
[scaled=0.95]helvet

Easter Term 2011 1 System-On-Chip D/M

LG 1 — SoC Design : 2010/11: 12 Lectures to CST II

A current-day system on a chip (SoC) consists of several different micro-

processor subsystems together with memories and I/O interfaces. This

course covers SoC design and modelling techniques with emphasis on

architectural exploration, assertion-driven design and the concurrent de-

velopment of hardware and embedded software. This is the “front end”

of the design automation tool chain. (Back end material, such as design

of individual gates, layout, routing and fabrication of silicon chips is not

covered.)

A percentage of each lecture is used to develop a running example.

Over the course of the lectures, the example evolves into a System On

Chip demonstrator with CPU and bus models, device models and device

drivers. All code and tools are available online so the examples can

be reproduced and exercises undertaken. The main languages used are

Verilog and C++ using the SystemC library.

Lecture Groups and Syllabus:

• Verilog RTL design with examples. Event-driven simulation

with and without delta cycles, basics of synthesis to gates algo-

rithm and design examples. Structural hazards, pipelining, memo-

ries and multipliers.

• SystemC overview. The major components of the SystemC

C++ class library for hardware modelling are covered with code

fragments and demonstrations.

• Basic SoC Components and Bus Structures. CPU, RAM,

Timers, DMA, GPIO, Network, Bus structure. Interrupts, DMA

and device drivers. Examples. Basic bus bridging.

2

LG 1. SOC DESIGN : 2010/11: 12 LECTURES TO CST II

• ESL + Transactional Modelling. Electronic systems level

(ESL) design. Architectural exploration. Firmware modelling meth-

ods. Blocking and non-blocking transaction styles. Approximate

and loose timing styles. Queue and contention modelling. Exam-

ples.

• ABD: Assertions and Monitors. Types of assertion (imper-

ative, safety, liveness, data conservation). Assertion-based design

(ABD). PSL/SVA assertions. Temporal logic compilation of frag-

ments to monitoring FSM.

• Further Bus Structures. Busses used in today’s SoCs (OPB/BVCI,

AHB and AXI). Glue logic synthesis. Transactor synthesis. Pipeline

Tolerance. Network on chip.

• Engineering Aspects: FPGA and ASIC design flow. Cell

libraries. Market breakdown: CPU/Commodity/ASIC/FPGA. Fur-

ther tools used for design of FPGA and ASIC (timing and power

modelling, place and route, memory generators, power gating,

clock tree, self-test and scan insertion). Dynamic frequency and

voltage scaling.

• Future approaches Only presented if time permits. Non-examinable.

Recent developments: BlueSpec, IP-XACT, Kiwi, Custom proces-

sor synthesis.

In addition to these topics, the running example will demonstrate a few

practical aspects of device bus interface design, on chip communication

and device control software. Students are encouraged to try out and

expand the examples in their own time.

• (2) Register Transfer Language (RTL)

Easter Term 2011 3 System-On-Chip D/M

1.1. RECOMMENDED READINGLG 1. SOC DESIGN : 2010/11: 12 LECTURES TO CST II

• (5) Folding, Retiming & Recoding

• (6) Protocol and Interface

• (7) SystemC Components

• (8) Basic SoC Components

• (10) ESL: Electronic System Level Modelling

• (11) Transactional Level Modelling (TLM)

• (12) ABD - Assertion-Based Design

• (13) Network On Chip and Bus Structures.

• (14) SoC Engineering and Associated Tools

• (15) Architectural Design Exploration

• (17) High-level Design Capture and Synthesis

1.1 Recommended Reading

Subscribe for webcasts from ‘Design And Reuse’: www.design-reuse.com

OSCI. SystemC tutorials and whitepapers . Download from OSCI www.systemc.org

or copy from course web site.

Ghenassia, F. (2006). Transaction-level modeling with SystemC: TLM

concepts and applications for embedded systems . Springer.

Eisner, C. & Fisman, D. (2006). A practical introduction to PSL .

Springer (Series on Integrated Circuits and Systems).

Foster, H.D. & Krolnik, A.C. (2008). Creating assertion-based IP .

Springer (Series on Integrated Circuits and Systems).

Easter Term 2011 4 System-On-Chip D/M

http://www.design-reuse.com
http://www.systemc.org

1.2. INTRODUCTION: WHAT IS A SOC ?LG 1. SOC DESIGN : 2010/11: 12 LECTURES TO CST II

Grotker, T., Liao, S., Martin, G. & Swan, S. (2002). System design with

SystemC . Springer. Wolf, W. (2002). Modern VLSI design (System-

on-chip design) . Pearson Education. LINK.

1.2 Introduction: What is a SoC ?

Figure 1.1: Block diagram of a multi-core ‘platform’ chip, used in a

number of networking products.

A System On A Chip: typically uses 70 to 140 mm2 of silicon.

A SoC is a complete system on a chip. A ‘system’ includes a micro-

processor, memory and peripherals. The processor may be a custom or

standard microprocessor, or it could be a specialised media processor for

sound, modem or video applications. There may be multiple processors

and also other generators of bus cycles, such as DMA controllers. DMA

controllers can be arbitrarily complex, and are really only distinguished

from processors by their complete or partial lack of instruction fetching.

Processors are interconnected using a variety of mechanisms, including

shared memories and message-passing hardware entities such as spe-

cialised channels and mailboxes.

SoCs are found in every consumer product, from modems, mobile phones,

Easter Term 2011 5 System-On-Chip D/M

http://www.princeton.edu/~wolf/modern-vlsi/

1.3. DESIGN FLOWLG 1. SOC DESIGN : 2010/11: 12 LECTURES TO CST II

DVD players, televisions and iPODs.

1.3 Design Flow

Design flow is divided by the Structural RTL level into:

• Front End: specify, explore, design, capture, synthesise Struc-
tural RTL

• Back End: Structural RTL place, route, mask making,

fabrication.

Figure 1.2 shows a typical design and maufacturing flow that leads from

design capture to SoC fabrication.

1.3.1 Front End

The design must be specified in terms of high-level requirements, such

as function, throughput and power consumption.

Design capture: it is transferred from the marketing person’s mind, back

of envelope or or wordprocessor document into machine-readable form.

Architectural exploration will try different combinations of processors,

memories and bus structures to find an implementation with good power

and load balancing. A loosely-timed high-level model is sufficient to

compute the performance of an architecture.

Detailed design will select IP (interlectual property) providers for all

of the functional blocks, or else they will exist from previous in-house

designs and can be used without license fees, or else freshly written.

Easter Term 2011 6 System-On-Chip D/M

1.3. DESIGN FLOWLG 1. SOC DESIGN : 2010/11: 12 LECTURES TO CST II

Logic synthesis will convert from behavioural RTL to structural RTL.

Synthesis from formal high-level forms, including C,C++, SysML state-

charts, formal specifications of interfaces and behaviour is beginning to

be used.

Instruction set simulators (ISS) for embedded processors are needed:

purchased from third parties such as ARM and MIPS, or as a by-product

of custom processor design.

The interface specifications (register maps and other APIs) between

components need to be stored: the IP-XACT format may be used.

High-level models that are never intended to be synthesisable and test

bench components will also be coded, typically using SystemC.

1.3.2 Back End

After RTL synthesis using a target technology library, we have a struc-

tural netlist that has no gate delays. Place and route gives 2-D co-

ordinates to each component, adds external I/O pads and puts wiring

between the components. RTL annotated with actual implementation

gate delays gives a precise power and performance model. If performance

is not up to par, design changes are needed.

Fabrication of masks is commonly the most expensive single step (e.g.

one million pounds), so must be correct first time.

Fabrication is performed in-house by certain large companies (e.g. Intel,

Samsung) but most companies use foundaries (UMC, TSMC).

At all stages (front and back end), a library of standard tests will be run

every night and any changes that cause a previously-passing test to fail

(regressions) will be automatically reported to the project manager.

Easter Term 2011 7 System-On-Chip D/M

1.4. LEVELS OF MODELLING ABSTRACTIONLG 1. SOC DESIGN : 2010/11: 12 LECTURES TO CST II

1.4 Levels of Modelling Abstraction

Our modelling system must support all stages of the design process, from

design entry to fabrication. We need to mix components using different

levels of abstraction in one simulation setup.

Levels commonly used are:

• Functional Modelling: The ‘output’ from a simulation run is

accurate.

• Memory Accurate Modelling: The contents and layout of

memory is accurate.

• Untimed TLM: No time stamps recorded on transactions.

• Loosely-timed TLM: The number of transactions is accurate,

but order may be wrong.

• Approximately-timed TLM: The number and order of trans-

actions is accurate.

• Cycle-Accurate Level Modelling: The number of clock cy-

cles consumed is accurate.

• Event-Level Modelling: The ordering of net changes within a

clock cycle is accurate.

Other terms in use are:

• Programmer View Accurate: The contents of visible mem-

ory and registers is as per the real hardware, but timing may be

inaccurate and other registers or combinational nets that are not

Easter Term 2011 8 System-On-Chip D/M

1.4. LEVELS OF MODELLING ABSTRACTIONLG 1. SOC DESIGN : 2010/11: 12 LECTURES TO CST II

designated as part of the ‘programmers view’ may not be modelled

accurately.

• Behavioural Modelling: Using a threads package, or other li-

brary (e.g. SystemC), hand-crafted programs are written to model

the behaviour of each component or subsystem. Major hardware

items such as busses, caches or DRAM controllers may be ne-

glected in such a model.

The Programmer’s View is often abbreviated as ‘PV’ and if timing is

added it is called ‘PV+T’.

The Programmer’s View contains only architecturally-significant regis-

ters such as those that the software programmer can manipulate with

instructions. Other registers in a particular hardware implementation,

such as pipeline stages and holding registers to overcome structural haz-

ards, are not part of the PV.

Easter Term 2011 9 System-On-Chip D/M

1.4. LEVELS OF MODELLING ABSTRACTIONLG 1. SOC DESIGN : 2010/11: 12 LECTURES TO CST II

Figure 1.2: Design and Manufacturing Flow for SoC.

Easter Term 2011 10 System-On-Chip D/M

LG 2 — Register Transfer Language (RTL)

Everybody attending this course is expected to have previously studied

RTL coding or at least taught themselves the basics before the course

starts.

The Computer Laboratory has an online Verilog course you can follow:

Cambridge SystemVerilog Tutor Please not that this now covers ‘System

Verilog’ whereas most of my examples are in plain old Verilog. There

are some syntax differences.

2.1 RTL Summary View of Variant Forms.

From the point of view of this course, Verilog and VHDL are completely

equivalent as register transfer languages (RTLs). Both support simula-

tion and synthesis with nearly-identical paradigms. Of course, each has

its proponent’s.

Synthesisable Verilog constructs fall into these classes:

• 1. Structural RTL enables an hierarchic component tree to be

instantiated and supports wiring (a netlist) between components.

• 2. Lists of pure (unordered) register transfers where the

r.h.s. expressions describe potentially complex logic using a rich set

of integer operators, including all those found in software languages

such as C++ and Java. There is one list per synchronous clock

domain. A list without a clock domain is for combinational logic

(continuous assignments).

11

https://www-ecad.cl.cam.ac.uk

2.1. RTL SUMMARY VIEW OF VARIANT FORMS.LG 2. REGISTER TRANSFER LANGUAGE (RTL)

• 3. Synthesisable behavioural RTL uses a thread to describe

behaviour where a thread may write a variable more than once. A

thread is introduced with the ’always ’ keyword.

However, standards for synthesisable RTL greatly restrict the allowable

patterns of execution: they do not allow a thread to leave the module

where it was defined, they do not allow a variable to be written by more

than one thread and they can restrict the amount of event control (i.e.

waiting for clock edges) that the thread performs.

The remainder of the language contains the so-called ‘non-synthesisable’

constructs.

Easter Term 2011 12 System-On-Chip D/M

2.1. RTL SUMMARY VIEW OF VARIANT FORMS.LG 2. REGISTER TRANSFER LANGUAGE (RTL)

Additional notes:

All the time values in the RTL are ignored for synthesis and

zero-delay components are synthesisable. For them also to be

simulatable in a deterministic way the simulator core implements

the delta cycle mechanism.

One can argue that anything written in RTL that describes de-

terministic and finite-state behaviour ought to be synthesisable.

However, this is not what the community wanted in the past: they

wanted a simple set of rules for generating hardware from RTL

so that engineers could retain good control over circuit structures

from what they wrote in the RTL.

Today, one might argue that the designer/programmer should not

be forced into such low-level expression or into the excessively-

parallel thought patterns that follow on. Certainly it is good that

programmers are forced to express designs in ways that can be

parallelised, but the tool chain perhaps should have much more

control over the details of allocation of events to clock cycles and

the state encoding.

RTL synthesis tools are not normally expected to re-time a design,

or alter the amount of state or state encodings. Newer languages

and flows (such as Bluespec and Kiwi) still encourage the user

to express a design in parallel terms, yet provide easier to use

constructs with the expectation that detailed timing and encoding

might be chosen by the tool.

Level 1/3: Structural Verilog : Structural, Heirarchic, Netlist

Easter Term 2011 13 System-On-Chip D/M

2.1. RTL SUMMARY VIEW OF VARIANT FORMS.LG 2. REGISTER TRANSFER LANGUAGE (RTL)

module subcircuit(clk, rst, q2);

INPUT clk, rst;

OUTPUT q2;

DFFR Ff1(clk, rst, a, q1, qb1),

Ff2 DFFR(clk, rst, q1, q2, qb2),

Ff3 DFFR(clk, rst, q2, q3, qb3);

Nor : NOR2(a, q2, q3);

endmodule

Figure 2.1: The circuit described by our structural example (a divide-by-

five, synchronous counter).

Just a netlist. There are no assignment statements that transfer data

between registers in structural RTL (but it’s still a form or RTL).

Figure 2.2 shows structural RTL before and after flattening as well as a

circuit diagram showing the component boundaries.

2a/3: Continuous Assignment: an item from a pure RT list

without a clock domain.

// Define combinational logic:

assign a = (g) ? 33 : b * c;

assign b = d + e;

• Order of continuous assignments is un-important,

• Loop free, otherwise: parasitic level-sensitive latches are formed

(e.g. RS latch),

Easter Term 2011 14 System-On-Chip D/M

2.1. RTL SUMMARY VIEW OF VARIANT FORMS.LG 2. REGISTER TRANSFER LANGUAGE (RTL)

Figure 2.2: Example RTL fragment, before and after flattening.

• Right-hand side’s may range over rich operators (e.g. mux ?: and

multiply *),

• Bit inserts to vectors are allowed on left-hand sides (but not com-

binational array writes).

assign d[31:1] = e[30:0];

assign d[0] = 0;

2b/3: Pure RTL : unordered synchronous register transfers.

Two coding styles (it does not matter whether these transfers are each

in their own always statement or share over whole clock domain):

Easter Term 2011 15 System-On-Chip D/M

2.1. RTL SUMMARY VIEW OF VARIANT FORMS.LG 2. REGISTER TRANSFER LANGUAGE (RTL)

always @(posedge clk) a <= b ? c + d;

always @(posedge clk) b <= c - d;

always @(posedge clk) c <= 22-c;

always @(posedge clk) begin

a <= b ? c + d;

b <= c - d;

c <= 22-c;

end

Typical example (illustrating pure RT forms):

module CTR16(mainclk, din, o);

input mainclk, din;

output o;

reg [3:0] count, oldcount;

// Add a four bit decimal value of one to count

always @(posedge mainclk) begin

count <= count + 1;

if (din) oldcount <= count;

end

// Note ^ is exclusive-or operator

assign o = count[3] ^ count[1];

endmodule

Registers are assigned in clock domains (one shown called ‘mainclk’).

Each register assignment appears in exactly one clock domain. RTL

synthesis does not generate special hardware for clock domain crossing

(described later).

In this form of ‘pure’ RTL, if we want a register to retains it current

value we must assign this explicitly, leading to forms like this:

oldcount <= (din) ? count : oldcount;

3/3: Behavioural RTL: a thread encounters order-sensitive state-

ments.

In ‘behavioural’ expression, a thread, as found in imperative languages

Easter Term 2011 16 System-On-Chip D/M

2.1. RTL SUMMARY VIEW OF VARIANT FORMS.LG 2. REGISTER TRANSFER LANGUAGE (RTL)

such as C and Java, assigns to variables, makes reference to variables

already updated and can re-assign new values.

For example, the following behavioural code

if (k) foo = y;

bar = !foo;

can be compiled down to the following, unordered ‘pure RTL’:

foo <= (k) ? y: foo;

bar <= !((k) ? y: foo);

Figure 2.3: Elementary Synthesisable Verilog Constructs

Easter Term 2011 17 System-On-Chip D/M

2.1. RTL SUMMARY VIEW OF VARIANT FORMS.LG 2. REGISTER TRANSFER LANGUAGE (RTL)

Figure 2.3 shows synthesisable Verilog fragments as well as the circuits

typically generated.

The RTL languages (Verilog and VDHL) are used both for
simulation and synthesis. Any RTL can be simulated but only a

subset is standardised as ‘synthesisable’ (although synthesis tools can

generally handle a slightly larger synthesisable subset).

Simulation uses a top-level test bench module with no inputs.

Synthesis runs are made using points lower in the hierarchy as roots. We

should certainly leave out the test-bench wrapper when synthesising and

we typically want to synthesise each major component separately.

Easter Term 2011 18 System-On-Chip D/M

2.2. SYNTHESISABLE RTLLG 2. REGISTER TRANSFER LANGUAGE (RTL)

2.2 Synthesisable RTL

Additional notes:

Abstract syntax for a synthesisable RTL (Verilog/VHDL) without

provision for delays:

Expressions:

datatype ex_t = // Expressions:

Num of int // integer constants

| Net of string // net names

| Not of ex_t // !x - logical not

| Neg of ex_t // ~x - one’s complement

| Query of ex_t * ex_t * ex_t // g?t:f - conditional expression

| Diadic of diop_t * ex_t * ex_t // a+b - diadic operators + - * / << >>

| Subscript of ex_t * ex_t // a[b] - array subscription, bit selection.

Imperative commands (might also include a ‘case’ statement) but

no loops.

datatype cmd_t = // Commands:

Assign of ex_t * ex_t // a = e; a[x]=e; - assignments

| If1 of ex_t * cmd_t // if (e) c; - one-handed IF

| If2 of ex_t * cmd_t * cmd_t // if (e) c; else c - two-handed IF

| Block of cmd_t list // begin c; c; .. end - block

Our top level will be an unordered list of the following sentences:

datatype s_t = // Top-level forms:

Sequential of edge_t * ex_t * cmd_t // always @(posedge e) c;

| Combinational of ex_t * ex_t // assign e1 = e2;

The abstract syntax tree for synthesisable RTL supports a rich set of

expression operators but just the assignment and branching commands

(no loops). (Loops in synthesisable VHDL and Verilog are restricted to

so-called structural generation statements that are fully unwound by the

compiler front end and so have no data-dependent exit conditions).

Easter Term 2011 19 System-On-Chip D/M

2.2. SYNTHESISABLE RTLLG 2. REGISTER TRANSFER LANGUAGE (RTL)

An example of RTL synthesis:

Example input:

module TC(clk, cen);

input clk, cen;

reg [1:0] count;

always @(posedge clk) if (cen) count<=count+1;

endmodule// User=djg11

Results in structural RTL netlist:

module TC(clk, cen);

wire u10022, u10021, u10020, u10019;

wire [1:0] count;

input cen; input clk;

CVINV i10021(u10021, count[0]);

CVMUX2 i10022(u10022, cen, u10021, count[0]);

CVDFF u10023(count[0], u10022, clk, 1’b1, 1’b0, 1’b0);

CVXOR2 i10019(u10019, count[0], count[1]);

CVMUX2 i10020(u10020, cen, u10019, count[1]);

CVDFF u10024(count[1], u10020, clk, 1’b1, 1’b0, 1’b0);

endmodule

Here the behavioural input was converted to an implementation tech-

nology that included inverters, multiplexors, D-type flip-flops and XOR

gates. For each gate, the output is the first-listed terminal.

Verilog RTL Synthesis Algorithm: 3-Step Recipe:

1. First we remove all of the blocking assignment statements to ob-

tain a ‘pure’ RTL form. For each register we need exactly one

assigment (that becomes one hardware circuit for its input) re-

gardless of however many times it is assigned, so we need to build

a multiplexor expression that ranges over all its sources and is

controlled by the conditions that make the assignment occur.

For example:
if (a) b = c;

d = b + e;

if (q) d = 22;
is converted to b <= (a) ? c : b;

d <= q ? 22 : ((a) ? c : b) + e;

2. For each register that is more than one bit wide we generate

separate assignments for each bit. This is colloquially known

as ‘bit blasting’. This stage removes arithmetic operators and

leaves only boolean operators. For example, if v is three bits

wide and a is two bits wide: v <= (a) ? 0: (v>>1)is converted to
v[0] <= (a[0]|a[1]) ? 0: v[1];

v[1] <= (a[0]|a[1]) ? 0: v[2];

v[2] <= 0;

Easter Term 2011 20 System-On-Chip D/M

2.2. SYNTHESISABLE RTLLG 2. REGISTER TRANSFER LANGUAGE (RTL)

3. Build a gate-level netlist using components from the selected li-

brary of gates. (Similar to a software compiler when it matches

operations needed against instruction set.) Sub-expressions are

generally reused, rather than rebuilding complete trees. Clearly,

logic minimization (Karnaugh maps and Espresso) and multi-level

logic techniques (e.g. ripple carry versus fast carry) as well as testa-

bility requirements affect the chosen circuit structure.

Easter Term 2011 21 System-On-Chip D/M

2.2. SYNTHESISABLE RTLLG 2. REGISTER TRANSFER LANGUAGE (RTL)

Additional notes:

How can we make a simple adder ?

The following ML fragment will make a ripple carry adder from

lsb-first lists of nets:

fun add c (nil, nil) = [c]

| add c (a::at, b::bt) =

let val s = gen_xor(a, b)

val c1 = gen_and(a, b)

val c2 = gen_and(s, c)

in (gen_xor(s, c))::(add (gen_or(c2, c1)) (at, bt))

end

Can division be bit-blasted ? Yes, and for some constants it is

quite simple.

For instance, division by a constant value of 8 needs no gates -

you just need wiring! For dynamic shifts make a barrel shifter
using a succession of broadside multiplexors, each operated by a

different bit of the shifting expression. See link Barrel Shifter,

ML fragment.

To divide by a constant 10 you can use that 8/10 is 0.11001100

recurring, so if n and q are 32 bit unsigned registers, the following

computes n/10:

q = (n >> 1) + (n >> 2);

q += (q >> 4);

q += (q >> 8);

q += (q >> 16);

return q>>3;

There are three short ML programs on the course web site that demon-

strate each step of this recipe.

Easter Term 2011 22 System-On-Chip D/M

http://www.cl.cam.ac.uk/teaching/1011/SysOnChip/additional/barrel.txt
http://www.cl.cam.ac.uk/teaching/1011/SysOnChip/additional/barrel.txt

2.3. BEHAVIOURAL - ‘NON-SYNTHESISABLE’ RTLLG 2. REGISTER TRANSFER LANGUAGE (RTL)

2.3 Behavioural - ‘Non-Synthesisable’ RTL

Not all RTL is officially synthesisable, as defined by language standards.

However, commercial tools tend to support larger subsets than officially

standardised.

RTL with event control in the body of a thread defines a state machine.

This is compilable by some tools. This state machine requires a program

counter (PC) register at runtime (implied):

input clk, din;

output req [3:0] q;

always begin

q <= 1;

@(posedge clk) q <= 2;

if (din) @(posedge clk) q <= 3;

q <= 4;

end

How many bits of PC are needed ? Is conditional event control synthe-

sisable ? Does the output ‘q’ ever take on the value 4 ?

As a second non-synthesisable example, consider the dual-edge-triggered

flip-flop in Figure 2.4.

Figure 2.4: Schematic symbol and timing diagram for an edge-triggered

RS flop.

Easter Term 2011 23 System-On-Chip D/M

2.4. FURTHER SYNTHESIS ISSUESLG 2. REGISTER TRANSFER LANGUAGE (RTL)

reg q;

input set, clear;

always @(posedge set) q = 1;

always @(posedge clear) q = 0;

Here a variable is updated by more than one thread. This component is

commonly used in phase-locked loops. It can be modelled in Verilog, but

is not supported for Verilog synthesis. A real implementation typically

uses 12 NAND gates in a relatively complex arrangement of RS latches.

Another common source of non-synthesisable RTL code is testbenches.

Testbenches commonly uses delays:

// Typical RTL testbench contents:

reg clk, reset;

initial begin clk=0; forever #5 clk = !clk; end // Clock source 100 MHz

initial begin reset = 1; # 125 reset = 0; end // Power-on reset generator

2.4 Further Synthesis Issues

There are many combinational circuits that have the same functionality.

Synthesis tools can accept additional guiding metrics from the user, that

affect

• Power consumption,

• Area use,

• Performance,

• Testability.

Easter Term 2011 24 System-On-Chip D/M

2.5. RTL COMPARED WITH SOFTWARELG 2. REGISTER TRANSFER LANGUAGE (RTL)

(The basic algorithm in the additional material does not consider any

guiding metrics.)

Gate libraries have high and low drive power forms of most gates (see

later). The synthesis tool will chose the appropriate gate depending on

the fanout and (estimated) net length during routing.

The tool will use Quine/McCluskey, Espresso or similar for logic minimi-

sation. Liberal use of the ‘x’ don’t care designation in the source RTL

allows the synthesis tool freedom to perform this logic minimisation.

(Read up on ‘Synopsys Evil Twins’ FULL CASE and PARALLEL CASE

if interested.)

reg[31:0] y;

...

if (e1) y <= e2;

else if (e3) y <= e4;

else y <= 32’bx; // Note, assignment of ’x’ permits automated logic minimisation.

Can share sub-expressions or re-compute expressions locally. Reuse of

sub-expressions is important for locally-derived results, but with today’s

VLSI, sending a 32 bit addition result more than one millimeter on the

chip may use more power then recomputing it locally!

2.5 RTL Compared with Software

Synthesisable RTL (SRTL) looks a lot like software at first glance, but

we soon see many differences.

SRTL is statically allocated and defines a finite-state machine.

Threads do not leave their starting context and all communication is

through shared variables that denote wires.

Easter Term 2011 25 System-On-Chip D/M

2.5. RTL COMPARED WITH SOFTWARELG 2. REGISTER TRANSFER LANGUAGE (RTL)

There are no thread synchronisation primitives, except to wait on a clock

edge.

Each variable must be updated by at most one thread.

Software on the other hand uses far fewer threads: just where needed.

The threads may pass from one module to another and thread blocking

is used for flow control of the data.

SRTL requires the programmer to think in a massively parallel way and

leaves no freedom for the execution platform to reschedule the design.

RTL is not as expressive for algorithms or data structures as most soft-

ware programming languages.

The concurrency model is that everything executes in lock-step. The

programmer keeps all this concurrency in his/her mind.

Users must generate their own, bespoke handshaking and flow control

between components.

Higher-level entry forms are ideally needed, perhaps schedulling within

a thread at compile-time and between threads at run time ? (See HLS

section later).

Easter Term 2011 26 System-On-Chip D/M

LG 3 — Simulation

There are two main forms of simulation modelling:

• (FES) finite-element simulation, and

• (EDS) event-driven simulation.

Finite-element simulation is used for analog subsystems.

Figure 3.1: Baseline finite element model for bidirectional propagation

in one dimension.

Finite element difference equations:

tnow += deltaT;

for (n in ...) i[n] = (v[n-1]-v[n])/R;

for (n in ...) v[n] += (i[n]-i[n+1])*deltaT/C;

Basic finite-element simulation uses fixed spatial grid (element size is

deltaL) and fixed time step (deltaT seconds). Each grid point holds a

vector of instantatious local properties, such as voltage, temperature,

stress, pressure, magnetic flux. Physical quantities are divided over the

grid. Three examples:

1. Sound wave in wire: C=deltaL*mass-per-unit-length, R=deltaL*elasticity-

per-unit-length

27

3.1. EVENT DRIVEN SIMULATION LG 3. SIMULATION

2. Heat wave in wire: C=deltaL*heat-capacity-per-unit-length, R=deltaL*thermal-

conductance-per-unit-length

3. Electrical wave in wire: C=deltaL*capacitance-per-unit-length, R=deltaL*resistance-

per-unit-length

Larger modelling errors with larger deltaT and deltaL, but faster simu-

lation. Keep them less than 1/10th wavelength for good accuracy.

Generally use a 2D or 3D grid for fluid modelling: 1D ok for electronics.

Typically want to model both resistance and inductance for electrical

system. When modelling inductance instead of resistance, then need

a ‘+=’ in the i[n] equation. When non-linear components are present

(e.g. diodes and FETs), SPICE simulator adjusts deltaT dynamically

depending on point in the curve.1

3.1 Event Driven Simulation

Figure 3.2: Event queue, linked list, sorted in ascending temporal order.

The following ML fragment demonstrates the main datastructure for an

EDS kernel. EDS ML fragments

Easter Term 2011 28 System-On-Chip D/M

http://www.cl.cam.ac.uk/teaching/1011/SysOnChip/additional/cbgeds.txt

3.1. EVENT DRIVEN SIMULATION LG 3. SIMULATION

// A net has a string name and a width.

// A net may be high z, dont know or contain an integer from 0 up to 2**width - 1.

// A net has a list of driving and reading models.

type value_t = V_n of int | V_z | V_x;

type net_t = {

net_name: string; // Unique name for this net.

width: int; // Width in bits if a bus.

current_value: value_t ref; // Current value as read by others

net_inertia: int; // Delay before changing (commonly zero).

sensitives: model_t list ref; // Models that must be notified if changed.

};

// An event has a time, a net to change, the new value for that net and an

// optional link to the next on the event queue:

type event_t = EVENT of int * net_t * value_t * event_t option ref

This reference implementation of an event-driven simulation (EDS) ker-

nel maintains an ordered queue of events commonly called the event
list . The current simulation time, tnow, is defined as the time of the

event at the head of this queue. An event is a change in value of a net at

some time in the future. Operation takes the next event from the head

of the queue and dispatches it. Dispatch means changing the net to

that value and chaining to the next event. All component models that

are sensitive to changes on that net then run, potentially generating new

events that are inserted into the event queue.

Easter Term 2011 29 System-On-Chip D/M

3.1. EVENT DRIVEN SIMULATION LG 3. SIMULATION

Code fragments (details not examinable):

Create initial, empty event list:

val eventlist = ref [];

Constructor for a new event: insert at correct point

in the sorted event list:
fun create_and_insert_event(time, net, value) =

let fun ins e = case !e of

(A as EMPTY) => e := EVENT(time, net, value, ref A)

| (A as EVENT(t, n, v, e’)) => if (t > time)

then e := EVENT(time, net, value, ref A)

else ins e’

in ins eventlist

end

Main simulation: keep dispatching until event list

empty:

fun dispatch_one_event() =

if (!eventlist = EMPTY) then print("simulation finished - no more events\n")

else let val EVENT(time, net, value, e’) = !eventlist in

(eventlist := !e’;

tnow := time;

app execute_model (net_setvalue(net, value))

) end

We will cover two variations on the basic EDS algorithm: interial delay

and delta cycles.

3.1.1 Inertial and Transport Delay

Consider a simple ‘NOR’ gate model with 250 picosecond delay. It has

two inputs, and the behavioural code inside the model will be something

like (in SystemC-like syntax, covered later)

Easter Term 2011 30 System-On-Chip D/M

3.1. EVENT DRIVEN SIMULATION LG 3. SIMULATION

SC_MODULE(NOR2)

{ sc_in <bool> i1, i2; sc_out<bool> y;

void behaviour()

{ y.write(!(i1.read() || i2.read()), SC_TIME(250, SC_PS));

}

SC_CTOR(NOR2) { SC_METHOD(behaviour); sensitive << i1 << i2;

}

The above model is run when either of its inputs change and it causes a

new event to be placed in the event queue 250 picoseconds later. This

will result in a pure transport delay, because multiple changes on the

input within 250 picoseconds will potentially result in multiple changes

on the output that time later. This is unrealistic, a NOR gate made

of transistors will not respond to rapid changes on its input, and only

decisively change its output when the inputs have been stable for 250

picoseconds. In other words, it exhibits inertia. To model inertial delay,

the event queue insert function must scan for any existing schedulled

changes before the one about to be inserted and delete them. This

involves little overhead since we are scanning down the event queue

anyway.

Figure 3.3: RS-latch: behaviour of runt pulse when modelling with trans-

port delay.

Consider the behaviour of the above RS-latch when a very short (runt)

pulse or glitch tries to set it. What will it do with transport models?:

the runt pulse will circulate indefinitely. What will it do with inertial

models?: ignore the glitch.

Easter Term 2011 31 System-On-Chip D/M

3.1. EVENT DRIVEN SIMULATION LG 3. SIMULATION

3.1.2 Modelling Zero-Delay Components - The Delta
Cycle

At early stages of design exploration, we may not know anything about

the target technology. We do not wish to insert arbitrary delay figures in

our source code, yet some sort of delay is needed to make synchronous

hardware work correctly. The solution is the delta cycles.

For correct behaviour of synchronous edge-triggered hardware, the pro-

gagation delay of D-types must be greater than their hold time. Question

: How can we ensuse this in a technology-neutral model that does not

have any specific numerical delays ?

// Example: swap data between a pair of registers

reg [7:0] X, Y;

always @(posedge clock) begin

X <= Y;

Y <= X;

end

// E.g. if X=3 and Y=42 then Y becomes 3 and X becomes 42.

Answer: Hardware simulators commonly support the compute/commit

or ‘signal’ paradigm for non-blocking updates.

Easter Term 2011 32 System-On-Chip D/M

3.1. EVENT DRIVEN SIMULATION LG 3. SIMULATION

Raw EDS without delta-

cycles

while (eventlist <> EMPTY)

{ e = hd eventlist;

eventlist = tl eventlist;

tnow = e.time;

e.net = e.value;

for (m in e.net.models) do m.exec()

}

EDS kernel with pending queue:

while (eventlist<>EMPTY)

{ e = hd eventlist;

if (e.time > tnow) and (pending<>EMPTY)

{ // Commit pendinds and commence new delta cycle

for (net in pending) do net.current=net.next;

pending = EMPTY;

} else

{ tnow = e.time;

e.net = e.value;

eventlist = tl eventlist;

for (m in e.net.models) do m.exec()

}

}

Zero-delay models generate new events at the current time, tnow. To

avoid shoot-through, these need to be delayed until all current evalua-

tion is complete. All three of VHDL, Verilog RTL and SystemC support

the compute/commit paradigm (also known as evaluate/update) us-

ing delta cycles. Delta cycle: a complete compute/commit cycle that

does not advance global time.

