Lecture Notes on

Regular Languages
and Finite Automata

for Part 1A of the Computer Science Tripos

Marcelo Fiore
Cambridge University Computer Laboratory

First Edition 1998.
Revised 1999, 2000, 2001, 2002, 2003, 2005, 2006, 2007, 2008, 2010.

© 2010 A. M. Pitts

Contents

Learning Guide i
1 Regular Expressions 1
1.1 Alphabets, strings, andlanguages 1
1.2 Patternmatching 4
1.3 Some questions aboutlanguages 6
1.4 EXEICISES i i i e e e e e 8
2 Finite State Machines 11
2.1 Finiteautomata 11
2.2 Determinism, non-determinism, apdransitions 14
2.3 Asubsetconstruction 17
2.4 SUMMAIY . . . o o e e e e e 20
25 EXercises 20
3 Regular Languages, | 23
3.1 Finite automata from regularexpressions. 23
3.2 Decidabilityofmatching 28
3.3 EXxercises 30
4 Regular Languages, Il 31
4.1 Regular expressions from finite automata 31
4.2 Anexample L e 32
4.3 Complement and intersection of regular languages 34
4.4 EXEICISES . . . o v o i e 36
5 The Pumping Lemma 39
5.1 Provingthe PumpingLemma 40
5.2 Usingthe PumpingLemma 14
5.3 Decidability of language equivalence 44
5.4 EXEICISES o i i 45
6 Grammars 47
6.1 Context-freegrammars a7
6.2 Backus-NaurForm 49
6.3 Regulargrammars. 15

6.4 EXErICISES o s 53

Learning Guide

The notes are designed to accompany six lectures on regmignages and finite automata
for Part IA of the Cambridge University Computer Sciencepds. The aim of this short
course will be to introduce the mathematical formalisms oitdi state machines, regular
expressions and grammars, and to explain their appliatmocomputer languages. As such,
it covers some basic theoretical material which Every Camp6&cientist Should Know.
Direct applications of the course material occur in theaasi CST courses on compilers.
Further and related developments will be found in the CST BacoursesComputation
Theory andSemantics of Programming Languagesnd the CST Part Il courseopics in
Concurrency.

This course contains the kind of material that is best lehtheugh practice. The books
mentioned below contain a large number of problems of vargegrees of difficulty, and
some contain solutions to selected problems. A few exey@se given at the end of each
section of these notes and relevant past Tripos questiensdicated there. At the end
of the course students should be able to explain how to cobegéween the three ways of
representing regular sets of strings introduced in thessyuand be able to carry out such
conversions by hand for simple cases. They should also leetalgrove whether or not a
given set of strings is regular.

Recommended books Textbooks which cover the material in this course also tend t
cover the material you will meet in the CST Part IB courseCamputation Theory and
Complexity Theory, and the theory underlying parsing in various courses onpdens.
There is a large number of such books. Three recommendechomésted below.

e J. E. Hopcroft, R. Motwani and J. D. Ullmamntroduction to Automata Theory,
Languages, and Computation, Second Edifidddison-Wesley, 2001).

e D. C. KozenAutomata and ComputabilifBpringer-Verlag, New York, 1997).

e T. A. Sudkamp,Languages and Machingg\ddison-Wesley Publishing Company,
Inc., 1988).

Note The material in these notes has been drawn from severatatiffeources, including
the books mentioned above and previous versions of thiseday the author and by others.
Any errors are of course all the author’s own work. A list ofreztions will be available
from the course web page. Please take time to fill out therenkicture feedback form.

Marcelo Fiore
Marcelo.Fiore@cl.cam.ac.uk

1 Regular Expressions

Doubtless you have used pattern matching in the commaedshells of various operating
systems (Slide 1) and in the search facilities of text edité&xnother important example of
the same kind is the ‘lexical analysis’ phase in a compilemdpuwhich the text of a program
is divided up into the allowed tokens of the programming laage. The algorithms which
implement such pattern-matching operations make use afidklien of afinite automaton
(which is Greeklish foffinite state machine This course reveals (some of!) the beautiful
theory of finite automata (yes, that is the plural of ‘autoomdtand their use for recognising
when a particular string matches a particular pattern.

Pattern matching

What happens if, at a Unix/Linux shell prompt, you type

1s %

and press return?

Suppose the current directory contains files called regfla.tex,
regfla.aux, regfla.log, regfla.dvi, and (strangely) .aux. What
happens if you type

1ls x.aux

and press return?

