Pattern matching

What happens if, at a Unix/Linux shell prompt, you type
1s *

and press return?

Suppose the current directory contains files called regfla.tex,
regfla.aux, regfla.log, regfla.dvi, and (strangely) .aux. What
happens if you type

1s *x .aux

and press return?

Alphabets

An is specified by giving a finite set, 32, whose elements are
called . For us, any set qualifies as a possible alphabet, so long
as it is finite.

Examples:

1 =40,1,2,3,4,5,6,7,8,9} — 10-element set of decimal digits.
3o ={a,b,c,...,x,y, 2z} — 26-element set of lower-case characters
of the English language.

33 ={S| S C X1} — 2% element set of all subsets of the alphabet of
decimal digits.

Non-example:
N = {0,1,2,3,...} —setof all non-negative whole numbers is not an
alphabet, because it is infinite.

Strings over an alphabet

A n (> 0) over an alphabet 3J is just an ordered
n-tuple of elements of 22, written without punctuation.

Example: if X = {a, b, c}, then a, ab, aac, and bbac are strings over X
of lengths one, two, three and four respectively.

def . .
>* = setofall strings over X2 of any finite length.

N.B. there is a unique string of length zero over 3., called the

(or) and denoted | € | (no matter which 32 we are talking
about).

Concatenation of strings

The of two strings u, v € X* is the string uv obtained
by joining the strings end-to-end.

Examples: If u = ab, v = ra and w = cad, then vu = raab,
uu = abab and wv = cadra.

This generalises to the concatenation of three or more strings.
E.g. uvwuv = abracadabra.

Regular expressions over an alphabet X

® cach symbol a € X is a regular expression

® £ is aregular expression

e () is a regular expression

e if and s are regular expressions, then so is (7|s)
® if and s are regular expressions, then sois s

e if r is a regular expression, then so is (7)*

Every regular expression is built up inductively, by finitely many
applications of the above rules.

(N.B. we assume &, 0, (,), |, and * are not symbols in 3.)

Matching strings to regular expressions

u matchesa € X iffu = a

u matches e iffu = €

no string matches ()

u matches 7| s iff u matches either 7 or s

u matches rs iff it can be expressed as the concatenation of two
strings, u = vw, with v matching 7 and w matching s

u matches r™ iff either u = &, or w matches 7, or u can be
expressed as the concatenation of two or more strings, each of which
matches r

Examples of matching, with 3 = {0, 1}

O| 1 is matched by each symbol in 22

1(0|1)* is matched by any string in 3™ that starts with a ‘1’

((0]1)(0
(0]1)*(0

1))* is matched by any string of even length in 33*

1)™* is matched by any string in 32*

(]0)(e|1)|11 is matched by just the strings €, 0, 1, 01, and 11

(1|0 is just matched by O

Languages

A (formal) L over an alphabet X2 is just a set of strings in 2.
Thus any subset L C 3* determines a language over ..
The T over X is

L(r) def {u € ¥* | u matches r}.

Two regular expressions 7 and s (over the same alphabet) are

iff L(7) and L(s) are equal sets (i.e. have exactly the same
members).

Some questions

(a) Is there an algorithm which, given a string « and a regular expression
T (over the same alphabet), computes whether or not 4 matches 7?

(b) In formulating the definition of regular expressions, have we missed
out some practically useful notions of pattern?

(c) Is there an algorithm which, given two regular expressions 77 and s
(over the same alphabet), computes whether or not they are
equivalent? (Cf. Slide 8.)

(d) Is every language of the form L(7)?

Example of a finite automaton

States: qo, g1, 92, g3.
Input symbols: a, b.

Transitions: as indicated above.
Start state: qp.
Accepting state(s): gs.

10

L(M), by a finite automaton M

consists of all strings w over its alphabet of input symbols satisfying
qo L q with qg the start state and g some accepting state. Here

u
qo — q
means, if u = ajas2 ... a, say, that for some states
di-,492, .- - s §n, = q (not necessarily all distinct) there are transitions
of the form

aj a2 as an
go — 41 —> q2 —> *** —> (n = (.
N.B.
casen =0: g —* ¢’ iff q=¢
casen =1:. g —*q iff q— ¢’

11

A (NFA), M,
IS specified by

® a finite set States s (of)
e a finite set 2 ps (the alphabet of)

e for each g € Statesps and each a € 3ipg, a subset
Anr(q,a) C Statespy (the set of states that can be reached
from g with a single labelled a)

® anelement sps € Statesps (the)

® asubset Acceptn; C Statesp (of)

12

Example of a non-deterministic finite automaton

Input alphabet: {a, b}.
States, transitions, start state, and accepting states as shown:

The language accepted by this automaton is the same as for the
automaton on Slide 10, namely

{u € {a,b}” | u contains three consecutive a’s}.

