
N

Lecture Notes on

Regular Languages
and Finite Automata

for Part IA of the Computer Science Tripos

Marcelo Fiore
Cambridge University Computer Laboratory

First Edition 1998.
Revised 1999, 2000, 2001, 2002, 2003, 2005, 2006, 2007, 2008, 2009, 2010.

c© 2010 A. M. Pitts

Contents

Learning Guide ii

1 Regular Expressions 1
1.1 Alphabets, strings, and languages 1
1.2 Pattern matching . 4
1.3 Some questions about languages 6
1.4 Exercises . 8

2 Finite State Machines 11
2.1 Finite automata . 11
2.2 Determinism, non-determinism, andε-transitions 14
2.3 A subset construction .. 17
2.4 Summary . 20
2.5 Exercises . 20

3 Regular Languages, I 23
3.1 Finite automata from regular expressions 23
3.2 Decidability of matching .. . 28
3.3 Exercises . 30

4 Regular Languages, II 31
4.1 Regular expressions from finite automata 31
4.2 An example . 32
4.3 Complement and intersection of regular languages 34
4.4 Exercises . 36

5 The Pumping Lemma 39
5.1 Proving the Pumping Lemma .40
5.2 Using the Pumping Lemma . 41
5.3 Decidability of language equivalence 44
5.4 Exercises . 45

6 Grammars 47
6.1 Context-free grammars .. 47
6.2 Backus-Naur Form . 49
6.3 Regular grammars . 51
6.4 Exercises . 53

ii

Learning Guide

The notes are designed to accompany six lectures on regular languages and finite automata
for Part IA of the Cambridge University Computer Science Tripos. The aim of this short
course will be to introduce the mathematical formalisms of finite state machines, regular
expressions and grammars, and to explain their applications to computer languages. As such,
it covers some basic theoretical material which Every Computer Scientist Should Know.
Direct applications of the course material occur in the various CST courses on compilers.
Further and related developments will be found in the CST Part IB coursesComputation
Theory andSemantics of Programming Languagesand the CST Part II courseTopics in
Concurrency.

This course contains the kind of material that is best learned through practice. The books
mentioned below contain a large number of problems of varying degrees of difficulty, and
some contain solutions to selected problems. A few exercises are given at the end of each
section of these notes and relevant past Tripos questions are indicated there. At the end
of the course students should be able to explain how to convert between the three ways of
representing regular sets of strings introduced in the course; and be able to carry out such
conversions by hand for simple cases. They should also be able to prove whether or not a
given set of strings is regular.

Recommended books Textbooks which cover the material in this course also tend to
cover the material you will meet in the CST Part IB courses onComputation Theory and
Complexity Theory, and the theory underlying parsing in various courses on compilers.
There is a large number of such books. Three recommended onesare listed below.

• J. E. Hopcroft, R. Motwani and J. D. Ullman,Introduction to Automata Theory,
Languages, and Computation, Second Edition(Addison-Wesley, 2001).

• D. C. Kozen,Automata and Computability(Springer-Verlag, New York, 1997).

• T. A. Sudkamp,Languages and Machines(Addison-Wesley Publishing Company,
Inc., 1988).

Note The material in these notes has been drawn from several different sources, including
the books mentioned above and previous versions of this course by the author and by others.
Any errors are of course all the author’s own work. A list of corrections will be available
from the course web page. Please take time to fill out the on-line lecture feedback form.

Marcelo Fiore
Marcelo.Fiore@cl.cam.ac.uk

1

1 Regular Expressions

Doubtless you have used pattern matching in the command-line shells of various operating
systems (Slide 1) and in the search facilities of text editors. Another important example of
the same kind is the ‘lexical analysis’ phase in a compiler during which the text of a program
is divided up into the allowed tokens of the programming language. The algorithms which
implement such pattern-matching operations make use of thenotion of afinite automaton
(which is Greeklish forfinite state machine). This course reveals (some of!) the beautiful
theory of finite automata (yes, that is the plural of ‘automaton’) and their use for recognising
when a particular string matches a particular pattern.

Pattern matching

What happens if, at a Unix/Linux shell prompt, you type

ls ∗

and press return?

Suppose the current directory contains files called regfla.tex,

regfla.aux, regfla.log, regfla.dvi, and (strangely) .aux. What

happens if you type

ls ∗ .aux

and press return?

Slide 1

1.1 Alphabets, strings, and languages

The purpose of Section 1 is to introduce a particular language for patterns, calledregular
expressions, and to formulate some important problems to do with pattern-matching which
will be solved in the subsequent sections. But first, here is some notation and terminology to
do with character strings that we will be using throughout the course.

2 1 REGULAR EXPRESSIONS

Alphabets

An alphabet is specified by giving a finite set, Σ, whose elements are

called symbols . For us, any set qualifies as a possible alphabet, so long

as it is finite.

Examples:
Σ1 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}— 10-element set of decimal digits.

Σ2 = {a, b, c, . . . , x, y, z} — 26-element set of lower-case characters of the

English language.

Σ3 = {S | S ⊆ Σ1} — 210-element set of all subsets of the alphabet of

decimal digits.

Non-example:

N = {0, 1, 2, 3, . . .} — set of all non-negative whole numbers is not an

alphabet, because it is infinite.

Slide 2

Strings over an alphabet

A string of length n (≥ 0) over an alphabet Σ is just an ordered n-tuple

of elements of Σ, written without punctuation.

Example: if Σ = {a, b, c}, then a, ab, aac, and bbac are strings over Σ of

lengths one, two, three and four respectively.

Σ∗ def
= set of all strings over Σ of any finite length.

N.B. there is a unique string of length zero over Σ, called the null string

(or empty string) and denoted ε (no matter which Σ we are talking

about).

Slide 3

1.1 Alphabets, strings, and languages 3

Concatenation of strings

The concatenation of two strings u, v ∈ Σ∗ is the string uv obtained by

joining the strings end-to-end.

Examples: If u = ab, v = ra and w = cad, then vu = raab, uu = abab

and wv = cadra.

This generalises to the concatenation of three or more strings.

E.g. uvwuv = abracadabra.

Slide 4

Slides 2 and 3 define the notions of analphabetΣ, and the setΣ∗ of finite stringsover an
alphabet. The length of a stringu will be denoted bylength(u). Slide 4 defines the operation
of concatenationof strings. We make no notational distinction between a symbol a ∈ Σ and
the corresponding string of length one overΣ: soΣ can be regarded as a subset ofΣ∗. Note
thatΣ∗ is never empty—it always contains thenull string, ε, the unique string of length zero.
Note also that for anyu, v, w ∈ Σ∗

uε = u = εu and (uv)w = uvw = u(vw)

andlength(uv) = length(u) + length(v).

Example 1.1.1.Examples ofΣ∗ for differentΣ:

(i) If Σ = {a}, thenΣ∗ contains

ε, a, aa, aaa, aaaa, . . .

(ii) If Σ = {a, b}, thenΣ∗ contains

ε, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, . . .

(iii) If Σ = ∅ (the empty set— the unique set with no elements), thenΣ∗ = {ε}, the set just
containing the null string.

4 1 REGULAR EXPRESSIONS

1.2 Pattern matching

Slide 5 defines the patterns, orregular expressions, over an alphabetΣ that we will use.
Each such regular expression,r, represents a whole set (possibly an infinite set) of strings
in Σ∗ thatmatch r. The precise definition of this matching relation is given onSlide 6. It
might seem odd to include a regular expression∅ that is matched by no strings at all—but it
is technically convenient to do so. Note that the regular expressionε is in fact equivalent to
∅∗, in the sense that a stringu matches∅∗ iff it matchesε (iff u = ε).

Regular expressions over an alphabet Σ

• each symbol a ∈ Σ is a regular expression

• ε is a regular expression

• ∅ is a regular expression

• if r and s are regular expressions, then so is (r|s)

• if r and s are regular expressions, then so is rs

• if r is a regular expression, then so is (r)∗

Every regular expression is built up inductively, by finitely many

applications of the above rules.

(N.B. we assume ε, ∅, (,), |, and ∗ are not symbols in Σ.)

Slide 5

Remark 1.2.1(Binding precedence in regular expressions). In the definition on Slide 5 we
assume implicitly that the alphabetΣ does not contain the six symbols

ε ∅ () | ∗

Then, concretely speaking, the regular expressions overΣ form a certain set of strings over
the alphabet obtained by adding these six symbols toΣ. However it makes things more
readable if we adopt a slightly more abstract syntax, dropping as many brackets as possible
and using the convention that

−∗ binds more tightly than−−, binds more tightly than−|−.

So, for example,r|st∗ means(r|s(t)∗), not(r|s)(t)∗, or ((r|st))∗, etc.

1.2 Pattern matching 5

Matching strings to regular expressions

• u matches a ∈ Σ iff u = a

• u matches ε iff u = ε

• no string matches ∅

• u matches r|s iff u matches either r or s

• u matches rs iff it can be expressed as the concatenation of two

strings, u = vw, with v matching r and w matching s

• u matches r∗ iff either u = ε, or u matches r, or u can be

expressed as the concatenation of two or more strings, each of which

matches r

Slide 6

The definition of ‘u matchesr∗’ on Slide 6 is equivalent to saying

for somen ≥ 0, u can be expressed as a concatenation ofn strings,u =
u1u2 . . . un, where eachui matchesr.

The casen = 0 just means thatu = ε (soε always matchesr∗); and the casen = 1 just means
thatu matchesr (so any string matchingr also matchesr∗). For example, ifΣ = {a, b, c}
andr = ab, then the strings matchingr∗ are

ε, ab, abab, ababab, etc.