Slide 1

1.1 Alphabets, strings, and languages

The purpose of Section 1 is to introduce a particular languag patterns, calledegular
expressionsand to formulate some important problems to do with patteatching which
will be solved in the subsequent sections. But first, heremsesnotation and terminology to
do with character strings that we will be using throughoetdburse.

1 REGULAR EXPRESSIONS

Alphabets

An alphabet is specified by giving a finite set, ., whose elements are
called symbols . For us, any set qualifies as a possible alphabet, so long
as it is finite.

Examples:
¥ =40,1,2,3,4,5,6,7,8,9} — 10-element set of decimal digits.
Yo = {a, b,c,...,x,y, z} — 26-element set of lower-case characters of the

English language.
Y3 =1{5]S C X} —2'0element set of all subsets of the alphabet of
decimal digits.

Non-example:
N={0,1,2,3,...} — set of all non-negative whole numbers is not an
alphabet, because it is infinite.

Slide 2

Strings over an alphabet

A string of length 7 (> 0) over an alphabet Y. is just an ordered n-tuple
of elements of X2, written without punctuation.

Example: if ¥ = {a, b, c}, then a, ab, aac, and bbac are strings over X of
lengths one, two, three and four respectively.

def . .
Y* = setofall strings over . of any finite length.

N.B. there is a unique string of length zero over 3, called the null string
(or empty string) and denoted (no matter which X2 we are talking
about).

Slide 3

1.1 Alphabets, strings, and languages 3

Concatenation of strings

The concatenation of two strings u, v € 2™ is the string uv obtained by
joining the strings end-to-end.

Examples: If u = ab, v = ra and w = cad, then vu = raab, uu = abab
and wv = cadra.

This generalises to the concatenation of three or more strings.
E.g. uvwuv = abracadabra.

Slide 4

Slides 2 and 3 define the notions ofaphabety, and the seE* of finite stringsover an
alphabet. The length of a stringwill be denoted byength(u). Slide 4 defines the operation
of concatenationof strings. We make no notational distinction between a symake > and
the corresponding string of length one ov&rso X can be regarded as a subsetit Note
that>* is never empty—it always contains thall string, ¢, the unique string of length zero.
Note also that for any, v, w € ¥*

ue =u=cu and (uww)w =uvw = u(vw)
andlength(uv) = length(u) 4 length(v).
Example 1.1.1. Examples of2* for different::

(i) If ¥ ={a}, thenX* contains

£, a,aa, aaa, aaad, . . .

(i) If ¥ ={a,b}, thenX* contains
g,a,b,aa,ab, ba,bb, aaa, aab, aba, abb, baa, bab, bba, bbb, . . .

(iii) If X = 0 (the empty set— the unique set with no elements), thEh = {c}, the set just
containing the null string.

4 1 REGULAR EXPRESSIONS

1.2 Pattern matching

Slide 5 defines the patterns, mgular expressionsover an alphabet that we will use.
Each such regular expression,represents a whole set (possibly an infinite set) of strings
in ¥* thatmatch r. The precise definition of this matching relation is givenSiide 6. It
might seem odd to include a regular expresdidhat is matched by no strings at all—but it
is technically convenient to do so. Note that the regularesgiore is in fact equivalent to

(¢*, in the sense that a stringmatched)* iff it matchese (iff u = ¢).

Regular expressions over an alphabet >

each symbol @ € Y is a regular expression

€ is a regular expression

() is a regular expression

if and s are regular expressions, then so is (7s)

if 7 and s are regular expressions, then so is s
e if 7 is a regular expression, then so is (7)*

Every regular expression is built up inductively, by finitely many
applications of the above rules.

(N.B. we assume ¢, (), (,), |, and * are not symbols in 3.)

Slide 5

Remark 1.2.1(Binding precedence in regular expressionsg)the definition on Slide 5 we
assume implicitly that the alphabBtdoes not contain the six symbols

e 0 () [~

Then, concretely speaking, the regular expressions®verm a certain set of strings over
the alphabet obtained by adding these six symbols.toHowever it makes things more
readable if we adopt a slightly more abstract syntax, drogpps many brackets as possible
and using the convention that

—* binds more tightly than- —, binds more tightly than-|—.

So, for exampley|st* meangr|s(t)*), not(r|s)(t)*, or ((r|st))*, etc.