13

A (DFA)

is an NFA M with the property that for each g € States ps and

a € Xy, the finite set A pr(q, @) contains exactly one element—call
itdnr(q, a).

Thus in this case transitions in M are essentially specified by a

, 0 g, Mmapping each (state, input symbol)-pair
(g, a) to the unique state d pz(q, a) which can be reached from q by a
transition labelled a:

qg—=q it q =dn(q,a)

14

An > (NFAS)
is specified by an NFA /M together with a binary relation, called the
g . on the set States ps . We write

q—=q

to indicate that the pair of states (q, q@”) is in this relation.

Example (with input alphabet = {a, b}):

15

L(M), by an NFA ¢ M

consists of all strings w over the alphabet 32 5z of input symbols
satisfying gg = q with gg the initial state and g some accepting state.

Here - => - is defined by:

& A7 / : € /
q = q' iffq = @ orthereis asequence q — ---q of one or more
e-transitions in M from g to q’

g = q (fora € Bp)iffq = - = - = q’
qggq’ (fora,bEEM)iffqé-i>-:€>-—>-:>q’

and similarly for longer strings

16

Example of the subset construction

OpPM

0

{gq0}

{q1}

{gz2}

{90, 41}
{90, 92}
{q1, 92}
{q0, 91,92}

a b

0 0
{90, 915,92} {q2}

{ag1} 0
0 {az2}
{90, 91,92} {q2}
{90, q15,92} {q2}
{a1} {g2}
{90, q15,92} {q2}

17

Theorem. For each NFA® M there is a DFA P M with the same
alphabet of input symbols and accepting exactly the same strings as

M, ie with L(PM) = L(M)
Definition of P M (refer to Slides 12 and 14):

e Statespns B {S | S C Statesps}

def
® Xpn = X

e S =5 S'inPMiff S’ = dpnri(S, a), where
def a _
opm(S,a) = {q'|3g € S(g= q'in M)}

def
‘SPMé {Q|3M:€>Q}

o Acceptpy, et

{S € Statespnrs | g € S (q € Acceptys)}

18

Definition
A language is Iff it Is the set of strings accepted by some
deterministic finite automaton.

Kleene’s Theorem
(a) For any regular expression 7, L('r) IS a regular language
(cf. Slide 8).

(b) Conversely, every regular language is the form L(r) for some
regular expression 7.

19

NFAs for atomic regular expressions

O

just accepts the one-symbol string a

just accepts the null string, €

oI

accepts no strings

20

Union (M7, M>)

Set of accepting states is union of Accept,, and Accept .

21

Concat(My, M>)

Set of accepting states is Accept Mo

22

The only accepting state of Star (M) is qp.

23

Lemma Given an NFA M, for each subset Q C States ps and
each pair of states q, g’ € Statesp, there is a regular expression
Q

U satisfying

U 4

L(r?’q,) ={u e (Zm)*| q —* q'in M with all inter-
mediate states of the sequence

inQ}.

Hence L(M) = L(r),where r = 71|+ - |rg and
k = number of accepting states,

T, = rgqi with Q = States)y,

S — start state,

g; — 1tth accepting state.

(In case k = 0, take 7 to be the regular expression (.)

24

Example

Direct inspection yields:

rid o 1 2
0
1 0 e a
2 |aa® a*b €

T 1
0 a™b
1
2

25

Not(M)

o States not(M) ©f States M

def
 Snot(M) = M

e transitions of Not (M) = transitions of M
e start state of Not(M) = start state of M
o Acceptnonry = {q € Statesns | g & Accepty,}.

Provided M is a deterministic finite automaton, then w is accepted by
Not (M) iffitis not accepted by M::

L(Not(M)) = {u € =* | u ¢ L(M)}.

26

And(Ml, Mg)

states of And (M7, Ms) are all ordered pairs (g1, q2) with
q1 € Statespy, and g2 € States)y,

alphabet of And (M7, M2) is the common alphabet of M7 and
Mo

(q1,92) — (@}, q4) in And(M;, M>) iff g1 — q} in My
a] -
and g2 — g5 in Mo

start state of And (M7, Ms) is (Snr, s SM,)

(g1, q2) accepting in And (M7, Ms) iff q1 accepting in M4
and g2 accepting in M.

27

Examples of non-regular languages

® The set of strings over {(,), a, b, . .., z} in which the
parentheses ‘(" and ‘)’ occur well-nested.

® The set of strings over {a, b, . . ., 2} which are
l.e. which read the same backwards as forwards.

o {a"b" | n > 0}

28

The Pumping Lemma

For every regular language L, there is a number £ > 1 satisfying the

allw € L with length(w) > £ can be expressed as a concatenation
of three strings, w = wujvu9, where uy, v and w9 satisfy:
o length(v) > 1
(i,e. v #~ ¢€)

o length(uiv) < /£

e forallm > 0, u1v"ue € L
i.,e.uius € L, uivue € L [but we knew that anyway],

uivvus € L, wujvvvus € L, etc).