Note that we didn’t include a regular expression for the ‘∗’ occurring in the UNIX
examples on Slide 1. However,once we know which alphabet we are referring to, Σ =
{a1, a2, . . . , an} say, we can get the effect of∗ using the regular expression

(a1|a2| . . . |an)∗

which is indeed matched by any string inΣ∗ (becausea1|a2| . . . |an is matched by any symbol
in Σ).

6 1 REGULAR EXPRESSIONS

Examples of matching, with Σ = {0, 1}

• 0|1 is matched by each symbol in Σ

• 1(0|1)∗ is matched by any string in Σ∗ that starts with a ‘1’

• ((0|1)(0|1))∗ is matched by any string of even length in Σ∗

• (0|1)∗(0|1)∗ is matched by any string in Σ∗

• (ε|0)(ε|1)|11 is matched by just the strings ε, 0, 1, 01, and 11

• ∅1|0 is just matched by 0

Slide 7

Notation 1.2.2. The notationr + s is quite often used for what we write asr|s.

The notationrn, for n ≥ 0, is an abbreviation for the regular expression obtained by
concatenatingn copies ofr. Thus:

{

r0 def
= ε

rn+1 def
= r(rn).

Thusu matchesr∗ iff u matchesrn for somen ≥ 0.

We user+ as an abbreviation forrr∗. Thusu matchesr+ iff it can be expressed as the
concatenation ofone or morestrings, each one matchingr.

1.3 Some questions about languages

Slide 8 defines the notion of aformal languageover an alphabet. We take a very extensional
view of language: a formal language is completely determined by the ‘words in the
dictionary’, rather than by any grammatical rules. Slide 9 gives some important questions
about languages, regular expressions, and the matching relation between strings and regular
expressions.

1.3 Some questions about languages 7

Languages

A (formal) language L over an alphabet Σ is just a set of strings in Σ∗.

Thus any subset L ⊆ Σ∗ determines a language over Σ.

The language determined by a regular expression r over Σ is

L(r)
def
= {u ∈ Σ∗ | u matches r}.

Two regular expressions r and s (over the same alphabet) are

equivalent iff L(r) and L(s) are equal sets (i.e. have exactly the same

members).

Slide 8

Some questions

(a) Is there an algorithm which, given a string u and a regular expression

r (over the same alphabet), computes whether or not u matches r?

(b) In formulating the definition of regular expressions, have we missed

out some practically useful notions of pattern?

(c) Is there an algorithm which, given two regular expressions r and s
(over the same alphabet), computes whether or not they are

equivalent? (Cf. Slide 8.)

(d) Is every language of the form L(r)?

Slide 9

8 1 REGULAR EXPRESSIONS

The answer to question (a) on Slide 9 is ‘yes’. Algorithms fordeciding such pattern-
matching questions make use of finite automata. We will see this during the next few sections.

If you have used the UNIX utilitygrep, or a text editor with good facilities for regular
expression based search, likeemacs, you will know that the answer to question (b) on Slide 9
is also ‘yes’—the regular expressions defined on Slide 5 leave out some forms of pattern
that one sees in such applications. However, the answer to the question is also ‘no’, in the
sense that (for a fixed alphabet) these extra forms of regularexpression are definable, up
to equivalence, from the basic forms given on Slide 5. For example, if the symbols of the
alphabet are ordered in some standard way, it is common to provide a form of pattern for
naming ranges of symbols—for example[a− z] might denote a pattern matching any lower-
case letter. It is not hard to see how to define a regular expression (albeit a rather long one)
which achieves the same effect. However, some other commonly occurring kinds of pattern
are much harder to describe using the rather minimalist syntax of Slide 5. The principal
example iscomplementation, ∼(r):

u matches∼(r) iff u does notmatchr.

It will be a corollary of the work we do on finite automata (and agood measure of its power)
that every pattern making use of the complementation operation ∼(−) can be replaced by
an equivalent regular expression just making use of the operations on Slide 5. But why do
we stick to the minimalist syntax of regular expressions on that slide? The answer is that it
reduces the amount of work we will have to do to show that, in principle, matching strings
against patterns can be decided via the use of finite automata.

The answer to question (c) on Slide 9 is ‘yes’ and once again this will be a corollary of
the work we do on finite automata. (See Section 5.3.)

Finally, the answer to question (d) is easily seen to be ‘no’,provided the alphabetΣ
contains at least one symbol. For in that caseΣ∗ is countably infinite; and hence the number of
languages overΣ, i.e. the number of subsets ofΣ∗ is uncountable. (Recall Cantor’s diagonal
argument.) But sinceΣ is a finite set, there are only countably many regular expressions
overΣ. (Why?) So the answer to (d) is ‘no’ for cardinality reasons.However, even amongst
the countably many languages that are ‘finitely describable’ (an intuitive notion that we will
not formulate precisely) many are not of the formL(r) for any regular expressionr. For
example, in Section 5.2 we will use the ‘Pumping Lemma’ to seethat

{anbn | n ≥ 0}

is not of this form.

1.4 Exercises

Exercise 1.4.1.Write down an ML data type declaration for a type constructor’a regExp

whose values correspond to the regular expressions over an alphabet’a.

Exercise 1.4.2.Find regular expressions over{0, 1} that determine the following languages:

(a) {u | u contains an even number of1’s}

1.4 Exercises 9

(b) {u | u contains an odd number of0’s}

Exercise 1.4.3.For which alphabetsΣ is the setΣ∗ of all finite strings overΣ itself an
alphabet?

Tripos questions 2005.2.1(d) 1999.2.1(s) 1997.2.1(q) 1996.2.1(i) 1993.5.12

10 1 REGULAR EXPRESSIONS

11

2 Finite State Machines

We will be making use of mathematical models of physical systems calledfinite automata,
or finite state machinesto recognise whether or not a string is in a particular language.
This section introduces this idea and gives the precise definition of what constitutes a finite
automaton. We look at several variations on the definition (to do with the concept of
determinism) and see that they are equivalent for the purpose of recognising whether or not
a string is in a given language.

2.1 Finite automata

Example of a finite automaton

q0
a

b

q1

b

a q2

b

a q3

a

b

States: q0, q1, q2, q3.

Input symbols: a, b.

Transitions: as indicated above.

Start state: q0.

Accepting state(s): q3.

Slide 10

The key features of this abstract notion of ‘machine’ are listed below and are illustrated
by the example on Slide 10.

• There are only finitely many differentstatesthat a finite automaton can be in. In the
example there are four states, labelledq0, q1, q2, andq3.

• We do not care at all about the internal structure of machine states. All we care about
is which transitions the machine can make between the states. A symbol from some
fixed alphabetΣ is associated with each transition: we think of the elementsof Σ
as input symbols. Thus all the possible transitions of the finite automaton can be
specified by giving a finite graph whose vertices are the states and whose edges have

12 2 FINITE STATE MACHINES

both a direction and a label (drawn fromΣ). In the exampleΣ = {a, b} and the only
possible transitions from stateq1 are

q1
b
−→ q0 and q1

a
−→ q2.

In other words, in stateq1 the machine can either input the symbolb and enter state
q0, or it can input the symbola and enter stateq2. (Note that transitions from a state
back to the same state are allowed: e.g.q3

a
−→ q3 in the example.)

• There is a distinguishedstart state.1 In the example it isq0. In the graphical
representation of a finite automaton, the start state is usually indicated by means of
a unlabelled arrow.

• The states are partitioned into two kinds:accepting states2 and non-accepting states.
In the graphical representation of a finite automaton, the accepting states are indicated
by double circles round the name of each such state, and the non-accepting states are
indicated using single circles. In the example there is onlyone accepting state,q3; the
other three states are non-accepting. (The two extreme possibilities thatall states are
accepting, or thatno states are accepting, are allowed; it is also allowed for thestart
state to be accepting.)

The reason for the partitioning of the states of a finite automaton into ‘accepting’ and
‘non-accepting’ has to do with the use to which one puts finiteautomata—namely to recognise
whether or not a stringu ∈ Σ∗ is in a particular language (= subset ofΣ∗). Givenu we
begin in the start state of the automaton and traverse its graph of transitions, using up the
symbols inu in the correct order reading the string from left to right. Ifwe can use up all the
symbols inu in this way and reach an accepting state, thenu is in the language ‘accepted’
(or ‘recognised’) by this particular automaton; otherwiseu is not in that language. This is
summed up on Slide 11.

1The terminitial state is a common synonym for ‘start state’.
2The termfinal stateis a common synonym for ‘accepting state’.

2.1 Finite automata 13

L(M), language accepted by a finite automaton M

consists of all strings u over its alphabet of input symbols satisfying

q0
u
−→∗ q with q0 the start state and q some accepting state. Here

q0
u
−→∗ q

means, if u = a1a2 . . . an say, that for some states q1, q2, . . . , qn = q
(not necessarily all distinct) there are transitions of the form

q0
a1−→ q1

a2−→ q2
a3−→ · · ·

an−→ qn = q.

N.B.

case n = 0: q
ε
−→∗ q′ iff q = q′

case n = 1: q
a
−→∗ q′ iff q

a
−→ q′.

Slide 11

Example 2.1.1. Let M be the finite automaton pictured on Slide 10. Using the notation
introduced on Slide 11 we have:

q0
aaab
−−−→∗ q3 (soaaab ∈ L(M))

q0
abaa
−−−→∗ q iff q = q2 (soabaa /∈ L(M))

q2
baaa
−−−→∗ q iff q = q3 (no conclusion aboutL(M)).

In fact in this case

L(M) = {u | u contains three consecutivea’s}.

