together.
e q; is the weighted sum aactivationfor node;.
e ¢ is theactivation function

e Theoutputis z; = o(a;).

332

The multilayer perceptron

Reminder

We'll continue to use the notation

The multilayer perceptron

In the general case we haveampletely unrestricted feedforward structure

Feature vectox Nodei
zT:(1z1 Z e Zn)]
wl = (wo wy wg -+ wy)) < Outputy = h(w;x)
So that ,) :
w;z; = Wy + Z W;Z; <
=0 i=1 Tn
= WTZ
Each nodas a perceptronNo specific layerings assumed.
w;—,j connects nodeto nodej. w, for node; is denotedu_,;.
333 334
Backpropagation Backpropagation: the general case
As usual we have: Thecentral taskis therefore to calculate
OE(w)
e Instance<” = (zy,...,1,). “ow
e Atraining sequence = ((x1, 1), - - -, (X, Ym))- To do that we need to calculate the individual quantities
We also define a measure of training error OE(w)
8107',%}'

E(w) = measure of the error of the network sn
wherew is the vector ofall the weights in the network

Our aim is to find a set of weights thatinimisesE (w) usinggradient descent

335

for every weighty;_,; in the network

Often E(w) is the sum of separate components, one for each examgple in

m

E(w)=)_ E,w)

in which case
OE(W) = 0E,(w)

ow ow

p=1
We can therefore consider examples individually.

336

Backpropagation: the general case

Place example at the input and calculate; and z; for all nodesincluding the
outputy. This isforward propagation

We have
OE,(w) O0E,(w) Oa;

8ij aaj awH]-

wherea; = Y, wy_, ;2.
Here the sum is ovaall the nodes connected to nogleAs

aaj = 9 (Z u);H]vzk) = Z;
k

aw,-_)j aij

we can write
0E,(w)

= O]'ZZ'

3’LUH]'
where we've defined
OE,(w)

0j =~ —

8aj

337

Backpropagation: the general case

So we now need to calculate the valuesdopr.

Whenj is theoutput node-that is, the one producing the output= i(w;x,) of
the network—this is easy as = y and
I Gaj
_ 6Ep(w)@
8y cr)aj

using the fact thag = o(a;).

338

Backpropagation: the general case

The first term is in general easy to calculdte a givenE as the error is generally
just a measure of the distance betwgeand the label in the training sequence.

Example:when
Ey(w) = (y — yp)Z

we have
OE,(w)

Jy

=20y — Up)
— 2(h<W; Xp) - .Up)

339

Backpropagation: the general case

Whenj is not an output nodeve need something different:

i
s
j [~

ko

—[- |
FOL KO =<

/ : :

kq
Ay | _—"
SO =
We're interested in
_ aEp(W>
7 3@7

Altering a; can affectseveral other nodek;, ks, . . ., k, each of which can in turn
affectE,(w).

340

Backpropagation: the general case

\ Ky
ey

—_— aj; / Ay

] O

/

kq
e
We have
0E,(w) OE,(w)day Oay,
5, =L = Opm—
J Oa;) Z , Oay, 8@7 ‘ Z . "aa]-
AE{]QJI{Q,.,N/{(I} ke{kl,l\Q ,,,,, kq}

wherek,, ks, . . ., k, are the nodes to which nogesends a connection.

341

Backpropagation: the general case

Ky
=

Ak,
K
aj / Ay /
© K =
kq

ak,
— “4
L —

7

Because we know how to compuigfor the output nodeve canwork backwards
computing furthep values.

We will always know all the values, for nodes ahead of where we are

Hence the ternbackpropagation

342

Backpropagation: the general case

P
/

\

Oak 19}
aa] aa] (Z wH;lJ(al)> = w0’ (a;)

= Y. Gwdlla)=0'la) D G

ke {ky ko, ...y} ke {kp kg, g}

and

343

Backpropagation: the general case

Summaryto calculate—2—~ dE”) for thepth pattern:

1. Forward propagation apply x, and calculate outputstcfor all the nodes in
the network
2. Backpropagation 1for the outputnode
OEy(w)
3wm,j

- o _aEp(W)
— 56, = ')
wherey = h(w;x,).

3. Backpropagation 2For other nodes
OF,
< = 2,0'(a; Z&w]%

Owj;

where thej;, were calculated at an earlier step.

344

Backpropagation: a specific example

Hidden nodes receive
inputs from all features

Output node receives
T inputs from all hidden

\ nodes
Ty

= y=h(w;x)

For the outputy(a) = a. For the hidden nodes(a) = -

345

Backpropagation: a specific example

For the outputo(a) = a s00’(a) = 1.

For the hidden nodes: 1

1y exp(—a)

o(a)
S0
o'(a) = o(a)[l - o(a)]
We’'ll continue using the same definition for the error

m

E(w) = Z(yp — h(w; Xp))2

p=1

Ey(w) = (y, — h<W3Xp)>2

346

Backpropagation: a specific example

For the output the equation is
0E,(w)

awiaoutput

aEp(W)

/
= Zi(soutput: Zi0 (aoutpuaTy

wherey = h(w;x,). So as

OE,(w) 0 e
By = 3_1/ ((yp))
=2(y —)

=2[h(w;x,) — Y,
ando’(a) = 1s0
Soutput= 2 [R(W; X)) — 1]
and

OE,(w)

= 2z;(h(w:;x,) —
awi—mutput 7((p) yp>

347

Backpropagation: a specific example

For the hidden nodeghe equation is
OE,(w)

!
=z . O Wi_r
ow;_,; =7 (ll]) Zk: WLk
Howeverthere is only one outpigo
OE,(w
api() = ZZU((I]') [1— U(aj)] 6outpufu/’jaoutput
Wi—j

and we know that
60UtPUt: 2 [h(w; Xp) - yp}
o)

OE,(w)

g~ 24i0(a;) [1 = o(a)]] [h(w: %) = 5] 1 output
Wi—j

= 22i2j(1 — 2j) [R(W;X) — Y] Wjoutput

348

Putting it all together

We can then use the derivatives in one of two basic ways:

Batch (as described previously)
OE(W) = 0E,(w)

ow ow
p=1
then
OE(w)
Wil =W — 1)
ow |,
Sequentialusing just one pattern at once
OFE,(w
Wil =W — 1) ﬁ
ow wi

selecting patternim sequence or at random

349

Example: the parity problem revisited

As an example we show the result of training a network with:

e Two inputs.

e One output.

e One hidden layer containirigunits.
e =0.01.

o All other details as above.

The problem is the parity problem. There afenoisy examples.

The sequential approach is used, witi0 repetitions through the entire training
sequence.

350

Example: the parity problem revisited

Before training After training

1 £
£ 05 g
0 ES
-05
=) 1 2

351

Example: the parity problem revisited

After training

Before training

Network output

Network output

352

10

Example

: the parity problem revisited

Error during training
T

I I
100 200

I I I I I T
300 400 500 600 700 800 900 1000

353