One implementation is to have an auxiliary list containing nets, called

the pending queue. The net.write(value, when) method checks

whether the new time is the same as the current time and if so, instead

of inserting an event for the net in the event list, the net is placed on

the pending queue and the new value stored in a ‘next value’ field in the

net. The kernel is then modified as shown above, to empty the pending

queue when the next event would advance simulation time.

Hence, when zero-delay models are active and the output of one feeds

another (e.g. a zero delay gate in the clock path), the value of system

time, tnow, may not advance for several consecutive delta cycles. Clock

generators or other components for which we can put in delay figures

operate normally, causing real advances in simulation time.

Easter Term 2011 33 System-On-Chip D/M

3.1. EVENT DRIVEN SIMULATION LG 3. SIMULATION

A net that is to have its updated deferred in VHDL (and SystemC) is

called a signal, whereas immedate updates when variables are written

to. In Verilog, all nets can be assigned in either way and instead two

different assignment operators are provided (called blocking and non-

blocking, denoted = and <= respectively).

(As we shall see, a SystemC ‘sc signal’ is implemented with a current

and a next value and it is necessary to use the ‘net.read()’ method to

read the value of a SystemC signal because C++ does not allow override

of the read operator.)

Easter Term 2011 34 System-On-Chip D/M

LG 4 — Hazards

Definitions (some authors vary slightly):

• Data hazard - when an operand’s address is not yet computed

or has not arrived in time for use,

• WaW hazard - write-after-write: the second write must occur

after the first otherwise its result is lost,

• RaW or WaR hazard - write and read of a location are acci-

dentally permuted,

• Control hazard - when it is not yet clear whether an operation

should be performed,

• Alias hazard - we do not know if two array subscripts are equal,

• Structural hazard - insufficient physical resources to do every-

thing at once.

We have a structural hazard when an operation cannot proceed because

some information is not available or a resource is already in use. Re-

sources that might present structural hazards are:

• Memories with insufficient ports,

• Memories with access latency (synchronous RAM and DRAM),

• insufficient number ALUs for all of the operations to be schedulled

in current clock tick.

35

http://en.wikipedia.org/wiki/Hazard_(computer_architecture)

LG 4. HAZARDS

• Pipelined operator implementations (e.g. Booth Multiplier or float-

ing point unit),

• Anything non-fully pipelined (something that goes busy).

A non-fully pipelined component cannot start a new operation on every

clock cycle. Instead it has handshake wires that start it and inform the

client logic when it is ready.

An example of a component that cannot accept new input data every

clock cycle (i.e. something that is non-fully-pipelined) is a sequential

long multiplier, that works as follows:

Behavioural algo-

rithm:

while (1)

{

wait (Start);

RA=A; RB=B; RC=0;

while(RA>0)

{

if odd(RA) RC=RC+RB;

RA = RA >> 1;

RB = RB << 1;

}

Ready = 1;

wait(!Start);

Ready = 0;

}

This implements conventional long multiplication. It is certainly not

fully-pipelined, it goes busy for many cycles, depening on the log of

the A input. The illustration show a common design pattern consisting

of a datapath and a sequencer. Booth’s algorithm (see additional

material) is faster, still using one adder but needing half the clock ticks.

Exercise: Write out the complete design, including sequencer, for the

above multiplier, or that of Booth, or a long division unit, in Verilog or

Easter Term 2011 36 System-On-Chip D/M

http://www.cl.cam.ac.uk/teaching/0910/SysOnChip/am-multadd/zhp99178650a.html

4.1. HAZARDS FROM ARRAY MEMORIES LG 4. HAZARDS

SystemC.

4.1 Hazards From Array Memories

A structural hazard in an RTL design can make it non synthesisable.

Consider the following expressions that make liberal use of array sub-

scription and the multiplier operator:

Structural hazard

sources are numbered:

always @(posedge clk) begin

q0 <= Boz[e3] // 3

q1 <= Foo[e0] + Foo[e1]; // 1

q2 <= Bar[Bar[e2]]; // 2

q3 <= a*b + c*d; // 4

q4 <= Boz[e4] // 3

end

1. The RAMs or register files Foo

Bar and Boz might not have two

read ports.

2. Even with two ports, can Bar

perform the double subscription

in one clock cycle?

3. Read operations on Boz might

be a long way apart in the code,

so hazard is hard to spot.

4. The cost of providing two ‘flash’

multipliers for use in one clock

cycle while they lie idle much of

the rest of the time is likely not

warranted.

A multiplier that operates combinationaly in less than one clock cycle is

called a ‘flash’ multiplier and it uses quadratic silicon area.

Expanding blocking assignments can lead to name alias hazards:

Easter Term 2011 37 System-On-Chip D/M

4.1. HAZARDS FROM ARRAY MEMORIES LG 4. HAZARDS

Suppose we know

nothing about xx

and yy, then con-

sider:

begin

...

if (g) Foo[xx] = e1;

r2 = Foo[yy];

To avoid name alias problems, this

must be compiled to non-blocking

pure RTL as:

begin

...

Foo[xx] <= (g) ? e1: Foo[xx];

r2 <= (xx==yy) ? ((g) ? e1: Foo[xx]): Foo[yy];

Quite commonly we do know something about the subscript expressions.

If they are compile-time constants, we can decidedly check the eqaulity

at compile time. Suppose that at ... or elsewhere beforehand we had

the line ‘yy = xx+1;’ or equivalent knowledge? Then we with sufficient

rules we can realise at compile time they will never alias. However, no

set of rules will be complete (decidability).

4.1.1 Overcoming Structural Hazards using Hold-
ing Registers

A holding register is commonly inserted to overcome a structural haz-

ard (by hand or by a high-level synthesis tool HLS). Sometimes, the

value that is needed is always available elsewhere in the design (and

needs forwarding) or sometimes an extra sequencer step is needed.

Easter Term 2011 38 System-On-Chip D/M

4.1. HAZARDS FROM ARRAY MEMORIES LG 4. HAZARDS

If we know nothing

about e0 and e1:

always @(posedge clk) begin

...

ans = Foo[e0] + Foo[e1];

...

end

then load holding register in additional

cycle:

always @(posedge clk) begin

pc = !pc;

...

if (!pc) holding <= Foo[e0];

if (pc) ans <= holding + Foo[e1];

...

end

If we can analayse the pattern

of e0 and e1:

always @(posedge clk) begin

...

ee = ee + 1;

...

ans = Foo[ee] + Foo[ee-1];

...

end

then, apart from first cycle, use

holding register to forward value

from previous iteration:

always @(posedge clk) begin

...

ee <= ee + 1;

holding <= Foo[ee];

ans <= holding + Foo[ee];

...

end

We can implement the program counter and holding registers as source-

to-source transformations, that eliminate hazards, as just illustrated.

Generally, it is easier to emit behavioural RTL in this process, and then

we can alternate the conversion to pure form and hazard avoidance

rewriting processes until closure.

For example, the first example can be converted to behavioural RTL

that has an implicit program counter (state machine) as follows:

always @(posedge clk) begin

holding <= Foo[e0];

@(posedge clk) ;

ans <= holding + Foo[e1];

end

Easter Term 2011 39 System-On-Chip D/M

4.1. HAZARDS FROM ARRAY MEMORIES LG 4. HAZARDS

The transformations illustrated above are NOT performed by mainstream

RTL compilers today: instead they are incorporated in HLS tools such

as Kiwi (see later). Sharing structural resources may require additional

multiplexers and wiring: so not always worth it. A good design not only

balances structural resource use between clock cycles, but also timing

delays.

These example fragments handled one hazard and used two clock cycles.

They were localised transformations. When there are a large number of

clock cycles, memories and ALUs involved, a global search and optimise

procedure is needed to find a good balance of load on structural compo-

nents. Although these examples mainly use memories, other significant

structural resources, such as fixed and floating point ALUs present haz-

ards.

Easter Term 2011 40 System-On-Chip D/M

LG 5 — Folding, Retiming & Recoding

Generally we have to chose between high performance or low power.

(We shall see this at the gate level later on). The time/space fold
and unfold operations trade execution time for silcon area. A given

function can be computed with fewer clocks by ‘unfolding’ in the the

time domain, typically by loop unwinding (and predication).

LOOPED (time) option: | UNWOUND (space) option:

|

for (i=0; i < 3 and i < limit; i++) | if (0 < limit) sum += data[0] * coef[j];

sum += data[i] * coef[i+j]; | if (1 < limit) sum += data[1] * coef[1+j];

| if (2 < limit) sum += data[2] * coef[2+j];

The ‘+=’ operator is an associative reduction operator. When the

only interactions between loop iterations are outputs via such an opera-

tor, the loop iterations can be executed in parallel. On the other hand,

if one iteration stores to a variable that is read by the next iteration or

affects the loop exit condition then unwinding possibilities are reduced.

We can retime a design with and without changing its state encoding.

We will see that adding a pipeline stage can increase the amount of state

without recoding existing state.

5.1 Critical Path Timing Delay

Meeting timing closure is the process of manipulating a design to meet

its target clock rate.

41

5.1. CRITICAL PATH TIMING DELAYLG 5. FOLDING, RETIMING & RECODING

The maximum clock frequency of a synchronous clock domain is set by

its critical path. The longest path of combinational logic must have

settled before the setup time of any flip-flop starts.

Figure 5.1: A circuit before and after insertion of an additional pipeline

stage.

Pipelining is a commonly-used technique to boot system performance.

Introducing a pipeline stage increases latency but also the maximum

Easter Term 2011 42 System-On-Chip D/M

5.1. CRITICAL PATH TIMING DELAYLG 5. FOLDING, RETIMING & RECODING

clock frequency. Fortunately, many applications are tolerant to the pro-

cessing delay of a logic subsystem. Consider a decoder for a fibre optic

signal: the fibre might be many kilometers long and a few additional

clock cycles in the decoder increase the processing delay by an amount

equivalent to a few coding symbol wavelengths: e.g. 20 cm per pipeline

stage for a 1 Gbaud modulation.

Pipelining introduces new state but does not require existing state flip-

flops to change meaning.

Figure 5.2: Flip-flop migration: two circuits of identical behaviour, but

different state encoding.

Flip-flop migration does alter state encoding. It exchanges delay in one

path delay for delay in another. A sequence of such transformations can

lead to a shorter critical path overall.

In the following example, the first migration is a local transformation

that has no global consequences:

Before: Migration 1: Migration 2 (non causal):

a <= b + c; b1 <= b; c1 <= c; q1 <= (dd) ? (b+c): 0;

q <= (d) ? a:0; q <= (d) ? b1+c1:0; q <= q1;

The second migration, that attempts to perform the multiplexing one

cycle earlier will require an earlier version of d, here termed dd that might

not be available (e.g. if it were an external input we need knowledge

of the future). An earlier version of a given input can sometimes be

obtain by delaying all of the inputs (think of delaying all the inputs to

Easter Term 2011 43 System-On-Chip D/M

5.1. CRITICAL PATH TIMING DELAYLG 5. FOLDING, RETIMING & RECODING

a bookmakers shop), but this cannot be done for certain applications

where system response time (in-to-out delay) is critical.

Problems arising:

• Circuits containing loops (proper synchronous loops) cannot be

pushed with a simple algorithm since the algorithm loops.

• External interfaces that do not use transactional handshakes (i.e.

those without flow control)(see later) cannot tolerate automatic re-

timing since the knowledge about when data is valid is not explicit.

• Many structures, including RAMs and ALUs, have a pipeline delay,

so the hazard on their input port needs resolving in a different clock

cycle from hazards involving their result values.

but retiming can overcome structural hazards (e.g. the ‘write back’ cycle

in RISC pipeline).

Other rewrites commonly used: automatically introduce one-hot and

gray encoding, or invert for reset as preset.

Easter Term 2011 44 System-On-Chip D/M

LG 6 — Protocol and Interface

At the electrical level, a port consists of an interface and a protocol.
The interface is the set of pins or wires that connect the components.

The protocol defines the rules for changing the logic levels and the mean-

ing of the associated data. For example, an interface might be defined

in RTL as:

Transmit view of interface: Receive view of interface: Idle specification:

output [7:0] data; input [7:0] data; four_phase_idle = !strobe and !ack;

output stobe; input stobe;

input ack; output ack;

Ports commonly implement flow-control by handshaking. Data is only

transferred when both the sender and receiver are happy to proceed.

A port generally has an idle state which it returns to between each

transaction. Sometimes the start of one transaction is immediately after

the end of the previous, so the transition through the idle state is only

nominal. Sometimes the begining of one transaction is temporaly over-

laid with the end of a previous, so the transition through idle state has

no absolute time associated with it.

Additional notes:

There are four basic clock strategies for an interface:
Left Side Right Side Name height

1. Clocked Clocked Synchronous (such as Xilinx LocalLink)

2. Clocked Different clock Clock Domain Crossing (see later)

3. Clocked Asynchronous Hybrid.

3. Asynchronous Clocked Hybrid (swapped).

4. Asynchronous Asynchronous Asynchronous (such a four phase parallel port)

45

6.1. TRANSACTIONAL HANDSHAKINGLG 6. PROTOCOL AND INTERFACE

6.1 Transactional Handshaking

Legacy RTL’s (Verilog and VHDL) do not provide synthesis of handshake

circuits (but this is one of the main innovations in Bluespec). We’ll use

the word transactional for interfaces that support flow-control. If tools

are allowed to adjust the delay through components, all interfaces be-

tween components must be transactional and the tools must understand

the protocol semantic.

Figure 6.1: Timing diagram for an asynchronous, four phase handshake.

Here are two imperative (behavioural) methods (non-RTL) that embody

the above protocol:

//Output transactor:

putbyte(char d)

{

wait_until(!ack); // spin till last complete.

data = d;

settle(); // delay longer than longest data delay

req = 1;

wait_until(ack);

req = 0;

}

//Input transactor:

char getbyte()

{

wait_until(req);

char r = data;

ack = 1;

wait_until(!req);

ack = 0;

return r;

}

Code like this is used to perform programmed IO (PIO) on GPIO pins

(see later). It can also be used as an ESL transactor (see later). It’s

also sufficient to act as a formal specification of the protocol.

Easter Term 2011 46 System-On-Chip D/M

6.2. TRANSACTIONAL HANDSHAKING IN RTL (SYNCHRONOUS

EXAMPLE) LG 6. PROTOCOL AND INTERFACE

6.2 Transactional Handshaking in RTL
(Synchronous Example)

A more complex example is the LocalLink protocol from Xilinx. This

is a synchronous packet proctocol (c.f. compare with the asynchronous

four-phase handshake just described).

Like the four-phase handshake, LocalLink has contra-flowing request and

acknowledge signals. But data is not qualified by a request transition:

instead it is qualified as valid on any positive clock edge where
both request and acknowledge are asserted. The interface nets

for an eight-bit transmitting interface are:

input clk;

output [7:0] xxx_data; // The data itself

output xxx_sof_n; // Start of frame

output xxx_eof_n; // End of frame

output xxx_src_rdy_n; // Req

input xxx_dst_rdy_n; // Ack

Figure 6.2: Timing diagram for the synchronous LocalLink protocol.

Start and end of frame signals delimit the packets. All control signals

are active low (denoted with the underscore n suffix).

Easter Term 2011 47 System-On-Chip D/M

6.2. TRANSACTIONAL HANDSHAKING IN RTL (SYNCHRONOUS

EXAMPLE) LG 6. PROTOCOL AND INTERFACE

Additional notes:

Here is a data source for LocalLink that makes a stream of packets

containing arbitrary data with arbitrary gaps.

module LocalLinkSrc(reset,

clk,

src_data,

src_sof_n,

src_eof_n,

src_src_rdy_n,

src_dst_rdy_n);

input reset;

input clk;

output [7:0] src_data;

output src_sof_n;

output src_eof_n;

output src_src_rdy_n;

input src_dst_rdy_n;

// The source generates ’random’ data using a pseudo random sequence generator (prbs).

// The source also makes gaps in its data using bit[9] of the generator.

reg [14:0] prbs;

reg started;

assign src_data = (!src_src_rdy_n) ? prbs[7:0] : 0;

assign src_src_rdy_n = !(prbs[9]);

// The end of packet is arbitrarily generated when bits 14:12 have a particular value.

assign src_eof_n = !(!src_src_rdy_n && prbs[14:12]==2);

// A start of frame must be flagged during the first new word after the previous frame has ended.

assign src_sof_n = !(!src_src_rdy_n && !started);

always @(posedge clk) begin

started <= (reset) ? 0: (!src_eof_n) ? 0 : (!src_sof_n) ? 1 : started;

prbs <= (reset) ? 100: (src_dst_rdy_n) ? prbs: (prbs << 1) | (prbs[14] != prbs[13]);

end

endmodule

And here is a corresponding data sink:

module LocalLinkSink(reset,

clk,

sink_data,

sink_sof_n,

sink_eof_n,

sink_src_rdy_n,

sink_dst_rdy_n);

input reset;

input clk;

input [7:0] sink_data;

input sink_sof_n;

input sink_eof_n;

output sink_src_rdy_n;

input sink_dst_rdy_n;

// The sink also maintains a prbs to make it go busy or not on an arbitrary basis.

reg [14:0] prbs;

assign sink_dst_rdy_n = prbs[0];

always @(posedge clk) begin

if (!sink_dst_rdy_n && !sink_src_rdy_n) $display(

"%m LocalLinkSink sof_n=%d eof_n=%d data=0x%h", sink_sof_n, sink_eof_n, sink_data);

// Put a blank line between packets on the console.

if (!sink_dst_rdy_n && !sink_src_rdy_n && !sink_eof_n) $display("\n\n");

prbs <= (reset) ? 200: (prbs << 1) | (prbs[14] != prbs[13]);

end

endmodule // LocalLinkSrc

Easter Term 2011 48 System-On-Chip D/M

6.2. TRANSACTIONAL HANDSHAKING IN RTL (SYNCHRONOUS

EXAMPLE) LG 6. PROTOCOL AND INTERFACE

Additional notes:

And here is a testbench that wires them together:

module SIMSYS();

reg reset;

reg clk;

wire [7:0] data;

wire sof_n;

wire eof_n;

wire ack_n;

wire req_n;

// Instance of the src

LocalLinkSrc src (.reset(reset),

.clk(clk),

.src_data(data),

.src_sof_n(sof_n),

.src_eof_n(eof_n),

.src_src_rdy_n(req_n),

.src_dst_rdy_n(ack_n));

// Instance of the sink

LocalLinkSink sink (.reset(reset),

.clk(clk),

.sink_data(data),

.sink_sof_n(sof_n),

.sink_eof_n(eof_n),

.sink_src_rdy_n(req_n),

.sink_dst_rdy_n(ack_n)

);

initial begin clk =0; forever #50 clk = !clk; end

initial begin reset = 1; #130 reset=0; end

endmodule // SIMSYS

Easter Term 2011 49 System-On-Chip D/M

LG 7 — SystemC Components

SystemC is a free library for C++ for hardware SoC modelling. Download

from www.systemc.org SystemC was developed over the last ten years.

There have been two major releases, 1.0 and 2.0. Also of importance is

the recent release of the add-on TLM library, TLM 2.0. (SystemC using

transactional-level modelling (TLM/ESL) is covered later). Greaves is

enhancing SystemC with a power modelling library.

It can be used for detailed net-level modelling, but today its main uses

are :

• Architectural exploration: Making a fast and quick, high-level

model of a SoC to explore performance variation against various

dimensions, such as bus width and cache memory size.

• Transactional level (TLM) models of systems, where handshaking

protocols between components using hardware nets are replaced

with subroutine calls between higher-level models of those compo-

nents.

• Synthesis: RTL is synthesised from from SystemC source code

using a so-called ‘C-to-gates’ compiler.

SystemC includes (at least):

• A module system with inter-module channels: C++ class instances

are instantiated in a hierarchy, following the circuit component

structure, in the same way that RTL modules instantiate each

other.

• An eventing and threading kernel that is non-preemptive and which

allows user code inside components to run either in a trampoline

50

http://www.systemc.org
http://www.systemc.org

LG 7. SYSTEMC COMPONENTS

style, returning the thread without blocking, or to keep the thread

and hold state on a stack.

• Compute/commit signals as well as other forms of channel for

connecting components together. The compute/commit signals

are needed in a zero-delay model of hardware to avoid ‘shoot-thru’:

i.e. the scenario where one flip-flop in a clock domain changes its

output before another has processed the previous value.

• A library of fixed-precision integers. Hardware typically uses all

sorts of different width busses and counters that wrap accordingly.

SystemC provides classes of signed and unsigned variables of any

width that behave in the same way. For instance the user can

define an sc int of five bits and put it inside a signal. The

provided library includes overloads of all the standard arithmetic

and logic operators to operate on these types.

• Plotting output functions that enable waveforms to be captured

to a file and viewed with a program such as gtkwave.

• A separate transactional modelling library: TLM 1.0 provided sep-

arate blocking and non-blocking interfaces prototypes that a user

could follow and in TLM 2.0 these are rolled together into ‘conve-

nience sockets’ that can convert between the two forms.

Problem: hardware engineers are not C++ experts but they can be faced

with complex or advanced C++ error messages when they misuse the

library.

Benefit: General-purpose behavioural C code, including application code

and device drivers, can all be modelled in a common language.

Easter Term 2011 51 System-On-Chip D/M

LG 7. SYSTEMC COMPONENTS

SC_MODULE(mycounter) // An example of a leaf module (no subcomponents).

{

sc_in < bool > clk, reset;

sc_out < sc_int<10> > myout;

void m() // Internal behaviour, invoked as an SC_METHOD.

{

myout = (reset) ? 0: (myout.read()+1); // Use .read() since sc_out makes a signal.

}

SC_CTOR(mycounter) // Constructor

{ SC_METHOD(m); //

sensitive << clk.pos();

}

}

// Complete example is on course web site and also on PWF.

SystemC enables a user class to be defined using the the SC MODULE

macro. Modules inherit various attributes appropriate for an hierarchic

hardware design including an instance name, a type name and channel

binding capability. The sensitive construct registers a callback with

the EDS kernel that says when the code inside the module should be

run. An unattractive feature of SystemC is the need to use the .read()

method when reading a signal.

Easter Term 2011 52 System-On-Chip D/M

7.1. SYSTEMC STRUCTURAL NETLISTLG 7. SYSTEMC COMPONENTS

7.1 SystemC Structural Netlist

//Example of structural hierarchy and wiring between levels:

SC_MODULE(shiftreg) // Two-bit shift register

{ sc_in < bool > clk, reset, din;

sc_out < bool > dout;

sc_signal < bool > q1_s;

dff dff1, dff2; // Instantiate FFs

SC_CTOR(shiftreg) : dff1("dff1"), dff2("dff2")

{ dff1.clk(clk);

dff1.reset(reset);

dff1.d(din);

dff1.q(q1_s);

dff2.clk(clk);

dff2.reset(reset);

dff2.d(q1_s);

dff2.q(dout);

}

};

A SystemC templated channel provides general purpose interface be-

tween components. We rarely use the raw channels: instead we use the

derived forms sc in, sc out and sc signal. These channels imple-

ment compute/commit paradigm required for delta cycles. This avoids

non-determinacy from races in zero-delay models (see earlier).

Other provided channels include the buffer, fifo, mutex, semaphore and

clock (non-examinable). Users can overload the channel class to im-

plement channels with their own semantics if needed. A user-defined

channel type can even contain other SystemC components but the im-

portance of this is reduced when using the TLM libraries.

Easter Term 2011 53 System-On-Chip D/M

7.1. SYSTEMC STRUCTURAL NETLISTLG 7. SYSTEMC COMPONENTS

// A signal is an abstract (templated) data type that has a current and next value.

// Signal reads are of the current value. Writes are to the next value.

// This example illustrates:

int nv; // nv is a simple c variable (POD)

sc_out < int > data; // data and mysig are signals (non-POD)

sc_signal < int > mysig; //

...

nv += 1;

data = nv;

mysig = nv;

printf("Before nv=%i, %i %i\n’’, nv, data.read(), mysig.read());

wait(10, SC_NS);

printf("After nv=%i, %i %i\n’’, nv, data.read(), mysig.read());

...

Before nv=96, 95 95

After nv=96, 96 96

When the scheduler blocks with no more events in the current time step,

the pending new values are committed to the visible current values.

For faster system modelling, we do not want to enter EDS kernel for

every change of every net or bus: so is it possible to pass larger objects

around, or even send threads between components, like S/W does ?

Yes, it is possible to put any datatype inside a signal and route that

signal between components (provided the datatype can be checked for

equality to see if current and next are different and so on). Using this

approach, a higher-level model is possible, because a complete Ethernet

frame or other large item can be delivered as a single event, rather than

having to step though the cycle-by-cycle operation of a serial hardware

implementation.

Even better: SystemC 2.0 enabled threads to be passed along the chan-

nels, allowing intermodule thread calling, just like object-oriented soft-

ware. This will enable TLM modelling (described later). Hence we have

three inter-module communication styles:

1. Pin-level modelling: an event is a change of a net or bus,

Easter Term 2011 54 System-On-Chip D/M

7.2. SYSTEMC ABSTRACTED DATA MODELLINGLG 7. SYSTEMC COMPONENTS

2. Abstract data modelling: an event is delivery of a complete

cache line or other data packet,

3. Transactional-level modelling: avoid events as much as pos-

sible: use intermodule software calling.

7.2 SystemC Abstracted Data Modelling

Here we raise the modelling abstraction level by passing an abstract

datatype along a channel. the abstract data type must define a few

basic methods, such as the equality operator overload this is shown:

sc_signal < bool > mywire; // Rather than a channel conveying just one bit,

struct capsule

{ int ts_int1, ts_int2;

bool operator== (struct ts other)

{ return (ts_int1 == other.ts_int1) && (ts_int2 == other.ts_int2); }

...

... // Also must define read(), write(), update(v) and value_changed()

};

sc_signal < struct capsule > myast; // We can send two integers at once.

For many basic types, such as bool, int, sc int, the required

methods are provided in the SystemC library, but clearly not for user-

defined types.

void mymethod() { }

SC_METHOD(mymethod)

sensitive << myast.pos(); // User must define concept of posedge for his own abstract type.

Easter Term 2011 55 System-On-Chip D/M

7.3. THREADS AND METHODSLG 7. SYSTEMC COMPONENTS

7.3 Threads and Methods

SystemC enables a user module to keep a thread and a stack but prefers,

for efficiency reasons if user code runs on its own upcalls in a trampoline

style.

• An SC THREAD has a stack and is allowed to block.

• An SC METHOD is just an upcall from the event kernel and must

not block.

Comparing SC THREADs with trampoline-style methods we can see the

basis for two main programming TLM styles to be introduced later:

blocking and non blocking.

The user code in an SC MODULE is run either as an SC THREAD or

an SC METHOD.

An SC THREAD has a stack and is allowed to block. An SC METHOD

is just an upcall from the event kernel and must not block. Use SC METHOD

wherever possible, for efficiency. Use SC THREAD where important

state must be retained in the program counter from one activation to

the next or when asynchronous active behaviour is needed.

The earlier ‘mycounter’ example used an SC METHOD. Now an example

using an SC THREAD: a data source that provides numbers using a net-

level four-phase handshake:

Easter Term 2011 56 System-On-Chip D/M

7.3. THREADS AND METHODSLG 7. SYSTEMC COMPONENTS

SC_MODULE(mydata_generator)

{ sc_out < int > data;

sc_out < bool > req;

sc_in < bool > ack;

void myloop()

{ while(1)

{ data = data.read() + 1;

wait(10, SC_NS);

req = 1;

do { wait(0, SC_NS); } while(!ack.read());

req = 0;

do { wait(0, SC_NS); } while(ack.read());

}

}

SC_CTOR(mydata_generator)

{

SC_THREAD(myloop);

}

}

A SystemC thread can block for a given amount of time using the wait

function in the SystemC library (not the Posix namesake). NB: If you

put ‘wait(4)’ for example, you will invoke the unix system call of that

name, so make sure you supply a SystemC time unit as the second

argument.

Easter Term 2011 57 System-On-Chip D/M

7.4. SYSTEMC PLOTTING AND GUILG 7. SYSTEMC COMPONENTS

Additional notes:

Waiting for an arbitrary boolean expression to hold hard to im-

plement on top of C++ owing to its compiled nature:

• C++ does not have a reflection API that enables a user’s

expression to be re-evaluated by the event kernel.

• Yet we still want a reasonably neat and efficient way of

passing an uninterpreted function.

• Original solution: the delayed evaluation class:

waituntil(mycount.delayed() > 5 && !reset.delayed());

Poor user had to just insert the delayed keyword where needed

and then ignore it when reading the code. It was too unwieldly,

now removed. So today use the less-efficient:

do { wait(0, SC_NS); } while(!((mycount > 5 && !reset)));

7.4 SystemC Plotting and GUI

We can plot to industry standard VCD files and view with gtkwave (or

modelsim).

Easter Term 2011 58 System-On-Chip D/M

7.4. SYSTEMC PLOTTING AND GUILG 7. SYSTEMC COMPONENTS

sc_trace_file *tf = sc_create_vcd_trace_file("tracefile");

// Now call:

// sc_trace(tf, <traced variable>, <string>);

sc_signal < int > a;

float b;

sc_trace(trace_file, a, "MyA");

sc_trace(trace_file, b, "MyB");

sc_start(1000, SC_NS); // Simulate for one microsecond

sc_close_vcd_trace_file(tr);

return 0;

Figure 7.1: Waveform view plotted by gtkwave.

VCD can be viewed with gtkwave or in modelsim. There are various

other commercial interactive viewer tools...

Try-it-yourself on PWF

Easter Term 2011 59 System-On-Chip D/M

http://www.cl.cam.ac.uk/teaching/0910/P35/practicals/index.html

LG 8 — Basic SoC Components

This section is a tour of actual hardware components (IP blocks) found

on chips, presented with schematics and illustrative RTL fragments, and

connected using a simple bus. Later we will look at other busses and

networks on chip.

In the old-fashioned approach, we notice that the hand-crafted RTL

used for the hardware implementation has no computerised connection

with the firmware, device drivers or non-synthesisable models used for

architectural exploration. Later we briefly look at how IP-XACT solves

this.

8.1 Simple Microprocessor: Bus Connec-
tion and Internals

Figure 8.1: Schematic symbol and internal structure for a microprocessor

(CPU).

This device is a bus master or initiator of bus transactions. In this course

we are concerned with the external connections only.

60

8.2. A CANONICAL D8/A16 MICRO-COMPUTERLG 8. BASIC SOC COMPONENTS

A basic microprocessor such as the original Intel 8008 device has a 16 bit

address bus and an 8 bit data bus so can address 64 Kbytes of memory.

It is an A16/D8 memory architecture. Internally it has instruction fetch,

decode and execute logic.

The interrupt input makes it save its PC and load a fixed value instead:

an external hardware event forces it to make a jump.

The high-order address bits are decoded to create chip enable signals for

each of the connected peripherals, such as the RAM, ROM and UART.

As we shall see, perhaps the first SoCs, as such, were perhaps the mi-

crocontrollers. The Intel 8051 used in the mouse shipped with the first

IBM PC is a good example. For the first time, RAM, ROM, Processor

and I/O devices are all on one piece of silicon. We all now have many

of these such devices : one in every card in our wallet or purse. Today’s

SoC are the same, just much more complex.

8.2 A canonical D8/A16 Micro-Computer

Figure 8.2 shows the inter-chip wiring of a basic microcomputer (i.e. a

computer based on a microprocessor).

Easter Term 2011 61 System-On-Chip D/M

8.2. A CANONICAL D8/A16 MICRO-COMPUTERLG 8. BASIC SOC COMPONENTS

Figure 8.2: Early microcomputer structure, using tri-state busses.

------- ----- -----------------------

Start End Resource

------- ----- -----------------------

0000 03FF EPROM

0400 3FFF Unused images of EPROM

4000 7FFF RAM

8000 BFFF Unused

C000 C001 Registers in the UART

C002 FFFF Unused images of the UART

------- ----- -----------------------

The following RTL describes the required glue logic for the memory map:

Easter Term 2011 62 System-On-Chip D/M

8.3. A BASIC MICRO-CONTROLLERLG 8. BASIC SOC COMPONENTS

module address_decode(abus, rom_cs, ram_cs, uart_cs);

input [15:14] abus;

output rom_cs, ram_cs, uart_cs;

assign rom_cs = (abus == 2’b00); // 0x0000

assign ram_cs = (abus == 2’b01); // 0x4000

assign uart_cs = !(abus == 2’b11);// 0xC000

endmodule

The 64K memory map of the processor has been allocated to the three

addressable resources as shown in the table. The memory map must be

allocated without overlapping the resources. The ROM needs to be at

address zero if this is the place the processor starts executing from when

it is reset. The memory map must be known at the time the code for

the ROM is compiled. This requires agreement between the hardware

and software engineers concerned.

In the early days, the memory map was written on a blackboard where

both teams could see it. For a modern SoC, there could be hundreds

of items in the memory map. An XML representation called IP-XACT

is being adopted by the industry and the glue logic may be generated

automatically.

8.3 A Basic Micro-Controller

A microcontroller has all of the system parts on one piece of silicon.

First introduced in 1989-85 (e.g. Intel 80C31). Such a micro-controller

has an D8/A16 architecture and is used in things like a door lock, mouse

or smartcard.

Easter Term 2011 63 System-On-Chip D/M

http://www.datasheetcatalog.org/datasheet/philips/SC80C51BCGN40.pdf

8.4. SWITCH/LED INTERFACINGLG 8. BASIC SOC COMPONENTS

Figure 8.3: A typical single-chip microcomputer (micro-controller).

Figure 8.4: Connecting LEDs and switches to digital logic.

8.4 Switch/LED Interfacing

Figure 8.4 shows an example of electronic wiring for switches and LEDs.

Figure 8.5 shows an example of memory address decode and simple LED

and switch interfacing for programmed I/O (PIO) to a microprocessor.

When the processor generates a read of the appropriate address, the tri-

state buffer places the data from the switches on the data bus. When the

processor writes to the appropriate address, the broadside latch captures

the data for display on the LEDs until the next write.

Easter Term 2011 64 System-On-Chip D/M

8.5. UART DEVICE LG 8. BASIC SOC COMPONENTS

Figure 8.5: Connecting LEDs and switches for CPU programmed IO

(PIO)

8.5 UART Device

The RS-232 serial port was widely used in the 20th century for char-

acter I/O devices (teletype, printer, dumb terminal). A pair of simplex

channels (output and input) make it full duplex. Additional wires are

sometimes used for hardware flow control, or a software Xon/Xoff prot-

col can be used. Baud rate and number of bits per words must be

pre-agreed.

8.6 Programmed I/O

Programmed Input and Output (PIO). Input and output operations are

made by a program running on the processor. The program makes read

or write operations to address the device as though it was memory.