(For qi (i = 0, 1, 2) corresponds to the state in the process of reading a string in which the
lasti symbols read were alla’s.) SoL(M) coincides with the languageL(r) determined by
the regular expression

r = (a|b)∗aaa(a|b)∗

(cf. Slide 8).

14 2 FINITE STATE MACHINES

A non-deterministic finite automaton (NFA), M ,

is specified by

• a finite set StatesM (of states)

• a finite set ΣM (the alphabet of input symbols)

• for each q ∈ StatesM and each a ∈ ΣM , a subset

∆M(q, a) ⊆ StatesM (the set of states that can be reached from

q with a single transition labelled a)

• an element sM ∈ StatesM (the start state)

• a subset AcceptM ⊆ StatesM (of accepting states)

Slide 12

2.2 Determinism, non-determinism, andε-transitions

Slide 12 gives the formal definition of the notion of finite automaton. Note that the function
∆M gives a precise way of specifying the allowed transitions ofM , via: q

a
−→ q′ iff q′ ∈

∆M (q, a).
The reason for the qualification ‘non-deterministic’ on Slide 12 is because in general,

for each stateq ∈ StatesM and each input symbola ∈ ΣM , we allow the possibilities that
there are no, one, or many states that can be reached in a single transition labelleda from q,
corresponding to the cases that∆M (q, a) has no, one, or many elements. For example, ifM
is the NFA pictured on Slide 13, then

∆M (q1, b) = ∅ i.e. inM , no state can be reached fromq1 with a transition labelledb;

∆M (q1, a) = {q2} i.e. in M , precisely one state can be reached fromq1 with a transition
labelleda;

∆M (q0, a) = {q0, q1} i.e. in M , precisely two states can be reached fromq0 with a
transition labelleda.

2.2 Determinism, non-determinism, andε-transitions 15

Example of a non-deterministic finite automaton

Input alphabet: {a, b}.

States, transitions, start state, and accepting states as shown:

q0

a

b

a q1
a q2

a q3

a

b

The language accepted by this automaton is the same as for the

automaton on Slide 10, namely

{u ∈ {a, b}∗ | u contains three consecutive a’s}.

Slide 13

When each subset∆M (q, a) has exactly one element we say thatM is deterministic.
This is a particularly important case and is singled out for definition on Slide 14.

The finite automaton pictured on Slide 10 is deterministic. But note that if we took the
same graph of transitions but insisted that the alphabet of input symbols was{a, b, c} say,
then we have specified an NFA not a DFA, since for example∆M (q0, c) = ∅. The moral of
this is:when specifying an NFA, as well as giving the graph of state transitions, it is important
to say what is the alphabet of input symbols(because some input symbols may not appear in
the graph at all).

When constructing machines for matching strings with regular expressions (as we will
do in Section 3) it is useful to consider finite state machinesexhibiting an ‘internal’ form
of non-determinism in which the machine is allowed to changestate without consuming any
input symbol. One calls such transitionsε-transitionsand writes them as

q
ε
−→ q′.

This leads to the definition on Slide 15. Note that in an NFAε, M , we always assume thatε
is not an element of the alphabetΣM of input symbols.

16 2 FINITE STATE MACHINES

A deterministic finite automaton (DFA)

is an NFA M with the property that for each q ∈ StatesM and

a ∈ ΣM , the finite set ∆M (q, a) contains exactly one element—call it

δM (q, a).

Thus in this case transitions in M are essentially specified by a

next-state function , δM , mapping each (state, input symbol)-pair (q, a)
to the unique state δM (q, a) which can be reached from q by a transition

labelled a:

q
a
−→ q′ iff q′ = δM (q, a)

Slide 14

An NFA with ε-transitions (NFAε)

is specified by an NFA M together with a binary relation, called the

ε-transition relation , on the set StatesM . We write

q
ε
−→ q′

to indicate that the pair of states (q, q′) is in this relation.

Example (with input alphabet = {a, b}):

q1
a q2

a q3
ε

q0

ε

ε

a

b

q7

a

bq4
b

q5
b

q6
ε

Slide 15

2.3 A subset construction 17

L(M), language accepted by an NFA ε M

consists of all strings u over the alphabet ΣM of input symbols satisfying

q0
u
⇒ q with q0 the initial state and q some accepting state. Here ·

−
⇒ ·

is defined by:

q
ε
⇒ q′ iff q = q′ or there is a sequence q

ε
−→ · · · q′ of one or more

ε-transitions in M from q to q′

q
a
⇒ q′ (for a ∈ ΣM) iff q

ε
⇒ ·

a
−→ ·

ε
⇒ q′

q
ab
⇒ q′ (for a, b ∈ ΣM) iff q

ε
⇒ ·

a
−→ ·

ε
⇒ ·

b
−→ ·

ε
⇒ q′

and similarly for longer strings

Slide 16

When using an NFAε M to accept a stringu ∈ Σ∗ of input symbols, we are interested in
sequences of transitions in which the symbols inu occur in the correct order, but with zero
or moreε-transitions before or after each one. We write

q
u
⇒ q′

to indicate that such a sequence exists from stateq to stateq′ in the NFAε. Then, by definition
u is accepted by the NFAε M iff q0

u
⇒ q holds forq0 the start state andq some accepting state:

see Slide 16. For example, for the NFAε on Slide 15, it is not too hard to see that the language
accepted consists of all strings which either contain two consecutivea’s or contain two
consecutiveb’s, i.e. the language determined by the regular expression(a|b)∗(aa|bb)(a|b)∗.

2.3 A subset construction

Note that every DFA is an NFA (whose transition relation is deterministic) and that every
NFA is an NFAε (whoseε-transition relation is empty). It might seem that non-determinism
andε-transitions allow a greater range of languages to be characterised as recognisable by a
finite automaton, but this is not so. We can use a construction, called thesubset construction,
to convert an NFAε M into a DFA PM accepting the same language (at the expense of
increasing the number of states, possibly exponentially).Slide 17 gives an example of this
construction. The name ‘subset construction’ refers to thefact that there is one state ofPM
for each subset of the setStatesM of states ofM . Given two subsetsS, S′ ⊆ StatesM , there
is a transitionS

a
−→ S′ in PM just in caseS′ consists of all theM -statesq′ reachable from

18 2 FINITE STATE MACHINES

statesq in S via the·
a
⇒ · relation defined on Slide 16, i.e. such that we can get fromq to

q′ in M via finitely manyε-transitions followed by ana-transition followed by finitely many
ε-transitions.

Example of the subset construction

M :

q1

a

q0

ε

ε

a

q2

b

δPM : a b

∅ ∅ ∅

{q0} {q0, q1, q2} {q2}

{q1} {q1} ∅

{q2} ∅ {q2}

{q0, q1} {q0, q1, q2} {q2}

{q0, q2} {q0, q1, q2} {q2}

{q1, q2} {q1} {q2}

{q0, q1, q2} {q0, q1, q2} {q2}

Slide 17

By definition, the start state ofPM is the subset ofStatesM whose elements are the
states reachable byε-transitions from the start state ofM ; and a subsetS ⊆ StatesM is an
accepting state ofPM iff some accepting state ofM is an element ofS. Thus in the example
on Slide 17 the start state is{q0, q1, q2} and

ab ∈ L(M) because inM : q0
a
−→ q0

ε
−→ q2

b
−→ q2

ab ∈ L(PM) because inPM : {q0, q1, q2}
a
−→ {q0, q1, q2}

b
−→ {q2}.

Indeed, in this caseL(M) = L(a∗b∗) = L(PM). The fact thatM andPM accept the same
language in this case is no accident, as the Theorem on Slide 18 shows. That slide also gives
the definition of the subset construction in general.

2.3 A subset construction 19

Theorem. For each NFAε M there is a DFA PM with the same

alphabet of input symbols and accepting exactly the same strings as

M , i.e. with L(PM) = L(M)

Definition of PM (refer to Slides 12 and 14):

• StatesPM
def
= {S | S ⊆ StatesM}

• ΣPM
def
= ΣM

• S
a
−→ S′ in PM iff S′ = δPM(S, a), where

δPM(S, a)
def
= {q′ | ∃q ∈ S (q

a
⇒ q′ in M)}

• sPM
def
= {q | sM

ε
⇒ q}

• AcceptPM
def
=

{S ∈ StatesPM | ∃q ∈ S (q ∈ AcceptM)}

Slide 18

To prove the theorem on Slide 18, given any NFAε M we have to show thatL(M) =
L(PM). We split the proof into two halves.

Proof thatL(M) ⊆ L(PM). Consider the case ofε first: if ε ∈ L(M), thensM
ε
⇒ q for

someq ∈ AcceptM , hencesPM ∈ AcceptPM and thusε ∈ L(PM). Now given any non-
null stringu = a1a2 . . . an, if u is accepted byM then there is a sequence of transitions in
M of the form

(1) sM
a1⇒ q1

a2⇒ · · ·
an⇒ qn ∈ AcceptM .

Since it is deterministic, feedinga1a2 . . . an to PM results in the sequence of transitions

(2) sPM
a1−→ S1

a2−→ · · ·
an−−→ Sn

whereS1 = δPM (sPM , a1), S2 = δPM (S1, a2), etc. By definition ofδPM (Slide 18), from
(1) we deduce

q1 ∈ δPM (sPM , a1) = S1

soq2 ∈ δPM (S1, a2) = S2

. . .

soqn ∈ δPM (Sn−1, an) = Sn

20 2 FINITE STATE MACHINES

and henceSn ∈ AcceptPM (becauseqn ∈ AcceptM). Therefore (2) shows thatu is accepted
by PM .