29

If n > £ = number of states of M, then in

. ai a- ay an
SM—gO—>q1—>q2---—>q€---—>anAcceptM

v

£-+1 states

dos - - - » g¢ can't all be distinct states. So q; = q; for some
0 <1 < 7 < /. Sothe above transition sequence looks like

v
U1 % /_* U2 4
SM=qo — 49i = 4 —> anAcceptM
where
def def def

U1 = ai...a; UV = Q341 ...05 U2 = aj;41...0an.

30

How to use the Pumping Lemma to prove
that a language L is not regular

For each £ > 1, find some w € L of length > £ so that

(: -
no matter how w is split into three, w = uj1vUs9,

)y ¢ with length(uiv) < £and length(v) > 1,

there is some 12 > 0O for which w1 v w2 is not in L.

31

Examples

() L1 def {a™b™ | n > 0} is not regular.

[Foreach £ > 1, a*b* € L+ is of length > £ and has property (1) on
Slide 31.]

(i) Lo et {w € {a,b}™ | w apalindrome} is not regular.

[Foreach £ > 1, a*ba® € L is of length > £ and has property (}).]

def
(i) Ly = {aP | p prime} is not regular.

[For each £ > 1, we can find a prime p with p > 2€ andthen a? € L3
has length > £ and has property (}).]

32

Example of a non-regular language
that satisfies the ‘pumping lemma property’

LY {c™a™b™ | m > 1andn > 0}
U
{a™b"™ | m,n > 0}
satisfies the pumping lemma property on Slide 29 with £ = 1.

[For any w € L oflength > 1, cantake u; = &, v = first letter of w,
Uo = rest of w.]

But L is not regular. [See Exercise ??]

33

Lemma If a DFA M accepts any string at all, it accepts one whose
length is less than the number of states in M .

Proof. Suppose M has £ states (so £ > 1). If L(M) is not empty,
then we can find an element of it ,aA1a2 ... 0d, SaY
(where n. > 0). Thus there is a transition sequence

8MZQ0a—1>Q1a—2>QZ"'a—n>QnEAcceptm-

If n > £, then not all the n 4 1 states in this sequence can be distinct
and we can shorten it as on Slide 30. But then we would obtain a strictly
shorter string in L (M) contradicting the choice of ajas . . . @y,. So
we must have n < £. O

34

Some production rules for ‘English’ sentences

SENTENCE — SUBJECT VERB OBJECT
SUBJECT — ARTICLE NOUNPHRASE
OBJECT — ARTICLE NOUNPHRASE

ARTICLE — a
ARTICLE — the

NOUNPHRASE — NOUN
NOUNPHRASE — ADJECTIVE NOUN

ADJECTIVE — big
ADJECTIVE — small

NOUN — cat
NOUN — dog

VERB — eats

35

A derivation

SENTENCE — SUBJECT VERB OBJECT
— ARTICLE NOUNPHRASE VERB OBJECT
— the NOUNPHRASE VERB OBJECT
— the NOUNPHRASE eats OBJECT
— the ADJECTIVE NOUN eats OBJECT
— the big NOUN eats OBJECT
— the big cat eats OBJECT
— the big cat eats ARTICLE NOUNPHRASE
—> the big cat eats a NOUNPHRASE
— the big cat eats a ADJECTIVE NOUN
—> the big cat eats a small NOUN
— the big cat eats a small dog

36

Example of Backus-Naur Form (BNF)

Terminals:

Non-terminals:

Start symbol:
Productions:
1d
op
exp

x ' 4+ — x ()

id op exp
exp

x | id’

+ ==

id | exp op exp | (exp)

37

A context-free grammar for the language
{a™b™ | n > 0}

Terminals:
a b
Non-terminal:
I
Start symbol:
I
Productions:

I:=c¢|alb

38

Every regular language is context-free

Given a DFA M, the set L (M) of strings accepted by M can be
generated by the following context-free grammar:

set of terminals = X2 pz
set of non-terminals = States ps
start symbol = start state of M

productions of two kinds:
qg — aq’ whenever g 2, q’in M

q— € whenever ¢ € Accept

Definition A context-free grammar is Iff all its productions are of

the form
r — uy

or
xr — U

where u is a string of terminals and @« and y are non-terminals.

Theorem

(a) Every language generated by a regular grammar is a regular
language (i.e. is the set of strings accepted by some DFA).

(b) Every regular language can be generated by a regular grammar.

40

Example of the construction used
In the proof of the Theorem on Slide 40

regular grammar: ~> | NFA®:

S—abX
X —bbY
Y —-X
X —a

Y —¢

(start symbol = .S)