Disadvantage: Inefficient - too much polling for general use. Interrupt

driven I/O is more efficient. Code to define the I/O locations in use by

a simple UART device (universal asynchronous receiver/transmitter).

Easter Term 2011 65 System-On-Chip D/M

8.6. PROGRAMMED I/O LG 8. BASIC SOC COMPONENTS

Figure 8.6: Typical Configuration of a Serial Port with UART

//Macro definitions for C preprocessor

//Enable a C program to access a hardware

//UART using PIO or interrupts.

#define IO_BASE 0xFFFC1000 // or whatever

#define U_SEND 0x10

#define U_RECEIVE 0x14

#define U_CONTROL 0x18

#define U_STATUS 0x1C

#define UART_SEND() \

(*((volatile char *)(IO_BASE+U_SEND)))

#define UART_RECEIVE() \

(*((volatile char *)(IO_BASE+U_RECEIVE)))

#define UART_CONTROL() \

(*((volatile char *)(IO_BASE+U_CONTROL)))

#define UART_STATUS() \

(*((volatile char *)(IO_BASE+U_STATUS)))

#define UART_STATUS_RX_EMPTY (0x80)

#define UART_STATUS_TX_EMPTY (0x40)

#define UART_CONTROL_RX_INT_ENABLE (0x20)

#define UART_CONTROL_TX_INT_ENABLE (0x10)

The receiver spins until

the empty flag in the sta-

tus register goes away.

Reading the data reg-

ister makes the status

register go empty again.

The actual hardware de-

vice might have a receive

FIFO, so instead of going

empty, the next character

from the FIFO would be-

come available straight-

away:

char uart_polled_read()

{

while (UART_STATUS() &

UART_STATUS_RX_EMPTY) continue;

return UART_RECEIVE();

}

The output function is

exactly the same in prin-

ciple, except it spins while

the device is still busy

with any data written

previously:

uart_polled_write(char d)

{

while (!(UART_STATUS()&

UART_STATUS_TX_EMPTY)) continue;

UART_SEND() = d;

}

Easter Term 2011 66 System-On-Chip D/M

8.6. PROGRAMMED I/O LG 8. BASIC SOC COMPONENTS

Interrupt driven UART device

driver:

char rx_buffer[256];

int rx_inptr, rx_outptr;

void uart_reset()

{ rx_inptr = 0;

rx_output = 0;

UART_CONTROL() |= UART_CONTROL_RX_INT_ENABLE;

}

// Here we call wait() instead of ’continue’

// in case the scheduler has something else to run.

char uart_read() // called by application

{ while (rx_inptr==rx_outptr) wait(); // Spin

char r = buffer[rx_outptr];

rx_outptr = (rx_outptr + 1)&255;

return r;

}

char uart_rx_isr() // interrupt service routine

{ while (1)

{

if (UART_STATUS()&UART_STATUS_RX_EMPTY) return;

rx_buffer[rx_inptr] = UART_RECEIVE();

rx_inptr = (rx_inptr + 1)&255;

}

}

uart_write(char c) // called by application

{ while (tx_inptr==tx_outptr) wait(); // Block if full

buffer[tx_inptr] = c;

tx_inptr = (tx_inptr + 1)&255;

UART_CONTROL() |= UART_CONTROL_TX_INT_ENABLE;

}

char uart_tx_isr() // interrupt service routine

{ while (tx_inptr != tx_outptr)

{

if (!(UART_STATUS()&UART_STATUS_TX_EMPTY)) return;

UART_SEND() = tx_buffer[tx_outptr];

tx_outptr = (tx_outptr + 1)&255;

}

UART_CONTROL() &= 255-UART_CONTROL_TX_INT_ENABLE;

}

This second code frag-

ment illustrates the com-

plete set of five soft-

ware routines needed to

manage a pair of circular

buffers for input and out-

put to the UART using

interrupts. If the UART

has a single interrupt out-

put for both send and re-

ceive events, then two of

the four routines are com-

bined with a software dis-

patch between their bod-

ies. Not shown is that

the ISR must be prefixed

and postfixed with code

that saves and restores

the processor state (this

is normally in assembler).

Easter Term 2011 67 System-On-Chip D/M

8.7. I/O BLOCKS, COMMON INTERFACE NETS.LG 8. BASIC SOC COMPONENTS

8.7 I/O Blocks, Common Interface Nets.

In the remainder of this section, we will consider a number of IP (in-

terlectual property) blocks. All will be targets, most will also generate

interrupts and some will also be initiators. We use no bi-directional

(tri-state) busses within our SoC: instead we use dedicated busses and

multiplexor trees. We use the following RTL net names:

• addr[31:0] Internal address selection within a target,

• hwen Asserted during a target write,

• hren Asserted during a target read,

• wdata[31:0] Input data to a target when written,

• rdata[31:0] Output data when target is read,

• interrupt Asserted by target when wanting attention.

On an initiator the net directions will be reversed. For simplicity, in

this section, we assume a synchronous bus with no acknowledgement

signal, meaning that every addressed target must respond in one clock

cycle with no exceptions.

Figure 13.1 shows such a bus with one initiator and three targets. No

tri-states are used: on a modern SoC address and write data outputs

use wire joints or buffers, read data uses multiplexors. There is only one

initiator, so no bus arbitration is needed.

Max throughput is unity (i.e. one word per clock tick). Typical SoC bus

capacity: 32 bits × 200 MHz = 6.4 Gb/s.

Easter Term 2011 68 System-On-Chip D/M

8.8. RAM - ON CHIP MEMORY (STATIC RAM).LG 8. BASIC SOC COMPONENTS

Figure 8.7: Example where one initiator addresses three targets.

The most basic bus has one initiator and several targets. The initiator

does not need to arbitrate for the bus since it has no competitors. Bus

operations are just reads or writes of single 32-bit words. In reality, most

on-chip busses support burst transactions, whereby multiple consecutive

reads or writes can be performed as a single transaction with subsequent

addresses being implied as offsets from the first address.

Interrupt signals are not shown in these figures. In a SoC they do not

need to be part of the physical bus as such: they can just be dedicated

wires running from device to device.

Un-buffered wiring can potentially serve for the write and address busses,

whereas multiplexors are needed for read data. Buffering is needed in all

directions for busses that go a long way over the chip.

8.8 RAM - on chip memory (Static RAM).

RAMs vary in their size and number of ports. Single-ported SRAM is

the most important and most simple resource to connect to our bus. It

Easter Term 2011 69 System-On-Chip D/M

8.8. RAM - ON CHIP MEMORY (STATIC RAM).LG 8. BASIC SOC COMPONENTS

Figure 8.8: Static RAM with single port.

is a target only. Today’s SoC designs have more than fifty percent of

their silicon area devoted to SRAM for various purposes.

The ‘hren’ signal is not shown since the RAM is reading at all times when

it is not reading. However, this wastes power, so it would be better to

hold the address input stable when not needing to read the RAM. Most

RAMs in use on SoCs are synchronous with the data that is output being

addressed the clock cycle before.

Owing to RAM fabrication overheads, RAMs below a few hundred bits

should typically be implemented as register files made of flip-flops. But

larger RAMs have better density and power consumption than arrays of

flip-flops. Commonly, synchronous RAMs are used, requiring one clock

cycle to read at any address. The same address can be written with

fresh data during the same clock cycle, if desired.

RAMs for SoCs are normally supplied by companies such as Virage and

Artizan. A ‘RAM compiler’ tool is run for each RAM in the SoC. It reads

in the user’s size, shape, access time and port definitions and creates a

suite of models, including the physical data to be sent to the foundry.

High-density RAM (e.g. for L2 caches) may clock at half the main system

clock rate and/or might need error correction logic to meet the system-

wide reliability goal.

On-chip SRAM needs test mechanism. Various approaches:

Easter Term 2011 70 System-On-Chip D/M

8.9. INTERRUPT WIRING: GENERAL STRUCTURELG 8. BASIC SOC COMPONENTS

• Can test with software running on embedded processor.

• Can have a special test mode, where address and data lines become

directly controllable (JTAG or otherwise).

• Can use a built-in hardware self test (BIST) wrapper that imple-

ments 0/F/5/A and walking ones typical tests.

Larger memories and specialised memories are normally off-chip for var-

ious reasons:

• Large area: would not be cost-effective on-chip,

• Specialised: proprietary or dense VLSI technology cannot be made

on chip,

• Specialised: non-volatile process (such as FLASH)

• Commodity parts: economies of scale (ZBT SRAM, DRAM, FLASH)

8.9 Interrupt Wiring: General Structure

Figure 8.9: Interrupt generation: general structure within a device and

at system level.

Nearly all devices have a master interrupt enable control flag that can be

set and cleared by under programmed I/O by the controlling processor.

Easter Term 2011 71 System-On-Chip D/M

8.9. INTERRUPT WIRING: GENERAL STRUCTURELG 8. BASIC SOC COMPONENTS

Its output is just ANDed with the local interrupt source. We saw its

use in the UART device driver, where transmit interrupts are turned off

when there is nothing to send.

The programmed I/O uses the write enable (hwen) signal to guard the

transfer of data from the main data bus into the control register. A hren

signal is used for reading back stored value (shown on later slides).

The principal of programming is (see UART device driver):

• Receiving device: Keep interrupt enabled: device interrupts when

data ready.

• Transmit device: Enable interrupt when S/W output queue non-

empty: device interrupts when H/W output queue has space.

With only a single interrupt wire to the processor, all interrupt sources

share it and the processor must poll around on each interrupt to find

the device that needs attention. Enchancement: a vectored interrupt
makes the processor branch to a device-specific location. Interrupts can

also be associated with priorities, so that interrupts of a higher level than

currently being run preempt.

Easter Term 2011 72 System-On-Chip D/M

8.10. GPIO - GENERAL PURPOSE INPUT/OUTPUT PINSLG 8. BASIC SOC COMPONENTS

8.10 GPIO - General Purpose Input/Output
Pins

RTL implementation of 32 GPIO

pins:

// Programming model

reg [31:0] ddr; // Data direction reg

reg [31:0] dout; // output register

reg [31:0] imask; // interrupt mask

reg [31:0] ipol; // interrupt polarities

reg [31:0] pins_r; // register’d pin data

reg int_enable;// Master int enable (for all bits)

always @(posedge clk) begin

pins_r <= pins;

if (hwen && addr==0) ddr <= wdata;

if (hwen && addr==4) dout <= wdata;

if (hwen && addr==8) imask <= wdata;

if (hwen && addr==12) ipol <= wdata;

if (hwen && addr==16) int_enable <= wdata[0];

end

// Tri-state buffers.

bufif b0 (pins[0], dout[0], ddr[0]);

.. // thirty others here

bufif b31 (pins[31], dout[31], ddr[31]);

// Generally the programmer can read all the

// programming model registers but here not.

assign rdata = pins_r;

// Interrupt masking

wire int_pending = (|((din ^ ipol)&imask));

assign interrupt = int_pending && int_enable;

Micro-controllers have a large number of GPIO pins (see later slide).

Exercise: Show how to wire up a push button and write a device driver

that counts how many times it is/was pressed.

Easter Term 2011 73 System-On-Chip D/M

8.11. A KEYBOARD CONTROLLERLG 8. BASIC SOC COMPONENTS

Some state registers inside an I/O block are part of the programmer’s
model in that they can be directly addressed with software (read and/or

written), whereas other bits of state are for internal implementation

purposes.

The general structure of GPIO pins has not changed since the early days

of the 6821 I/O controller. A number of pins are provided that can

either be input or output. A data direction register sets the direction on

a per-pin basis. If an output, data comes from a data register. Interrupt

polarity and masks are available on a per-pin basis for received events.

A master interrupt enable mask is also provided.

The slide illustrates the schematic and the Verilog RTL for such a device.

All of the registers are accessed by the host using programmed I/O.

8.11 A Keyboard Controller

output [3:0] scankey;

input pressed;

reg int_enable, pending;

reg [3:0] scankey, pkey;

always @(posedge clk) begin

if (!pressed) pkey <= scankey;

else scankey <= scankey + 1;

if (hwen) int_enable <= wdata[0]

pressed1 <= pressed;

if (!pressed1 && pressed) pending <= 1;

if (hren) pending <= 0;

end

assign interrupt = pending && int_enable;

assign rdata = { 28’b0, pkey };

This simple keyboard scanner scans each key until it finds one pressed.

Easter Term 2011 74 System-On-Chip D/M

8.11. A KEYBOARD CONTROLLERLG 8. BASIC SOC COMPONENTS

It then loads the scan code into the pkey register where the host finds

it when it does a programmed I/O read.

The host will know to do a read when it gets an interrupt. The interrupt

occurs when a key is pressed and is cleared when the host does a read

hren.

In practice, one would not scan at the speed of the processor clock. One

would scan more slowly to stop the wires in the keyboard transmitting

RF interference. Also, one should use extra register on asynchronous

input pressed (see crossing clock domains) to avoid metastability. Or,

typically, one might use a separate microcontroller to scan a keyboard.

Note, a standard PC keyboard generates an output byte on press and

release and implements a short FIFO internally.

Easter Term 2011 75 System-On-Chip D/M

8.12. COUNTER/TIMER BLOCKLG 8. BASIC SOC COMPONENTS

8.12 Counter/Timer Block

// RTL for one channel of a simple timer

//Programmer model

reg int_enable, ovf, int_pending;

reg [31:0] prescalar;

reg [31:0] reload;

//Internal state

reg [31:0] counter, prescale;

// Host write operations

always @(posedge clk) begin

if (hwen && addr==0) int_enable <= wdata[0];

if (hwen && addr==4) prescalar <= wdata;

if (hwen && addr==8) counter <= wdata;

// Write to addr==12 to clear interrupt

end

// Host read operations

assign rdata =

(addr==0) ? {int_pending, int_enable}:

(addr==4) ? prescalar:

(addr==8) ? counter: 0;

// A timer counts system clock cycles.

// A counter would count transitions from external input.

always @(posedge clk) begin

ovf <= (prescale == prescalar);

prescale <= (ovf) ? 0: prescale+1;

if (ovf) counter <= counter -1;

if (counter == 0) begin

int_pending <= 1;

counter <= reload;

end

if (host_op) int_pending <= 0;

end

wire host_op = hwen && addr == 12;

// Interrupt generation

assign interrupt = int_pending && int_enable;

Easter Term 2011 76 System-On-Chip D/M

8.12. COUNTER/TIMER BLOCKLG 8. BASIC SOC COMPONENTS

The counter/timer block is essentially a counter that counts internal

clock pulses or external events and which interrupts the processor on a

certain count value.

An automatic re-load register accommodates poor interrupt latency, so

that the processor does not need to re-load the counter before the next

event.

Timer (illustrated in the RTL) : counts pre-scaled system clock, but a

counter has external inputs as shown on the schematic (e.g. car rev

counter).

Four to eight, versatile, configurable counter/timers generally provided

in one block.

All registers also configured as bus slave read/write resources for pro-

grammed I/O.

In this example, the interrupt is cleared by host programmed I/O (during

host op).

Easter Term 2011 77 System-On-Chip D/M

8.13. VIDEO CONTROLLER: FRAMESTORELG 8. BASIC SOC COMPONENTS

8.13 Video Controller: Framestore

reg [3:0] framestore[32767:0];

reg [7:0] hptr, vptr;

output reg [3:0] video;

output reg hsynch, vsynch;

always @(posedge clk) begin

hptr <= (hsynch) ? 0: hptr + 1;

hsynch <= (hptr == 230)

if (hsynch) vptr <= (vsynch) ? 0: vptr + 1;

vsynch <= (vptr == 110)

video <= framestore[{vptr[6:0], hptr}];

if (hwen) framestore[haddr]<= wdata[3:0];

end

The framestore reads out the contents of its frame buffer again and

again. The memory is implemented in a Verilog array and this has two

address ports. Another approach is to have a single address port and

for the RAM to be simply ‘stolen’ from the output device when the host

makes a write to it. This will cause noticeable display artefacts if writes

are at all frequent.

This framestore has fixed resolution and frame rate, but real ones have

programmable values read from registers instead of the fixed numbers

230 and 110 (see the linux Modeline tool for example numbers). It is an

output only device that never goes busy, so it generates no interrupts.

The framestore in this example has its own local RAM. This reduces

RAM bandwidth costs on the main RAM but uses more silicon area. A

delicate trade off! A typical compromise, also used on audio and other

DSP I/O, is to have a small staging RAM or FIFO in the actual device

but to keep as much as possible in the main memory.

Video adaptors in PC computers have their own local RAM or DRAM

Easter Term 2011 78 System-On-Chip D/M

8.14. ARBITER LG 8. BASIC SOC COMPONENTS

and also a local processor that performs polygon shading and so on

(GPU).

8.14 Arbiter

When multiple clients wish to share a resource, an arbiter is required. An

arbiter decides which requester should be serviced. Arbiter circuits may

be synchronous or asynchronous. Typical shared resources are busses,

memories and multipliers.

Figure 8.10: Typical Arbiter Schematic (three port/synchronous exam-

ple)

There are two main arbitration disciplines:

• Static Priority - based on input port number (stateless).

• Round Robin - based on last user (held in internal state).

Another major policy variation is preemptive or not: can a granted re-

source be deassigned while the request is still asserted.

Complex disciplines involve dynamic priorites based on use history that

avoid starvation or might implement ‘best matchings’between a number

of requesters and a number of resources.

Easter Term 2011 79 System-On-Chip D/M

http://en.wikipedia.org/wiki/Stable_marriage_problem

8.15. BASIC BUS: MULTIPLE INITIATORS.LG 8. BASIC SOC COMPONENTS

//RTL implementation of synchronous, static priority arbiter with preemption.

module arbiter(clk, reset, reqs, grants);

input clk, reset;

input [2:0] reqs;

output reg [2:0] grants;

always @(posedge clk) if (reset) grants <= 0;

else begin

grants[0] <= reqs[0]; // Highest static priority

grants[1] <= reqs[1] && !(reqs[0]);

grants[2] <= reqs[2] && !(reqs[0] || reqs[1]);

end

Exercise: Give the RTL code for a non-preemptive version of the 3-input

arbiter.

Exercise: Give the RTL code for a round-robin, non-preemptive version

of the 3-input arbiter.

8.15 Basic bus: Multiple Initiators.

Figure 8.11: Example where one of the targets is also an initiator (e.g.

a DMA controller).

Easter Term 2011 80 System-On-Chip D/M

8.15. BASIC BUS: MULTIPLE INITIATORS.LG 8. BASIC SOC COMPONENTS

The basic bus may have multiple initiators, so additional multiplexors

select the currently active initiator. This needs arbitration between ini-

tiators: static priority, round robin, etc.. With multiple initiators, the bus

may be busy when a new initiator wants to use it, so there are various

arbitration policies that might be used. Preemptive and non-preemptive

with static priority, round robin, and others mentioned above.

The maximum bus throughput of unity is now shared among initiators.

Since cycles now take a variable time to complete we need acknowledge

signals for each request and each operation (not shown). How long to

hold bus before re-arbitration ? Commonly re-arbitrate after every burst.

Practical busses support bursts of up to, say, 256 words, transferred

to/from consecutive addresses. Our simple bus for this section does

not support bursts. The latency in a non-preemptive system depends on

how long the bus is held for. Maximum bus holding times affect response

times for urgent and real-time requirements.

Easter Term 2011 81 System-On-Chip D/M

8.16. DMA CONTROLLER LG 8. BASIC SOC COMPONENTS

8.16 DMA Controller

This controller just block

copies: may need to keep src

and/or dest constant for de-

vice access.

DMA controllers may be built

into devices: SoC bus master

ports needed.

// Programmers Model

reg [31:0] count, src, dest;

reg int_enable, active;

// Other local state

reg [31:0] datareg;

reg intt, rwbar;

always @(posedge clk) begin // Target

if (hwen && addr==0) begin

{ int_enable, active } <= wdata[1:0];

int <= 0; rwbar <= 1;

end

if (hwen && addr==4) count <= wdata;

if (hwen && addr==8) src <= wdata;

if (hwen && addr==12) dest <= wdata;

end

assign rdata = ...// Target readbacks

always @(posedge clk) begin // Initiator

if (active && rwbar && m_ack) begin

datareg <= m_rdata;

rwbar <= 0;

src <= src + 4;

end

if (active && !rwbar && m_ack) begin

rwbar <= 1;

dest <= dest + 4;

count <= count - 1;

end

if (count==1 && active && !rwbar) begin

active <= 0;

intt <= 1;

end

end

assign m_wdata = datareg;

assign m_ren = active && rwbar;

assign m_wen = active && !rwbar;

assign m_addr = (rwbar) ? src:dest;

assign interrupt = intt && int_enable;

The DMA controller is the first device we have seen that is a bus initiator

Easter Term 2011 82 System-On-Chip D/M

8.16. DMA CONTROLLER LG 8. BASIC SOC COMPONENTS

as well as a bus target. It has two complete sets of bus connections.

Note the direction reversal of all nets on the initiator port.

This controller just makes block copies from source to destination with

the length being set in a third register. Finally, a status/control register

controls interrupts and kicks of the procedure.

The RTL code for the controller is relatively straightforward, with much

of it being dedicated to providing the target side programmed I/O access

to each register.

The active RTL code that embodies the function of the DMA controller

is contained in the two blocks qualified with the active net in their

conjunct.

Typically, DMA controllers are multi-channel, being able to handle four

or so concurrent or pending transfers. Many devices have their own DMA

controllers built in, rather than relying on dedicated external controllers.

However, this is not possible for devices connected the other side of bus

bridges that do not allow mastering (initiating) in the reverse directions.

An example of this is an IDE disk drive in a PC.

Rather than using a DMA controller one can just use another processor.

If the processor runs out of (i.e. fetches its instructions from) a small,

local instruction RAM or cache it will not impact on main memory bus

bandwidth with code reads and it might not be much larger in terms of

silicon area.

An enhancement might be to keep either of the src or destination reg-

isters constant for streaming device access. For instance, to play audio

out of a sound card, the destination address could be set to the pro-

grammed I/O address of the output register for audio samples and set

not to increment.

For streaming media with hard real-time characteristics, such as audio,

Easter Term 2011 83 System-On-Chip D/M

8.17. NETWORK AND STREAMING MEDIA DEVICESLG 8. BASIC SOC COMPONENTS

video and modem devices, a small staging FIFO is likely to be needed in

the device itself because the initiator port may experience latency when

it is serviced. The DMA controller then initiates the next burst of its

transfer when the local FIFO reaches a trigger depth.

8.17 Network and Streaming Media De-
vices

Figure 8.12: Connections to a DMA-capable network device.

Network devices, such as Ethernet, USB, Firewire, 802.11 are essen-

tially streaming meda devics, such as audio, and modem devices and

commonly have embedded DMA controllers, as just discussed. For high

throughput these devices should likely be bus masters or use a DMA

channel.

DMA offloads work from the main processor, but, equally importantly,

using DMA requires less staging RAM or data FIFO in device. In the

majority of cases, RAM is the dominant cost in terms of SoC area.

Another advantage of a shared RAM pool is statistical multiplexing
gain. It is well known in queueing theory that having a monolithic server

performs better than having a number of smaller servers, with same total

Easter Term 2011 84 System-On-Chip D/M

8.18. BUS BRIDGE LG 8. BASIC SOC COMPONENTS

capacity, that each are dedicated to one client. If the clients all share

one server and arrive more or less at random, the system can be more

efficient in terms of service delay and overall buffer space needed. So

it goes with RAM buffer allocation: having a central pool requires less

overall RAM, to meet a statistical peak demand, than having the RAM

split around the various devices.

The DMA controller in a network or streaming media device will might

often have the ability to follow elaborate data structures set up by the

host, linking and de-linking buffer pointers from a central pool in hard-

ware.

8.18 Bus Bridge

Figure 8.13: Bi-directional bus bridge, composed from a pair of back-

to-back simplex bridges.

The basic idea of the bus bridge is that bus operations slaved on one side

are mastered on the other. The bridge need not be symmetric: speeds

and data widths may be different on each side.

A bus bridge connects together two busses that are potentially able to

operate independently when traffic is not crossing. However, in some

circumstances, especially when bridging down to a slower bus, there

Easter Term 2011 85 System-On-Chip D/M

8.19. INTER-CORE INTERRUPTER (DOORBELL/MAILBOX)LG 8. BASIC SOC COMPONENTS

may be no initiator on the other side, so that side never actually operates

independently and a unidirectional bridge is all that is needed.

The bridge need not support a flat or unified address space: addresses

seen on one side may be totally re-organised when viewed on the other

side or un-addressable. However, for debugging and test purposes, it

is generally helpful to maintain a flat address space and to implement

paths that are not likely to be used in normal operation.

A bus bridge might implement write posting using an internal FIFO.

However it will generally block when reading. In another LG we cover

networks on a chip that go further in that respect.

As noted, the ‘busses’ on each side use multiplexors and not tri-states

on a SoC. These multiplexors are different from bus bridges since they

do not provide spatial reuse of bandwidth. Spatial reuse occurs when

different busses are simultaneously active with different transactions.

With a bus bridge, system bandwidth ranges from 1.0 to 2.0 bus band-

width: inverse proportion to bridge crossing cycles.

8.19 Inter-core Interrupter (Doorbell/Mailbox)

Figure 8.14: Dual-port interrupter (doorbell) or mailbox.

The inter-core interrupter (Doorbell/Mailbox) is a commonly-required

component for basic synchronisation between separate cores. Used, for

Easter Term 2011 86 System-On-Chip D/M

8.20. REMOTE DEBUG (JTAG) ACCESS PORTLG 8. BASIC SOC COMPONENTS

instance, where one CPU has placed a message in a shared memory

region for another to read. Such a device offers multiple target interfaces,

one per client bus. It generates interrupts to one core at the request of

another.

Operations: one core writes a register that asserts and interrupt wire

to another core. The interrupted core reads or writes a register in the

interrupter to clear the interrupt.

Mailbox variant allows small data items to be written to a queue in the

interrupter. These are read out by the (or any) core that is (or wants

to) handle the interrupt. Link: Doorbell Driver Fragments.

8.20 Remote Debug (JTAG) Access Port

Figure 8.15: Remote Access Port connected to H/W SoC (can also

connect to SystemC model).

There are various forms of debug access port, they can be connected

to bus or connected to a CPU core or both. External access is often

via the JTAG port which is fairly slow, owing to bit-serial data format,

Easter Term 2011 87 System-On-Chip D/M

http://www.cl.cam.ac.uk/teaching/1011/SysOnChip/additional/doorbell
http://en.wikipedia.org/wiki/Joint_Test_Action_Group

8.21. CLOCK FREQUENCY MULTIPLIER PLL AND CLOCK TREELG 8. BASIC SOC COMPONENTS

so sometimes parallel bus connections are provided. The basic facilities

commonly provided are

• Perform a bus read or write cycles,

• Halt/continue/single-step the processor core,

• Read/modify processor core registers,

• Provide ‘watchpoints’ which halt on certain address bus values.

In a typical setup the debugger (such as GNU gdb) runs on a remote

workstation via a TCP connection carrying the RSP protocol to the

debug target. For real silicon, the target is a JTAG controller (e.g.

connected to the workstation via USB) whereas on a SystemC model it

is an SC MODULE that is listening for RSP on a unix socket.

8.21 Clock Frequency Multiplier PLL and
Clock Tree

Figure 8.16: Clock multiplication using a PLL and distribution using an

H-tree.

• Clock sourced from a lower-frequency external (quartz) reference.

Easter Term 2011 88 System-On-Chip D/M

8.22. CLOCK DOMAIN CROSSING BRIDGELG 8. BASIC SOC COMPONENTS

• Multiplied up internally with a phase-locked loop.

• Dynamic frequency scaling (future topic) implemented with a pro-

grammable division ratio.

• Skew in delivery is minimised using a balanced clock distribution

tree.

• Physical layout: fractal of H’s, ensuring equal wire lengths.

• Inverters are used to minimise pulse shrinkage (duty-cycle distor-

tion).

The clock tree delivers a clock to all flops in a domain with sufficiently

low skew to avoid shoot-thru. This is achieved by balancing wire lengths

between the drivers. The clock frequency is a multiple of the exter-

nal reference which is commonly sourced from the piezo-effect of sound

waves in a thin slice of quartz crystal. Later on, under power manage-

ment, we will talk about having a programmable clock frequency, so it’s

worth noting that the multiplication factor of 10 illustrated in the slide

can be variable and programmed in some systems (e.g. laptops).

8.22 Clock Domain Crossing Bridge

A clock-domain-crossing bridge is needed between clock domains. The

basic techniques are the same whether implemented as part of a SoC bus

bridge or inside an IP block (e.g. network receive front end to network

core logic).

Easter Term 2011 89 System-On-Chip D/M

8.22. CLOCK DOMAIN CROSSING BRIDGELG 8. BASIC SOC COMPONENTS

Figure 8.17: Generic setup when sending parallel data between clock

domains.

Design principle:

• Have a one-bit signal

that is a guard or qual-

ifier signal for all the

others going in that di-

rection.

• Make sure all the other

signals are settled in ad-

vance of guard.

• Pass the guard signal

through two regis-

ters before using it

(metastability avoid-

ance).

• Use a wide bus (cross-

ing operations less fre-

quent).

Receiver side RTL:

input clk; // receiving domain clock

input [31..0] data;

input req;

output reg ack;

reg [31:0] captured_data;

reg r1, r2;

always @(posedge clk) begin

r1 <= req;

r2 <= r1;

ack <= r2;

if (r2 && !ack) captured_data <= data;

Easter Term 2011 90 System-On-Chip D/M

8.22. CLOCK DOMAIN CROSSING BRIDGELG 8. BASIC SOC COMPONENTS

Metastability Theory:

A pencil balancing on a razor blade can be metastable, but normally

flops to one side or the other. A bistable is two inverters connected in a

ring. This has two stable states, but there is also a metastable state. If

a D-type is clocked while its input is changing, it might be set close to

its metastable state and then drift to one level or the other. Sometimes,

it will take a fair fraction of a clock period to settle. The oscillogram

shows metastable waveforms at the output of a D-type when set/hold

times are sometimes violated.

Two quartz crystal oscillators, each of 10 MHz frequency will actually

be different by tens of Hz and drift with temperature. Atomic clocks are

better: accuracy is one part in ten to the twelve or better.

A simplex clock domain crossing bridge carries information in only one

direction. Duplex carries in both directions. Because the saturated

symbol rates are not equal on each side, we need a protocol with in-

sertable/deletable padding states or symbols that have no semantic

meaning. Or, in higher-level terms, the protocol must have elidable

idle states between transactions.

Clock domain crossing is needed when connecting to I/O devices that

operate at independent speeds: for example, an Ethernet receiver sub-

circuit works at the exact rate of the remote transmitter that is sending

to it. Today’s microprocessors also have separated clock domains for

Easter Term 2011 91 System-On-Chip D/M

8.23. SOC EXAMPLE: HELIUM 210LG 8. BASIC SOC COMPONENTS

their cores viz their DRAM interfaces.

The data signals can also suffer from metastability, but the multiplexer

ensures that these metastable values never propagate into the main logic

of the receiving domain.

100 percent utilisation is impossible when crossing clock domains. The

four-phase handshake limits utilisation to 50 percent (or 25 if registered

at both sides) Other protocols can get arbitrarily close to saturating

one side or the other provided we know the maximum tolerance in the

nominal clock rates. Since clock frequencies are different, 100 percent

of one side is less than 100 percent of the other or else overloaded.

8.23 SoC Example: Helium 210

Figure 8.18: Platform Chip Example: Virata Helium 210

A platform chip is the modern equivalent of a microcontroller: it is a

flexible chip that be programmed up to serve in a number of embedded

applications. The set of components remains the same as for the mi-

crocontroller, but each has far more complexity: e.g. 32 bit processor

instead of 8. In addition, rather than putting a microcontroller on a

PCB as the heart of a system, the whole system is placed on the same

Easter Term 2011 92 System-On-Chip D/M

8.23. SOC EXAMPLE: HELIUM 210LG 8. BASIC SOC COMPONENTS

Figure 8.19: Helium chip as oart of a home gateway ADSL modem

(partially masked by 802.11 module).

piece of silicon as the platform components. This gives us a system on

a chip (SoC).

The example illustrated in figure 8.19 has two ARM processors and two

DSP processors. Each ARM has a local cache and both store their

programs and data in the same off-chip DRAM.

The left-hand-side ARM is used as an I/O processor and so is connected

to a variety of standard peripherals. In any typical application, many of

the peripherals will be unused and so held in a power down mode.

The right-hand-side ARM is used as the system controller. It can access

all of the chip’s resources over various bus bridges. It can access off-chip

devices, such as an LCD display or keyboard via a general purpose A/D

local bus.

The bus bridges map part of one processor’s memory map into that of

another so that cycles can be executed in the other’s space, albeit with

some delay and loss of performance. A FIFO bus bridge contains its own

transaction queue of read or write operations awaiting completion.

Easter Term 2011 93 System-On-Chip D/M

8.23. SOC EXAMPLE: HELIUM 210LG 8. BASIC SOC COMPONENTS

The twin DSP devices run completely out of on-chip SRAM. Such SRAM

may dominate the die area of the chip. If both are fetching instructions

from the same port of the same RAM, then they had better be executing

the same program in lock-step or else have some own local cache to avoid

huge loss of performance in bus contention.

The rest of the system is normally swept up onto the same piece of

silicon and this is denoted with the ‘special function peripheral.’ This

would be the one part of the design that varies from product to product.

The same core set of components would be used for all sorts of different

products, from iPODs, digital cameras or ADSL modems.

A platform chip is an SoC that is used in a number of products although

chunks of it might be turned off in any one application: for example,

the USB port might not be made available on a portable media player

despite being on the core chip.

At the architectural design stage, devices must be allocated to busses

with knowledge of the expected access and traffic patterns. Commonly

there is one main bus master per bus. The bus master is the device

that generates the address for the next data movement (read or write

operation).

Busses are connected to bridges, but crossing a bridge has latency and

also uses up bandwidth on both busses. So we should allocate devices to

busses so that inter-bus traffic is minimised based on a priori knowledge

of likely access patterns.

Lower-speed busses may go off chip.

DRAM is always an important component that is generally off chip as a

dedicated part. Today, some on-chip DRAM is being used in SoCs.

Easter Term 2011 94 System-On-Chip D/M

LG 9 — Instruction Set Simulator (ISS)

An Instruction Set Simulator (ISS) is a program that interprets or oth-

erwise models the behaviour of machine code. Typically implemented as

a C++ object:

class mips64iss

{ // Programmer’s view state:

u64_t regfile[32]; // General purpose registers (R0 is constant zero)

u64_t pc; // Program counter (low two bits always zero)

u5_t mode; // Mode (user, supervisor, etc...)