Proof thatL(PM) ⊆ L(M). Consider the case ofε first: if ε ∈ L(PM), thensPM ∈

AcceptPM and so there is someq ∈ sPM with q ∈ AcceptM , i.e. sM
ε
⇒ q ∈ AcceptM

and thusε ∈ L(M). Now given any non-null stringu = a1a2 . . . an, if u is accepted by
PM then there is a sequence of transitions inPM of the form (2) withSn ∈ AcceptPM ,
i.e. with Sn containing someqn ∈ AcceptM . Now sinceqn ∈ Sn = δPM (Sn−1, an),
by definition of δPM there is someqn−1 ∈ Sn−1 with qn−1

an⇒ qn in M . Then since

qn−1 ∈ Sn−1 = δPM (Sn−2, an−1), there is someqn−2 ∈ Sn−2 with qn−2
an−1

⇒ qn−1.
Working backwards in this way we can build up a sequence of transitions like (1) until, at the
last step, from the fact thatq1 ∈ S1 = δPM (sPM , a1) we deduce thatsM

a1⇒ q1. So we get
a sequence of transitions (1) withqn ∈ AcceptM , and henceu is accepted byM .

2.4 Summary

The important concepts in Section 2 are those of adeterministic finite automaton(DFA) and
the language of strings that it accepts. Note that if we know that a languageL is of the form
L = L(M) for some DFAM , then we have a method for deciding whether or not any given
stringu (over the alphabet ofL) is in L or not: begin in the start state ofM and carry out
the sequence of transitions given by readingu from left to right(at each step the next state
is uniquely determined becauseM is deterministic);if the final state reached is accepting,
thenu is in L, otherwise it is not.We also introduced other kinds of finite automata (with
non-determinism andε-transitions) and proved that they determine exactly the same class of
languages as DFAs.

2.5 Exercises

Exercise 2.5.1.For each of the two languages mentioned in Exercise 1.4.2 finda DFA that
accepts exactly that set of strings.

Exercise 2.5.2.The example of the subset construction given on Slide 17 constructs a DFA
with eight states whose language of accepted strings happens to beL(a∗b∗). Give a DFA
with the same language of accepted strings, but fewer states. Give an NFA with even fewer
states that does the same job.

Exercise 2.5.3.Given a DFAM , construct a new DFAM ′ with the same alphabet of input
symbolsΣM and with the property that for allu ∈ Σ∗

M , u is accepted byM ′ iff u is not
accepted byM .

Exercise 2.5.4.Given two DFAsM1, M2 with the same alphabetΣ of input symbols,
construct a third such DFAM with the property thatu ∈ Σ∗ is accepted byM iff it is
accepted by bothM1 andM2. [Hint: take the states ofM to be ordered pairs(q1, q2) of
states withq1 ∈ StatesM1

andq2 ∈ StatesM2
.]

2.5 Exercises 21

Tripos questions 2009.2.9 2004.2.1(d) 2001.2.1(d) 2000.2.1(b) 1998.2.1(s)
1995.2.19

22 2 FINITE STATE MACHINES

23

3 Regular Languages, I

Slide 19 defines the notion of aregular language, which is a set of strings of the formL(M)
for some DFAM (cf. Slides 11 and 14). The slide also gives the statement of Kleene’s
Theorem, which connects regular languages with the notion of matching strings to regular
expressions introduced in Section 1: the collection of regular languages coincides with the
collection of languages determined by matching strings with regular expressions. The aim of
this section is to prove part (a) of Kleene’s Theorem. We willtackle part (b) in Section 4.

Definition

A language is regular iff it is the set of strings accepted by some

deterministic finite automaton.

Kleene’s Theorem

(a) For any regular expression r, L(r) is a regular language

(cf. Slide 8).

(b) Conversely, every regular language is the form L(r) for some

regular expression r.

Slide 19

3.1 Finite automata from regular expressions

Given a regular expressionr, over an alphabetΣ say, we wish to construct a DFAM with
alphabet of input symbolsΣ and with the property that for eachu ∈ Σ∗, u matchesr iff u is
accepted byM—so thatL(r) = L(M).

Note that by the Theorem on Slide 18 it is enough to construct an NFAε N with the
propertyL(N) = L(r). For then we can apply the subset construction toN to obtain a DFA
M = PN with L(M) = L(PN) = L(N) = L(r). Working with finite automata that
are non-deterministic and haveε-transitions simplifies the construction of a suitable finite
automaton fromr.

Let us fix on a particular alphabetΣ and from now on only consider finite automata
whose set of input symbols isΣ. The construction of an NFAε for each regular expressionr
overΣ proceeds by recursion on the syntactic structure of the regular expression, as follows.

24 3 REGULAR LANGUAGES, I

(i) For each atomic form of regular expression,a (a ∈ Σ), ε, and∅, we give an NFAε

accepting just the strings matching that regular expression.

(ii) Given any NFAεs M1 andM2, we construct a new NFAε, Union(M1, M2) with the
property

L(Union(M1, M2)) = {u | u ∈ L(M1) or u ∈ L(M2)}.

ThusL(r1|r2) = L(Union(M1, M2)) whenL(r1) = L(M1) andL(r2) = L(M2).

(iii) Given any NFAεsM1 andM2, we construct a new NFAε, Concat(M1, M2) with the
property

L(Concat(M1, M2)) = {u1u2 | u1 ∈ L(M1) andu2 ∈ L(M2)}.

ThusL(r1r2) = L(Concat(M1, M2)) whenL(r1) = L(M1) andL(r2) = L(M2).

(iv) Given any NFAε M , we construct a new NFAε, Star(M) with the property

L(Star(M)) = {u1u2 . . . un | n ≥ 0 and eachui ∈ L(M)}.

ThusL(r∗) = L(Star(M)) whenL(r) = L(M).

Thus starting with step (i) and applying the constructions in steps (ii)–(iv) over and over
again, we eventually build NFAεs with the required property for every regular expressionr.

Put more formally, one can prove the statement

for all n ≥ 0, and for all regular expressions of size≤ n, there exists an NFAε

M such thatL(r) = L(M)

by mathematical induction onn, using step (i) for the base case and steps (ii)–(iv) for the
induction steps. Here we can take thesizeof a regular expression to be the number of
occurrences of union (−|−), concatenation (−−), or star (−∗) in it.

Step (i) Slide 20 gives NFAs whose languages of accepted strings are respectivelyL(a) =
{a} (anya ∈ Σ), L(ε) = {ε}, andL(∅) = ∅.

3.1 Finite automata from regular expressions 25

NFAs for atomic regular expressions

q0
a q1

just accepts the one-symbol string a

q0

just accepts the null string, ε

q0

accepts no strings

Slide 20

Step (ii) Given NFAεs M1 andM2, the construction ofUnion(M1, M2) is pictured on
Slide 21. First, renaming states if necessary, we assume that StatesM1

andStatesM2
are

disjoint. Then the states ofUnion(M1, M2) are all the states in eitherM1 or M2, together
with a new state, calledq0 say. The start state ofUnion(M1, M2) is thisq0 and its accepting
states are all the states that are accepting in eitherM1 or M2. Finally, the transitions of
Union(M1, M2) are given by all those in eitherM1 or M2, together with two newε-
transitions out ofq0 to the start states ofM1 andM2.

Thus if u ∈ L(M1), i.e. if we havesM1

u
⇒ q1 for someq1 ∈ AcceptM1

, then we

get q0
ε
−→ sM1

u
⇒ q1 showing thatu ∈ L(Union(M1, M2). Similarly for M2. So

L(Union(M1, M2)) contains the union ofL(M1) andL(M2). Conversely ifu is accepted by
Union(M1, M2), there is a transition sequenceq0

u
⇒ q with q ∈ AcceptM1

or q ∈ AcceptM2
.

Clearly, in either case this transition sequence has to begin with one or other of theε-
transitions fromq0, and thereafter we get a transition sequence entirely in oneor other of
M1 or M2 finishing in an acceptable state for that one. So ifu ∈ L(Union(M1, M2)), then
eitheru ∈ L(M1) or u ∈ L(M2). So we do indeed have

L(Union(M1, M2)) = {u | u ∈ L(M1) or u ∈ L(M2)}.

26 3 REGULAR LANGUAGES, I

Union(M1,M2)

sM1 M1

q0

ε

ε
sM2 M2

Set of accepting states is union of AcceptM1
and AcceptM2

.

Slide 21

Step (iii) Given NFAεs M1 andM2, the construction ofConcat(M1, M2) is pictured on
Slide 22. First, renaming states if necessary, we assume that StatesM1

andStatesM2
are

disjoint. Then the states ofConcat(M1, M2) are all the states in eitherM1 or M2. The start
state ofConcat(M1, M2) is the start state ofM1. The accepting states ofConcat(M1, M2)
are the accepting states ofM2. Finally, the transitions ofConcat(M1, M2) are given by all
those in eitherM1 or M2, together with newε-transitions from each accepting state ofM1 to
the start state ofM2 (only one such new transition is shown in the picture).

Thus if u1 ∈ L(M1) andu2 ∈ L(M2), there are transition sequencessM1

u1⇒ q1 in M1

with q1 ∈ AcceptM1
, andsM2

u2⇒ q2 in M2 with q2 ∈ AcceptM2
. These combine to yield

sM1

u1⇒ q1
ε
−→ sM2

u2⇒ q2

in Concat(M1, M2) witnessing the fact thatu1u2 is accepted byConcat(M1, M2). Con-
versely, it is not hard to see that everyv ∈ L(Concat(M1, M2)) is of this form. For any
transition sequence witnessing the fact thatv is accepted starts out in the states ofM1 but
finishes in the disjoint set of states ofM2. At some point in the sequence one of the new
ε-transitions occurs to get fromM1 to M2 and thus we can splitv asv = u1u2 with u1

accepted byM1 andu2 accepted byM2. So we do indeed have

L(Concat(M1, M2)) = {u1u2 | u1 ∈ L(M1) andu2 ∈ L(M2)}.

3.1 Finite automata from regular expressions 27

Concat(M1,M2)

sM1 M1
ε sM2 M2

Set of accepting states is AcceptM2
.

Slide 22

Step (iv) Given an NFAε M , the construction ofStar(M) is pictured on Slide 23. The
states ofStar(M) are all those ofM together with a new state, calledq0 say. The start state
of Star(M) is q0 and this is also the only accepting state ofStar(M). Finally, the transitions
of Star(M) are all those ofM together with newε-transitions fromq0 to the start state ofM
and from each accepting state ofM to q0 (only one of this latter kind of transition is shown
in the picture).

Clearly,Star(M) acceptsε (since its start state is accepting) and any concatenation of
one or more strings accepted byM . Conversely, ifv is accepted byStar(M), the occurrences
of q0 in a transition sequence witnessing this fact allow us to split v into the concatenation of
zero or more strings, each of which is accepted byM . So we do indeed have

L(Star(M)) = {u1u2 . . . un | n ≥ 0 and eachui ∈ L(M)}.

28 3 REGULAR LANGUAGES, I

Star(M)

q0
ε sM M

ε

The only accepting state of Star(M) is q0.

Slide 23

This completes the proof of part (a) of Kleene’s Theorem (Slide 19). Figure 1 shows how
the step-by-step construction applies in the case of the regular expression(a|b)∗a to produce
an NFAε M satisfyingL(M) = L((a|b)∗a). Of course an automaton with fewer states and
ε-transitions doing the same job can be crafted by hand. The point of the construction is that
it provides an automatic way of producing automata for any given regular expression.

3.2 Decidability of matching

The proof of part (a) of Kleene’s Theorem provides us with a positive answer to question (a)
on Slide 9. In other words, it provides a method that, given any stringu and regular expression
r, decides whether or notu matchesr. The method is:

• construct a DFAM satisfyingL(M) = L(r);

• beginning inM ’s start state, carry out the sequence of transitions inM corresponding
to the stringu, reaching some stateq of M (becauseM is deterministic, there is a
unique such transition sequence);

• check whetherq is accepting or not: if it is, thenu ∈ L(M) = L(r), sou matchesr;
otherwiseu /∈ L(M) = L(r), sou does not matchr .

Note. The subset construction used to convert the NFAε resulting from steps (i)–(iv) of
Section 3.1 to a DFA produces an exponential blow-up of the number of states. (PM has

3.2 Decidability of matching 29

Step of type (i): a
a

Step of type (i): b
b

Step of type (ii): a|b
a

ε

ε

b

Step of type (iv): (a|b)∗

a

ε

ε

ε

ε b

ε

Step of type (iii): (a|b)∗a

a

ε

a ε ε

ε

ε b

ε

Figure 1: Steps in constructing an NFAε for (a|b)∗a

30 3 REGULAR LANGUAGES, I

2n states ifM hasn.) This makes the method described above very inefficient. (Much more
efficient algorithms exist.)

3.3 Exercises

Exercise 3.3.1.Why can’t the automatonStar(M) required in step (iv) of Section 3.1 be
constructed simply by takingM , making its start state the only accepting state and adding
newε-transitions back from each old accepting state to its startstate?

Exercise 3.3.2.Work through the steps in Section 3.1 to construct an NFAε M satisfying
L(M) = L((ε|b)∗aab∗). Do the same for some other regular expressions.

Exercise 3.3.3.Show that any finite set of strings is a regular language.

31

4 Regular Languages, II

The aim of this section is to prove part (b) of Kleene’s Theorem (Slide 19).

4.1 Regular expressions from finite automata

Given any DFAM , we have to find a regular expressionr (over the alphabet of input symbols
of M) satisfyingL(r) = L(M). In fact we do something more general than this, as described
in the Lemma on Slide 24.1 Note that if we can find such regular expressionsrQ

q,q′ for any
choice ofQ, q, andq′, then the problem is solved. For takingQ to be the whole ofStatesM

andq to be the start state,s say, then by definition ofrQ
s,q′ , a stringu matches this regular

expression iff there is a transition sequences
u
−→∗ q′ in M . As q′ ranges over the finitely

many accepting states,q1, . . . , qk say, then we match exactly all the strings accepted byM .
In other words the regular expressionrQ

s,q1
| · · · |rQ

s,qk
has the property we want for part (b)

of Kleene’s Theorem. (In casek = 0, i.e. there areno accepting states inM , thenL(M) is
empty and so we can use the regular expression∅.)

Lemma Given an NFA M , for each subset Q ⊆ StatesM and each

pair of states q, q′ ∈ StatesM , there is a regular expression rQ
q,q′

satisfying

L(rQ
q,q′) = {u ∈ (ΣM)∗ | q

u
−→∗ q′ in M with all inter-

mediate states of the sequence

in Q}.

Hence L(M) = L(r), where r = r1| · · · |rk and

k = number of accepting states,

ri = rQ
s,qi

with Q = StatesM ,

s = start state,

qi = ith accepting state.

(In case k = 0, take r to be the regular expression ∅.)

Slide 24

Proof of the Lemma on Slide24. The regular expressionrQ
q,q′ can be constructed by induc-

tion on the number of elements in the subsetQ.

1The lemma works just as well whetherM is deterministic or non-deterministic; it also works for
NFAεs, provided we replace

u
−→

∗ by
u
⇒ (cf. Slide 16).

32 4 REGULAR LANGUAGES, II

Base case,Q is empty. In this case, for each pair of statesq, q′, we are looking for a regular
expression to describe the set of strings

{u | q
u
−→∗ q′ with no intermediate states}.

So each element of this set is either a single input symbola (if q
a
−→ q′ holds inM) or

possiblyε, in caseq = q′. If there are no input symbols that take us fromq to q′ in M , we
can simply take

r∅q,q′

def
=

{

∅ if q 6= q′

ε if q = q′.

On the other hand, if there are some such input symbols,a1, . . . , ak say, we can take

r∅q,q′

def
=

{

a1| · · · |ak if q 6= q′

a1| · · · |ak|ε if q = q′.

Induction step. Suppose we have defined the required regular expressions forall subsets
of states withn elements. IfQ is a subset withn+1 elements, choose some elementq0 ∈ Q
and consider then-element setQ \ {q0} = {q ∈ Q | q 6= q0}. Then for any pair of states
q, q′ ∈ StatesM , by inductive hypothesis we have already constructed the regular expressions

r1
def
= r

Q\{q0}
q,q′ , r2

def
= rQ\{q0}

q,q0
, r3

def
= rQ\{q0}

q0,q0
, and r4

def
= r

Q\{q0}
q0,q′ .

Consider the regular expression

r
def
= r1|r2(r3)

∗r4.

Clearly every string matchingr is in the set

{u | q
u
−→∗ q′ with all intermediate states in this sequence inQ}.

Conversely, ifu is in this set, consider the number of times the sequence of transitions
q

u
−→∗ q′ passes through stateq0. If this number is zero thenu ∈ L(r1) (by definition of

r1). Otherwise this number isk ≥ 1 and the sequence splits intok + 1 pieces: the first piece
is in L(r2) (as the sequence goes fromq to the first occurrence ofq0), the nextk − 1 pieces
are inL(r3) (as the sequence goes from one occurrence ofq0 to the next), and the last piece
is in L(r4) (as the sequence goes from the last occurrence ofq0 to q′). So in this caseu is in
L(r2(r3)

∗r4). So in either caseu is in L(r). So to complete the induction step we can define
rQ
q,q′ to be this regular expressionr = r1|r2(r3)

∗r4.

4.2 An example

Perhaps an example will help to understand the rather cleverargument in Section 4.1. The
example will also demonstrate that we do not have to pursue the inductive construction of the
regular expression to the bitter end (the base caseQ = ∅): often it is possible to find some of
the regular expressionsrQ

q,q′ one needs byad hocarguments.

4.2 An example 33

Note also that at the inductive steps in the construction of aregular expression forM
we are free to choose which stateq0 to remove from the current state setQ. A good rule of
thumb is:choose a state that disconnects the automaton as much as possible.

Example

1

a0

b
a

2

b

a

Direct inspection yields:

r
{0}
i,j 0 1 2

0

1 ∅ ε a

2 aa∗ a∗b ε

r
{0,2}
i,j 0 1 2

0 a∗ a∗b

1

2

Slide 25

As an example, consider the NFA shown on Slide 25. Since the start state is0 and this
is also the only accepting state, the language of accepted strings is that determined by the
regular expressionr{0,1,2}

0,0 . Choosing to remove state1 from the state set, we have

(3) L(r
{0,1,2}
0,0) = L(r

{0,2}
0,0 |r

{0,2}
0,1 (r

{0,2}
1,1)∗r

{0,2}
1,0).

Direct inspection shows thatL(r
{0,2}
0,0) = L(a∗) andL(r

{0,2}
0,1) = L(a∗b). To calculate

L(r
{0,2}
1,1), andL(r

{0,2}
1,0), we choose to remove state2:

L(r
{0,2}
1,1) = L(r

{0}
1,1 |r

{0}
1,2 (r

{0}
2,2)∗r

{0}
2,1)

L(r
{0,2}
1,0) = L(r

{0}
1,0 |r

{0}
1,2 (r

{0}
2,2)∗r

{0}
2,0).