...

void step(); // Run one instruction

...

}

The ISS can be cycle-accurate or just programmer-view accurate, where

the hidden registers that overcome structural hazards or implement pipeline

stages are not modelled.

This fragment of a main step function evaluates one instruction, but

this does not necessarily correspond to one clock cycle in hardware (e.g.

fetch and execute would be of different instructions owing to pipelining):

95

LG 9. INSTRUCTION SET SIMULATOR (ISS)

void mips64iss::step()

{

u32_t ins = ins_fetch(pc);

pc += 4;

u8_t opcode = ins >> 26; // Major opcode

u8_t scode = ins&0x3F; // Minor opcode

u5_t rs = (ins >> 21)&31; // Registers

u5_t rd = (ins >> 11)&31;

u5_t rt = (ins >> 16)&31;

if (!opcode) switch (scode) // decode minor opcode

{

case 052: /* SLT - set on less than */

regfile_up(rd, ((int64_t)regfile[rs]) < ((int64_t)regfile[rt]));

break;

case 053: /* SLTU - set on less than unsigned */

regfile_up(rd, ((u64_t)regfile[rs]) < ((u64_t)regfile[rt]));

break;

...

...

void mips64iss::regfile_up(u5_t d, u64_t w32)

{ if (d != 0) // Register zero stays at zero

{ TRC(trace("[r%i := %llX]", d, w32));

regfile[d] = w32;

}

}

Various forms of ISS are possible, modelling more or less detail:

Type of ISS I-cache traffic D-cache traffic Relative
Modelled Modelled Speed

1. Interpreted RTL Y Y 0.000001

2. Compiled RTL Y Y 0.00001

3. V-to-C C++ Y Y 0.001

4. Hand-crafted cycle accurate C++ Y Y 0.1

5. Hand-crafted high-level C++ Y Y 1.0

6. Trace buffer/JIT C++ N Y 20.0

7. Native cross-compile N N 50.0

Easter Term 2011 96 System-On-Chip D/M

LG 9. INSTRUCTION SET SIMULATOR (ISS)

A cycle-accurate model of the processor core is normally available in

RTL. Using this under an EDS interpreted simulator will result in a

system that typically runs one millionth of real time speed (1). Using

compiled RTL, as is now normal practice, gives a factor of 10 better,

but remains hopeless for serious software testing (2).

Using programs such as Tenison VTOC and Verilator, a fast, cycle-

accurate C++ model of the core can be generated, giving intermediate

performance (3). A hand-crafted model is generally much better, re-

quiring perhaps 100 workstation instructions to be executed for each

modelled instruction (4). The workstation clock frequency is generally

about 10 times faster than the modelled embedded system.

If we dispense with cycle accuracy, a hand-crafted model (5) gives good

performance and is generally throttled by the overhead of modelling

instruction and data operations on the model of the system bus.

A JIT (just-in-time) cross-compilation of the target machine code to

native workstation machine code gives excellent performance (say 20.0

times faster than real time) but instruction fetch traffic is no longer fully

modelled (6). Techniques that unroll loops and concatenate basic blocks,

such as used for trace caches in processor architecture, are applicable.

Finally (line 7), compiling the embedded software using the workstation

native compiler (as described later) exposes the unfettered raw perfor-

mance of the workstation for cpu-intensive code.

Easter Term 2011 97 System-On-Chip D/M

LG 10 — ESL: Electronic System Level Modelling

Recall the following levels of modelling from the start of this course:

• Functional Modelling: The ‘output’ from a simulation run is

accurate.

• Memory Accurate Modelling: The contents and layout of

memory is accurate.

• Untimed TLM: No time stamps recorded on transactions.

• Loosely-timed TLM: The number of transactions is accurate,

but order may be wrong.

• Approximately-timed TLM: The number and order of trans-

actions is accurate.

• Cycle-Accurate Level Modelling: The number of clock cy-

cles consumed is accurate.

• Event-Level Modelling: The ordering of net changes within a

clock cycle is accurate.

An ESL methodology aims:

Aim 1: To model with good performance the a SoC using full soft-

ware/firmware.

Aim 2: To allow seamless and successive replacement of high-level parts

of the model with low-level models/implementations when available and

when interested in their detail.

So, an ESL methodology must provide:

98

LG 10. ESL: ELECTRONIC SYSTEM LEVEL MODELLING

• Tangible, lightweight rapidly-generated prototype of full SoC

architecture.

• Rapid Architectural Evaluation: determine bus bandwidth

and memory use for a candidate architecture. Easy to adjust major

design parameters.

• Algorithmic Accuracy: Get real output from an early system,

hosting the real application/firmware, possibly in real-time.

• Timing information: Get timing numbers for performance (ac-

curate or loose timing).

• Power information: Get power consumption estimates to eval-

uate chip temperature and system battery life.

• Firmware development: Integrate high-level behavioural mod-

els of major components with their device drivers to run test soft-

ware and applications.

Chosen baseline methodolody: SystemC Transactional Modelling using

high-level models in C++.

Enhancements:

• Synthesise high-level models to form parts of the fabricated sys-

tem (see later section HLS)(but today manual re-coding is mainly

used).

• Embed assertions in the high-level models and use these same

assertions through to tape out (see later section ABD).

Easter Term 2011 99 System-On-Chip D/M

10.1. ESL FLOW MODEL: AVOIDING ISS/RTL OVERHEADS

USING NATIVE CALLS.LG 10. ESL: ELECTRONIC SYSTEM LEVEL MODELLING

Additional notes:

On the course web site, there is information on two sets of prac-

tical experiments:

• Simple TLM 1 style: To help investigate the key aspects

of the transactional level modelling (TLM) methodology

without using extensive libraries of any sort we use our own

processor, the almost trivial nominalproc, and we cook our

own transactional modelling library.

This practical takes an instruction set simulator of a nom-

inal processor and then sub-class it in two different ways:

one to make a conventional net-level model and the other

to make an ESL version. The nominal processor is wired

up in various different example configurations, some using

mixed-abstraction modelling.

• TLM 2 style: Using the industry standard TLM 2.0 library

and the Open Cores OR1K processor. This is ultimately

easier to use, but has a steeper learning curve.

In this course we shall focus on the loosely-timed, blocking TLM mod-

elling style of ESL model.

10.1 ESL Flow Model: Avoiding ISS/RTL
overheads using native calls.

Our ESL flow is mainly based on C/C++. This language is used for

behavioural models of the peripherals and for the embedded applications,

operating system and device drivers.

For fabrication, the embedded software is compiled with the target com-

Easter Term 2011 100 System-On-Chip D/M

10.2. USING C PREPROCESSOR TO ADAPT FIRMWARELG 10. ESL: ELECTRONIC SYSTEM LEVEL MODELLING

Figure 10.1: ESL Flow: Avoiding the ISS by cross-compiling the firmware

and direct linking with behavioural models.

piler (e.g. gcc-arm) and RTL is converted to gates and polygons using

Synopsys Design Compiler.

For ESL simulation, as much as possible, we take the original C/C++

and link it all together, whether it is hardware or software, and run it

over the SystemC event-driven simulation (EDS) kernel.

Variations: sometimes we can import RTL components using a tool such

as Verilator or VTOC. Sometimes we use an ISS to interpret the target

processor machine code.

10.2 Using C Preprocessor to Adapt Firmware

We may need to recompile the hardware/software interface when compil-

ing for TLM model as compared to the actual firmware. For a ’mid-level

Easter Term 2011 101 System-On-Chip D/M

10.2. USING C PREPROCESSOR TO ADAPT FIRMWARELG 10. ESL: ELECTRONIC SYSTEM LEVEL MODELLING

model’, differences are minor and can often implemented in C prepro-

cessor. Device driver access to a DMA controller might be changed as

follows:

#define DMACONT_BASE (0xFFFFCD00) // Or other memory map value.

#define DMACONT_SRC_REG 0

#define DMACONT_DEST_REG 4

#define DMACONT_LENGTH_REG 8 // These are the offsets of the addressable registers

#define DMACONT_STATUS_REG 12

#ifdef ACTUAL_FIRMWARE

// For real system and lower-level models:

// Store via processor bus to DMACONT device register

#define DMACONT_WRITE(A, D) (*(DMACONT_BASE+A*4)) = (D)

#define DMACONT_READ(A) (*(DMACONT_BASE+A*4))

#else

// For high-level TLM modelling:

// Make a direct subroutine call from the firmware to the DMACONT model.

#define DMACONT_WRITE(A, D) dmaunit.slave_write(A, D)

#define DMACONT_READ(A) dmaunit.slave_read(A)

#endif

// The device driver will make all hardware accesses to the unit using these macros.

// When compiled native, the calls will directly invoke the behavioural model, bypassing the bus model.

Behavioural model example (the one-channel DMA controller from ear-

lier):

Easter Term 2011 102 System-On-Chip D/M

10.2. USING C PREPROCESSOR TO ADAPT FIRMWARELG 10. ESL: ELECTRONIC SYSTEM LEVEL MODELLING

// Behavioural model of

// slave side: operand register r/w.

uint32 src, dest, length;

bool busy, int_enable;

u32_t status() { return (busy << 31)

| (int_enable << 30); }

u32_t slave_read(u32_t a)

{

return (a==0)? src: (a==4) ? dest:

(a==8) ? (length) : status();

}

void slave_write(u32_t1 a, u32_t d)

{

if (a==0) src=d;

else if (a==4) dest=d;

else if (a==8) length = d;

else if (a==12)

{ busy = d >> 31;

int_enable = d >> 30; }

}

// Bev model of bus mastering portion.

while(1)

{

waituntil(busy);

while (length-- > 0)

mem.write(dest++, mem.read(src++));

busy = 0;

}

We would like to make interrupt output with an RTL-like continuous

assignment:

interrupt = int_enable&!busy;

But this will need a thread to run it, so this code must be placed in its

own C macro that is inlined at all points where the supporting expressions

might change.

A full example is in the ‘ethercrc.zip’ folder on the course web site (and

unzipped on PWF).

Alternatively, it is also possible to use the workstation VM system to

trap calls from natively-compiled firmware to hardware: this requires the

Easter Term 2011 103 System-On-Chip D/M

10.2. USING C PREPROCESSOR TO ADAPT FIRMWARELG 10. ESL: ELECTRONIC SYSTEM LEVEL MODELLING

memory map of the embedded system to resemble that of the worksta-

tion.

Easter Term 2011 104 System-On-Chip D/M

LG 11 — Transactional Level Modelling (TLM)

Recall our list of three inter-module communication styles, we will now

consider the third style:

1. Pin-level modelling: an event is a change of a net or bus,

2. Abstract data modelling: an event is delivery of a complete

cache line or other data packet,

3. Transactional-level modelling: avoid events as much as pos-

sible: use intermodule software calling.

In general, a transaction has atomicity, with commit or rollback. But in

ESL the term means less than that. In ESL we might just mean that a

thread from one component executes a method on another. However,

the call and return of the thread normally achieve flow control and imple-

ment the atomic transfer of some datum, so the term remains relatively

intact.

We can have blocking and non-blocking TLM coding styles:

• Blocking: Hardware flow control signals implied by thread’s call

and return.

• Non-blocking: Success status returned immediately and caller

must poll/retry as necessary.

In SystemC: blocking requires an SC THREAD, whereas non-blocking

can use an SC METHOD.

105

LG 11. TRANSACTIONAL LEVEL MODELLING (TLM)

Which is better: a matter of style ? Non-blocking enables finer-grained

concurrency and closer to cycle-accurate timing results. TLM 2.0 sockets

will actually map between different styles at caller and callee.

Also, there are two standard methods for timing annotation in TLM

modelling, Approximately-timed and Loosely-timed and in these

notes we shall emphasize the latter.

Another useful taxonomy over the higher modelling abstractions:

1. Highest-level (vanished) model: Implemented using SystemC or

another threads package: device driver code and device model

mostly missing, but the API to the device driver is preserved,

for instance, a single TLM transaction might send a complete

packet when in reality multiple bus cycles are needed to transfer

such a packet;

2. Mid-level model: Implemented using SystemC: the device driver is

only slightly modified (using preprocessor directives or otherwise)

but the interconnection between the device and its driver may be

different from reality, meaning bus utilisation figures are unobtain-

able or incorrect;

3. Bus-transaction accurate mode: each bus operation (read/write

or burst read/write and interrupt) is modelled, so bus loading can

be established, but timing may be loose and transaction order may

be wrong, again, minor changes in the device driver and native

compilation may be used;

4. Low-level model: Implemented in RTL or cycle-accurate SystemC:

target device driver firmware and other code is used unmodifed.

Figure 11.1 is an example protocol implemented at net-level and TLM

level:

Easter Term 2011 106 System-On-Chip D/M

11.1. MIXING MODELLING STYLES: 4/P NET-LEVEL TO TLM

TRANSACTORS.LG 11. TRANSACTIONAL LEVEL MODELLING (TLM)

Figure 11.1: Three views of four-phase handshake between sender and

receiver: net-level connection and TLM push and TLM pull configura-

tions (untimed).

Note that the roles of initiator and target do not necessarily relate to

the sources and sinks of the data. Infact, an initiator can commonly

make both a read and a write transaction on a given target and so the

direction of data transfer is dynamic.

11.1 Mixing modelling styles: 4/P net-
level to TLM transactors.

An aim of ESL modelling was to be able to easily replace parts of the

high-level model with greater detail where necessary. So-called trans-
actors are commonly needed at the boundaries.

Easter Term 2011 107 System-On-Chip D/M

11.2. TRANSACTOR CONFIGURATIONSLG 11. TRANSACTIONAL LEVEL MODELLING (TLM)

Figure 11.2: Mixing modelling styles using a transactor.

// Untimed write transactor 4/P handshake

b_putbyte(char d)

{

while(!ack) do wait(0, SC_NS);

data = d;

settle();

req = 1;

while(ack) do wait(0, SC_NS);

req = 0;

}

// Untimed read transactor 4/P handshake

char b_getbyte()

{

while(!req) do wait(0, SC_NS);

char r = data;

ack = 1;

while(req) do wait(0, SC_NS);

ack = 0;

return r;

}

Example, untimed, blocking transactor: converts from transaction to

pin-level modelling.

11.2 Transactor Configurations

Four possible transactors are envisonable for a single direction of the 4/P

handshake and in general.

Easter Term 2011 108 System-On-Chip D/M

11.2. TRANSACTOR CONFIGURATIONSLG 11. TRANSACTIONAL LEVEL MODELLING (TLM)

Figure 11.3: Possible configurations for simple transactors.

Additional notes:

An (ESL) Electronic System Level transactor converts from

a hardware to a software style of component representation.

A hardware style uses shared variables to represent each net,

whereas a software style uses callable methods and up-calls.

Transactors are frequently required for busses and I/O ports.

Fortunately, formal specifications of such busses and ports are

becoming commonly available, so synthesising a transactor from

the specification is a natural thing to do.

There are four forms of transactor for a given bus protocol. Either

side may be an initiator or a target, giving four possibilities.

A transactor tends to have two ports, one being a net-level inter-

face and the other with a thread-oriented interface defined by a

number of method signatures. The thread-oriented interface may

be a target that accepts calls from an external client/initiator or

it may itself be an initiator that make calls to a remote client.

The calls may typically be blocking to implement flow control.

The initiator of a net-level interface is the one that asserts the

command signals that take the interface out of its starting or idle

state. The initiator for an ESL/TLM interface is the side that

makes a subroutine or method call and the target is the side that

provides the entry point to be called.

Consider a transactor with a ‘Read()’ target port and net-level

parallel input. This is an alternative generalisation of the (a)

configuration but for when data is moving in the opposite direc-

tion. Considering the general case of a bi-directional net-level

port with separate TLM entry points for ‘Read()’ and ‘Write(d)’

helps clarify.

Easter Term 2011 109 System-On-Chip D/M

11.3. EXAMPLE OF NON-BLOCKING CODING STYLE:LG 11. TRANSACTIONAL LEVEL MODELLING (TLM)

11.3 Example of non-blocking coding style:

Example: Non-blocking (untimed) transactor for the four-phase hand-

shake (non-examinable).

bool nb_putbyte_start(char d)

{

if (ack) return false;

data = d;

settle(); // A H/W delay for skew issues,

// or a memory fence in S/W for

// sequential consistency.

req = 1;

return true;

}

bool nb_putbyte_end(char d)

{

if (!ack) return false;

req = 0;

return true;

}

bool nb_getbyte_start(char &r)

{

if (!req) return false;

r = data;

ack = 1;

return true;

}

bool nb_getbyte_end()

{

if (req) return false;

ack = 0;

return true;

}

Both routines should be repeated by the client until returning true. Four

timing points may be of interest:

• first try start,

• succeed (last try) start,

• first try end,

• succeed (last try) end.

Easter Term 2011 110 System-On-Chip D/M

11.4. ESL TLM IN SYSTEMC: FIRST STANDARD TLM 1.0.LG 11. TRANSACTIONAL LEVEL MODELLING (TLM)

11.4 ESL TLM in SystemC: First Stan-
dard TLM 1.0.

NB: Full exam credit can be gained using any of TLM1.0 or TLM2.0

styles or your own pseudo code.

The OSCI TLM 1.0 standard used conventional C++ concepts of mul-

tiple inheritance. As shown in the ‘Toy ESL’ materials and the example

here, an SC MODULE that implements an interface just inherits it.

SystemC 2.0 implemented an extension called sc export that allows a

parent module to inherit the interface of one of its children. This was a

vital step needed in the common situation where the exporting module

is not the top-level module of the component being wired-up.

However, TLM 1.0 had no standardised or recommended structure for

payloads and no standardised timing annotation mechanisms.

There was also the problem of how to have multiple TLM ports on a

component with same interface: e.g. a packet router.

However, referring back to the DMA unit behavioural model, we can see

that that memory operations are likely to get well out of synchronisation

with the real system since this copying loop just goes as fast as it can

without worrying about the speed of the real hardware. It is just governed

by the number of cycles the read and write calls block for, which could

be none. The whole block copy might occur in zero simulation time!

This sort of modelling is useful for exposing certain types of bugs in a

design, but it does not give useful performance results. We shall shortly

see how to limit the sequential inconsistencies using a quantum keeper.

A suitable coding style for sending calls ‘along the nets’ (prior to the

TLM 2.0 standard):

Easter Term 2011 111 System-On-Chip D/M

11.4. ESL TLM IN SYSTEMC: FIRST STANDARD TLM 1.0.LG 11. TRANSACTIONAL LEVEL MODELLING (TLM)

//Define the interfaces:

class write_if: public sc_interface

{ public:

virtual void write(char) = 0;

virtual void reset() = 0;

};

class read_if: public sc_interface

{ public:

virtual char read() = 0;

};

//Define a component that inherits:

class fifo_dev: sc_module("fifo_dev"),

public write_if, public read_if, ...

{

void write(char) { ... }

void reset() { ... }

...

}

SC_MODULE("fifo_writer")

{

sc_port<write_if> outputport;

sc_in <bool> clk;

void writer()

{

outputport.write(random());

}

SC_CTOR(fifo_writer} {

SC_METHOD(writer);

sensitive << clk.pos();

}

}

//Top level instances:

fifo_dev myfifo("myfifo");

fifo_writer mywriter("mywriter");

// Port binding:

mywriter.outputport(myfifo);

Here a thread passes between modules, but modules are plumbed in

Hardware/EDS netlist structural style.

See the slide for full details, but the important thing to note is that the

entry points in the interface class are implemented inside the fifo device

and are bound, at a higher level, to the calls made by the writer device.

This kind of plumbing of upcalls to entrypoints formed an essential basis

for future transactional modelling styles.

However we soon run in to the well-known OO problem with multiple

instances of an interface: not often needed for S/W but common enough

in H/W designs.

Easter Term 2011 112 System-On-Chip D/M

11.5. ESL TLM IN SYSTEMC: TLM 2.0LG 11. TRANSACTIONAL LEVEL MODELLING (TLM)

11.5 ESL TLM in SystemC: TLM 2.0

Although there was a limited capability in SystemC 1.0 to pass threads

along channels, and hence do subroutine calls along what look like wire,

this was made much easier SystemC 2.0. TLM2.0 (July 2008) tidies

away the TLM1.0 interface inheritance using convenience sockets
and defines the generic payload.

It also defines memory/garbage ownership and transport primitives with

timing and backdoor access to RAM models.

// Filling in the fields or a TLM2.0 generic payload:

trans.set_command(tlm::TLM_WRITE_COMMAND);

trans.set_address(addr);

trans.set_data_ptr(reinterpret_cast<unsigned char*>(&data));

trans.set_data_length(4);

trans.set_streaming_width(4);

trans.set_byte_enable_ptr(0);

trans.set_response_status(tlm::TLM_INCOMPLETE_RESPONSE);

// Sending the payload through a TLM socket:

socket->b_transport(trans, delay);

Other standard payloads (e.g. 802.3 frame or audio sample) might be

expected ?

The generic payload can be extended on a a custom basis and inter-

mediate bus bridges and routers can be polymorphic about this: not

needing to know about all the extensions but able to update timestamps

to model routing delays.

It also defines memory/garbage ownership and transport primitives with

timing. Finally, it defines a raft of useful features, such as automatic

conversion between blocking and non-blocking styles.

SRAM example: first define the socket in the .h file:

Easter Term 2011 113 System-On-Chip D/M

11.5. ESL TLM IN SYSTEMC: TLM 2.0LG 11. TRANSACTIONAL LEVEL MODELLING (TLM)

SC_MODULE(cbgram)

{

tlm_utils::simple_target_socket<cbgram> port0;

...

Here is the constructor:

cbgram::cbgram(sc_module_name name, uint32_t mem_size, bool tracing_on, bool dmi_on): sc_module(name), port0("port0"),

latency(10, SC_NS), mem_size(mem_size), tracing_on(tracing_on), dmi_on(dmi_on)

{

mem = (uint8_t *)malloc(mem_size); // allocate memory

// Register callback for incoming b_transport interface method call

port0.register_b_transport(this, &cbgram::b_access);

}

And here is the guts of b access:

void cbgram::b_access(tlm::tlm_generic_payload &trans, sc_time &delay)

{

tlm::tlm_command cmd = trans.get_command();

uint32_t adr = (uint32_t)trans.get_address();

uint8_t * ptr = trans.get_data_ptr();

uint32_t len = trans.get_data_length();

uint8_t * lanes = trans.get_byte_enable_ptr();

uint32_t wid = trans.get_streaming_width();

if (cmd == tlm::TLM_READ_COMMAND)

{

ptr[0] = mem[adr];

}

else ...

trans.set_response_status(tlm::TLM_OK_RESPONSE);

}

Wire up the ports in the level above:

busmux0.init_socket.bind(memory0.port0);

busmux0.init_socket.bind(busmux1.targ_socket);

Easter Term 2011 114 System-On-Chip D/M

11.5. ESL TLM IN SYSTEMC: TLM 2.0LG 11. TRANSACTIONAL LEVEL MODELLING (TLM)

The full code is in the OR1K btlm-ref-design folder.

Additional notes:

TLM 2.0 Socket Types:

simple initiator socket.h version of an initiator socket that

has a default implementation of all interfaces and allows to reg-

ister an implementation for any of the interfaces to the socket,

either unique interfaces or tagged interfaces (carrying an addi-

tional id)

simple target socket.h version of a target socket that has

a default implementation of all interfaces and allows to register

an implementation for any of the interfaces to the socket, either

unique interfaces or tagged interfaces (carrying an additional id)

This socket allows to register only 1 of the transport interfaces

(blocking or non-blocking) and implements a conversion in case

the socket is used on the other interface

passthrough target socket.h version of a target socket that

has a default implementation of all interfaces and allows to reg-

ister an implementation for any of the interfaces to the socket.

multi passthrough initiator socket.h an implementation of

a socket that allows to bind multiple targets to the same initia-

tor socket. Implements a mechanism to allow to identify in the

backward path through which index of the socket the call passed

through

multi passthrough target socket.h an implementation of a

socket that allows to bind multiple initiators to the same tar-

get socket. Implements a mechanism to allow to identify in the

forward path through which index of the socket the call passed

through

Easter Term 2011 115 System-On-Chip D/M

11.6. TIMED TRANSACTIONS: ADDING DELAYS TO TLM

CALLS. LG 11. TRANSACTIONAL LEVEL MODELLING (TLM)

11.6 Timed Transactions: Adding delays
to TLM calls.

A TLM call does not interact with the SystemC kernel or advance time.

To study system performance, however, we must model the time taken

by the real transaction over the bus or network-on chip (NoC).

We continue to use SystemC EDS kernel with its tnow variable defined

by the head of the event queue. This is our main reference time stamp,

but we aim not to use the kernel very much, only entering it when inter-

module communication is needed. This reduces context swap overhead

(a computed branch that does not get predicted) and we can run a large

number of ISS instructions or other operations before context switching,

aiming to make good use of the caches on the modelling workstation.

Note: In SystemC, we can always print the kernel tnow with:

cout << ‘‘Time now is : ‘‘ << simcontext()->time_stamp() << ‘‘ \n’’;

The naive way to add approximate timing annotations is to block the

SystemC kernel in a transaction until the required time has elapsed:

sc_time clock_period = sc_time(5, SC_NS); // 200 MHz clock

int read(A)

{

int r = 0;

if (A < 0 or A >= SIZE) error(....);

else r = MEM[A];

wait(clock_period * 3); // <-- Directly model memory access time: three cycles say.

return r;

}

The preferred coding style is more flexible: we pass a time accumulator

variable called ‘delay’ around for various models to augment where time

would pass (clearly this causes far fewer entries to the SystemC kernel):

Easter Term 2011 116 System-On-Chip D/M

11.7. TLM - MEASURING UTILISATION AND MODELLING

CONTENTIONLG 11. TRANSACTIONAL LEVEL MODELLING (TLM)

// Preferred coding style

putbyte(char d, sc_time &delay) // The delay variable records how far ahead of kernel time this thread has advanced.

{

...

delay += sc_time(140, SC_NS); // It should be increment at each point where time would pass...

}

The leading ampersand on delay is the C++ denotation for pass by

reference. But, at any point, any thread can resynch itself with the

kernel by performing

// Resynch idiomatic form:

sc_wait(delay);

delay = 0;

Important note: Simulation performance is reduced when there
are frequent resynchs, but true transaction ordering will be
modelled correctly.

11.7 TLM - Measuring Utilisation and
Modelling Contention

When more than one client wants to use a resource at once we have

contention.

Real queues are used in hardware, either in FIFO memories or by flow

control applying backpressure on the source to stall it until the contended

resource is available. An arbiter allocates a resource to one client at a

time.

Contention like this can be modelled using real or virtual queues:

1. In a low-level model, the real queues are modelled in detail.

Easter Term 2011 117 System-On-Chip D/M

11.7. TLM - MEASURING UTILISATION AND MODELLING

CONTENTIONLG 11. TRANSACTIONAL LEVEL MODELLING (TLM)

2. A TLM model may queue the transactions, thereby blocking the

client’s thread until the transaction can be served.

3. Alternatively, the transactions can be run straightaway and the

estimated delay of a virtual queue can be added to the client’s

delay account.

In 3 above, although the TLM call passes through the bus/NoC model

without suffering delay or experiencing the contention or queuing of the

real system, we can add on an appropriate estimated amount.

Delay estimates can be based on dynamic measurements of utilisation

at the contention point, in terms of transactions per millisecond and a

suitable formula, such as 1/(1 − p) that models the queuing delay in

terms of the utilisation.

// A simple bus demultiplexor: forwards transaction to one of two destinations:

busmux::write(u32_t A, u32_t D, sc_time &delay)

{

// Do actual work

if (A >= LIM) port1.write(A-LIM, D, delay) else port0.write(A, D, delay);

// Measure utilisation (time for the last 100 transactions)

if (++opcount == 100)

{ sc_time delta = sc_time_stamp() - last_measure_time;

local_processing_delay = delay_formula(delta, opcount); // e.g. 1 + 1/(1-p) nanoseconds

logging.log(100, delta); // record utilisation

last_measure_time = sc_time_stamp();

opcount = 0;

}

// Add estimated (virtual) queuing penalty

delay += local_processing_delay;

}

In the above, a delay formula function knows how many bus cycles per

unit time can be handled and hence can compute and record the utili-

sation and queuing delays.

Easter Term 2011 118 System-On-Chip D/M

11.8. TYPICAL ISS SETUP WITH LOOSE TIMING AND

TEMPORAL DECOUPLINGLG 11. TRANSACTIONAL LEVEL MODELLING (TLM)

The value ‘p’ is the utilisation in the range 0 to 1. From queuing theory,

with random arrivals, the queuing delay goes to infinity following a 1/(1−
p) response as p approaches unity. For uniform arrival and service times,

the queuing delay goes sharply to infinity at unity.

11.8 Typical ISS setup with Loose Tim-
ing and Temporal Decoupling

The code for this setup will be demonstrated in lectures.

Figure 11.4: Typical setup of thread using loosely-timed modelling with

a quantum keeper.

In this reference example, for each CPU core, a single thread is used that

passes between components and back to the originator and only rarely

enters the SystemC Kernel.

As explained above, each thread has a variable called delay of how far

it has run ahead of kernel simulation time, and it only yields when it

needs an actual result from another thread or because its delay exceeds

a locally-chosen value. Each component increments the delay field in

the TLM calls it processes, according to how long it would have delayed

the client thread under approximate timing.

Easter Term 2011 119 System-On-Chip D/M

11.8. TYPICAL ISS SETUP WITH LOOSE TIMING AND

TEMPORAL DECOUPLINGLG 11. TRANSACTIONAL LEVEL MODELLING (TLM)

Each component may have a quantum keeper. Every thread must en-

counter a quantum keeper at least once in its outermost loop.

Keeper code is just a conditional resynch:

if (delay > myQ) { sc_wait(delay); delay = 0; }

By calling wait(delay) the simulation time will advance to where the

caller has got to while running other pending processes. The myQuan-

tum could be a system default value or a special value for each thread

or component.

Or where a thread needs to block to wait for a result from some other

thread:

while (!condition_of_interest)

{

sc_wait(delay);

delay = 0;

}

Generally, we can choose the quantum according to our current modelling

interest:

• Large time quantum: fast simulation,

• Small time quantum: transaction order interleaving is more

accurate.

Transactions may execute in a different sequence from reality: sequen-
tial consistency compromised ?

Easter Term 2011 120 System-On-Chip D/M

LG 12 — ABD - Assertion-Based Design

Topics: Declarative expression. Temporal Logic. PSL. Assertion Syn-

thesis to H/W Monitors. Stimulus generation.

Declarative programming involves writing assertions that hold for all

time. For instance, on an indicator panel never is light A on at the same

time as light B.

Assertion-based design (ABD) is an approach that encourages writing

assertions as early as possible, preferably before coding/implementation

starts.

• Writing assertions at design capture time before detailed coding

starts.

• Writing further assertions as coding progresses.

• Structuring testing around assertions.

Assertions are (conjunctions of):

• Imperative (aka immediate) safety checks (like assert.h in C++

and expect in SystemVerilog)

• Coverage checks (log that flow of control has passed a point or a

property held).

• Declarative safety properties, that always hold, such as ‘Never are

both the inner and outer door of the airlock open at once unless

we are on the ground’. Declarative safety properties normally use

the keywords never or always.

121

12.1. VALIDATION USING SIMULATIONLG 12. ABD - ASSERTION-BASED DESIGN

• Liveness and deadlock properties (also declarative). (Called strong
properties in the terminology of PSL, meaning that they cannot

be checked by simulation).

All four can potentially be proved by theorem provers or model checkers.

Dynamic validation is simulation while checking properties. This can

sometimes find safety violations and sometimes find deadlock but it

cannot prove the liveness.

Assertions can be imported from previous designs or other parts of the

same design for global consistency. ABD shows up corner case problems

not encountered in simulation. A formally-verified result may be required

by the customer.

12.1 Validation using Simulation

The alternative to formal verification is validation using extensive simu-

lation and overnight testing of the day’s work using regression testing.

Can either write a RTL or ESL yes/no automaton as part of the test

bench. Or one can spool the outputs to file and diff against golden
with PERL script.

Downfall of simulation: it’s non-exhaustive and time consuming.

ABD benefits (and challenges):

• Completeness (how to define this?)

• Scalability (tools limited in practice?),

• Rare corner situations (unusual conjunctions of events) are cov-

ered.

Easter Term 2011 122 System-On-Chip D/M

12.1. VALIDATION USING SIMULATIONLG 12. ABD - ASSERTION-BASED DESIGN

But: Simulations

• are needed for performance analysis and general design confidence,

• can generate some production test vectors.

• can be partly formal: using bus monitors for dynamic validation

and Specman/VERA constrained pattern generators for stimulus.

Simulation is effective at finding many early bugs in a design. It can

sometimes find safety violations and sometimes find deadlock but it

cannot prove liveness.

Once the early, low-hanging bugs are fixed, formal proof can be more

effective at finding the remainder. These tend to lurk in unusual corner

cases, where particular alignment or conjunction of conditions is not

handled correctly.

If a bug has a one in ten million chance of being found by simulation, then

it will likely be missed, since fewer than that number clock cycles might

typically be simulated in any run. However, given a clock frequency of

just 10 MHz, the bug might show up in the real hardware in one second!

Simulation is generally easier to understand. Simulation gives perfor-

mance results. Simulation can give a golden output that can be com-

pared against a stored result to give a pass/fail result. A large collection

of golden outputs is normally built up and the current version of the

design is compared against them every night to spot regressions.

Simulation test coverage is expressed as a percentage. Given any set

of simulations, only a certain subset of the states will be entered. Only a

certain subset of the possible state-to-state transitions will be executed.

Only a certain number of the disjuncts to the guard to an IF statement

may hold. Only a certain number of paths through the block-structured

Easter Term 2011 123 System-On-Chip D/M

12.2. FORMALLY SYNTHESISED BUS MONITORLG 12. ABD - ASSERTION-BASED DESIGN

behavioural RTL may be taken. Medical, defense and aerospace gener-

ally require much higher percentage coverage than commercial products.

There are many ways of defining coverage: for instance do we have to

know the reachable state space before defining the state space coverage,

or can we use all possible states as the denominator in the fraction? In

general software, a common coverage metric is the percentage of lines

of code that are executed.

Scaling of formal checking is a practical problem: today’s tools certainly

cannot check a complete SoC in one pass. An incremental approach

based around individual sub-systems is needed.

12.2 Formally Synthesised Bus Monitor

A bus monitor is a typical example of dynamic validation: it is a checker

that flags protocol violations:

• safety violations are indicated straightaway,

• for a liveness property the monitor can indicate whether it has been

tested at least once and also whether there is a pending antecedant

that is yet to be satisfied.

For implementation in silicon, or if we are using an old simulator (e.g. a

Verilog interpreter) that does not provide PSL or other temporal logic,

the assertions can be compiled to an RTL checker automaton.

A bus monitor connects to the net-level bus in RTL or silicon. (TLM

formal monitoring is also being developed.)

The monitor can keep statistics as well as detect protocol violations.

Easter Term 2011 124 System-On-Chip D/M

12.2. FORMALLY SYNTHESISED BUS MONITORLG 12. ABD - ASSERTION-BASED DESIGN

Figure 12.1: Dynamic validation: Monitoring bus operation with a hard-

ware monitor.

Example of checker synthesis from a formal spec: www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/transactors

and Bus Monitors

Easter Term 2011 125 System-On-Chip D/M

http://www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/transactors
http://www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/transactors

12.3. IS A FORMAL SPECIFICATION COMPLETE ?LG 12. ABD - ASSERTION-BASED DESIGN

12.3 Is a formal specification complete ?

Additional notes:

Is a formal specification complete ?

• Does it fully-define an actual implementation (this is overly

restrictive) ?

• Does it exactly prescribe all allowable, observable be-

haviours ?

By ‘formal’ we mean a machine-readable description of what is

correct or incorrect behaviour. A complete specification might

describe all allowable behaviours and prohibit all remaining be-

haviours, but most formal definitions today are not complete in

this sense. For instance, a definition that consists of a list of

safety assertions and a few liveness assertions might still allow all

sorts of behaviours that the designer knows are wrong. He can

go on adding more assertions, but when does he stop ?

One might define a ’complete specification’ as one that describes

all observable behaviours. Such a specification does not restrict

or prescribe the internal implementation in black box terms since

this is not observable.

When evaluating an assertion-based test program for an IP block,

we can compute assertion coverage in many ways: e.g. What

percentage of rule disjuncts held as dominators (on their own) ?

Or, e.g. What (inverse log) percentage of reachable state space

was spanned?

Easter Term 2011 126 System-On-Chip D/M

12.4. ASSERTION FORMS: STATE/PATH,

CONCRETE/SYMBOLIC.LG 12. ABD - ASSERTION-BASED DESIGN

12.4 Assertion forms: State/Path, Con-
crete/Symbolic.

Many assertions are over concrete state. For instance ‘Never is light

A off when light B is on’ . Other assertions need to refer to symbolic
values. For instance ‘The value in register X is always less than the

value in register Y’ .

State properties describe the current state only. For instance ‘Light

A is off and light B is on’. Path properties relate successive state

properties to each other. For instance ‘light A always goes off before

light B comes on ’.

We shall see PSL requires the symbolic values be embedded in the bot-

tommost ‘modelling layer’ and that its temporal layer cannot deal with

symbolic values. For instance, we cannot write ‘{A(x);B(y)} | => {C(x, y)}’.

(Note: the internal representation used by a checker tool for a concrete

property can commonly use a symbolic encoding, such as a BDD, to

handle an exponentially-large state space using reasonable memory, but

that is another matter.)

12.5 Property Specification Language (PSL)

PSL is a linear-time temporal algebra designed for RTL engineering.

www.project-veripage.com/psl tutorial 2.php

As in most temporal logics, there are three main directives:

1. always and never,

Easter Term 2011 127 System-On-Chip D/M

http://www.project-veripage.com/psl_tutorial_2.php

12.5. PROPERTY SPECIFICATION LANGUAGE (PSL)LG 12. ABD - ASSERTION-BASED DESIGN

Figure 12.2: General structure of a PSL assertion

2. next (family of them),

3. eventually!

The always directive is the most frequently used and it specifies that

the following property expression should be checked every clock. The

never directive is a shorthand for a negated always.

The next directive relates successive state properties, as qualified by

the clocking event and qualifying guard.

The eventually! directive is for liveness properties that relate to

the future. The eventually! directive is suffixed with a bang sign

to indicate it is strong property that cannot be (fully) checked with

simulation.

For hands-on experience, see last year’s ACS exercise: Dynamic valida-

tion using Monitors/Checkers and PSL

The general structure of a PSL assertion has the following parts:

• A name or label that can be used for diagnostic output.

• A verification directive, such as assert.

• When to check, such as always or eventually!.

Easter Term 2011 128 System-On-Chip D/M

http://www.cl.cam.ac.uk/teaching/0910/P35/SOC-TICK4-2010.txt
http://www.cl.cam.ac.uk/teaching/0910/P35/SOC-TICK4-2010.txt

12.6. ABD - PSL FOUR-LEVEL SYNTAX STRUCTURELG 12. ABD - ASSERTION-BASED DESIGN

• The property to be checked: a state expression or a temporal logic

expression.

• A qualifying guard, such as a clock edge or enable signal at which

time we expect the assertion to hold.

12.6 ABD - PSL Four-Level Syntax Struc-
ture

The abstract syntax of PSL uses for levels:

• Since the language is embedded in the concrete syntax of sev-

eral other languages, such as Verilog, SystemVerilog and VHDL,

its syntactic details vary. In particular, creating state predicates

involves expressions that range over the nets and variables of the

host language. The precise means for this is defined by the MOD-
ELLING LAYER that allows one to create state properties using

RTL.

Non-boolean, symbolic sub-expressions can be used in the mod-

elling layer to generate boolean state predicates.

assign tempok = temperature < 99;

• All high-level languages and RTLs have their own syntax for boolean

operators and this can be used within the modelling layer. How-

ever boolean combinations can also be formed using the PSL

BOOLEAN LAYER.

not (rd and wr); -- rd, wr are nets in the RTL (modelling layer).

Easter Term 2011 129 System-On-Chip D/M

12.6. ABD - PSL FOUR-LEVEL SYNTAX STRUCTURELG 12. ABD - ASSERTION-BASED DESIGN

• The PSL TEMPORAL LAYER allows one to define named sub-

expressions and properties that use the temporal operators. For

example:

-- Sequence definition

sequence s1 is {pkt_sop; (not pkt_xfer_en_n [*1 to 100]); pkt_eop};

sequence s2 is {pkt_sop; (not pkt_xfer_en_n [*1 to 100]); pkt_aborted};

-- Property definition

property p1 is reset_cycle_ended |=> {s1; s2};

-- Property p1 uses previously defined sequences s1 and s2.

• The PSL VERIFICATION LAYER implements the declarative

language itself. It includes the main keywords, such as assert.

PSL has a rich regular expression syntax for pattern matching. These are

called SERES or sequences. SERES stands for Sugar Extended Regular

Expression, where Sugar was an older name for PSL.

Sequence elements are state properties from Modelling and Boolean lay-

ers. Core operators are (of course): disjunction, concatenation and arbi-

trary repetition. As a temporal logic: interpret concatenation as a time

sequencing.

• A;B Semicolon denotes sequence concatenation

• A[*] Postfix asterisk for arbitrary repetition

• A|B Vertical bar (stile) for alternation.

Make easier to use with additional operators defined in terms of primi-

tives:

• A[+] One or more occurrences: A;A[*]

Easter Term 2011 130 System-On-Chip D/M

12.7. ABD - PSL PROPERTIES AND MACROSLG 12. ABD - ASSERTION-BASED DESIGN

• A[*n] Repeat n times

• A[=n] Repeat n times non-consecutively

• A:B Fusion concatenation (last of A occurs during first of B)

Further repetition operators denote repeat count ranges. Repeat counts

must be compile-time constant (for today’s standard/tools).

12.7 ABD - PSL Properties and Macros

PSL defines some simple path to state macros

• rose(X) means !X; X

• fell(X) means X; !X

Others are easy to define:

• stable(X) can be defined as X; X || !X; !X

• changed(X) can be defined as X; !X || !X; X

• onehot(X) can be defined as X is a power of 2

• onehot0(X) can be defined as onehot(X) || (X==0)

Easter Term 2011 131 System-On-Chip D/M

12.7. ABD - PSL PROPERTIES AND MACROSLG 12. ABD - ASSERTION-BASED DESIGN

Easter Term 2011 132 System-On-Chip D/M

12.8. ABD - NAIVE PATH TO STATE CONVERSIONLG 12. ABD - ASSERTION-BASED DESIGN

12.8 ABD - Naive Path to State Conver-
sion

Additional notes:

Compiling regular expressions to RTL is relatively straighforward.

The following ML fragment handles the main operators: con-

catenation, fusion concatenation, alternation, arbitrary repetition

and n-times repetition. By converting a path expression to a state

expression we can generate an RTL checker for use in dynamic

validation. It can also be used for converting all path expressions

to state expressions if the core of a proof tool can only handle

state expressions, such as a raw BDD package or SAT solver.

fun gen_pattern_matcher g (seres_statexp e) = gen_and2(g, gen_boolean e)

| gen_pattern_matcher g (seres_diop(diop_seres_alternation, l, r)) =

let val l’ = gen_pattern_matcher g l

val r’ = gen_pattern_matcher g r

in gen_or2(l’, r’) end

| gen_pattern_matcher g (seres_diop(diop_seres_catenation, l, r)) =

let val l’ = gen_dff(gen_pattern_matcher g l)

val r’ = gen_pattern_matcher l’ r

in r’ end

| gen_pattern_matcher g (seres_diop(diop_seres_fusion, l, r)) =

let val l’ = gen_pattern_matcher g l

val r’ = gen_pattern_matcher l’ r

in r’ end

| gen_pattern_matcher g (seres_monop(mono_arb_repetition, l)) =

let val nn = newnet()

val l’ = gen_pattern_matcher nn l

val r = gen_or2(l’, g)

val _ = gen_buffer(nn, r)

in r end

| gen_pattern_matcher g (seres_diop(diop_n_times_repetition, l,

seres_statexp(x_num n))) =

let fun f (g, k) = if k=0 then g else

gen_pattern_matcher (f(g, k-1)) l

in f (g, n) end

This generates a simple one-hot automaton and there are far more

efficient procedures used in practice and given in the literature.

A harder operator to compile is the length-matching conjunction

(introduced shortly), since care is needed when each side contains

arbitrary repetition and can declare success or failure at a number

of possible times.

Easter Term 2011 133 System-On-Chip D/M

12.9. ABD - SERES PATTERN MATCHING EXAMPLELG 12. ABD - ASSERTION-BASED DESIGN

12.9 ABD - SERES Pattern Matching
Example

Suppose four events are supposed to always happen in sequence:

First attempt, we write always true[*]; A; B; C; D Basic pattern

matcher applied to A;B;C;D generates:

DFF(g0, A, clk);

AND2(g1, g0, B);

DFF(g2, g1, clk);

AND2(g3, g2, C);

DFF(g4, g3, clk);

AND2(g5, g4, D); // Hmmm D must always hold then ? Not what we wanted!

> val it = x_net "g5" : hexp_t

Putting a simple SERES as the body of an always statement normally

does not have the desired effect: it does not imply that the contents

occur sequentially. Owing to the overlapping occurrences interpretation,

such an always statement distributes over sequencing and so implies

every element of the sequence occurs at all times.

Therefore, it is recommended to always uses an SERES as part of
a suffix implication or with some other temporal layer operator.

12.9.1 PSL: Further Temporal Layer Operators

The disjunction (ORing) of a pair of sequences is already supported

by the SERES disjunction operator. But PSL sequences can also be

combined with implication and conjunction operators in the ‘temporal

layer’.

• P |-> Q P is followed by Q (one state overlapping),

Easter Term 2011 134 System-On-Chip D/M

12.10. ABD - SEQUENCE CONSTRAINT AS A SUFFIX

IMPLICATION LG 12. ABD - ASSERTION-BASED DESIGN

• P |=> Q P is followed by Q (immediately afterwards),

• P && Q P and Q occur at once (length matching),

• P & Q P and Q succeed at once,

• P within Q P occurred at some point during Q,

• P until Q P held at all times until Q started,

• P before Q P held before Q held.

12.10 ABD - Sequence Constraint as a
Suffix Implication

Earlier example: add a onehot assertion - that will constrain the state

space. Also, consider some phrasing using suffix implications to constrain

the state trajectory:

Easter Term 2011 135 System-On-Chip D/M

12.11. ABD - A SIMPLE MODEL CHECKERLG 12. ABD - ASSERTION-BASED DESIGN

// (Verilog concatenation braces, not a PSL sequence).

always onehot ({A,B,C,D});

// expands to

always { A;B } |=> { C;D };

// expands to

>val it = // holds on error

(((A<<3)|(B<<2)|(C<<1)|D) != 8) &&

(((A<<3)|(B<<2)|(C<<1)|D) != 4) &&

(((A<<3)|(B<<2)|(C<<1)|D) != 2) &&

(((A<<3)|(B<<2)|(C<<1)|D) != 1);

//(ML for expanding above macro not in notes)

DFF(g0, A, clk);

AND2(g1, g0, B);

DFF(g2, g1, clk);

INV(g3, C);

AND2(g4, g3, g2); // Holds if C missing

DFF(g5, g2, clk);

INV(g6, D);

AND2(g7, g5, g6); // Holds if D missing

OR2(g8, g7, g4);

> val it = x_net "g8" : hexp_t // Holds on error

Even this is not very specific: C and D might occur at other times. So,

ultimately, SERES should just be used for pattern matching purposes

and to assert sequences we need a separate temporal implication for

each sequential step.

What about asserting a requirement of data conservation ? At an

interface we commonly want to assert that data is not lost or duplicated.

Is PSL any help? Not really, one needs a language that can range over

symbolic data and tagged streams of data.

12.11 ABD - A Simple Model Checker

For a small finite state mahcine we can use a simple model checker for

a state safety property:

Algorithm: ‘Find reachable state space’ (add successors of current

Easter Term 2011 136 System-On-Chip D/M

12.11. ABD - A SIMPLE MODEL CHECKERLG 12. ABD - ASSERTION-BASED DESIGN

set until closure):

1. S := { q0 } // initial state

2. S := S ∪ {q′ | ∃ σ ∈ Σ, q ∈ S . NSF (q, σ) = q′ }

3. If safety property does not hold in any q ∈ S then flag error.

4. If S increased in step 2 then goto step 2.

S can be held explicitly in bit map form or symbolically as a BDD.

Variation 1: ignore safety property while finding reachable state space

then finally check for all found states.

Variation 2: property to check might be a path property, so either

• Compile it to a checking automaton (becomes a state property of

expanded NSF), or

• Expand it as we go (using modal mu calculus).

The PSL strong assertions need to be checked with a formal proof tool.

Model checking is normally used because it is fully automated.

A model checker explores every possible execution route of a finite-state

system by exploring the behaviour over all possible input patterns.

There are two major classes of model checker: explicit state and sym-

bolic. Explicit state checkers actually visit every possible state and store

the history in a very concise bit array. If the bit array becomes too

big they use probabilistic and hashing techniques. The main example is

Spin. Symbolic model checkers manipulate expressions that describe the

reachable state space and these were famously implemented as BDDs

in the SMV checker. There are also other techniques, such as bounded

Easter Term 2011 137 System-On-Chip D/M

12.12. ABD - BOOLEAN EQUIVALENCE CHECKERLG 12. ABD - ASSERTION-BASED DESIGN

model checking, but the internal details of model checkers is beyond the

scope of this course.

The most basic model checker only checks state properties. To check

a path property it can be compiled into an automaton and included as

part of the system itself.

To check liveness formally is beyond the scope of this course, but one

algorithm is to repeatedly trim cul-de-sacs from the state transition graph

so that only a core where all states are reachable from all others remains.

12.12 ABD - Boolean Equivalence Checker

Boolean equivalence: do the two functions produce the same output?

• For all input combinations ?

• For a subset of input combinations (some input patterns are don’t

cares).

Often we have two implementations to check for equivalence, for in-

stance, when RTL is turned into a gate-level netlist by synthesis we

have:

• RTL version: pre-synthesis, and

• Gate-level version: post-synthesis.

Sources of difference between the designs might be manual implementa-

tion of one of them, manual edits to synthesiser outputs and EDA tool

Easter Term 2011 138 System-On-Chip D/M

12.12. ABD - BOOLEAN EQUIVALENCE CHECKERLG 12. ABD - ASSERTION-BASED DESIGN

Figure 12.3: A mitre compares the outputs from a pair of supposedly-

equivalent combinational components.

faults. For instance, after place and route operations, it is common to

extract the netlist out from the masks and check that for correctness,

so this is another source of the same netlist.

The boolean equivalence problem is do two functions produce the

same output. However, are we interested for all input combinations?

No, normally we are only interested in a subset of input combinations

(because of don’t care conditions).

The method, shown in Figure 12.3, is to create a mitre of the two

designs using a disjunction of XOR gate outputs. Then, feed negation

of mitre to a SAT solver to see if it can find any input condition that

produces a one on the output.

SAT solving is a matter of trying all input combinations, so has expo-

nential cost in theory and is NP complete. However, modern solvers

such as zChaff essentially exploit the intrinsic structure of the problem

so that they normally are quite quick at finding the answer.

Easter Term 2011 139 System-On-Chip D/M

http://en.wikipedia.org/wiki/Boolean_satisfiability_problem

12.13. ABD - SEQUENTIAL LOGIC EQUIVALENCELG 12. ABD - ASSERTION-BASED DESIGN

Result: if there are no input combinations that make the mitre indicate

a functionality difference, then the designs are equivalent.

Commercial example: Synopsys Formality

12.13 ABD - Sequential Logic Equiva-
lence

Figure 12.4: Two circuits that use different amounts of internal state to

achieve the same functionality.

The figure shows implementations of a two-bit shift register. They differ

in amount of internal state. They have equivalent observable behaviour

(ignoring glitches). Note, to implement larger delays, the design based

on multiplexors might use more logic and less power then the design

based on shifting, since fewer nets toggle on each clock edge.

Another common question that needs checking is sequential equivalence.

Do a pair of designs follow the same state trajectory ?

• Considering the values of all state variables ?

• Considering a re-encoding of the state variables ?

• For an observable subset of the state (e.g. at an interface) ?

Easter Term 2011 140 System-On-Chip D/M

http://www.te.rl.ac.uk/europractice/vendors/formality_ds.pdf

12.14. ABD - SEQUENTIAL LOGIC SIMPLIFICATIONLG 12. ABD - ASSERTION-BASED DESIGN

• When interfacing with a given reactive automaton ?

Other freedoms that could be allowed within the notion of equivalence:

• Temporally floating ports - latency independence. With floating

ports we do not consider the relative timing of events between

ports, only the relative timing of events within each port.

• Synchronous or asynchronous (turn-taking) composition. If a pair

of circuits are combined, do they share a common clock or take it

in turns to move?

• Strong or weak bi-simulation (stuttering equivalence). A stuttering

equivalence between a pair of designs may exist if we disregard the

precise number of clock cycles each took to achieve the result

(such as different implementations of a microprocessor).

Practical problem: Designs may only be equivalent in the used portion

of the state space. Hence we may need a number of side conditions that

specifiy the required operating conditions.

12.14 ABD - Sequential Logic Simplifi-
cation

A finite-state machine may have more states than it needs to perform its

observable function because some states are totally equivalent to others

in terms of output function and subsequent behaviour. Note that one-

hot coding does not increase the reachable state space and so is not an

example of that sort of redundancy.

Easter Term 2011 141 System-On-Chip D/M

12.14. ABD - SEQUENTIAL LOGIC SIMPLIFICATIONLG 12. ABD - ASSERTION-BASED DESIGN

A Moore machine can be simpli-

fied by the following procedure:

• 1. Partition all of the state

space into blocks of states

where the observable out-

puts are the same for all

members of a block.

• 2. Repeat until nothing

changes (i.e. until it closes)

For each input setting:

– 2a. Chose two blocks,

B1 and B2.

– 2b. Split B1 into

two blocks consisting

of those states with

and without a transi-

tion from B2.

– 2c. Discard any empty

blocks.

• 3. The final blocks are the

new states.

Alternative algorithm: start with one partition per state and repeatedly

conglomerate. The best algorithms use a mixture of the two approaches

to meet in the middle. Wikipedia: Formal Equivalence Checking

Research example: CADP package: developed by the VASY team at

INRIA. Commercial products: Conformal by Cadence, Formality by Syn-

Easter Term 2011 142 System-On-Chip D/M

http://en.wikipedia.org/wiki/Formal_equivalence_checking

12.15. AUTOMATED STIMULUS GENERATION

(DIRECTED-RANDOM VERIFICATION)LG 12. ABD - ASSERTION-BASED DESIGN

opsys, SLEC by Calypto.

One future use of this sort of procedure might be to generate an instruc-

tion set simulator for a processor from its full RTL implementation. This

sort of de-pipelining would give a non-cycle accurate, higher-level model

that runs much faster in simulation.

12.15 Automated Stimulus Generation (Directed-
Random Verification)

Commerical products: Verisity’s Specman Elite www.open-vera.com

Simulations and test programs require stimulus. This is a sequence of

input signals, including clock and reset, that exercise the design.

Given that formal specifications for many of the input port protocols

might exist, one can consider automatic generation of the stimulus, from

random sources, within the envelope defined by the formal specification.

Several commercial products do this, including Verisity’s Specman Elite,

Synopsys Vera.

Here is an example of some code in Specman’s own language, called ‘e’,

that defines a frame format used in networking. Testing will be inside

envelope defined by keep statement.

struct frame {

llc: LLCHeader;

destAddr: uint (bits:48);

srcAddr: uint (bits:48);

size: int;

payload: list of byte;

keep payload.size() in [0..size];

};

Sequences of bits that conform to the frame structure are created and

Easter Term 2011 143 System-On-Chip D/M

http://www.verisity.com/products/specman.html
http://www.open-vera.com

12.16. ABD - CONCLUSIONLG 12. ABD - ASSERTION-BASED DESIGN

presented at an input port of the design under test. An heirarchy of

specifications and constraints is supported. One can compose and extend

one specification to reduce its possible behaviours:

// Subclass the frame to make it more specialised:

extend frame { keep size == 0; };

There are some good on-line resources. Such as Dulos System Verilog

Assertions

12.16 ABD - Conclusion

ABD today is often focussed on safety and liveness properties of systems

and formal specifications of the protocols at the ports of a system. How-

ever, there are many other useful properties we might want to ensure or

reason about, such as those involving counting and/or data conservation.

These are less-well embodied in contemporary tools.

PSL deals with concrete values rather than symbolic values. Many in-

teresting properties relate to symbolic data (e.g. specifying the correct

behaviour of a FIFO buffer). Using PSL, all symbolic tokens must be

wrapped up in the modelling layer which is not the core language.

Formal methods are taking over from simulation, with the percentage

of bugs being found by formal methods growing. However, there is a

lack of formal design entry. Low-level languages such as Verilog do not

seamlessly mix with automatic synthesis from formal specification and

so double-entry of designs is common.

Easter Term 2011 144 System-On-Chip D/M

http://www.doulos.com/knowhow/sysverilog/tutorial
http://www.doulos.com/knowhow/sysverilog/tutorial

LG 13 — Network On Chip and Bus Structures.

Transmitting data consumes energy and causes delay. Basic physical

parameters:

• Speed of light on silicon and on a PCB is 200 metres per microsec-

ond.

• A clock frequency of 2 GHz has a wavelength of 2E8/2E9 = 10

cm.

• Within a synchronous digital clock domain requires connections to

be less than (say) 1/10th of a wavelength.

• Conductor series resistance further slows signal propagation, so

need to register a signal in several D-types if it passes from one

corner of an 8mm chip to the other!

• Can have several thousand wires per millimetre per layer: fat busses

are attractive.

• DRAM is several centimeters away from the SoC and has signifi-

cant internal delay.

Hence we need to use protocols that are tolerant to being registered

(passed through D-type pipeline stages). The four-phase handshake has

one datum in flight and degrades with reciprocal of delay. We need

something a bit like TCP that keeps multiple datums in flight.

But first let’s revist the simple hwen/rwen system used in the ‘socparts’

section.

145

13.1. BASIC BUS: ONE INITIATOR (II).LG 13. NETWORK ON CHIP AND BUS STRUCTURES.

13.1 Basic Bus: One initiator (II).

The bus protocol in the eailer slides that used addr, hwen, hren,
wdata and rdata does not tolerate registering for reads, but if a

ready or other acknowledgement signal were added, it would be like the

four phase handshake and work correctly, but poorly for long distances

over the chip.

Figure 13.1: Example where one initiator addresses three targets.

Figure 13.1 shows such a bus with one initiator and three targets.

No tri-states are used: on a modern SoC address and write data outputs

use wire joints or buffers, read data uses multiplexors.

Max throughput is unity (i.e. one word per clock tick). Typical SoC

bus capacity: 32 bits × 200 MHz = 6.4 Gb/s, but owing to protocol

degrades with distance. This figure can be thought of as unity (i.e. one

word per clock tick) in comparisons with other configurations we shall

consider.

The most basic bus has one initiator and several targets. The initiator

does not need to arbitrate for the bus since it has no competitors.

Bus operations are reads or writes. In reality, most on-chip busses sup-

port burst transactions, whereby multiple consecutive reads or writes

Easter Term 2011 146 System-On-Chip D/M

13.2. BASIC BUS: MULTIPLE INITIATORS (II).LG 13. NETWORK ON CHIP AND BUS STRUCTURES.

can be performed as a single transaction with subsequent addresses be-

ing implied as offsets from the first address.

Interrupt signals are not shown in these figures. In a SoC they do not

need to be part of the physical bus as such: they can just be dedi-

cated wires running from device to device. (For ESL higher-level models

and IP-XACT representation, interrupts need management in terms of

allocation and naming in the same way as the data resources.)

Un-buffered wiring can potentially serve for the write and address busses,

whereas multiplexors are needed for read data. Buffering is needed in all

directions for busses that go a long way over the chip.

13.2 Basic bus: Multiple Initiators (II).

Figure 13.2: Example where one of the targets is also an initiator (e.g.

a DMA controller).

Basic bus, but now with two initiating devices. Needs arbitration between

initiators: static priority, round robin, etc.. With multiple initiators, the

bus may be busy when a new initiator wants to use it, so there are

various arbitration policies that might be used. Preemptive and non-

preemptive with static priority, round robin and so on. The maximum

bus throughput of unity is now shared among initiators.

Easter Term 2011 147 System-On-Chip D/M

13.3. BRIDGED BUS STRUCTURES.LG 13. NETWORK ON CHIP AND BUS STRUCTURES.

Since cycles now take a variable time to complete, owing to contention,

we certainly need acknowledge signals for each request and each opera-

tion (not shown).

How long to hold bus before re-arbitration ? Commonly re-arbitrate after

every burst. The latency in a non-preemptive system depends on how

long the bus is held for. Maximum bus holding times affect response

times for urgent and real-time requirements.

13.3 Bridged Bus Structures.

Figure 13.3: A system design using three main busses.

To make use of the additional capacity from bridged structures we need

at least one main initiator for each bus. However, a low speed bus might

not have its own initiators: it is just a slave to one of the other busses.

Bus bridges provide full or partial connectivity and some may write post.

Global address space, non-uniform access time (NUMA). Some busses

might be slower, narrower or in different clock domains from others.

The maximum throughput is the sum of that of all the busses that have

their own initiators, but the achieved throughput will be lower if the

Easter Term 2011 148 System-On-Chip D/M

13.4. CLASSES OF ON-CHIP PROTOCOLLG 13. NETWORK ON CHIP AND BUS STRUCTURES.

bridges are used a lot: a bridged cycle consumes bandwidth on both

sides.

How and where to connect DRAM is always a key design issue. The

DRAM may be connected via a cache. The cache may be dual ported

on to two busses, or more.

Bus bridges and top-levels of structural wiring automatically generated.

An example tool that does this is ARChitect2 from ARC International

(now part of Virage Logic).

13.4 Classes of On-Chip Protocol

1. Reciprocally-degrading: such as handshake protocols studied ear-

lier: throughput is inversely proprotional to target latency in terms

of clock cycles,

2. Delay-tolerant: such as AMBA-3 (ARM’s AXI) and OCP’s BVCI

(below): new commands may be issued while awaiting responses

from earlier,

3. Reorder-tolerant: responses can be returned in a different order

from command issue: helpful for DRAM access and needed for

advanced NoC architectures.

4. Virtual-circuit flow controlled: (beyond scope of this course): each

source has a credit counter controlling how many packets it can

send and priority mechanisms ensure responses are returned with-

out deadlock.

For those interested in more detail: Comparing AMBA AHB to AXI Bus

using System Modelling

Easter Term 2011 149 System-On-Chip D/M

http://i.cmpnet.com/industrialcontroldesignline/2010/02/Comparing_AHB_to_AXI_Bus.pdf
http://i.cmpnet.com/industrialcontroldesignline/2010/02/Comparing_AHB_to_AXI_Bus.pdf

13.4. CLASSES OF ON-CHIP PROTOCOLLG 13. NETWORK ON CHIP AND BUS STRUCTURES.

Many IP blocks today are wired up using OCP’s BVCI and ARM’s AHB.

Although the port on the IP block is fixed, in terms of its protocol, it

can be connected to any system of bus bridges and on chip networks.

Download full OCP documents from OCIP.org. See also bus-protocols-

limit-design-reuse-of-ip

OCP BVCI Core Nets:

• All IP blocks can sport this

interface.

• Separate request and re-

sponse ports.

• Data is valid on overlap of

req and ack.

• Temporal decoupling of di-

rections:

• Allows pipeline delays for

crossing switch fabrics or

crossing clock domains.

• Sideband signals: inter-

rupts, errors and resets:

vary on per-block basis.

• Two complete instances of

the port are neeed if block is

both an initiator and target.

• Arrows indicate signal direc-

tions on initiator. All are re-

versed on target.

Easter Term 2011 150 System-On-Chip D/M

http://www.ocpip.org
file:www.design-reuse.com/articles/2518/bus-protocols-limit-design-reuse-of-ip.html
file:www.design-reuse.com/articles/2518/bus-protocols-limit-design-reuse-of-ip.html

13.4. CLASSES OF ON-CHIP PROTOCOLLG 13. NETWORK ON CHIP AND BUS STRUCTURES.

A prominent feature is totally separate request and response ports. This

makes it highly tolerant of delays over the network and amenable to

crossing clock domains. Older-style handshake protocols where targets

had to respond within a prescribed number of clock cycles cannot be

used in these situations. However BVCI requests and responses must

not get our of order since there is no id token.

For each half of the port there are request and acknowledge signals, with

data being transferred on any positive edge of the clock where both are

asserted.

If a block is both an initiator and a target, such as our DMA controller

example, then there are two complete instances of the port.

Figure 13.4: BVCI Protocol, Command Timing Diagram

Operations are qualified with

conjunction of req and ack.

Response and acknowledge

cycles maintain respective or-

dering. Bursts are common.

Successive addressing may be

implied. BVCI Response Portion Pro-

tocol Timing Diagram

Easter Term 2011 151 System-On-Chip D/M

13.5. NETWORK ON CHIP: SIMPLE RING.LG 13. NETWORK ON CHIP AND BUS STRUCTURES.

13.5 Network on Chip: Simple Ring.

A two-level heirarchy of bridged rings is sometimes a sweetspot for SoC

design. For example, IBM Cell Broadband Engine uses dual rings. At

moderate size, using a fat ring (wide bus links) is better than a thin

X-bar design for same throughput in terms of power consumption and

area use.

Figure 13.5: A ring network: a low-complexity network on chip structure.

A two-by-two switch element enables formation of rings (and other NoC

structures). The switch element is registered: hence ring network can

span the chip. A higher-radix element allows more devices to be con-

nected at a ‘station’. Performance: Single ring: throughput=2. Dual

counter-rotating rings: throughput=4.

With ring (and certainly with all more complex NoCs) IP block proto-

col/interface needs to support decoupled requests and response packets.

Ring has local arbitration in each element, but global policies are required

to avoid deadlock and starvation.

Ring gives priority to traffic already on the ring and uses LAN-like buffer-

ing at source, hence no requirement for queuing in element.

Easter Term 2011 152 System-On-Chip D/M

13.6. NETWORK ON CHIP: SWITCH FABRICS.LG 13. NETWORK ON CHIP AND BUS STRUCTURES.

Ring does not carry interrupts or other sideband signals.

Switched networks require switching elements. With a 2x2 element it

is easy to build a ring network. The switching element may contain

buffering or it may rely on back-pressure to make sources reduce their

load.

Single ring: throughput=2. Counter-rotating ring (one ring in each

direction): throughput=4 since a packet only travels 1/4 of the way

round the ring on average.

Using a network, the delay may be multiple clock cycles and so a write
posting approach is reasonable. If an initiator is to have multiple out-

standing read requests pending it must put a token in each request that

is returned in the response packet for identification purposes.

Although there can be effective local arbitration in each element, a net-

work on a chip can suffer from deadlock. Some implementations uses

separate request and response networks, so that a response is never held

up by new requests, but this just pushes deadlock to the next higher

logical level when some requests might not be servicable without the

server issuing a subsidiary request to a third node. Global policies and

careful design are required to avoid deadlock and starvation.

13.6 Network on chip: Switch Fabrics.

A simple ring is not very effective for above small tens of nodes. Instead,

richer meshes of elements are used and the elements can have a higher

radix, such as 4x4.

There are a number of well-known switch wiring schemes, whth names

such as Benes, Clos, Shuffle, Delta, Torus, Mesh, Express-Mesh, Butter-

fly. These vary in terms of the complexity and contention ratios. Note

Easter Term 2011 153 System-On-Chip D/M

13.6. NETWORK ON CHIP: SWITCH FABRICS.LG 13. NETWORK ON CHIP AND BUS STRUCTURES.

even a full-crossbar (any input to any output in unit time), which is very

costly, still suffers from output port contention, so rarely justified on

performance grounds, but uniform access delays make it easy to provide

sequential consistency (see my Comparative Architecture notes).

Figure 13.6: A more-complex switching fabric: more wiring, more band-

width and less fabric contention than ring (but still has output port

contention).

Illustrated is using two-by-two switch element connects eight devices in

three stages. Using a higher-radix (e.g. 4) is common. The throughput

is potentially equal to the number of ports, but the fabric may partially

block and there may be uneven traffic flows leading to receiver con-

tention. These effects reduce throughput. Typically will not need quite

as many initiators as targets, so a symmetric switch system will be over

provisioned.

Can be overly complex on the small scale, but scale ups well. See Net-

work On Chip Synthesis Tool: Mullins NetGen Network Generator. RDM

NoC Notes

Easter Term 2011 154 System-On-Chip D/M

http://www.cl.cam.ac.uk/~rdm34/acs-slides/lec7.pdf
http://www.cl.cam.ac.uk/~rdm34/acs-slides/lec7.pdf

13.7. NETWORK ON CHIP: HIGHER DIMENSIONS.LG 13. NETWORK ON CHIP AND BUS STRUCTURES.

13.7 Network on Chip: Higher Dimen-
sions.

Can we consider higher-dimensional interconnect (non examinable) ?