These regular expressions can all be determined by inspection, as shown on Slide 25. Thus

L(r
{0,2}
1,1) = L(ε|a(ε)∗(a∗b))

and it’s not hard to see that this is equal toL(ε|aa∗b); and

L(r
{0,2}
1,0) = L(∅|a(ε)∗(aa∗))

34 4 REGULAR LANGUAGES, II

which is equal toL(aaa∗). Substituting all these values into (3), we get

L(r
{0,1,2}
0,0) = L(a∗|a∗b(ε|aa∗b)∗aaa∗).

So a∗|a∗b(ε|aa∗b)∗aaa∗ is a regular expression whose matching strings comprise the
language accepted by the NFA on Slide 25. (Clearly, one couldsimplify this to a smaller, but
equivalent regular expression (in the sense of Slide 8), butwe do not bother to do so.)

4.3 Complement and intersection of regular languages

We saw in Section 3.2 that part (a) of Kleene’s Theorem allowsus to answer question (a)
on Slide 9. Now that we have proved the other half of the theorem, we can say more about
question (b) on that slide.

Complementation Recall that on page 8 we mentioned that for each regular expressionr
over an alphabetΣ, we can find a regular expression∼(r) that determines the complement
of the language determined byr:

L(∼(r)) = {u ∈ Σ∗ | u /∈ L(r)}.

As we now show, this is a consequence of Kleene’s Theorem.

Not(M)

• StatesNot(M)
def
= StatesM

• ΣNot(M)
def
= ΣM

• transitions of Not(M) = transitions of M

• start state of Not(M) = start state of M

• AcceptNot(M) = {q ∈ StatesM | q /∈ AcceptM}.

Provided M is a deterministic finite automaton, then u is accepted by

Not(M) iff it is not accepted by M :

L(Not(M)) = {u ∈ Σ∗ | u /∈ L(M)}.

Slide 26

4.3 Complement and intersection of regular languages 35

Lemma 4.3.1. If L is a regular language over alphabetΣ, then its complement{u ∈ Σ∗ |
u /∈ L} is also regular.

Proof. SinceL is regular, by definition there is a DFAM such thatL = L(M). LetNot(M)
be the DFA constructed fromM as indicated on Slide 26. Then{u ∈ Σ∗ | u /∈ L} is the set
of strings accepted byNot(M) and hence is regular.

Given a regular expressionr, by part (a) of Kleene’s Theorem there is a DFAM such
thatL(r) = L(M). Then by part (b) of the theorem applied to the DFANot(M), we can
find a regular expression∼(r) so thatL(∼(r)) = L(Not(M)). Since

L(Not(M)) = {u ∈ Σ∗ | u /∈ L(M)} = {u ∈ Σ∗ | u /∈ L(r)},

this∼(r) is the regular expression we need for the complement ofr.

Note. The construction given on Slide 26 can be applied to a finite automatonM whether or
not it is deterministic. However, forL(Not(M)) to equal{u ∈ Σ∗ | u /∈ L(M)} we need
M to be deterministic. See Exercise 4.4.2.

Intersection As another example of the power of Kleene’s Theorem, given regular expres-
sionsr1 andr2 we can show the existence of a regular expression(r1&r2) with the property:

u matches(r1&r2) iff u matchesr1 andu matchesr2.

This can be deduced from the following lemma.

Lemma 4.3.2. If L1 and L2 are a regular languages over an alphabetΣ, then their
intersection

L1 ∩ L2
def
= {u ∈ Σ∗ | u ∈ L1 andu ∈ L2}

is also regular.

Proof. Since L1 and L2 are regular languages, there are DFAM1 and M2 such that
Li = L(Mi) (i = 1, 2). Let And(M1, M2) be the DFA constructed fromM1 andM2 as on
Slide 27. It is not hard to see thatAnd(M1, M2) has the property that anyu ∈ Σ∗ is accepted
by And(M1, M2) iff it is accepted by bothM1 andM2. ThusL1 ∩L2 = L(And(M1, M2))
is a regular language.

36 4 REGULAR LANGUAGES, II

And(M1,M2)

• states of And(M1,M2) are all ordered pairs (q1, q2) with

q1 ∈ StatesM1
and q2 ∈ StatesM2

• alphabet of And(M1,M2) is the common alphabet of M1 and M2

• (q1, q2)
a
−→ (q′1, q

′
2) in And(M1,M2) iff q1

a
−→ q′1 in M1 and

q2
a
−→ q′2 in M2

• start state of And(M1,M2) is (sM1
, sM2

)

• (q1, q2) accepting in And(M1,M2) iff q1 accepting in M1 and q2

accepting in M2.

Slide 27

Thus given regular expressionsr1 andr2, by part (a) of Kleene’s Theorem we can find
DFA M1 andM2 with L(ri) = L(Mi) (i = 1, 2). Then by part (b) of the theorem we can
find a regular expressionr1&r2 so thatL(r1&r2) = L(And(M1, M2)). Thusu matches
r1&r2 iff And(M1, M2) acceptsu, iff both M1 andM2 acceptu, iff u matches bothr1 and
r2, as required.

4.4 Exercises

Exercise 4.4.1.Use the construction in Section 4.1 to find a regular expression for the DFA
M whose state set is{0, 1, 2}, whose start state is0, whose only accepting state is2, whose
alphabet of input symbols is{a, b}, and whose next-state function is given by the following
table.

δM : a b
0 1 2
1 2 1
2 2 1

Exercise 4.4.2.The constructionM 7→ Not(M) given on Slide 26 applies to both DFA and
NFA; but for L(Not(M)) to be the complement ofL(M) we needM to be deterministic.
Give an example of an alphabetΣ and a NFAM with set of input symbolsΣ, such that
{u ∈ Σ∗ | u /∈ L(M)} is not the same set asL(Not(M)).

4.4 Exercises 37

Exercise 4.4.3. Let r = (a|b)∗ab(a|b)∗. Find a complement forr over the alphabet
Σ = {a, b}, i.e. a regular expressions∼(r) over the alphabetΣ satisfyingL(∼(r)) = {u ∈
Σ∗ | u /∈ L(r)}.

Tripos questions 2003.2.9 2000.2.7 1995.2.20 1994.3.3 1988.2.3

38 4 REGULAR LANGUAGES, II

39

5 The Pumping Lemma

In the context of programming languages, a typical example of a regular language (Slide 19)
is the set of all strings of characters which are well-formedtokens(basic keywords, identifiers,
etc) in a particular programming language, Java say. By contrast, the set of all strings which
represent well-formed Javaprogramsis a typical example of a language that is not regular.
Slide 28 gives some simpler examples of non-regular languages. For example, there is no
way to use a search based on matching a regular expression to find all the palindromes in a
piece of text (although of course there are other kinds of algorithm for doing this).

Examples of non-regular languages

• The set of strings over {(,), a, b, . . . , z} in which the parentheses

‘(’ and ‘)’ occur well-nested.

• The set of strings over {a, b, . . . , z} which are palindromes,

i.e. which read the same backwards as forwards.

• {anbn | n ≥ 0}

Slide 28

The intuitive reason why the languages listed on Slide 28 arenot regular is that a machine
for recognising whether or not any given string is in the language would needinfinitelymany
different states (whereas a characteristic feature of the machines we have been using is that
they have onlyfinitelymany states). For example, to recognise that a string is of the formanbn

one would need to remember how manyas had been seen before the firstb is encountered,
requiring countably many states of the form ‘justseenn as’. This section make this intuitive
argument rigorous and describes a useful way of showing thatlanguages such as these are
not regular.

The fact that a finite automaton does only have finitely many states means that as we look
at longer and longer strings that it accepts, we see a certainkind of repetition—thepumping
lemma propertygiven on Slide 29.

40 5 THE PUMPING LEMMA

The Pumping Lemma

For every regular language L, there is a number ℓ ≥ 1 satisfying the

pumping lemma property :

all w ∈ L with length(w) ≥ ℓ can be expressed as a concatenation of

three strings, w = u1vu2, where u1, v and u2 satisfy:

• length(v) ≥ 1
(i.e. v 6= ε)

• length(u1v) ≤ ℓ

• for all n ≥ 0, u1v
nu2 ∈ L

(i.e. u1u2 ∈ L, u1vu2 ∈ L [but we knew that anyway], u1vvu2 ∈ L,

u1vvvu2 ∈ L, etc).

Slide 29

5.1 Proving the Pumping Lemma

SinceL is regular, it is equal to the setL(M) of strings accepted by some DFAM . Thenwe
can take the numberℓ mentioned on Slide29 to be the number of states inM . For suppose
w = a1a2 . . . an with n ≥ ℓ. If w ∈ L(M), then there is a transition sequence as shown at
the top of Slide 30. Thenw can be split into three pieces as shown on that slide. Note that
by choice ofi andj, length(v) = j − i ≥ 1 andlength(u1v) = j ≤ ℓ. So it just remains
to check thatu1v

nu2 ∈ L for all n ≥ 0. As shown on the lower half of Slide 30, the string
v takes the machineM from stateqi back to the same state (sinceqi = qj). So for anyn,
u1v

nu2 takes us from the initial statesM = qo to qi, thenn times round the loop fromqi to
itself, and then fromqi to qn ∈ AcceptM . Therefore for anyn ≥ 0, u1v

nu2 is accepted by
M , i.e.u1v

nu2 ∈ L.

Note. In the above construction it is perfectly possible thati = 0, in which caseu1 is the
null-string,ε.

5.2 Using the Pumping Lemma 41

If n ≥ ℓ = number of states of M , then in

sM = q0
a1−→ q1

a2−→ q2 · · ·
aℓ−→ qℓ

︸ ︷︷ ︸

ℓ+1 states

· · ·
an−→ qn ∈ AcceptM

q0, . . . , qℓ can’t all be distinct states. So qi = qj for some

0 ≤ i < j ≤ ℓ. So the above transition sequence looks like

sM = q0
u1−→∗ qi

v

∗
= qj

u2−→∗ qn ∈ AcceptM

where

u1
def
= a1 . . . ai v

def
= ai+1 . . . aj u2

def
= aj+1 . . . an.

Slide 30

Remark 5.1.1. One consequence of the pumping lemma property ofL andℓ is that if there
is any stringw in L of length≥ ℓ, thenL contains arbitrarily long strings. (We just ‘pump
up’ w by increasingn.)

If you did Exercise 3.3.3, you will know that ifL is afiniteset of strings then it is regular.
In this case, what is the numberℓ with the property on Slide 29? The answer is that we can
take anyℓ strictly greater than the length of any string in the finite set L. Then the Pumping
Lemma property is trivially satisfied because there are now ∈ L with length(w) ≥ ℓ for
which we have to check the condition!

5.2 Using the Pumping Lemma

The Pumping Lemma (Slide 5.1) says that every regular language has a certain property—
namely that there exists a numberℓ with the pumping lemma property. So to show that
a languageL is not regular, it suffices to show that noℓ ≥ 1 possesses the pumping
lemma property for the languageL. Because the pumping lemma property involves quite a
complicated alternation of quantifiers, it will help to spell out explicitly what is its negation.
This is done on Slide 31. Slide 32 gives some examples.

42 5 THE PUMPING LEMMA

How to use the Pumping Lemma to prove

that a language L is not regular

For each ℓ ≥ 1, find some w ∈ L of length ≥ ℓ so that

(†)







no matter how w is split into three, w = u1vu2,

with length(u1v) ≤ ℓ and length(v) ≥ 1,

there is some n ≥ 0 for which u1v
nu2 is not in L.

Slide 31

Examples

(i) L1
def
= {anbn | n ≥ 0} is not regular.

[For each ℓ ≥ 1, aℓbℓ ∈ L1 is of length ≥ ℓ and has property (†) on

Slide 31.]

(ii) L2
def
= {w ∈ {a, b}∗ | w a palindrome} is not regular.

[For each ℓ ≥ 1, aℓbaℓ ∈ L1 is of length ≥ ℓ and has property (†).]

(iii) L3
def
= {ap | p prime} is not regular.

[For each ℓ ≥ 1, we can find a prime p with p > 2ℓ and then ap ∈ L3 has

length ≥ ℓ and has property (†).]

Slide 32

5.2 Using the Pumping Lemma 43

Proof of the examples on Slide32. We use the method on Slide 31.

(i) For anyℓ ≥ 1, consider the stringw = aℓbℓ. It is in L1 and has length≥ ℓ. We show
that property (†) holds for thisw. For supposew = aℓbℓ is split asw = u1vu2 with
length(u1v) ≤ ℓ and length(v) ≥ 1. Thenu1v must consist entirely ofas, sou1 = ar

andv = as say, and henceu2 = aℓ−r−sbℓ. Then the casen = 0 of u1v
nu2 is not inL1 since

u1v
0u2 = u1u2 = ar(aℓ−r−sbℓ) = aℓ−sbℓ

andaℓ−sbℓ /∈ L1 becauseℓ − s 6= ℓ (sinces = length(v) ≥ 1).

(ii) The argument is very similar to that for example (i), butstarting with the palindrome
w = aℓbaℓ. Once again, then = 0 of u1v

nu2 yields a stringu1u2 = aℓ−sbaℓ which is
not a palindrome (becauseℓ − s 6= ℓ).

(iii) Given ℓ ≥ 1, since there are infinitely many primesp, we can certainly find one satisfying
p > 2ℓ. I claim thatw = ap has property (†). For supposew = ap is split asw = u1vu2

with length(u1v) ≤ ℓ andlength(v) ≥ 1. Lettingr
def
= length(u1) ands

def
= length(v), so

thatlength(u2) = p − r − s, we have

u1v
p−su2 = aras(p−s)ap−r−s = asp−s2+p−s = a(s+1)(p−s).

Now (s + 1)(p − s) is not prime, becauses + 1 > 1 (sinces = length(v) ≥ 1) and
p − s > 2ℓ − ℓ = ℓ ≥ 1 (sincep > 2ℓ by choice, ands ≤ r + s = length(u1v) ≤ ℓ).
Thereforeu1v

nu2 /∈ L3 whenn = p − s.

Remark 5.2.1. Unfortunately, the method on Slide 31 can’t cope with every non-regular
language. This is because the pumping lemma property is a necessary, but not a sufficient
condition for a language to be regular. In other words there do exist languagesL for which a
numberℓ ≥ 1 can be found satisfying the pumping lemma property on Slide 29, but which
nonetheless, are not regular. Slide 33 gives an example of such anL.

44 5 THE PUMPING LEMMA

Example of a non-regular language

that satisfies the ‘pumping lemma property’

L
def
= {cmanbn | m ≥ 1 and n ≥ 0}

∪

{ambn | m,n ≥ 0}

satisfies the pumping lemma property on Slide 29 with ℓ = 1.

[For any w ∈ L of length ≥ 1, can take u1 = ε, v = first letter of w,

u2 = rest of w.]

But L is not regular. [See Exercise 5.4.2.]

Slide 33

5.3 Decidability of language equivalence

The proof of the Pumping Lemma provides us with a positive answer to question (c) on
Slide 9. In other words, it provides a method that, given any two regular expressionsr1 and
r2 (over the same alphabetΣ) decides whether or not the languages they determine are equal,
L(r1) = L(r2).

First note that this problem can be reduced todeciding whether or not the set of
strings accepted by any given DFA is empty.For L(r1) = L(r2) iff L(r1) ⊆ L(r2) and
L(r2) ⊆ L(r1). Using the results about complementation and intersectionin Section 4.3, we
can reduce the question of whether or notL(r1) ⊆ L(r2) to the question of whether or not
L(r1&(∼r2)) = ∅, since

L(r1) ⊆ L(r2) iff L(r1) ∩ {u ∈ Σ∗ | u /∈ L(r2)} = ∅.

By Kleene’s theorem, givenr1 andr2 we can first construct regular expressionsr1&(∼r2)
and r2&(∼r1), then construct DFAsM1 andM2 such thatL(M1) = L(r1&(∼r2)) and
L(M2) = L(r2&(∼r1)). Thenr1 andr2 are equivalent iff the languages accepted byM1

and byM2 are both empty.
The fact that, given any DFAM , one can decide whether or notL(M) = ∅ follows from

the Lemma on Slide 34. For then, to check whether or notL(M) is empty, we just have to
check whether or not any of the finitely many strings of lengthless than the number of states
of M is accepted byM .

5.4 Exercises 45

Lemma If a DFA M accepts any string at all, it accepts one whose

length is less than the number of states in M .

Proof. Suppose M has ℓ states (so ℓ ≥ 1). If L(M) is not empty, then

we can find an element of it of shortest length, a1a2 . . . an say (where

n ≥ 0). Thus there is a transition sequence

sM = q0
a1−→ q1

a2−→ q2 · · ·
an−→ qn ∈ AcceptM .

If n ≥ ℓ, then not all the n + 1 states in this sequence can be distinct

and we can shorten it as on Slide 30. But then we would obtain a strictly

shorter string in L(M) contradicting the choice of a1a2 . . . an. So we

must have n < ℓ.

Slide 34

5.4 Exercises

Exercise 5.4.1.Show that the first language mentioned on Slide 28 is not regular.

Exercise 5.4.2.Show that there is no DFAM for whichL(M) is the language on Slide 33.
[Hint: argue by contradiction. If there were such anM , consider the DFAM ′ with the same
states asM , with alphabet of input symbols just consisting ofa andb, with transitions all
those ofM which are labelled bya or b, with start stateδM (sM , c) (wheresM is the start
state ofM), and with the same accepting states asM . Show that the language accepted by
M ′ has to be{anbn | n ≥ 0} and deduce that no suchM can exist.]

Exercise 5.4.3.Check the claim made on Slide 33 that the language mentioned there satisfies
the pumping lemma property of Slide 29 withℓ = 1.

Tripos questions 2006.2.8 2004.2.9 2002.2.9 2001.2.7 1999.2.7 1998.2.7
1996.2.1(j) 1996.2.8 1995.2.27 1993.6.12

46 5 THE PUMPING LEMMA

47

6 Grammars

We have seen that regular languages can be specified in terms of finite automata that accept
or reject strings, and equivalently, in terms of patterns, or regular expressions, which strings
are to match. This section briefly introduces an alternative, ‘generative’ way of specifying
languages.

6.1 Context-free grammars

Some production rules for ‘English’ sentences

SENTENCE → SUBJECT VERB OBJECT

SUBJECT → ARTICLE NOUNPHRASE

OBJECT → ARTICLE NOUNPHRASE

ARTICLE → a

ARTICLE → the

NOUNPHRASE → NOUN

NOUNPHRASE → ADJECTIVE NOUN

ADJECTIVE → big

ADJECTIVE → small

NOUN → cat

NOUN → dog

VERB → eats

Slide 35

Slide 35 gives an example of a context-free grammar for generating strings over the seven
element alphabet

Σ
def
= {a, big, cat, dog, eats, small, the}.