The hypercube has lowest diameter for number of customers. But it has

excessive wiring. Chips are two-dimensional so perhaps it’s good to use

a 2-D network ? But this may be overly conservative. Maybe use 2.5-D

? have a small number of ‘multi-hop’ links?

Figure 13.7: The ’Flattened Butterfly’ network topology.

On benign (load-balanced) traffic, the flattened butterfly approaches the

cost/performance of a butterfly network and has roughly half the cost

of a comparable performance clos network. The advantage over the clos

is achieved by eliminating redundant hops when they are not needed

for load balance. See ‘Flattened butterfly : a cost-efficient topology for

high-radix networks’ by John Kim, William J. Dally, Dennis Abts.

Easter Term 2011 155 System-On-Chip D/M

13.8. NOC MODELLINGLG 13. NETWORK ON CHIP AND BUS STRUCTURES.

13.8 NoC Modelling

Do we want to model every contention point and queuing detail ?

Use a high-level model: Treat the NoC just as a square array correspond-

ing to the floor plan of the chip and in each entry we hold a running

average local utilisation.

• Add delay penalty to traversing transaction based on 1/(1-p),

• Log local energy consumption proportional to delay,

• Target routing protocol can be used unmodified or skipped.

Problems:

• Transactions may be out of order if using large quantum LT model.

• Deadlock may be missed ?

13.9 On-chip Busses Summary.

Multiplexing using tri-states is common at the PCB level but active

multiplexors result in less energy use for on-chip use.

It is handy if all of the IP blocks to be integrated conform to a common

bus bus port standard.

Automatic synthesis of glue logic and memory maps is possible (see

elsewhere in these notes).

Formal specifications of bus ports are widely used, assisting in tool au-

tomation and ABD.

Easter Term 2011 156 System-On-Chip D/M

13.10. DYNAMIC RAM : DRAMLG 13. NETWORK ON CHIP AND BUS STRUCTURES.

The AMBA AHB bus from ARM Cambridge was widely used: but is

quite complex (e.g. when resuming from a split burst transaction) and

had no temporal decoupling.

The OCP BVCI supports temporal decoupling, but requests and re-

sponses must not overtake: hence it can cross clock domains and tolerate

pipeline stages. But it cannot tolerate out of order responses from, say,

a cache or a DRAM.

The ARM AXI bus includes tags on each operation for request/response

association: hence it is suitable for pipelined, on-chip networks where

packet sequencing may vary.

Other busses: The Wishbone bus and IBM CoreConnect bus: used by

various public domain IP bocks and various designs (e.g. RTL OR1K).

The OR1K in the practical materials on the course web site uses Wish-

bone. Wikipedia Wishbone Core Connect

GreenSocs Bus ‘The GreenSocs mission is to enable the ESL community

to quickly develop models and tools that can be used together with

independence of vendor (whether the vendor is of models or tools). Our

scope includes everything from package management for ESL, simple IP

blocks, integrations with scripting tools and of course interfaces.’

13.10 Dynamic RAM : DRAM

DRAMs for use in PCs are mounted on SIMMS or DIMMS, but for

embedded applications, often just soldered to the main PCB. Normally

one bank of DRAM is shared over many sub-systems in, say, a mobile

phone. SoC DRAM compatibility might be a generation behind work-

station DRAM: e.g. using DDR2 instead of DDR3

Typical DRAM pin connections:

Easter Term 2011 157 System-On-Chip D/M

http://en.wikipedia.org/wiki/Wishbone_(computer_bus)
http://en.wikipedia.org/wiki/CoreConnect
http://www.greensocs.com

13.10. DYNAMIC RAM : DRAMLG 13. NETWORK ON CHIP AND BUS STRUCTURES.

Figure 13.8: DRAM single-in-line memory module (SIMM).

Clk+/- Clock (200MHz)

Ras- Row address strobe

Cas- Column address strobe

We- Write enable

dq[63:0] Data in/out

reset Power on reset

wq[7:0] Write lane qualifiers

ds[7:0] Data stobes

dm[7:0] Data masks

cs- Chip select

addr[15:0] Address input

bs[2:0] Bank select

spd[3:0] Serial presence detect

High bandwidth: 64 bits times 400 MHz giving 25.6 Gb/s peak. High

capacity: Example 1 Gbyte DIMM made of 8 chips. High latency: 20

clock cyles access time to a closed bank. Worse if a bank is already open

at the wrong place.

Figure 13.9: Single-bank DRAM Chip Internal Block Diagram.

Easter Term 2011 158 System-On-Chip D/M

13.10. DYNAMIC RAM : DRAMLG 13. NETWORK ON CHIP AND BUS STRUCTURES.

This DRAM has four data I/O pins and four internal planes, so no

bank select bits. Modern, larger capacity DRAMs have multiple such

structures on their die and hence additional bank select inputs select

which one is addressed.

Dynamic RAM keeps data in capacitors. The data will stay there reliably

for up to four milliseconds and hence every location must be read out

and written back (refresehed) within this period. The data does not need

to leave the chip for refresh, just transferred to the edge of its array and

then written back again. Hence a whole row of each array is refreshed

as a single operation.

DRAM is not normally put on the main SoC chip(s) owing to its specialist

manufacturing steps, large area needs and commodity-style marketing.

Instead a standard part is put down and wired up.

A row address is first sent to a bank in the DRAM and then one has

random access to the columns of that row using different column ad-

dresses. The DRAM cells internally have destructive read out because

the capacitors get discharged into the row wires when accessed. There-

fore, whenever finished with a row, the bank containing it goes busy while

it writes back the data and gets ready for the next operation (charing

row wires to mid-way voltage etc.).

DRAM is slow to access and certainly not ‘random access’ compared

with on-chip RAM. A modern PC might take 100 or more clock cycles

to access a random part of DRAM, but the ratio is not as severe in

typical embedded systems owing to lower system clocks. Nonetheless,

we typically put a cache on the SoC as part of the memory controller.

The controller may have error correction logic in controller as well.

The cache will access the DRAM in localised bursts, saving or filling a

cache line, and hence we arrange for cache lines to lie within DRAM

rows.

Easter Term 2011 159 System-On-Chip D/M

13.11. CACHE DESIGNLG 13. NETWORK ON CHIP AND BUS STRUCTURES.

The controller may keep multiple banks open at once to exploit tempro-

spatial access locality.

DRAM controller is typically coupled with a cache or at least a write

buffer.

DRAM: high latency and write back overhead dictate preference for large

burst operations. It is best if clients make available several operations

for processing at once: up to number of banks. It is best if clients

can tolerate responses out of order (hence use bus/NoC structure that

supports this).

Controller must

• set up DRAM control register programming,

• calibrate delay lines,

• implement RAS to CAS latencies,

• and ensure refresh happens.

Controller might contain a tiny CPU to interrogate serial device data.

DRAM refresh overhead has minimal impact on bus throughput. For

example, if 512 refresh cycles are needed in 4 ms and the cycle rate is

200E6 the overhead is 0.1 percent.

Figure 13.10 shows a 32 bit DRAM subsystem. Four CAS wires are used

so that writes to individual byte lanes are possible. For large DRAM

arrays, need also to use multiple RAS lines to save power by not sending

RAS to un-needed destinations.

Easter Term 2011 160 System-On-Chip D/M

13.11. CACHE DESIGNLG 13. NETWORK ON CHIP AND BUS STRUCTURES.

Figure 13.10: Typical structure of a small DRAM subsystem.

Figure 13.11: Memory blocks and tag comparator needed for a 4-way,

set-associative cache.

13.11 Cache Design

Implementing 4-way, set-associative cache is relatively straightforward.

One does not need an associative RAM macrocell: just synthesise four

sets of XOR gates from RTL using the ‘==’ operator!

Easter Term 2011 161 System-On-Chip D/M

13.11. CACHE DESIGNLG 13. NETWORK ON CHIP AND BUS STRUCTURES.

reg [31:0] data0 [0:32767], data1 [0:32767], data2 [0:32767], data3 [0:32767];

reg [14:0] tag0 [0:32767], tag1 [0:32767], tag2 [0:32767], tag3 [0:32767];

always @(posedge clk) begin

miss = 0;

if (tag0[addr[16:2]]==addr[31:17]) dout <= data0[addr[16:2]];

else if (tag1[addr[16:2]]==addr[31:17]) dout <= data1[addr[16:2]];

else if (tag2[addr[16:2]]==addr[31:17]) dout <= data2[addr[16:2]];

else if (tag3[addr[16:2]]==addr[31:17]) dout <= data3[addr[16:2]];

else miss = 1;

end

Of course we also need a write and evict mechanism... (not shown).

Rather than implement least recently used (LRU) one tends to do ‘ran-

dom’ replacement which can be as simple as using keeping a two bit

counter to say which ‘way’ to evict next.

13.11.1 Cache Modelling

Depending on our needs, we may want to measure the hit ratio in the I

or D caches, or the effect on performance from the misses, or neither, or

all such metrics. [Virtutec Simics.]So a cache can be modelled at various

levels of abstraction:

• Not at all - afterall it does not affect functionality,

• Using an estimated hit ratio and randomly adding delay to main

memory transactions accordingly,

• Fully modelling the tags and their lookup (while making backdoor

access to the main memory for the data),

• Modelling the cache data RAMs as well, thereby generating an

accurate transaction sequence on the main memory.

Easter Term 2011 162 System-On-Chip D/M

http://www.virtutech.com

13.11. CACHE DESIGNLG 13. NETWORK ON CHIP AND BUS STRUCTURES.

An instruction cache (I-cache), when modelled, may or may not be ac-

cessed by an emulator or instruction set simulator (ISS). For instance,

the ISS may use backdoor access to the program in main memory, or it

might use JIT (just-in-time) techniques where commonly executed inner

loops of emulated code are converted to native machine code for the

modelling workstation.

A SystemC cache model will be illustrated in lectures and on course web

site or PWF.

Easter Term 2011 163 System-On-Chip D/M

LG 14 — SoC Engineering and Associated Tools

In this section we look at engineering aspects and associated tools used in

SoC design and modelling. A lot of the effort is dedicated to maximising

performance and minimising power dissipation.

14.1 Static Timing Analyser Tool

Figure 14.1: An example circuit with static timing annotations

A static timing analyser computes the longest event path through logic

gates and clock-to-Q paths of edge-triggered flops. The longest path

is generally the critical path that sets the maximum clock frequency.

However, sometimes this is a false result, since this path might never be

used during device operation.

Starting with some reference point, taken as D=0, such as the master

clock input to a clock domain, we compute the relative delay on the

output of each gate and flop. For a combinational gate, the output delay

is the gate’s propagation time plus the maximum of its input delays. For

an edge-triggered flop, such as a D-type or a JK, there is no event path

to the output from the D or JK inputs, so it is just the clock delay plus

the flop’s clock-to-Q delay. There are event paths from asynchronous

164

14.2. RAM MACROCELL COMPILER TOOLLG 14. SOC ENGINEERING AND ASSOCIATED TOOLS

flop inputs however, such as preset, reset or transparent latch inputs.

Propagation delays may not be the same for all inputs to a given output

and for all directions of transition. For instance, on deassert of asyn-

chronous preset to a flop there is no event path. Therefore, a tool may

typically keep separate track of high-to-low and low-to-high delays.

14.2 RAM Macrocell Compiler Tool

The average SoC is 71 percent RAM memory. The RAMs are typically

generated by a RAM compiler. The input parameters are:

• Size: Word Length and Number of Words.

• Port description: Each port has an address input and is one of r,

w, r/w.

• Clocking info: Frequency, latency, or access time for asynchronous

RAM.

• Resolution: What to do on write/write and write/read conflicts.

The outputs are a datasheet for the RAM, high and low detail simulation

models and something that turns into actual polygons in the fabrication

masks.

Easter Term 2011 165 System-On-Chip D/M

14.2. RAM MACROCELL COMPILER TOOLLG 14. SOC ENGINEERING AND ASSOCIATED TOOLS

// Low-level model (RTL) for a RAM. Example 1.

module R1W1RAM(din, waddr, clk, wen, raddr, dout);

input clk, wen;

input [14:0] waddr, raddr;

input [31:0] din;

output [31:0] dout;

// Mem array itself: 32K words of 32 bits each.

reg [31:0] myram [32767:0];

always @(posedge clk) begin

dout <= myram[raddr];

if (wen) myram[waddr] <= din;

end

// Low-level model (RTL) for a RAM. Example 2.

module R1W1RAM(din, addr, clk, wen, dout);

input clk, wen;

input [14:0] addr;

input [31:0] din;

output [31:0] dout;

// Address register: latency of 1 one cycle.

reg [14:0] addr1;

// Mem array itself: 32K words of 32 bits each.

reg [31:0] myram [32767:0];

always @(posedge clk) begin

addr1 <= addr;

if (wen) myram[addr1] <= din;

else dout <= myram[addr1];

end

// Example high-level model for both RAMs // This RAM model has a pair of entry points

SC_MODULE(R1W1RAM) // for reading and writing.

{ // It also has a TLM convenience socket

uint32_t myram [32768]; // which would decode a generic payload and

int read_me(int A) { return myram[A]; } // call one or other of those entry points

write_me(int A, int D) { myram[A] = D; } // for each transaction.

tlm_utils::simple_target_socket<R1W1RAM> port0;

...

Sometimes self test modules are also generated. For example Mentor’s

MBIST Architect(TM) generates an SRTL BIST with the memory and

ARM/Artisan’s Generator will generate a wrapper that implements self

repair of the RAM by diverting access from a fault row to a spare row.

ARM Artisan

Other related generator tools would be similar in use: e.g. a FIFO gen-

erator would be similar and a masked ROM generator or PLA generator.

Easter Term 2011 166 System-On-Chip D/M

http://www.arm.com/products/physicalip/embedded-memory.html

14.3. TEST PROGRAM GENERATOR TOOLLG 14. SOC ENGINEERING AND ASSOCIATED TOOLS

14.2.1 Dynamic Clock Gate Insertion Tool

Clock trees consume quite a lot of the power in an ASIC and considerable

savings can be made by turning off the clocks to small regions. A region

of logic is idle if all of the flip-flops are being loaded with their current

contents, either through synchronous clock enables or just through the

nature of the design (see later slides).

Instead of using synchronous clock enables, current design practice is to

use a clock gating insertion tool that gates the clock instead.

Care must be taken not to generate glitches on the clock as it is gated and

transparent latches in the clock enable signal can re-time it to prevent

this.

How to generate clock enable conditions ? One can have software control

(additional control register flags) or automatically detect. Automatic

tools compute ‘clock needed’ conditions. A clock is ‘needed’ if any

register will change on a clock edge. A lot of clock needed computation

can get expensive, resulting in no net saving, but it can be effective if

computed once at head of a pipeline.

Beyond just turning off the clock or power to certain regions, in another

LG we look at further power saving techniques: dynamic frequency and

voltage scaling.

14.3 Test Program Generator Tool

Lectured if time permits: A test program generator works out a short

sequence of tests that will reveal ‘stuck-at’ and other faults in a subsys-

tem.

Easter Term 2011 167 System-On-Chip D/M

14.4. SCAN PATH INSERTION AND JTAG STANDARD TEST

PORT. LG 14. SOC ENGINEERING AND ASSOCIATED TOOLS

14.4 Scan Path Insertion and JTAG stan-
dard test port.

Lectured if time permits: A scan path insertion tool replaces the user’s

D-type flip-flops with a scan path, connected to the external JTAG test

access port for post-fabrication testing.

Easter Term 2011 168 System-On-Chip D/M

LG 15 — Architectural Design Exploration

A collection of algorithms and functional requirements must be imple-

mented using one or more pieces of silicon. Each major piece of silicon

contains one or more custom or standard microprocessors. Some silicon

is custom for a high-volume product, some is shared over several product

lines and some is third party or standard parts.

Design Partition: Deciding on the number of processors, number of

custom processors, and number of custom hardware blocks. The system
architect must make make these decisions. SystemC helps them rapidly

explore various possibilities.

Co-design and co-synthesis: two basic methods (can do different parts

of the chip differently):

• Co-design: Manual partition between hardware and software,

• Co-synthesis: Automatic partition: simple ‘device drivers’ are cre-

ated automatically:

Co-synthesis not currently used in practice.

Examples: MPEG Encoding 1 MPEG alogorithm 2

15.1 H/W to S/W Interfacing Techniques

The systems is to be divided into some number of hardware and software

blocks with appropriate means of interconnection. The primary ways of

connecting H/W to S/W are:

169

http://electronicdesign.com/article/boards-modules-systems/dvd-encoding-complexity-drives-embedded-cpu-core-c.aspx
http://www.commsdesign.com/showArticle.jhtml?articleID=192200542

15.1. H/W TO S/W INTERFACING TECHNIQUESLG 15. ARCHITECTURAL DESIGN EXPLORATION

• Programmed I/O to pin-level PIO register,

• Programmed I/O to FIFOs,

• Interrupts (hardwired or dynamically dispatched),

• Packet channel mapped into register file,

• DMA,

• Psudo-DMA (processor generates addresses only).

Example: Dissected Cellphone: Motorola e770VSamsung Galaxy Physi-

cal components:

• Display (touch sensitive) + Keypad + Misc buttons

• Audio ringers and speakers, microphone(s) (noise cancelling),

• Infra-red IRDA port

• Multi-media codecs (A/V capture and replay in several formats)

• Radio Interfaces: GSM (three bands), BlueTooth, 802.11.

• Power Management: Battery Control, Processor Speed, on/off/flight

modes.

• Camera,

• Memory card slot,

• Physical connectors: USB, Power, Headset,

• Java VM and operating system.

Easter Term 2011 170 System-On-Chip D/M

http://www.geekzone.co.nz/paradoxsm/186
http://www.phonearena.com/news/Samsung-Galaxy-S-dissected-on-video-earns-geek-chic-points_id11895

15.2. H/W DESIGN PARTITIONLG 15. ARCHITECTURAL DESIGN EXPLORATION

15.2 H/W Design Partition

A number of separate pieces of silicon are combined to form the product.

Reasons for H/W design partition:

• Modular Engineering At Large (Revision Control/Lifetime/Sourcing/Reuse),

• Size and Capacity (chips 6-11 mm in size),

• Technology mismatch (Si/GaAs/HV/Analog/Digital/RAM/DRAM/Flash)

• Supply chain: In-house versus Standard Part.

• Isolation of sensitive RF signals,

• Cost: a new chip spin of old IP is still expensive.

15.3 Chip Types and Classifications

Chips can be classified by function: Analog, Power, RF, Processors,

Memories, Commodity: logic, discretes, FPGA and CPLD, SoC/ASIC,

Other high volume (disk drive, LCD, ...).

Manufacturers can be classified as well:

1. Major chip makers such as IBM and Intel that design, manufacture

and sell their chips (Integrated Device Manufacturers / IDM).

2. Fabless manufacturers such as NVIDIA and Xilinx that design and

sell chips but outsource manufacturing to foundry comp anies.

3. Foundry companies (such as TSMC and UMC) that manufacture

chips designed and sold by their customers.

Easter Term 2011 171 System-On-Chip D/M

15.3. CHIP TYPES AND CLASSIFICATIONSLG 15. ARCHITECTURAL DESIGN EXPLORATION

The world’s major foundries are SMC and TSMC: Taiwan Semiconductor

Manufacturing Company Limited

Figure 15.1: A taxonomy of integrated circuits.

Figure 15.1 presents a taxonomy of chip design approaches. The top-

level division is between standard parts, ASICs and field-programmable

parts. Where a standard part is not suitable the choice between full-

custom and semi-custom and field-programmable approaches has to be

made, depending on performance, production volume and cost require-

ments.

15.3.1 Standard Parts

A standard part is essentially any chip that a chip manufacturer is

prepared to sell to someone else along with a datasheet and EDA (elec-

tronic design automation) models. The design may actually previously

have been an ASIC for a specific customer that is now on general re-

lease. However, most standard parts are general-purpose logic, memory

and microprocessor devices. These are frequently full-custom designs de-

Easter Term 2011 172 System-On-Chip D/M

http://www.tsmc.com
http://www.tsmc.com

15.3. CHIP TYPES AND CLASSIFICATIONSLG 15. ARCHITECTURAL DESIGN EXPLORATION

signed in-house by the chip manufacturer to make the most of in-house

fabrication line, perhaps using optimisations not made available to oth-

ers who use the line as a foundry. Other standard parts include graphics

controllers, LAN controllers, bus interface devices, and miscellaneous

useful chips.

15.3.2 Masked ASICs.

A masked ASIC (application specific integrated circuit) is a device man-

ufactured for a customer involving a set of masks where at least some

of the masks are used only for that device. These devices include full-

custom and semi-custom ASICs and masked ROMs.

A full-custom chip (or part of a chip) has had detailed, manual design

effort expended on its circuits and the position of each transistor and

section of interconnect. This allows an optimum of speed and density

and power consumption.

Full-custom design is used for devices which will be produced
in very large quantities: e.g. millions of parts where the design cost is

justified. Full-custom design is also used when required for performance

reasons. Microprocessors, memories and digital signal processing devices

are primary users of full-custom design.

In semi-custom design, each cell has a fixed design and is repeated each

time it is used, both within a chip and across many devices which have

used the library. This simplifies design, but drive power of the cell is not

optimised for each instance.

Semi-custom is achieved using a library of logic cells and is
used for general-purpose VLSI design.

Easter Term 2011 173 System-On-Chip D/M

15.4. SEMI-CUSTOM (CELL-BASED) DESIGNLG 15. ARCHITECTURAL DESIGN EXPLORATION

15.4 Semi-custom (cell-based) Design

A library of standard logic functions is provided. Cells are placed on the

chip and wired up by the user, in the same way that chips are placed on

the PCB.

• Standard Cell - free placement and free routing of nets,

• Gate Array - fixed placement, masked or electrical programmable

wiring.

Figure 15.2: Typical cell data sheet from a standard cell library.

The figure shows a cell from the data book for a standard cell library.

This device has twice the ‘normal’ drive power, which indicates one of

Easter Term 2011 174 System-On-Chip D/M

15.5. GATE ARRAYS AND FIELD-PROGRAMMABLE LOGIC.LG 15. ARCHITECTURAL DESIGN EXPLORATION

the compromises implicit in standard cell over full-custom, which is that

the size (driving power) of transistors used in a cell is not tuned on a

per-instance basis.

Historically, there were two types of semi-custom devices:

• standard cell (for high volume)

• gate array (for volume less than 10,000 parts).

but now the mask-programmed gate array has been replaced with the

field-programmed FPGA.

In standard cell designs, cells from the library can freely be placed any-

where on the silicon and the number of IO pads and the size of the die

can be freely chosen. Clearly this requires that all of the masks used

for a chip are unique to that design and cannot be used again. Mask

making is one of the largest costs in chip design. (When) Will FPGAs

Kill ASICs?

15.5 Gate Arrays and Field-Programmable
Logic.

Figure 15.3 reveals the regular layout of a masked gate array showing

bond pads around the edge and wasted silicon area (white patches).

A gate array comes in standard die sizes containing a fixed layout of

configurable cells. Historically, there were two main forms of gate array:

• Mask Programmable,

• Field Programmable (FPGA).

Easter Term 2011 175 System-On-Chip D/M

https://www.doc.ic.ac.uk/~wl/teachlocal/arch2/killasic.pdf
https://www.doc.ic.ac.uk/~wl/teachlocal/arch2/killasic.pdf

15.5. GATE ARRAYS AND FIELD-PROGRAMMABLE LOGIC.LG 15. ARCHITECTURAL DESIGN EXPLORATION

Figure 15.3: A Gate Array: (Greaves, Backbone Ring ECL Gate Array)

In gate array designs, the silicon vendor offers a range of chip sizes. Each

size of chip has a fixed layout and the location of each transistor, resistor

and IO pad is common to every design that uses that size. Gate arrays

are configured for a particular design by wiring up the transistors, gates

and other components in the desired way. Many cells will be unused. For

mask-programmed devices, the wiring up was done with the top two or

three layers of metal wiring. Therefore only two or three custom masks

were needed be made to make a new design. In FPGAs the programming

is purely electronic (RAM cells control pass transistors).

The disadvantage of gate arrays is their intrinsic low density of active

silicon.

Standard cell designs use a set of well-proven logic cells on the chip,

much in the way that previous generations of standard logic have been

used as board-level products, such as Texas Instruments’ System 74.

Easter Term 2011 176 System-On-Chip D/M

15.6. FPGA - FIELD PROGRAMMABLE GATE ARRAYLG 15. ARCHITECTURAL DESIGN EXPLORATION

A variation on the gate array is to include full-custom macrocells such

as processor cores in fixed positions on the die.

About 25 to 40 percent of chip sale revenue now comes from field pro-

grammable logic devices. These are chips that can be programmed

electronically on the user’s site to provide the desired function. Recall

the Xilinx/Altera FPGA parts used in the Part IB E+A classes. Field-

programmable devices may be volatile (need programming every time

after power up), reprogrammable or one-time programmable. This de-

pends on how the programming information is stored inside the devices,

which can be in RAM cells or in any of the ways used for ROM, such as

electrostatic charge storage (e.g. FLASH).

Except for niche applications FPGAs are now always used instead of

masked gate arrays and are starting to kill ASCIs (see link above).

15.6 FPGA - Field Programmable Gate
Array

Example: Last year DJ Greaves is using the Xilinx XC5VLX110T. There

are four of these on the BEE3 Boards. (Larger devices are now available.)

Part number XC5VLX110T-2FFG1136C

Vendor Xilinx Inc

Category Integrated Circuits (ICs)

Number of Gates 110000

Number of I /O 640

Number of Logic

Blocks/Elements
8640

Package / Case 1136-FCBGA

Operating Temperature 0C 85C

Voltage - Supply 1.14 V 3.45 V

Easter Term 2011 177 System-On-Chip D/M

15.6. FPGA - FIELD PROGRAMMABLE GATE ARRAYLG 15. ARCHITECTURAL DESIGN EXPLORATION

65 nm technology, 6-input LUT, 64 bit DP RAMs.

Figure 15.4: Field-programmable gate array structure, showing IO blocks

around the edge, interconnection matrix blocks and configurable logic

blocks. In recent parts, the regular structure is broken up by custom

blocks, including RAMs and DSP ALUs.

An FPGA (field-programmable gate array) consists of an array of con-

figurable logic blocks (CLBs), as shown in Figure 15.4. Not shown is

that the device also contains a good deal of hidden logic used just for

programming it. Some pins are also dedicated to programming. Such

FPGA devices have been popular since about 1990.

Each CLB (configurable logic block) or slice typically contains two or

four flip-flops, and has a few (five shown) general purpose inputs, some

special purpose inputs (only a clock is shown) and two outputs. The

illustrated CLB is of the look-up table type, where the logic inputs index

Easter Term 2011 178 System-On-Chip D/M

15.7. PALS AND CPLDSLG 15. ARCHITECTURAL DESIGN EXPLORATION

a small section of pre-configured RAM memory that implements the

desired logic function. For five inputs and one output, a 32 by 1 SRAM

is needed. Some FPGA families now give the designer write access to

this SRAM, thereby greatly increasing the amount of storage available

to the designer. However, it is still an expensive way to buy memory.

FPGAs tend to be relatively slow, owing to larger die areas than an ASIC

equivalent and because the signals pass through hidden logic used only

for configuration.

Generally a company will build prototypes and some early production

units using FPGAs and then use a drop-in mask-programmed equivalent

once the design is mature and sales volumes are very large.

15.7 PALs and CPLDs

This section may not be lectures since PALs are no longer important.

PALs are Programmable Array Logic and CPLDs (Complex Programmable

Logic Devices) achieve very low delay in return for simple, nearly fixed,

wiring structure. All expressions are expanded to SOP form with lim-

ited number of products. Expanding to sum-of-products form can cause

near-exponential area growth (e.g. ripple carry converted to fast carry).

Easter Term 2011 179 System-On-Chip D/M

15.7. PALS AND CPLDSLG 15. ARCHITECTURAL DESIGN EXPLORATION

Figure 15.5: A typical PAL with 7 inputs and 7 I/Os.

Figure 15.6: Contents of the example PAL macrocell.

pin 16 = o1;

pin 2 = a;

pin 3 = b;

pin 4 = c

o1.oe = ~a;

o1 = (b&o1) | c;

-x-- ---- ---- ---- ---- ---- ---- (oe term)

--x- x--- ---- ---- ---- ---- ---- (pin 3 and 16)

---- ---- x--- ---- ---- ---- ---- (pin 4)

xxxx xxxx xxxx xxxx xxxx xxxx xxxx

xxxx xxxx xxxx xxxx xxxx xxxx xxxx

xxxx xxxx xxxx xxxx xxxx xxxx xxxx

xxxx xxxx xxxx xxxx xxxx xxxx xxxx

xxxx xxxx xxxx xxxx xxxx xxxx xxxx

x (macrocell fuse)

Easter Term 2011 180 System-On-Chip D/M

15.7. PALS AND CPLDSLG 15. ARCHITECTURAL DESIGN EXPLORATION

A PAL is programmable array logic device. Figure 15.5 shows a typical

device. Such devices have been popular since about 1985. They are

really just highly structured gate arrays. Every logic function must be

multiplied out into sum-of-products form and hence is achieved in just

two gate delays. The illustrated device has 8 product terms per logic

function, and so can support functions of medium complexity. Such

devices were very widely used in the 1980’ because they could support

clock rates of above 100 MHz. Today, FPGA speeds of 200 MHz are

common and they also provide special function blocks, such as PCI-e

interfaces, so the need for PALs has diminished.

Programmable macrocells (Figure 15.6) enable the output functions to

be either registered or combinatorial. Small devices (e.g. with up to 10

macrocells) offer one clock input; larger devices with up to about 100

macrocells are also available, and generally offer several clock options.

Often some macrocells are not actually associated with a pin, providing

a so called buried state flip-flop.

Mini design example: As entered by a designer in a typical PAL language,

and part of the fuse map that would be generated by the PAL compiler.

Each product line has seven groups of four fuses and produces the logical

AND of all of the signals with intact fuses. An ‘x’ denotes an intact fuse

and all of the fuses are left intact on an unused product lines in order

to prevent the line ever generating a logical one (a gets ANDed with

abar etc.). The fuse map is loaded into a programming machine (in a

file format known as JEDEC), an unused PAL is placed in the machine’s

socket and the machine programs the fuses in the PAL accordingly.

PALs achieve their speed by being highly structured. Their applicability is

restricted to small finite state machines and other glue logic applications.

Easter Term 2011 181 System-On-Chip D/M

15.8. H/W VERSUS S/W DESIGN PARTITION PRINCIPLESLG 15. ARCHITECTURAL DESIGN EXPLORATION

15.8 H/W versus S/W Design Partition
Principles

The cost of developing an ASIC has to be compared with the cost of

using an existing part. The existing part may not perform the required

function exactly, requiring either a design specification change, or some

additional glue logic to adapt the part to the application.

More than one ASIC may be needed under any of the following condi-

tions:

• application specific functions are physically distant,

• application specific functions require different technologies,

• application specific functions are just too big for one ASIC,

• it is desired to split the cost and risk or reuse part of the system

later on.

Factors to consider on a per chip basis:

• power consumption limitation (powers above 5 Watts need special

attention),

• die size limitation (above 11 mm on a side might escalate cost per

mm2),

• speed of operation — clock frequencies above 1 GHz raise issues,

• special considerations :

– special static or dynamic RAM needs

Easter Term 2011 182 System-On-Chip D/M

15.8. H/W VERSUS S/W DESIGN PARTITION PRINCIPLESLG 15. ARCHITECTURAL DESIGN EXPLORATION

– analogue parts - what is compromised if these are integrated

onto the ASIC ?

– high power/voltage output capabilities for load control: e.g. mo-

tors.

• availability of a developed module for future reuse.

Many functions can be realised in software or hardware. Decide what to

do in hardware:

• physical I/O (line drivers/transducers/media interfaces),

• highly compute-intensive, fixed functions,

what to do on custom processors:

• bit-oriented operations,

• highly compute-intensive SIMD,

• other algorithms with custom data paths,

• algorithms that might be altered post tape out.

and what to do in S/W on standard cores:

• highly-complex, non-repetitive functions,

• low-throughput computations of any sort,

• functions that might be altered post tape out,

• generally, as much as possible.

Easter Term 2011 183 System-On-Chip D/M

15.9. LEGACY H/W S/W DESIGN PARTITIONLG 15. ARCHITECTURAL DESIGN EXPLORATION

When designing a sub-system we must choose what to have as hardware,

what to have as software and whether custom or standard processors are

needed. When designing the complete SoC we must think about sharing

of sub-system load over processors. Example: if we are designing a digital

camera, how many processors should it have and can the steadicam and

motion estimation processing be done in software ? Would a hardware

implementation use less silicon and less battery power?

• The functions of a system can be expressed in a programming

language or similar form and this can be compiled fully to hardware

or left partly as software

• Choosing what to do in hardware and what to do in software is

a key decision. Hardware gives speed (throughput) but software

supports complexity and flexibility.

• Partitioning of logic over chips or processors is motivated by in-

terconnection bandwidth, raw processing speed, technology and

module reuse.

15.9 Legacy H/W S/W Design Partition

In the past (ninteen-eightees), it was best to use a standard processors

as a separate chip. Today, it is no problem to put down one or more

’standard’ processors on a SoC. It is also quite easy to design your own,

so MIPS, Tensilica, ARM and other CPU core providers have to compete

against in-house design teams. For instance, we use the the totally free

OR 1000 in the practical materials of this course.

Easter Term 2011 184 System-On-Chip D/M

15.10. AN OLD EXAMPLE EXAMPLE: THE CAMBRIDGE FAST

RING TWO CHIP SET.LG 15. ARCHITECTURAL DESIGN EXPLORATION

15.10 An old example example: The Cam-
bridge Fast Ring two chip set.

Figure 15.7: The two-chip CFR set using PALs as glue logic for the VME

bus.

Two devices were developed for the CFR local-area network (1983),

illustrating the almost classical design partition required in high-speed

networking. They were never given grander names than the ECL chip

and the CMOS chip. The block diagram for an adaptor card is shown

in the Figure 15.8.

The ECL chip clocked at 100 MHz and contained the minimal amount

of logic that needed to clock at the full network clock rate. Its functions

were:

• implement serial transmission modulator and demodulator,

• convert from 1 bit wide to 8 bits wide and the other way around,

• perform reception byte alignment (when instructed by logic in the

CMOS chip).

Easter Term 2011 185 System-On-Chip D/M

15.10. AN OLD EXAMPLE EXAMPLE: THE CAMBRIDGE FAST

RING TWO CHIP SET.LG 15. ARCHITECTURAL DESIGN EXPLORATION

Figure 15.8: Example of a design partition — the adaptor card for the

Cambridge Fast Ring.

Other features:

• ECL logic can support analogue line receivers at low additional

cost so can receive the incoming signal directly on to the chip.

• ECL logic has high output power if required (1 volt into 25 ohms)

and so can drive outgoing twisted pair lines directly.

The CMOS chip clocks at one eighth the rate and handles the complex

logic functions:

• CRC generation

• full/empty bit protocol

• minipacket storage in on-chip RAM

• host processor interface

• ring monitoring and maintenance functions.

Easter Term 2011 186 System-On-Chip D/M

15.11. PARTITIONING EXAMPLE: AN EXTERNAL RS-232/POTS

MODEM. LG 15. ARCHITECTURAL DESIGN EXPLORATION

The ECL chip had at least 50 times the power consumption of the CMOS

chip. The CMOS chip had more than 50 times the gates of the ECL chip.

Rolling forward to 2010, we might make a similar design partition with

a high-performance bipolar subsystem clocking at 4 GHz connected to a

CMOS ’baseband’ component running where some small parts operating

at 500 MHz and the remainder at 250 MHz.

Standard parts were used to augment the CFR set: the DRAM chip

incorporates a dense memory array which could not have been achieved

for anywhere near the same cost onboard the CMOS chip and the VCO

(Voltage Controlled Oscillator) device used for clock recovery was left

off the ECL chip since it was a difficult-to-design analogue component

where the risk of having it on the chip was not desired.

PALs are used to ‘glue’ the network interface itself to a particular host

system bus. Only the glue logic needs to be redesigned when a new

machine is to be fitted with the chipset. PALs have a short design

turn-around time since they are field-programmable.

For a larger production run, the PALs would be integrated onto a custom

variant of the CMOS chip.

15.11 Partitioning example: An external
RS-232/POTS Modem.

Figure 15.10 shows the block diagram of a typical modem circa 1985.

The illustrated device is an external modem, meaning that it sits in a

box beside the computer and has an RS-232 serial connection to the

computer. It also requires its own power supply.

The device contains a few analog components which behave broadly

like a standard telephone, but most of it is digital. A relay is used to

Easter Term 2011 187 System-On-Chip D/M

15.11. PARTITIONING EXAMPLE: AN EXTERNAL RS-232/POTS

MODEM. LG 15. ARCHITECTURAL DESIGN EXPLORATION

Figure 15.9: A POTS modem.

Figure 15.10: Example of a design partition — internal structure of the

original modem.

connect the device to the line and its contacts mirror the ‘off-hook’

switch which is part of every telephone. It connects a transformer across

the line. The relay and transformer provide isolation of the computer

ground signal from the line voltages. Similarly the ringing detector often

uses a opto-coupler to provide isolation. Clearly, these analog aspects of

the design are particular to a modem and are designed by a telephone

expert.

Modems from the 1960’s implemented everything in analog circuitry

since microprocessors and DSP were not available. In 1985, two micro-

processors were often used.

Note that the non-volatile RAM required (and still does) a special man-

ufacturing processing step and so is not included as a resource on board

the single-chip processor. Similarly, the RS-232 drivers need to handle

Easter Term 2011 188 System-On-Chip D/M

15.11. PARTITIONING EXAMPLE: AN EXTERNAL RS-232/POTS

MODEM. LG 15. ARCHITECTURAL DESIGN EXPLORATION

voltages of +/- 12 volts and so these cannot be included on chip without

increasing the cost of the rest of the chip by using a fabrication process

which can handle these voltages. The NV-RAM is used to store the

owner’s settings, such as whether to answer an incoming call and what

baud rate to attempt a first connection, etc..

Figure 15.11: Typical structure of the modem product today (using a

SoC approach).

A modern implementation would integrate all of the RAM, ROM, ADC

and DAC and processors on a single SoC. The RS-232 remains off chip

owing to 24 volt and negative supply voltages whereas the SoC itself

may be run at 3.3 volts. The NV store is a large capacity Flash ROM

device with low-bandwidth serial connection. At system boot, the main

code for both processors is copied from the Flash to the two on-chip

RAMS by the small, mask-programmed booter. Keeping the firmware in

Flash allows the modem to be upgraded to correct bugs or encompass

new communications standards.

GPIO is used for all of the digital I/O, with the UART transmit and

receive paths being set up as special modes of two of the GPIO connec-

tions.

Easter Term 2011 189 System-On-Chip D/M

15.12. PARTITIONING EXAMPLE: A BLUETOOTH MODULE.LG 15. ARCHITECTURAL DESIGN EXPLORATION

15.12 Partitioning example: A Bluetooth
Module.

Figure 15.12: Broadcom (Cambridge Silicon Radio) Bluetooth Module

circa 2000.

Figure 15.13: Example of a design partition — Block diagram of Blue-

tooth radio module (circa 2000).

An initial implementation of the Bluetooth radio was made of three

pieces of silicon bonded onto a small fibreglass substrate...

An initial implementation of the Bluetooth radio was made of three

pieces of silicon bonded onto a small fibreglass substrate with overall

area of 4 square centimetres.

The module was partitioned into three pieces of silicon partly because

the overall area required would give a low yield, but mainly because the

three sections used widely different types of circuit structure.

The analog integrated circuit contained amplifiers, oscillators, filters and

mixers that operate in the 2.4 GHz band. This was too fast for CMOS

Easter Term 2011 190 System-On-Chip D/M

15.13. CELL LIBRARY TOURLG 15. ARCHITECTURAL DESIGN EXPLORATION

transistors and so bipolar transistors with thin bases were used. The

module amplifies the radio signals and converts them using the mixers

down to an intermediate frequency of a few MHz that can be processed

by the ADC and DAC components on the digital circuit.

The digital circuit had a small amount of low-frequency analog circuitry

in its ADC and DACs and perhaps in its line drivers if these are analog

(e.g. HiFi). However, it was mostly digital, with random logic imple-

mentations of the modem functions and a microcontroller with local

RAM. The local RAM holds a system stack, local variables and tempo-

rary buffers for data being sent or received.

The FLASH chip is a standard part, non-volatile memory array that can

hold firmware for the microcontroller, parameters for the modem and

encryption keys and other end application functions. The flash memory

is a standard 29LV800BE (Fujitsu) - 8m (1m X 8/512 K X 16) Bit

Today, the complete Bluetooth module can be implemented on one piece

of silicon, but this still presents a major technical challenge owing to the

diverse requirements of each of the sub-components.

15.13 Cell Library Tour

In the lecture we will have a look at the following documents: A cell

library in the public domain: TANNER AMIAnother VLSI TECHAnother

Mosis 0.5 u Cell Library

Things to note: there’s a good variety of basic gates, including quite a

few multi-level gates, such as AND-OR gate. There’s also I/O pads, flip-

flops and special function cells. Many gates are available with various

output powers.

For each gate there are comprehensive figures that enable one to predict

Easter Term 2011 191 System-On-Chip D/M

http://vlsi1.engr.utk.edu/ece/bouldin_courses/651/tanner_ami.pdf
href="http://vlsitechnology.org/html/libraries.html
http://www.cl.cam.ac.uk/teaching/0809/SysOnChip/additional/lg6-sft/tanner_ami.pdf

15.13. CELL LIBRARY TOURLG 15. ARCHITECTURAL DESIGN EXPLORATION

its delay, taking into account its track loading, how many other gates it

is feeding and the current supply voltage.

Easter Term 2011 192 System-On-Chip D/M

LG 16 — Silicon Power and Technology

Figure 16.1: Energy used when a discrete gate switches: delay-power

product.

Switching speed is dominated by electron mobility (drift velocity) in

transistor gates. We can improve by shifting to faster materials, such as

GaAs, or just by making the gates smaller. How small can we go: what

is the silicon end point ?

Rule of thumb: the product of delay and power consumption of a gate

is largely constant, leading to a design trade off. (Also called the speed-

power product). Units are the Joule: the energy for a logic transition in

the gate.

Total consumption = Gate Power + Wiring Power.

Electric charge in the wiring nets is proportional to their capacitance and

hence their length and width.

At any one time, there is a choice of implementation technologies.

Here is the speed-power product for three versions of the 7400-format

quad NAND gate, fabricated from different contemporary technologies

in 1985. (This is a board-level part and on-chip much less driving power

193

LG 16. SILICON POWER AND TECHNOLOGY

Figure 16.2: The 7400 standard part has been in manufacture using

this pinout for about 40 years, so allows comparison, but is seldom used

today.

is needed).

---- ---------- ------ ------------- ------- -------

Year Technology Device Propagation Power Product

delay (ns) (mW) (pJ)

---- ---------- ------ ------------- ------- -------

1975 CMOS CD4011BE 120 ns (10 mW) (1200 pJ)

---- ---------- ------ ------------- ------- -------

1985 CMOS 74HC00 7 ns 1 mW 7 pJ

1985 TTL 74F00 3.4 ns 5 mW 17 pJ

1985 ECL SP92701 0.8 ns 200 mW 160 pJ

---- ---------- ------ ------------- ------- -------

2007 CMOS 74LVC00A 2.1 ns 120 uW 0.25 pJ

---- ---------- ------ ------------- ------- -------

CMOS has been dominant, and in 2007 is the only surviving technology:

74LVC00A.pdf

The 5 volt CMOS gate has the property that it consumes virtually no

power when not changing its output. Today’s lower voltage CMOS does

not turn the transistors off as much, leading to significant static leakage

currents.

The ECL gate is an older technology, with a higher speed-power product,

but it is still useful since it is the fastest.

Gates of medium complexity or larger (rather than SSI gates as these

are) tend to be an order better in speed or power, since they do not have

Easter Term 2011 194 System-On-Chip D/M

http://www.nxp.com/documents/data_sheet/74LVC00A.pdf

16.1. 90 NANOMETER GATE LENGTH.LG 16. SILICON POWER AND TECHNOLOGY

output stages designed for driving long nets.

Alternatives to silicon, such as GaAs have been proposed for general

purpose logic. GaAs has four times higher electron mobility and so

transistors of a given size switch on and off that much faster. However,

increases in the speed of silicon, simply by making things smaller, have

turned out to be a more effective way forward. So far!

16.1 90 Nanometer Gate Length.

The mainstream VLSI technology in the period 2004-2008 was 90 nm.

Now the industry is using 35-45 nanometer. Parameters from a 90

nanometer standard cell library:

Parameter Value Unit

Drawn Gate Length 0.08 µm

Metal Layers 6 to 9 layers

Max Gate Density 400K gates/mm2

Finest Track Width 0.25 µm

Finest Track Spacing 0.25 µm

Tracking Capacitance 1 fF/mm

Core Supply Voltage 0.9 to 1.4 V

FO4 Delay 51 ps

Leakage current nA/gate

Typical processor core: 200k gates + 4 RAMs: one square millimeter.

Typical SoC chip area is 50-100 mm2 20-40 million gates. Actual

gate and transistor counts are higher owing to custom blocks (RAMs

mainly).

• 2007: Dual-core Intel Itanium2: 1.6 billion transistors (90 nm).

Easter Term 2011 195 System-On-Chip D/M

16.2. DELAY ESTIMATION FORMULA.LG 16. SILICON POWER AND TECHNOLOGY

• 2010: 8-core Intel Nehalem: 2.3 billion transistors (45 nm).

• 2010: Altera Stratix IV FPGA: 2.5 billion transistors (40 nm).

Moore’s Law Transistor Count

The slide shows typical parameters from a 90 nanometer standard cell

library. This figure refers to the width of the gate in the field effect

transistors. The smaller this width, the faster than transistor can op-

erate, but also it will consume more power as static leakage current.

The 90 nm figure has been the mainstream VLSI technology in the pe-

riod 2004-2008, but now the industry has moved to a 40-45 nanometer

technology.

Typical processor core: 200k gates + 4 RAMs: one square millimeter.

A typical SoC chip area is 50-100 mm2 with 20-40 million gates. Actual

gate and transistor count would be higher owing to custom blocks (RAMs

mainly), that achieve a better denisty than standard cells.

The FO4 delay is the delay through an inverter that is feeding four other

nearby inverters (fan out of four).

Moore’s Law has been tracked for the last two plus decades, but have

we now reached the Silicon End Point? That is, can we no longer make

things smaller (at the same cost)? Modern workstation processors have

certainly demonstrated a departure from the previous trend of ever rising

clock frequencies: instead they have several cores.

16.2 Delay Estimation Formula.

Both the power consumption and effective delay of a gate driving a net

depend mainly on the length of the net driven.

Easter Term 2011 196 System-On-Chip D/M

http://en.wikipedia.org/wiki/Moore's_law
http://en.wikipedia.org/wiki/Transistor_count
http://en.wikipedia.org/wiki/Moore's_law

16.2. DELAY ESTIMATION FORMULA.LG 16. SILICON POWER AND TECHNOLOGY

Figure 16.3: Logic net with tracking and input load capacitances illus-

trated.

device delay = (intrinsic delay) + (output load× derating factor).

The track-dependent output loading is a library constant times the track

area. The load-dependent part is the sum of the input loads of all of the

devices being fed. For short, non-clock nets (less than 0.1 wavelength),

we just include propagation delay in the gate derating and assume the

signal arrives at all points simultaneously.

Precise track lengths are only known after place and routing (Figure 1.2).

Pre-layout and pre-synthesis we can predict net lengths from RTL-level

heuristics.

Figure 16.3 shows a typical net, driven by a single source. To change

the voltage on the net, the source must overcome the stray capacitance

and input loads. The fanout of a gate is the number of devices that its

output feeds. The term fanout is also sometimes used for the maximum

number of inputs to other gates a given gate is allowed to feed, and

forms part of the design rules for the technology.

The speed of the output stage of a gate, in terms of its propagation

delay, decreases with output load. Normally, the dominant aspect of

output load is capacitance, and this is the sum of:

Easter Term 2011 197 System-On-Chip D/M

16.3. POWER ESTIMATION FORMULALG 16. SILICON POWER AND TECHNOLOGY

• the capacitance proportional to the area of the output conductor,

• the sum of the input capacitances of the devices fed.

To estimate the delay from the input to a gate, through the internal elec-

tronics of a gate, through its output structure and down the conductor

to the input of the next gate, we must add three things:

• the internal delay of the gate, termed the intrinsic delay

• the reduction in speed of the output stage, owing to the fanout/loading,

termed the derating delay,

• the propagation delay down the conductor.

The propagation delay down a conductor obeys standard transmission

line formula and depends on the distributed capacitance, inductance and

resistance of the conductor material and adjacent insulators. For circuit

board traces, resistance can be neglected and the delay is just the speed

of light in the circuit board material: about 7 inches per nanosecond,

or 200 metres per microsecond. On the other hand, for shorter nets on

chip, less than one tenth a wavelength long, we commonly assume the

signal arrives at all destinations at once and model the propagation delay

as an additional inertial component of the driving gate and include this

via the gate derating.

16.3 Power Estimation Formula

Power is measured in Watts and P = V × I = E × f

Gate current I = Static Current (leakage) + Dynamic Current.

Easter Term 2011 198 System-On-Chip D/M

16.3. POWER ESTIMATION FORMULALG 16. SILICON POWER AND TECHNOLOGY

Early CMOS (VCC 5 volts): negligible static current, but today at VCC

of 1.3 volts it’s 30 percent of consumption.

Dynamic current = Short circuit current + Dynamic charge current.

Dynamic charge current com-

putation:

• All energy in a

net/gates is wasted

each time it goes from

one to zero.

• The energy in a capaci-

tor is E = CV 2/2.

• Dominant capacitance

is proportional to net

length.

• Gate input and output

capacitance also con-

tribute to C.

Further details: Power Management in CPU Design.

Some additional dynamic current is consumed as ‘short-circuit current’

which is current consume when both the P and N transistors are on at

once, during switching, but we ignore that in these notes. Useful article:

POWER MANAGEMENT IN CPU DESIGN

Activity ratio, a: is the percentage of clock cycles that see a transition.

The net toggle rate = Operating frequency of the chip f × a;

• 1 W/cm2 can be dissipated from a plastic package.

Easter Term 2011 199 System-On-Chip D/M

http://cis.poly.edu/cs2214rvs/powers03.htm
href="http://cis.poly.edu/cs2214rvs/powers03.htm

16.3. POWER ESTIMATION FORMULALG 16. SILICON POWER AND TECHNOLOGY

• 2-4 W/cm2 required a heat sink.

• more than 8 W/cm2 requires forced cooling.

Workstation and laptop microprocessors dissipate tens of Watts: hence

cooling fans. In the past we were often core-bound or pad-bound. To-

day’s SoC designs are commonly power-bound.

Easter Term 2011 200 System-On-Chip D/M

16.3. POWER ESTIMATION FORMULALG 16. SILICON POWER AND TECHNOLOGY

Additional notes:

Example: core area 64 mm2; average net length 0.1 mm; 400K

gates/mm2, a = 0.25.

Net capacitance = 0.1 mm × 1 fF/mm × 400K × 64 mm2 =

2.5 nF.

Vcc Freq Static Power Dynamic Power Total Power

Volts MHz mW mW mW

0.8 100 40 24 64

1.35 100 67 68 135

1.35 200 67 136 204

1.8 100 90 121 211

1.8 200 90 243 333

1.8 400 90 486 576

The table shows example power consumption for a circuit when

clocked at different frequencies and voltages. The important

thing to ensure is that the supply voltage must be sufficient for

the clock frequency in use: too low a voltage means that signals

do not arrive at D-type inputs in time to meet set up times.

Compare 1.35V to 1.8V: twice the power and twice the clock

frequency.

In the past, chips were often core-bound or pad-bound. Pad-

bound meant that the chip had too many I/O signals for its

core logic area: the number of I/O’s puts a lower bound on the

perimeter of the chip. Today’s VLSI technology allows I/O pads

in the middle of the chip and designs are commonly power-bound.

Easter Term 2011 201 System-On-Chip D/M

16.4. DYNAMIC CLOCK GATINGLG 16. SILICON POWER AND TECHNOLOGY

16.4 Dynamic Clock Gating

Clock trees consume quite a lot of the power in an ASIC and considerable

savings can be made by turning off the clocks to small regions. A region

of logic is idle if all of the flip-flops are being loaded with their current

contents, either through synchronous clock enables or just through the

nature of the design. EDA DESIGNLINE

Figure 16.4: Clock enable using multiplexor, AND and OR gate.

Instead of using synchronous clock enables, current design practice is

to use a clock gating insertion tool that gates the clock instead. One

clock control logic gate serves a number of neighbouring flip-flops: state

machine or broadside register.

Problem with AND gate: if CEN changes when clock is high: causes

a glitch. Problem with OR gate: if CEN changes when clock is low:

causes a glitch. Hence, care must be taken not to generate glitches on

the clock as it is gated. Transparent latches in the clock enable signal

prevent these glitches.

Care needed to match clock skew when crossing to/from non-gated do-

main: avoid shoot-through by building out the non-gated parts as well.

Shoot-through occurs when a D-type is supposed to register its current

D input value, but this has already changed to its new value before the

clock signal arrives.

How to generate clock enable conditions ? One could have software con-

trol for complete blocks (additional control register flags, as per power

Easter Term 2011 202 System-On-Chip D/M

http://www.edadesignline.com/howto/205800151

16.4. DYNAMIC CLOCK GATINGLG 16. SILICON POWER AND TECHNOLOGY

Figure 16.5: Illustrating a transparent latch and its use to suppress clock

gating glitches.

gating). But today’s designs automatically detect on a finer-grain ba-

sis. Synthesiser tools can automatically insert clock required conditions

and insert the additional logic. Automatic tools compute ‘clock needed’

conditions. A clock is ‘needed’ if any register will change on a clock

edge.

Figure 16.6: Using XOR gates to determine whether a clock edge would

have any effect.

A lot of clock needed computation can get expensive, resulting in no net

saving, but it can be effective if computed once at head of a pipeline.

Need to be sure there are no ‘oscillating’ stages or else know their settling

time. The maximum settling time, if it exists, is computed in terms of

clock cycles using static analysis. Beyond the settling time, all registers

will be being re-loaded with their current data on each clock cycle.

Beyond just turning off the clock or power to certain regions, we can

Easter Term 2011 203 System-On-Chip D/M

16.5. DYNAMIC POWER GATINGLG 16. SILICON POWER AND TECHNOLOGY

Figure 16.7: Clock needed computations forwarded down a pipeline.

consider further power saving techniques: dynamic frequency and voltage

scaling.

16.5 Dynamic Power Gating

Increased tendency towards multi-product platform chips means large

functional blocks on silicon may be off for complete product lifetime.

Battery powered, portable devices can also use macro-scale block power

down (e.g. the audio or video input and output subsystems).

Dynamic power gating tech-

niques typically require some

sequencing: several clock cy-

cles to power up/down a re-

gion.

Fujitsu Article: Design of low power consumption LSIs

Previously we looked at dynamic clock gating, but we can also turn off

power supply to regions of a chip, albeit with coarser grain. We use

power gating cells in series with supply rails.

Use signal isolation and retention cells (t-latches) on nets that cross in

Easter Term 2011 204 System-On-Chip D/M

http://www.fujitsu.com/global/services/microelectronics/technical/lowpower

16.6. DYNAMIC FREQUENCY SCALINGLG 16. SILICON POWER AND TECHNOLOGY

and out of the region. There is no register and RAM data retention in a

block while the power is off. This technique is most suitable for complete

sub-systems of a chip, that are not in use on a particular product or for

quite a long time, such as a bluetooth tranceiver or audio input ADC.

Generally, power off/on is controlled by software or top-level input pads

to the SoC. It requires some sequencing to activate the enables to the

retention cells in the correct order and hence several clock cycles or more

are needed to power up/down a region.

A common practice is to power off a whole chip except for a one or two

RAMs and register files. This was particularly common before FLASH

memory was invented, when a small battery is/was used to retain con-

tents using a lower supply (CMOS RAM data holding voltage). Today,

most mobile phones, laptops and PC motherboards have a second, tiny

battery that maintains a small amount of running logic when the main

power is off or battery removed. This runs the real-time clock (RTC).

16.6 Dynamic Frequency Scaling

Compare dynamic frequency adjustment with with dynamic clock gating:

Clock Gating. Frequency Adjustment.

Control: automatic, manual.

Granularity: register / FSM, macroscopic.

Clock Tree: mostly free runs, slows down.

Response time: instant, acceptable.

Can vary voltage: no, yes.

To compute quickly and halt we need a higher frequency clock but con-

sume the same number of active cycles. So the work-rate product, af ,

unchanged, so no power difference ?

Easter Term 2011 205 System-On-Chip D/M

16.7. DYNAMIC VOLTAGE SCALINGLG 16. SILICON POWER AND TECHNOLOGY

Actually un-stopped regions consume power proportional to f .

Zeno: Tortoise and Achilles ? Tortoise is best: keep going steadily and

end just in time. (He appeals even more when we vary the voltage.)

But, dynamic clock gating still good for: bursty, localised activity.

Consider adjusting the clock frequency (while keeping VCC constant for

now). What does this achieve? For a fixed task, it will take longer to

complete. If the processor is to halt at the end of the task, it will spend

less time halted. If the main clock tree keeps going while halted, yet

most of the chip uses local clock gating, then we do save some power

in that fewer useless clock cycles are executed by the main clock tree.

This sort of frequency scaling can be software controlled: update PLL

division ratio. Figure 8.16 illustrates the PLL. The PLL has inertia: e.g.

1 millisecond, but this is similar to the rate at which an operating system

services interrupts, and hence the clock frequency to a system can be

ramped up as load arrives. This is how most laptops now work.

Let’s compare with dynamic clock gating: the table shows the main

differences, but the most important difference is still to come: we can

reduce the supply voltage if we have reduced the clock frequency.

16.7 Dynamic Voltage Scaling

Looking at the derating graph for the standard cell libraries, we see that

in the operating region, the frequency/voltage curve is roughly linear.

CMOS delay is inversely proportional to supply voltage.

Logic with higher-speed capabilities is smaller which means it consumes

greater leakage current which is being wasted while we are halted. Also

leakage current is proportional to supply voltage (in today’s low-voltage

logic).

Easter Term 2011 206 System-On-Chip D/M

16.7. DYNAMIC VOLTAGE SCALINGLG 16. SILICON POWER AND TECHNOLOGY

If we vary the voltage to a re-

gion dynamically, while keeping f

constant, a higher supply voltage

uses more power (square law) but

would allow a higher f .

Let’s only raise VCC when we

ramp up f .

Method:

1. Adjust f for just-in-time completion (e.g. in time to decode the

next frame of a real-time video),

2. then adjust VCC so logic just works.

But Zeno applies still: always aim for a close to unity and a low work

rate.

Overall: power will then have cubic dependence on f.

Hence, we still obtain peak performance under heavy loads, yet avoid

cubic overhead when idle. We adjust VCC so that, at all times, the logic

just works. However, we need to keep close track of whether we are

meeting real-time deadlines.

Combinational logic cannot be clock gated (e.g. PAL and PLA). For

large combinational blocks: can dip power supply to reduce static current

when block is completely idle (detect with XORs).

So a typical SoC uses not only dynamic clock gating, but also manual

and automatic frequency and voltage variation. Power isolation is used

on a longer-scale.

Easter Term 2011 207 System-On-Chip D/M

16.8. POWER MODELLING USING SYSTEMCLG 16. SILICON POWER AND TECHNOLOGY

16.8 Power Modelling using SystemC

Non examinable.

Recent TLM-power library release:

• Deals with power ‘modes’ and ‘phases’ of subsystems

• Might be difficult to integrate with loosely-timed modelling ?

• Difficult to record energy consuming events, such as individual bus

transactions,

• Power consumption for a component read from a table that must

always be manually created.

Experimental Cambridge ‘Prazor’ system:

• Supports power and energy equally well, with power calculations

being accurate at the end of each LT quantum.

• Requires each component to inherit the prazor base class (current

implementation),

• Enables physical size of components to be logged (e.g. as a basis

for nominal place and route),

• Allocates X-Y co-ordinates to each component,

• Wiring distances can be estimated using Rent’s rule OR measured

from X-Y coordinates if placed,

• Power/energy consumption for a component can depend on con-

structor args (e.g. memory size, bus width).

Easter Term 2011 208 System-On-Chip D/M

16.8. POWER MODELLING USING SYSTEMCLG 16. SILICON POWER AND TECHNOLOGY

• No API for dynamic voltage scaling, but dynamic-frequency is kind-

of intrinsic to the energy-logging approach.

Switching Activity Interchange Format - Industry Standard.

Records the number of changes on each net of circuit.

Once we know the capacitance of a net we can compute the power it

consumed.

Consider the simple busmux example:

Easter Term 2011 209 System-On-Chip D/M

16.8. POWER MODELLING USING SYSTEMCLG 16. SILICON POWER AND TECHNOLOGY

busmux64::busmux64(sc_module_name name, u64_t threshold):

sc_module_pr(name),

targ_socket("targ_socket"),

init_socket("init_socket"),

threshold(threshold)

{

#ifdef PRAZOR

op_energy = PR_PICOJ(8 * 64);

prazor_energy_t static_power = PR_NANOW(8 * 64);

pr_static_power(static_power);

pr_size(PR_MICRON(3),PR_MICRON(3));

#endif

// Register callbacks for incoming interface method calls

targ_socket.register_b_transport(this, &busmux64::b_transport);

}

// TLM-2 blocking transport method

void busmux64::b_transport(int id, tlm::tlm_generic_payload &trans, sc_time &delay)

{

u64_t adr = (u64_t) trans.get_address()&~(0xFFLLU << 56LLU);

if (adr < threshold) init_socket[0]->b_transport(trans, delay);

else

{

u64_t adr = ((u64_t)trans.get_address());

trans.set_address(adr - threshold);

init_socket[1]->b_transport(trans, delay);

trans.set_address(adr);

}

#ifdef PRAZOR

pr_dynamic_event(op_energy);

#endif

}

Checkout from /usr/groups/han/cvs/prazor - but small changes over

the next few weeks!

Easter Term 2011 210 System-On-Chip D/M

LG 17 — High-level Design Capture and Synthesis

In this final section of the course we look at high-level design entry

methods and automatic synthesis from high-level descriptions.

17.1 Spirit IP XACT

IP-XACTis an XML Schema for IP Block Documentation.

It is being developed by the SPIRIT Consortium as a standard for auto-

mated configuration and integration of IP blocks.

It describes interfaces and attributes of a block (e.g. terminal and func-

tion names, register layouts and non-functional attributes).

It includes separate RTL and ESL/TLM descriptions (future work to

integrate these).

It aims to provide all the front-end infrastructure for rapid SoC assembly

from diverse IP supplies, support for assertions and and perhaps even

some glue logic synthesis.

IP blocks are stored in libraries indexed using IP-XACT information.

The SoC design is also described in conformant XML. A design capture

editor supports creation of a high-level block diagram of the SoC. Various

synthesis plugins, termed ‘generators’ produce the actual RTL and other

outputs, such as power and frequency estimates or user manuals.

Automatic generation of memory maps is also useful. Header files in RTL

and C can be kept in synch. (All modern PC motherboards do automatic

generation of memory maps as part of the BIOS plug-and-play service.)

Try out the free plugin(s) for Eclipse!

211

http://www.spiritconsortium.org

17.2. HIGH-LEVEL SYNTHESISLG 17. HIGH-LEVEL DESIGN CAPTURE AND SYNTHESIS

Figure 17.1: Reference Model for design capture and synthesis using

IP-XACT blocks.

17.2 High-Level Synthesis

Manual RTL design expression needs

• Human comprehension of the state encoding,

• Human comprehension of the cycle-by-cycle concurrency, and

• Human accuracy to every low-level detail.

Performing a Time for Space re-folding (i.e. doing the same job with

more/less silicon over less/more time) requires a complete redesign at

this level!

Optimising schedules in terms of memory port and ALU uses ? Pen and

paper?

Can we do better ? Want to use High-Level Synthesis.

If one considers an embedded processor connected to a ROM, it may

be viewed as one large FSM. Since for any given piece of software, the

Easter Term 2011 212 System-On-Chip D/M

17.3. HIGHER-LEVEL: BEHAVIOURAL OR LOGICAL ?LG 17. HIGH-LEVEL DESIGN CAPTURE AND SYNTHESIS

ROM is unlikely to be full and there are likely to be resources in the

processor that are not used by that software, the application of a good

quality logic minimiser to the system, while it is in the design database,

could trim it greatly. In most real designs, this will not be helpful: for

instance, the advantages of full-custom applied to the processor core will

be lost. In fact, the minimisation function may be too complex for most

algorithms to tackle on today’s computers.

On the other hand, algorithms to create a good static scheduling of a

fixed number of hardware resources work quite well. A processing al-

gorithm typically consists of multiple processing stages (e.g. called pre-

emphasis, equalisation, coefficient adaptation, FFT, deconvolution, re-

construction and so on). Each of these steps normally has to be done

within tight real-time bounds and so parallelism through multiple in-

stances of ALU and register hardware is needed. The Cathedral DSP

compiler was an early tool for helping design such circuits. Such tools

can perform time/space folding/unfolding of the algorithm to generate

the static shedule that maps operations and variables in a high-level de-

scription to actual resources in the hardware. Data dependencies can

cause variations in the time for certain steps, so a potentially a dynamic

schedule could make better use of resources but the overhead of dy-

namic scheduling can outweigh the cost of the resources saved if the

data dependencies are rare.

17.3 Higher-level: Behavioural or Logical
?

There are two primary, high-level entry styles we can consider, and we

can also consider blends of them:

Easter Term 2011 213 System-On-Chip D/M

17.3. HIGHER-LEVEL: BEHAVIOURAL OR LOGICAL ?LG 17. HIGH-LEVEL DESIGN CAPTURE AND SYNTHESIS

• Behavioural Expression: Using imperative software-like code,

where threads have stacks and pass between modules, and so on...

• Declarative/Logical Expression: Constraining assertions about

the allowable behaviour are given, but any ordering constraints are

implicit (e.g. SQL queries).

Both styles are amenabale to automatic datapath and schedule gen-

eration, including re-encoding and re-pipelining to meet timing closure

and power budgets.

Using the first of these, behavioural expression, we express the algorithm

and steps to be performed as an executable program

• using an imperative program (containing loops and assigments),

or

• a functional program (where control flow is less-explicit).

Either way, the tool chain may:

• re-order the operations while preserving semantics, and/or

• re-encode the state and modify memory layouts.

Examples:

• Synopsys Behavioural Compiler,

• Handel-C,

• BlueSpec System Verilog,

• C-to-Gates : C-To-Verilog, SystemCrafter, Catapult, Kiwi, ...

• Statecharts (UML/SysML).

Easter Term 2011 214 System-On-Chip D/M

17.4. BEYOND PURE RTL: BEHAVIOURAL DESCRIPTIONS OF

HARDWARE.LG 17. HIGH-LEVEL DESIGN CAPTURE AND SYNTHESIS

17.4 Beyond Pure RTL: Behavioural de-
scriptions of hardware.

What has ’synthesisable’ RTL traditionally provided ?

Figure 17.2: A circuit to swap two registers.

With RTL the designer is well aware what will happen on the clock edge

and of the parallel nature of all the assignments and is relatively well

aware of the circuit she has generated. For instance it is quite clear that

this code

always @(posedge clk) begin

x <= y;

y <= x;

end

will produce the circuit of Figure 17.2. (If Xx and Y were busses, the

circuit would be repeated for each wire of the bus.) The semantics

of the above code are that the right-hand sides are all evaluated and

then assigned to the left-hand sides. The order of the statements is

unimportant.

However, the same circuit may be generated using a specification where

assigment is made using the = operator. If we assume there is no other

reference to the intermediate register t elsewhere, and so a flip-flop

named t is not required in the output logic. On the other hand, if t

is used, then its input will be the same as the flip-flop for y, so an

Easter Term 2011 215 System-On-Chip D/M

17.4. BEYOND PURE RTL: BEHAVIOURAL DESCRIPTIONS OF

HARDWARE.LG 17. HIGH-LEVEL DESIGN CAPTURE AND SYNTHESIS

optimisation step will use the output of y instead of having a flip-flop

for t.

always @(posedge clk) begin

t = x;

x = y;

y = t;

end

With this style of specification the order of the statements is significant

and typically such assignment statements are incorporated in various

nested if-then-else and case commands. This allows hardware de-

signs to be expressed using the conventional imperative programming

style that is familiar to software programmers. The intention of this

style is to give an easy to write and understand description of the de-

sired function, but this can result in logic output from the synthesiser

which is mostly incomprehensible if inspected by hand.

The word ‘behavioural’, when applied to a style of RTL or software

coding, tends to simply mean that a sequential thread is used to express

the sequential execution of the statements.

Despite the apparent power available using this form of expression, there

are severe limitations in the offically synthesisable subset of Verilog and

VHDL that might also be manifest in basic C-to-gates tool. Limitations

are, for instance, each variable must be written by only one thread and

that a thread is unable to leave the current file or module to execute

subroutines/methods in other parts of the design.