The elements of the alphabet are calledterminals for reasons that will emerge below. The
grammar uses finitely many extra symbols, callednon-terminals, namely the eight symbols

ADJECTIVE, ARTICLE, NOUN, NOUNPHRASE, OBJECT, SENTENCE, SUBJECT, VERB.

One of these is designated as thestart symbol. In this case it isSENTENCE (because we are
interested in generating sentences). Finally, the context-free grammar contains a finite set
of production rules, each of which consists of a pair, writtenx → u, wherex is one of the
non-terminals andu is a string of terminals and non-terminals. In this case there are twelve
productions, as shown on the slide.

48 6 GRAMMARS

The idea is that we begin with the start symbolSENTENCE and use the productions to
continually replace non-terminal symbols by strings. At successive stages in this process we
have a string which may contain both terminals and non-terminals. We choose one of the
non-terminals in the string and a production which has that non-terminal as its left-hand side.
Replacing the non-terminal by the right-hand side of the production we obtain the next string
in the sequence, orderivationas it is called. The derivation stops when we obtain a string
containing only terminals. The set of strings overΣ that may be obtained in this way from
the start symbol is by definition thelanguage generated the context-free grammar.

A derivation

SENTENCE → SUBJECT VERB OBJECT

→ ARTICLE NOUNPHRASE VERB OBJECT

→ the NOUNPHRASE VERB OBJECT

→ the NOUNPHRASE eats OBJECT

→ the ADJECTIVE NOUN eats OBJECT

→ the big NOUN eats OBJECT

→ the big cat eats OBJECT

→ the big cat eats ARTICLE NOUNPHRASE

→ the big cat eats a NOUNPHRASE

→ the big cat eats a ADJECTIVE NOUN

→ the big cat eats a small NOUN

→ the big cat eats a small dog

Slide 36

For example, the string

the big cat eats a small dog

is in this language, as witnessed by the derivation on Slide 36, in which we have indicated
left-hand sides of production rules by underlining. On the other hand, the string

(4) the dog a

is not in the language, because there is no derivation fromSENTENCE to the string. (Why?)

Remark 6.1.1. The phrase ‘context-free’ refers to the fact that in a derivation we are allowed
to replace an occurrence of a non-terminal by the right-handside of a production without
regard to the strings that occur on either side of the occurrence (its ‘context’). A more general
form of grammar (a ‘type0 grammar’ in the Chomsky hierarchy—see page 257 of Kozen’s

6.2 Backus-Naur Form 49

book, for example) has productions of the formu → v whereu andv are arbitrary strings of
terminals and non-terminals. For example a production of the form

a ADJECTIVE cat → dog

would allow occurrences of ‘ADJECTIVE’ that occur between ‘a’ and ‘cat’ to be replaced
by ‘dog’, deleting the surrounding symbols at the same time. This kind of production is not
permitted in a context-free grammar.

Example of Backus-Naur Form (BNF)

Terminals:

x ′ + − ∗ ()

Non-terminals:

id op exp

Start symbol:

exp

Productions:

id ::= x | id′

op ::= + | − | ∗

exp ::= id | exp op exp | (exp)

Slide 37

6.2 Backus-Naur Form

It is quite likely that the same non-terminal will appear on the left-hand side of several
productions in a context-free grammar. Because of this, it is common to use a more compact
notation for specifying productions, calledBackus-Naur Form (BNF), in which all the
productions for a given non-terminal are specified together, with the different right-hand
sides being separated by the symbol ‘|’. BNF also tends to use the symbol ‘::=’ rather than
‘→’ in the notation for productions. An example of a context-free grammar in BNF is given
on Slide 37. Written out in full, the context-free grammar onthis slide has eight productions,

50 6 GRAMMARS

namely:

id → x

id → id′

op → +

op → −

op → ∗

exp → id

exp → exp op exp

exp → (exp)

The language generated by this grammar is supposed to represent certain arithmetic expres-
sions. For example

(5) x + (x′′)

is in the language, but

(6) x + (x)′′

is not. (See Exercise 6.4.2.)

A context-free grammar for the language

{anbn | n ≥ 0}

Terminals:

a b

Non-terminal:

I

Start symbol:

I

Productions:

I ::= ε | aIb

Slide 38

6.3 Regular grammars 51

6.3 Regular grammars

A languageL over an alphabetΣ is context-freeiff L is the set of strings generated by
some context-free grammar (with set of terminalsΣ). The context-free grammar on Slide 38
generates the language{anbn | n ≥ 0}. We saw in Section 5.2 that this is not a regular
language. So the class of context-free languages is not the same as the class of regular
languages. Nevertheless, as Slide 39 points out, every regular language is context-free. For
the grammar defined on that slide clearly has the property that derivations from the start
symbol to a string inΣ∗ must be of the form of a finite number of productions of the first
kind followed by a single production of the second kind, i.e.

sM → a1q1 → a1a2q2 → · · · → a1a2 . . . anqn → a1a2 . . . an

where inM the following transition sequence holds

sM
a1−→ q1

a2−→ · · ·
an−−→ qn ∈ AcceptM .

Thus a string is in the language generated by the grammar iff it is accepted byM .

Every regular language is context-free

Given a DFA M , the set L(M) of strings accepted by M can be

generated by the following context-free grammar:

set of terminals = ΣM

set of non-terminals = StatesM

start symbol = start state of M

productions of two kinds:

q → aq′ whenever q
a
−→ q′ in M

q → ε whenever q ∈ AcceptM

Slide 39

52 6 GRAMMARS

Definition A context-free grammar is regular iff all its productions are of

the form

x → uy

or

x → u

where u is a string of terminals and x and y are non-terminals.

Theorem

(a) Every language generated by a regular grammar is a regular

language (i.e. is the set of strings accepted by some DFA).

(b) Every regular language can be generated by a regular grammar.

Slide 40

It is possible to single out context-free grammars of a special form, calledregular (or
right linear), which do generate regular languages. The definition is on Slide 40. Indeed, as
the theorem on that slide states, this type of grammar generatesall possible regular languages.

Proof of the Theorem on Slide40. First note that part (b) of the theorem has already been
proved, because the context-free grammar generatingL(M) on Slide 39 is a regular grammar
(of a special kind).

To prove part (a), given a regular grammar we have to construct a DFA M whose set
of accepted strings coincides with the strings generated bythe grammar. By the Subset
Construction (Theorem on Slide 18), it is enough to construct an NFAε with this property.
This makes the task much easier. The construction is illustrated on Slide 41. We take the
states ofM to be the non-terminals, augmented by some extra states described below. Of
course the alphabet of input symbols ofM should be the set of terminal symbols of the
grammar. The start state is the start symbol. Finally, the transitions and the accepting states
of M are defined as follows.

(i) For each production of the formq → uq′ with length(u) ≥ 1, sayu = a1a2 . . . an with
n ≥ 1, we addn − 1 fresh statesq1, q2, . . . , qn−1 to the automaton and transitions

q
a1−→ q1

a2−→ q2
a3−→ · · · qn−1

an−−→ q′.

(ii) For each production of the formq → uq′ with length(u) = 0, i.e. with u = ε, we add an
ε-transition

q
ε
−→ q′.

6.4 Exercises 53

(iii) For each production of the formq → u with length(u) ≥ 1, sayu = a1a2 . . . an with n ≥ 1,
we addn fresh statesq1, q2, q3, . . . , qn to the automaton and transitions

q
a1−→ q1

a2−→ q2
a3−→ q3 · · ·

an−−→ qn.

Moreover we make the stateqn accepting.

(iv) For each production of the formq → u with length(u) = 0, i.e. withu = ε, we do not add
in any new states or transitions, but we do makeq an accepting state.

If we have a transition sequence inM of the form sM
u
⇒ q with q ∈ AcceptM , we

can divide it up into pieces according to where non-terminals occur and then convert each
piece into a use of one of the production rules, thereby forming a derivation ofu in the
grammar. Reversing this process, every derivation of a string of terminals can be converted
into a transition sequence in the automaton from the start state to an accepting state. Thus
this NFAεdoes indeed accept exactly the set of strings generated by the given regular
grammar.

Example of the construction used

in the proof of the Theorem on Slide 40

regular grammar:

S→abX

X→bbY

Y →X

X→a

Y →ε

(start symbol = S)

 NFAε:

S

a

Y

ε

q1
b

X
b

a

q2

b

q3

Slide 41

6.4 Exercises

Exercise 6.4.1.Why is the string (4) not in the language generated by the context-free
grammar in Section 6.1?

54 6 GRAMMARS

Exercise 6.4.2.Give a derivation showing that (5) is in the language generated by the
context-free grammar on Slide 37. Prove that (6) is not in that language. [Hint: show that
if u is a string of terminals and non-terminals occurring in a derivation of this grammar and
that ‘′’ occurs inu, then it does so in a substring of the formv′, or v′′, or v′′′, etc., wherev is
eitherx or id.]

Exercise 6.4.3.Give a context-free grammar generating all the palindromesover the alphabet
{a, b} (cf. Slide 28).

Exercise 6.4.4.Give a context-free grammar generating all the regular expressions over the
alphabet{a, b}.

Exercise 6.4.5.Using the construction given in the proof of part (a) of the Theorem on
Slide 40, convert the regular grammar with start symbolq0 and productions

q0 → ε

q0 → abq0

q0 → cq1

q1 → ab

into an NFAεwhose language is that generated by the grammar.

Exercise 6.4.6.Is the language generated by the context-free grammar on Slide 35 a regular
language? What about the one on Slide 37?

Tripos questions 2008.2.8 2005.2.9 2002.2.1(d) 1997.2.7 1996.2.1(k)
1994.4.3