The term ‘behavioural model’ is used to denote a short program written

to substitute for a complex subsection of a structural hardware design.

The program would produce the same useful result, but execute much

more quickly because the values of all the internal nets and pipeline

stages (that provide no benefit until converted to actual parallel hardware

form) were not modelled. Verilog and VHDL enable limited forms of

Easter Term 2011 216 System-On-Chip D/M

17.5. STATIC AND DYNAMIC SCHEDULINGLG 17. HIGH-LEVEL DESIGN CAPTURE AND SYNTHESIS

behavioural models to serve as the source code for the subsection, with

synthesis used to form the netlist. Therefore limited behavioural models

can sometimes become the implementation.

Many RTL synthesisers support an implied program counter (state ma-

chine inference).

reg [2:0] yout;

always

begin

@(posedge clk) yout = 1;

@(posedge clk) yout = 4;

@(posedge clk) yout = 3;

end

In this example, not only is there a thread with current point of execution,

but the implied ‘program counter’ advances only partially around the

body of the always loop on each clock edge. Clearly the compiler or

synthesiser has to make up flip-flops not explicitly mentioned by the

designer, to hold the current ‘program counter’ value.

None of the event control statements is conditional in the example, but

the method of compilation is readily extended to support this: it amounts

to the program counter taking conditional branches. For example, the

middle event control could be prefixed with ’if (din)’.

if (din) @(posedge clk) yout = 4;

17.5 Static and Dynamic Scheduling

As mentioned in the RTL section of these notes, RAM ports, ALUs,

non fully-pipelined components and other shared resources can cause

Structural Hazards.

Easter Term 2011 217 System-On-Chip D/M

17.5. STATIC AND DYNAMIC SCHEDULINGLG 17. HIGH-LEVEL DESIGN CAPTURE AND SYNTHESIS

Structural Hazard: Cannot proceed with an operation because a re-

source is in use. To overcome hazards we must use shedulling and

arbitration:

• Scheduling: deciding the operation order in advance,

• Arbitrating: granting access dynamically, as requests arrive.

One scheduling decision impacts on another: ideally need to find a global

optimum.

The scheduling and arbitration operations can often be done at compile-
time, (e.g. for operations performed by a single behavioural thread).

Remainder must be done at run-time according to actual input data

since some operations may be vari-length and the relative interleaving

of different threads is often unpredictable.

Many hardware designs call for memories, either RAM and ROM. Small

memories can be implemented from gates and flip-flops (if RAM). For

larger memories, a customised structure is preferable. Large memories

are best implemented using separate off-chip device where as sizes of

hundreds of kilobytes can easily be integrated in ASICs. Having several

smaller memories on a chip takes more space than having one larger

memory because of overheads due mainly to address decoding, but,

where data can be partitioned (i.e. we know something about the access

patterns) having several smaller memories gives better bandwidth and

less contention and uses less power for a given performance.

In an imperative HDL, memories readily map to arrays. A primary differ-

ence between a formal memory structure and a bunch of gates is the I/O

bandwidth: it is not normally possible to access more than one location

at a time in a memory. Consider the following Verilog HDL

Easter Term 2011 218 System-On-Chip D/M

17.6. SYNOPSYS BEHAVIOURAL COMPILERLG 17. HIGH-LEVEL DESIGN CAPTURE AND SYNTHESIS

reg [7:0] myram [1023:0]; // 1 kbyte memory

always @(posedge clk) myram[a] = myram[a+1] + 2; // Addresses different - not possible in one cycle.

If myram is implemented as an off-the-shelf, single-ported memory array,

then it is not possible to read and write it at different addresses in one

clock cycle. Compilers which handle RAMs in this way either do not

have explicit clock statements in the user code, or else interpret them

flexibly. An example of flexible interpretation, is the ‘Superstate’ concept

introduced by Synopsys for their Behavioural Compiler, which splits the

user specified clock intervals into as many as needed actual clock cycles.

With such a compiler, the above example is synthesisable using a single-

ported RAM.

When multiple memories are used, a scheduling algorithm must be used

by the compiler to determine the best order for reading and writing

the required values. Advanced tools (e.g. C-to-Gates tools and Kiwi)

generate a complete ‘datapath’ that consists of various ALUs, RAMs

and register files. This is essentially the execution unit of a custom

VLIW (very-long instruction word) processor, where the control unit is

replaced with a dedicated finite-state controller.

The decisions about how many memories to use and what to keep in

them may be automated or manual overrides might be specified.

17.6 Synopsys Behavioural Compiler

... was an advanced (for the late 90’s) compiler that extended RTL

synthesis semantics. Synopsys Behavioural Compiler Tutorial

• Provided compile-time loop unrolling,

Easter Term 2011 219 System-On-Chip D/M

http://www.iro.umontreal.ca/~dift6221/bc_tutorial/tutorial/tutorial.html

17.7. SHORTCOMINGS OF VERILOG AND VHDL (FOR H/L

SYNTHESIS).LG 17. HIGH-LEVEL DESIGN CAPTURE AND SYNTHESIS

• Operations on variables freely moved between clock cycles,

• Inserted additional cycles to overcome hazards (user’s clock is

called a ‘super state’),

• Provided temporally-floating I/O with compiler-chosen pipelining

between ports.

Problem: Existing RTL paradigms not preserved within the same source

file: existing syntax has new meaning. Ulitmately, it seems designers felt

they had lost control over detailed structure in critical places.

Additional notes:

Citations:

• Understanding Behavioral Synthesis, A Practical Guide to

High Level Design by John P Elliott; Kluwer Academic Pub-

lishers ISBN 0-7923-8542-X

• Behavioral Synthesis, Digital System Design Using the Syn-

opsys Behavioral Compiler by David W. Knapp, Prentice

Hall, ISBN 0-13-569252-0

17.7 Shortcomings of Verilog and VHDL
(for H/L Synthesis).

Verilog and VHDL are languages focused more on simulation than logic

synthesis. The rules for translation to hardware that define the ‘synthe-

sisable subset’ were standardised post the definitions of the language.

Circuit aspects that could readily be determined or decided by the com-

piler are frequently explicit or directly implicit in the source Verilog text.

Easter Term 2011 220 System-On-Chip D/M

17.7. SHORTCOMINGS OF VERILOG AND VHDL (FOR H/L

SYNTHESIS).LG 17. HIGH-LEVEL DESIGN CAPTURE AND SYNTHESIS

These aspects include the number of state variables, the size of registers

and the width of busses. Having these details in the source text makes

the design longer and less portable.

Perhaps the major shortcoming of Verilog (and VHDL) is that the lan-

guage gives the designer no help with concurrency. That is, the designer

must keep in her head any aspect of handshaking between logic circuts

or shared reading of register resources. This is ironic since hardware

systems have much greater parallelism than software systems.

Verilog and VHDL have allowed vast ASICs to be designed, so in some

sense they are successful. But improved languages are needed to meet

the following EDA aims:

• Speed of design: time to market,

• Facilitate richer behavioural specification,

• Readily allow time/space folding experiments,

• Greater freedom and hence scope for optimisation in the compiler,

• Facilitate implementation of a formal specification,

• Facilitate proof of conformance to a specification,

• Allow rule-based programming (i.e. a logic-programming sub-language),

• Support modern synchronisation primitives (e.g. join patterns)

• Portability: can be compiled into software as well as into hardware.

Easter Term 2011 221 System-On-Chip D/M

17.8. CHANNEL COMMUNICATIONSLG 17. HIGH-LEVEL DESIGN CAPTURE AND SYNTHESIS

17.8 Channel Communications

Using shared variables to communicate between threads requires that

the user abides by self-imposed protocol conventions.

Typical patterns are:

• always ready,

• simplex guard with reader always faster than writer,

• four-phase handshake,

• two-phase handshake.

As mentioned elsewhere in these notes, some protocols cannot be pipelined,

some degrade throughput when pipelined and others are designed for

it Some approaches completely ban shared variables and enforce use

of channels (Handel-C and the main Bluespec dialect). (LINK: Han-

dlec.pdf)

The Bluespec language infers channel-like behaviour from user syntax

that looks like conventional reads and writes of shared variables.

Handel-C uses explicit Occam/CSP-like channels (’!’ to write, ’?’ to

read):

// Generator (src) // Processor // Consumer (sink)

while (1) while(1) while(1)

{ { {

ch1 ! (x); ch2 ! (ch1? + 2) $display(ch2?);

x += 3; } }

}

Using channels makes concurrency explict and allows synthesis
to re-time the design. In both cases, all of the handshaking signals

Easter Term 2011 222 System-On-Chip D/M

http://www.fpga.com.cn/hdl/training/handlec.pdf
http://www.fpga.com.cn/hdl/training/handlec.pdf

17.9. H/W SYNTHESIS FROM C AND OTHER PROGRAMMING

LANGUAGES.LG 17. HIGH-LEVEL DESIGN CAPTURE AND SYNTHESIS

potentially required are generated by the compiler and then trimmed

away again if they would have constant values owing to certain compo-

nents being always ready.

17.9 H/W Synthesis from C and other
Programming Languages.

Can we convert arbitrary or legacy programs to hardware ? Not very

well. Can we write new C programs that compile to good hardware ?

Yes. Can we use software-style constructs in new C-like languages ? Yes.

Typical restrictions:

• Program must be finite state,

• all recursion bounded,

• all dynamic storage allocation outside of infinite loops (or deallo-

cated again in same loop),

• use only boolean logic and integer arithmetic,

• limited string handling,

• very-limited standard library support,

• be explicit over which loops have run-time bounds.

Baseline example DJG C-To-V compiler from 1995. Bubble Sorter

Example

Commercial products available : SystemCrafter, Catapult, SimVision,

CoCentric, ... others.

Easter Term 2011 223 System-On-Chip D/M

http://www.cl.cam.ac.uk/~djg11/ctovpages
http://www.cl.cam.ac.uk/~djg11/ctovpages/ctovbubble.html
http://www.cl.cam.ac.uk/~djg11/ctovpages/ctovbubble.html

17.9. H/W SYNTHESIS FROM C AND OTHER PROGRAMMING

LANGUAGES.LG 17. HIGH-LEVEL DESIGN CAPTURE AND SYNTHESIS

Try out an online demo on your own fragment of C at C-to-Verilog.com

The advantages of using a general purpose language to describe both

hardware and software are becoming apparent: designs can be ported

easily and tested in software environments before implementation in

hardware. There is also the potential benefit that software engineers

can be used to generate ASICs: they are normally cheaper to employ

than ASIC engineers! The practical benefit of such approaches is not

fully proven, but there is great potential.

The software programming paradigm, where a serial thread of execution

runs around between various modules is undoubtedly easier to design

with than the forced parallelism of expressions found in RTL-style coding.

Ideally, a new thread should only be introduced when there is a need for

concurrent behaviour in the expression of the design.

A product from COMPILOGIC is typical of the new generation of such

EDA tools. It claims the following:

• Compile C to RTL Verilog for synthesis to FPGA and ASIC hard-

ware.

• Compile C to Test-Bench for Verilog simulation.

• Compiler options to control design’s size and performance.

• Global analysis optimizes C-program intentions in hardware.

• Automatic and controlled parallelism and pipelining.

• Generates readable Verilog for integration and modification.

• Options to assist tracing/debugging HDL generated.

• Includes command line and GUI programmer’s workbench.

Easter Term 2011 224 System-On-Chip D/M

http://www.c-to-verilog.com
http://www.compilogic.com

17.9. H/W SYNTHESIS FROM C AND OTHER PROGRAMMING

LANGUAGES.LG 17. HIGH-LEVEL DESIGN CAPTURE AND SYNTHESIS

However, we cannot compile general C/C++ programs to hardware:

they tend to use too many language features. Java and C# are better,

owing to stronger typing and banning of arithmetic on object handles

(all subscription operations apply to first-class arrays).

A given function can generally be done in half as many clock cycles

using twice as much silicon, although name aliases and control hazards

(dependence on run-time input data) can limit this. As well as the

C/C++ input code we require additional directives over speed, area and

perhaps power. The area directives may specify the number of RAMs or

how to map arrays into shared DRAM. Trading (or folding) such time

for space is basically a matter of unwinding loops or introducing new

loops.

Hazards can limit the amount of unrolling possible, including limited

numbers of ports on RAMs and user-set budgets on the number of certain

components instantiated, such as adders or multipliers.

In Verilog, the rule for mapping the thread to hardware is simply to

update the real flip-flops with the values found in the simulation time

registers when the thread encounters the clock event control statement

(‘(posedge clk)’). In languages such as C and Java, there are no such

clock statements. There are no widely-accepted rules for converting C

and Java to hardware, but two suitable rules for functions and processes

can be summarised as:

• Combinatorial logic from functions: If a function makes no

use of global, free or static variables and the number of times any

loops in its body are executed can be determined (easily) at compile

time, then we can generate a combinatorial circuit (network of

gates) that does the same thing.

• Infinite process loops: If the program contains a ‘while (1)’

type header to a loop, then this will inevitably have input and

Easter Term 2011 225 System-On-Chip D/M

17.10. KIWI : COMPILING CONCURRENT PROGRAMS TO

HARDWARELG 17. HIGH-LEVEL DESIGN CAPTURE AND SYNTHESIS

output operations in the body of the loop and the whole loop

can usefully be converted to a logic block which performs the

same function. The number of clock cycles that the logic block

consumes to loop the loop can be chosen by the compiler: it may

vary on input data. Also, the nature of the input and output

statements supported needs to be defined: calls to print functions

are not likely to be intended for conversion to hardware. Instead,

inputs and outputs are likely to be reads and writes to channels

or static shared variables that map to standard registers and RAM

blocks in the hardware implementation.

17.10 Kiwi : Compiling Concurrent Pro-
grams to Hardware

Current project led by David Greaves and Satnam Singh: Web Site

Kiwi is developing a methodology for hardware design using the parallel

programming constructs of the C# language. Specifically, Kiwi consists

of a run-time library for native simulation of hardware descriptions within

C# and a compiler that generates RTL from stylised .net bytecode.

The designer uses more concurrency than ‘natural’ for software. This is

mapped to concurrent hardware by the Kiwi tools. For example: Times

Table demo.

17.11 State charts and Graphical ‘lan-
guages’

Synthesis from diagrams (especially UML/SysML) is useful:

Easter Term 2011 226 System-On-Chip D/M

http://www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/kiwic.html
http://www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/timestable-demo/timestable-demo.html
http://www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/timestable-demo/timestable-demo.html

17.11. STATE CHARTS AND GRAPHICAL ‘LANGUAGES’LG 17. HIGH-LEVEL DESIGN CAPTURE AND SYNTHESIS

• Full schematic entry at the gate level was once popular,

• Still popular for high-level system block diagrams,

• Also popular for state transition diagrams.

The stategraph general form is:

stategraph graph_name()

{

state statename0 (subgraph_name, subgraph_entry_state), ... :

entry: statement;

exit: statement;

body: statement;

statement;

... // implied ’body:’ statements

statement;

c1 -> statename1: statement;

c2 -> statename2: statement;

c3 -> exit(good);

...

exit(good) -> statename3: statement;

exit(bad) -> statename4: statement;

...

endstate

state statename2:

...

...

endstate

state abort: // A special state that can be

// forced remotely (also called disable).

...

}

Easter Term 2011 227 System-On-Chip D/M

17.11. STATE CHARTS AND GRAPHICAL ‘LANGUAGES’LG 17. HIGH-LEVEL DESIGN CAPTURE AND SYNTHESIS

There have been attempts to generate hardware systems via graphical

entry of a finite state machine or set of machines. The action at a state

or an edge is normally the execution of some software typed into a dialog

box at that state, so the state machine tends to just show the top levels of

the system. An example is the ‘Specharts’ system [IEEE Design and Test,

Dec 92]. The Unified Modeling Language (UML) is promoted as ‘the

industry-standard language for specifying, visualizing, constructing, and

documenting the artifacts of software systems’ [Rational]for hardware

too. Takeup of new tools is slow, especially if they are only likely to

prove themselves as worth the effort on large designs, where the risk of

using brand new tools cannot normally be afforded.

Schematic entry of netlists is now only applicable to specialised, ‘hand-

crafted’ sub-circuits, but graphical methods for composing system com-

ponents at the system-on-a-chip level is growing in popularity.

Figure 17.3: A statechart for a stopwatch (primoridon.com)

Easter Term 2011 228 System-On-Chip D/M

http://www.rational.com/uml/index.shtml

17.11. STATE CHARTS AND GRAPHICAL ‘LANGUAGES’LG 17. HIGH-LEVEL DESIGN CAPTURE AND SYNTHESIS

Easter Term 2011 229 System-On-Chip D/M

17.11. STATE CHARTS AND GRAPHICAL ‘LANGUAGES’LG 17. HIGH-LEVEL DESIGN CAPTURE AND SYNTHESIS

17.11.1 Statechart Details (from my experimental
H2 Language).

Additional notes:

A state may contain tagged statements, each of which may be

a basic block if required. They are distinguished using three tag

words. The ‘entry’ statement is run on entry to the state and

the ‘exit’ statement is run on exit. The ‘body’ statement is run

while in the state. A ‘body’ statement must contain idempotent

code, so that there is no concept of the number of times it is run

while in the state. Statements with no tag are treated as body

tagged statements. Multiple occurrences of statements with the

same tag are allowed and these are evaluated as though executed

in the textual order they occur or else in parallel.

A state contains transition definitions that define the successor

states. Each transition consists of a boolean guard expression,

the name of one of the states in the current stategraph and an

optional statement to be executed when taking the transition. In

situations where multiple guard expressions currently hold, the

first holding transition is taken.

The guard expressions range over the inputs to the stategraph,

which are the variables and events in the current textual scope,

and the exit labels of child stategraphs.

When a child stategraph becomes active, it will start in the start-

ing state name is given as an argument to the instantiation, or

the first state of no starting name is given.

A child stategraph becomes inactive when its parent transitions,

even if the transition is to the current state, in which case the

child stategraph becomes inactive and active again and so tran-

sitions to the appropriate entry state.

A child stategraph can cause its parent to transition when the

child transitions to an exit state. There may be any number,

including zero, of exit states in a child stategraph but never any

in a top-level stategraph. The parent must define one or more

transitions to be taken for all possible exit transitions of its chil-

dren. An exit state is either called ’exit’ or ’exit(id)’ where ’id’

is an exit tag identifier. Exit tags used in the children must all

be matched by transitions in the parent, or else the parent must

transition itself under the remaining exit conditions of the child

or else the parent must provide an untagged exit that is used by

default.

Easter Term 2011 230 System-On-Chip D/M

17.12. BEHAVIOURAL H/L SYNTHESIS SUMMARYLG 17. HIGH-LEVEL DESIGN CAPTURE AND SYNTHESIS

17.12 Behavioural H/L Synthesis Sum-
mary

Logic synthesisers cannot synthesise into hardware the full set of con-

structs of a general programming language. There are inevitable prob-

lems with:

• unbounded recursive functions,

• unbounded heap use

• other sources of unbounded numbers of state variables,

• many library functions: access to file or screen I/O.

Generating good hardware requires global optimisation of the major re-

sources (ALUs, Multipliers and Memory Ports) and hence automatic

time/space folding. New techniques are needed that note that wiring is

a dominant power consumer in today’s ASICs

17.13 Synthesis from Declarative Speci-
fications

Rather than specify the algorithm (behaviour) we specify the required

outcome. Rather like constraint-based linear programming, the design is

a piece of hardware that satisifes a number of simultaneous assertions.

Examples:

• Synthesis using Stepwise Refinement from Formal Specs (Di-

jkstra 69),

Easter Term 2011 231 System-On-Chip D/M

17.14. SYNTHESIS FROM FORMAL SPECIFICATIONLG 17. HIGH-LEVEL DESIGN CAPTURE AND SYNTHESIS

• SAT-based logic Synthesis (Greaves 04),

• Rule-based hardware generation (BlueSpec),

• Automatic Synthesis of Glue, Transactors and Bus Monitors (Greaves/Nam

10).

17.14 Synthesis from Formal Specifica-
tion

Figure 17.4: Fragments: compilation from formal specifications.

Easter Term 2011 232 System-On-Chip D/M

17.14. SYNTHESIS FROM FORMAL SPECIFICATIONLG 17. HIGH-LEVEL DESIGN CAPTURE AND SYNTHESIS

It is desirable to eliminate the human aspect from hardware design and to

leave as much as possible to the computer. The idea is that computers

do not make mistakes, but there are various ways of looking at that!

A holy grail for CAD system designers is to restrict the human contri-

bution towards a design to the top-level entry of a specification of the

system in a formal language. By ‘formal’ we tend to mean a declarative

language based on set theory and typically one in which it is easy to

prove properties of the system. (The Part II course on hardware specifi-

cation shows how to use predicate logic to do this.) The detailed design

is then synthesised by the system from the specification.

There are many ways of implementing a particular function and the

number of ways of implementing a complete system is infinite. Most of

these are silly, a few are sensible and one, perhaps, optimum. Research

using expert systems to select the best implementation is ongoing, but

human input is needed in practical systems. But the human input should

only be a guide to synthesis, choosing a particular way out of many

‘formally correct’ ways. Therefore errors cannot be introduced.

For instance, an inverter with input A and output B, expressed declara-

tively as predicates of time, can be specified as

∀t.A(t) ↔ ¬B(t)

Here the logic levels of the circuit have the same notation as the logic

values in the proof system, but an approach where they are separate

might is typically needed when don’t care states are encompassed.

∀t.A(t) == 1 ↔ B(t) == 0

When time is quantised in units equal to a tick of the global clock then

a D-type flip-flop can be expressed:

Q(t + 1) == x ↔ D(t) == x

Easter Term 2011 233 System-On-Chip D/M

17.14. SYNTHESIS FROM FORMAL SPECIFICATIONLG 17. HIGH-LEVEL DESIGN CAPTURE AND SYNTHESIS

Here we have dropped the implied, leading ∀t.

Refinement outline:

1. Start with a formal spec plus a set of refinement rules,

2. Apply a refinement rule to some part of the spec,

3. Repeat until everything is executable.

A complex formal specification does not necessarily describe the algo-

rithm and hence does not describe the logic structure that will be used

in the implementation. Therefore, synthesis from formal specification

involves a measure of inventiveness on the part of the tool.

Wikipedia: program refinement.Conversion from specification to im-

plementation can be done with a process known as selective stepwise

refinement. This chips away at bits of the specification until, finally, it

has all be converted to logic. Some example rules for the conversion are

given in Figure 17.4.

There are a vast number of refinement rules available for application at

each refinement step and the quality of the outcome is sensitive to early

decisions. Therefore, it is hard to make this fully automated.

Perhaps a good approach is for much of the design to be specified algo-

rithmically by the designer (as in the above work) but for the designer

to leave gaps where he is confident that a refinement-based tool will

fill them. These gaps are often left by designers in their first pass at a

design anyway; or else they are filled with some approximate code that

will allow the whole design to compile and which is heavily marked with

comments to say that it is probably wrong. These critical bits of code

are often the hardest to write and easiest to get wrong and are the bits

that are most relevant to meeting the design specification. Practical

examples are the handshake and glue logic for bus or network protocols.

Easter Term 2011 234 System-On-Chip D/M

http://en.wikipedia.org/wiki/Program_refinement

17.15. SYNTHESIS FROM RULES (SAT-BASED IDEA).LG 17. HIGH-LEVEL DESIGN CAPTURE AND SYNTHESIS

Systems that can synthesise hardware from formal specifications are not

in wide commercial use, but there is a good opportunity there and, in

the long run, such systems will probably generate better designs than

humans.

The synthesis system should allow a free mix of design specifications in

many forms, including behavioural fragments and functional specifica-

tions. and only complain or fail when:

• the requested system is actually impossible: e.g. the output comes

before the input that caused it,

• the system is over-specified in a contradictory way,

• the algorithm for implementing the desired function cannot be

determined afterall.

17.15 Synthesis from Rules (SAT-based
idea).

Crazy idea ? If we program an FPGA we are generating a bit vector. SAT

solvers produce bit vectors that conform to a conjunction of constraints.

Let’s specify the design as a set of constraints over a fictional FPGA...

We can also convert structural and behavioural design expressions to

very-tight constraints and add those in.

The SAT solution wires up the FPGA and we can then apply logic trim-

ming. LINK: SAT Logic Synthesis (Greaves)

Main poblem: how large an FPGA to start with? Redundant logic might

need a bi-simulation erosion to remove it.

Seems to work for generating small custom protocols.

Easter Term 2011 235 System-On-Chip D/M

http://www.cl.cam.ac.uk/~djg11/wwwhpr/dslogic.html

17.16. RULE-BASED HARDWARE GENERATION (BLUESPEC)LG 17. HIGH-LEVEL DESIGN CAPTURE AND SYNTHESIS

17.16 Rule-based hardware generation (Blue-
Spec)

In the last few years, Bluespec System Verilog has successfully raised the

level of abstraction in RTL design in the industry.

• A Bluespec design is expressed as a list of declarative rules,

• Shared variables are mostly replaced with one-place FIFO buffers

with automatic handshaking,

• Rules are allocated a static schedule at compile time and some

that can never fire are reported,

• The current tight control of clock cycle (time/space folding) might

be relaxed by future compilation strategies.

LINK: Small Examples

First basic example: two rules: one increments, the other exits the

simulation. This example looks very much like RTL: provides an easy

entry for hardware engineers.

module mkTb (Empty);

Reg#(int) x <- mkReg (23);

rule countup (x < 30);

int y = x + 1;

x <= x + 1;

$display ("x = %0d, y = %0d", x, y);

endrule

rule done (x >= 30);

$finish (0);

endrule

endmodule: mkTb

Easter Term 2011 236 System-On-Chip D/M

http://www.bluespec.com/wiki/SmallExamples/

17.17. SYNTHESIS FROM CROSS-PRODUCT (GREAVES/NAM).LG 17. HIGH-LEVEL DESIGN CAPTURE AND SYNTHESIS

Second example uses a pipeline object that could have aribtrary delay.

Sending process is blocked by implied handshaking wires (hence less

typing than Verilog) and in the future would allow the programmer or

the compiler to retime the implementation of the pipe component.

module mkTb (Empty);

Reg#(int) x <- mkReg (’h10);

Pipe_ifc pipe <- mkPipe;

rule fill;

pipe.send (x);

x <= x + ’h10;

endrule

rule drain;

let y = pipe.receive();

$display (" y = %0h", y);

if (y > ’h80) $finish(0);

endrule

endmodule

But, behavioural expressing using a conceptual thread is also useful to

have!

17.17 Synthesis from Cross-Product (Greaves/Nam).

Can we automatically create RTL glue logic from port specifications ?

Can the same method be used for joining TLM models ? Can the same

method be used for making ESL-to-RTL transactors ?

Yes: www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/transactors

and Bus MonitorsMethod is:

• List participating interfaces and their protocols,

Easter Term 2011 237 System-On-Chip D/M

http://www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/transactors
http://www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/transactors

17.17. SYNTHESIS FROM CROSS-PRODUCT (GREAVES/NAM).LG 17. HIGH-LEVEL DESIGN CAPTURE AND SYNTHESIS

• Specify the function needed: commonly just need data conserva-

tion, but sometimes need other operations:

– Filtering

– Multiplexing

– Demultiplexing

– Buffering

– Serialising

– Deserialising

• Add in additional resources that can be used by the glue (e.g.

holding register or FIFO),

• Form protocol cross-product of all participants and resources,

• Trim so still fully-reactive and with no deadlocking trails,

• Emit resultant machine in SystemC or RTL of choice.

Easter Term 2011 238 System-On-Chip D/M

17.18. HIGH-LEVEL SYNTHESIS SUMMARYLG 17. HIGH-LEVEL DESIGN CAPTURE AND SYNTHESIS

Envisioned as an IP-XACT

Eclipse Plugin:

1. XML file pulls protocols

and interfaces from li-

brary.

2. Interfaces are parame-

terised with their direc-

tion and bus widths.

3. XML file also contains

glue equations (e.g. fil-

ter predicates).

4. Additional resources

added by human.

5. Then an automatic pro-

cedure...

17.18 High-level Synthesis Summary

Synopsys, Cadance and Mentor all heavily pushing C-to-Gates flows.

Datapath definition language needed.

IC industry is still highly skeptical!

Success of formal verification means abundance of formal specs for pro-

tocols and interfaces: automatic glue synthesis seems highly-feasible.

Synthesis from formal spec - academic interest only ?

See whitepaper from OneSpin-Solutions.com

Easter Term 2011 239 System-On-Chip D/M

file:www.onespin-solutions.com/download.php

17.18. HIGH-LEVEL SYNTHESIS SUMMARYLG 17. HIGH-LEVEL DESIGN CAPTURE AND SYNTHESIS

End of notes. c©DJ Greaves, March 2011.

Easter Term 2011 240 System-On-Chip D/M

	 SoC Design : 2010/11: 12 Lectures to CST II
	 Recommended Reading
	 Introduction: What is a SoC ?
	 Design Flow
	Front End
	Back End

	 Levels of Modelling Abstraction

	 Register Transfer Language (RTL)
	 RTL Summary View of Variant Forms.
	 Synthesisable RTL
	 Behavioural - `Non-Synthesisable' RTL
	 Further Synthesis Issues
	 RTL Compared with Software

	 Simulation
	 Event Driven Simulation
	Inertial and Transport Delay
	Modelling Zero-Delay Components - The Delta Cycle

	 Hazards
	 Hazards From Array Memories
	Overcoming Structural Hazards using Holding Registers

	 Folding, Retiming & Recoding
	 Critical Path Timing Delay

	 Protocol and Interface
	 Transactional Handshaking
	 Transactional Handshaking in RTL (Synchronous Example)

	 SystemC Components
	 SystemC Structural Netlist
	 SystemC Abstracted Data Modelling
	 Threads and Methods
	 SystemC Plotting and GUI

	 Basic SoC Components
	 Simple Microprocessor: Bus Connection and Internals
	 A canonical D8/A16 Micro-Computer
	 A Basic Micro-Controller
	 Switch/LED Interfacing
	 UART Device
	 Programmed I/O
	 I/O Blocks, Common Interface Nets.
	 RAM - on chip memory (Static RAM).
	 Interrupt Wiring: General Structure
	 GPIO - General Purpose Input/Output Pins
	 A Keyboard Controller
	 Counter/Timer Block
	 Video Controller: Framestore
	 Arbiter
	 Basic bus: Multiple Initiators.
	 DMA Controller
	 Network and Streaming Media Devices
	 Bus Bridge
	 Inter-core Interrupter (Doorbell/Mailbox)
	 Remote Debug (JTAG) Access Port
	 Clock Frequency Multiplier PLL and Clock Tree
	 Clock Domain Crossing Bridge
	 SoC Example: Helium 210

	 Instruction Set Simulator (ISS)
	 ESL: Electronic System Level Modelling
	 ESL Flow Model: Avoiding ISS/RTL overheads using native calls.
	 Using C Preprocessor to Adapt Firmware

	 Transactional Level Modelling (TLM)
	 Mixing modelling styles: 4/P net-level to TLM transactors.
	 Transactor Configurations
	 Example of non-blocking coding style:
	 ESL TLM in SystemC: First Standard TLM 1.0.
	 ESL TLM in SystemC: TLM 2.0
	 Timed Transactions: Adding delays to TLM calls.
	 TLM - Measuring Utilisation and Modelling Contention
	 Typical ISS setup with Loose Timing and Temporal Decoupling

	 ABD - Assertion-Based Design
	 Validation using Simulation
	 Formally Synthesised Bus Monitor
	 Is a formal specification complete ?
	 Assertion forms: State/Path, Concrete/Symbolic.
	 Property Specification Language (PSL)
	 ABD - PSL Four-Level Syntax Structure
	 ABD - PSL Properties and Macros
	 ABD - Naive Path to State Conversion
	 ABD - SERES Pattern Matching Example
	PSL: Further Temporal Layer Operators

	 ABD - Sequence Constraint as a Suffix Implication
	 ABD - A Simple Model Checker
	 ABD - Boolean Equivalence Checker
	 ABD - Sequential Logic Equivalence
	 ABD - Sequential Logic Simplification
	 Automated Stimulus Generation (Directed-Random Verification)
	 ABD - Conclusion

	 Network On Chip and Bus Structures.
	 Basic Bus: One initiator (II).
	 Basic bus: Multiple Initiators (II).
	 Bridged Bus Structures.
	 Classes of On-Chip Protocol
	 Network on Chip: Simple Ring.
	 Network on chip: Switch Fabrics.
	 Network on Chip: Higher Dimensions.
	 NoC Modelling
	 On-chip Busses Summary.
	 Dynamic RAM : DRAM
	 Cache Design
	Cache Modelling

	 SoC Engineering and Associated Tools
	 Static Timing Analyser Tool
	 RAM Macrocell Compiler Tool
	Dynamic Clock Gate Insertion Tool

	 Test Program Generator Tool
	 Scan Path Insertion and JTAG standard test port.

	 Architectural Design Exploration
	 H/W to S/W Interfacing Techniques
	 H/W Design Partition
	 Chip Types and Classifications
	Standard Parts
	Masked ASICs.

	 Semi-custom (cell-based) Design
	 Gate Arrays and Field-Programmable Logic.
	 FPGA - Field Programmable Gate Array
	 PALs and CPLDs
	 H/W versus S/W Design Partition Principles
	 Legacy H/W S/W Design Partition
	 An old example example: The Cambridge Fast Ring two chip set.
	 Partitioning example: An external RS-232/POTS Modem.
	 Partitioning example: A Bluetooth Module.
	 Cell Library Tour

	 Silicon Power and Technology
	 90 Nanometer Gate Length.
	 Delay Estimation Formula.
	 Power Estimation Formula
	 Dynamic Clock Gating
	 Dynamic Power Gating
	 Dynamic Frequency Scaling
	 Dynamic Voltage Scaling
	 Power Modelling using SystemC

	 High-level Design Capture and Synthesis
	 Spirit IP XACT
	 High-Level Synthesis
	 Higher-level: Behavioural or Logical ?
	 Beyond Pure RTL: Behavioural descriptions of hardware.
	 Static and Dynamic Scheduling
	 Synopsys Behavioural Compiler
	 Shortcomings of Verilog and VHDL (for H/L Synthesis).
	 Channel Communications
	 H/W Synthesis from C and other Programming Languages.
	 Kiwi : Compiling Concurrent Programs to Hardware
	 State charts and Graphical `languages'
	Statechart Details (from my experimental H2 Language).

	 Behavioural H/L Synthesis Summary
	 Synthesis from Declarative Specifications
	 Synthesis from Formal Specification
	 Synthesis from Rules (SAT-based idea).
	 Rule-based hardware generation (BlueSpec)
	 Synthesis from Cross-Product (Greaves/Nam).
	 High-level Synthesis Summary