1.2 Pattern matching 5

Matching strings to regular expressions

u matches a € X iffu = a

u matches e iffu = ¢

no string matches ()

u matches r|s iff u matches either 7 or s

e u matches rs iff it can be expressed as the concatenation of two
strings, v = vw, with v matching r and w matching s

e 1 matches r* iff either u = &, or u matches r, or u can be
expressed as the concatenation of two or more strings, each of which
matches r

Slide 6

The definition of &4 matches*’ on Slide 6 is equivalent to saying

for somen > 0, u can be expressed as a concatenation strings,u =
ujus . . . Uy, Where eachy; matches .

The caser = 0 just means thai = ¢ (soe always matches"); and the case = 1 just means
thatu matches- (so any string matching also matches*). For example, i2 = {a, b, ¢}
andr = ab, then the strings matching are

g, ab, abab, ababab, etc

Note that we didn’t include a regular expression for thedccurring in the UNIX
examples on Slide 1. Howevewnce we know which alphabet we are referring b =
{ay, a2, ...,a,} say, we can get the effect efusing the regular expression

(a1|a2\ N |an)*

which is indeed matched by any stringhiri (because |as| . . . |a,, is matched by any symbol
in X).

6 1 REGULAR EXPRESSIONS

Examples of matching, with 3 = {0, 1}

e 0|1 is matched by each symbol in

e 1(0]1)* is matched by any string in X* that starts with a ‘1’

e ((0[1)(0[1))* is matched by any string of even length in >*

e (0/1)*(0]|1)* is matched by any string in >*

e (£]0)(g]1)|11 is matched by just the strings €, 0, 1, 01, and 11

e ()1|0is just matched by 0

Slide 7

Notation 1.2.2. The notation + s is quite often used for what we write as.

The notationr™, for n > 0, is an abbreviation for the regular expression obtained by
concatenating copies ofr. Thus:

Thusu matches* iff v matches™ for somen > 0.

We user™ as an abbreviation farr*. Thusu matches T iff it can be expressed as the
concatenation obne or morestrings, each one matching

1.3 Some questions about languages

Slide 8 defines the notion offarmal languageover an alphabet. We take a very extensional
view of language: a formal language is completely deterthibg the ‘words in the
dictionary’, rather than by any grammatical rules. Slideigeg some important questions
about languages, regular expressions, and the matchatgrebetween strings and regular
expressions.

1.3 Some questions about languages

Languages

A (formal) language L over an alphabet Y. is just a set of strings in >*.
Thus any subset L. C >* determines a language over X..
The language determined by a regular expression 7 over 2. is

L(r) o {u € ¥* | u matches r}.

Two regular expressions 1 and s (over the same alphabet) are
equivalent iff L(r) and L(s) are equal sets (i.e. have exactly the same
members).

Slide 8

Some questions

(a) Is there an algorithm which, given a string © and a regular expression
T (over the same alphabet), computes whether or not © matches r?

(b) In formulating the definition of regular expressions, have we missed
out some practically useful notions of pattern?

(c) Is there an algorithm which, given two regular expressions 7 and s
(over the same alphabet), computes whether or not they are
equivalent? (Cf. Slide 8.)

(d) Is every language of the form L(r)?

Slide 9

8 1 REGULAR EXPRESSIONS

The answer to question (a) on Slide 9 is ‘yes’. Algorithmsdeciding such pattern-
matching questions make use of finite automata. We will gsaltlring the next few sections.

If you have used the UNIX utilityrep, or a text editor with good facilities for regular
expression based search, ldacs, you will know that the answer to question (b) on Slide 9
is also ‘yes'—the regular expressions defined on Slide 5eleat some forms of pattern
that one sees in such applications. However, the answeetquéstion is also ‘no’, in the
sense that (for a fixed alphabet) these extra forms of reguxjaression are definable, up
to equivalence, from the basic forms given on Slide 5. Fongda, if the symbols of the
alphabet are ordered in some standard way, it is common toder@ form of pattern for
naming ranges of symbols—for exampde— z] might denote a pattern matching any lower-
case letter. It is not hard to see how to define a regular esioregalbeit a rather long one)
which achieves the same effect. However, some other conynoaclrring kinds of pattern
are much harder to describe using the rather minimalistagyat Slide 5. The principal
example icomplementation~(r):

u matchesv(r) iff w does nomatchr.

It will be a corollary of the work we do on finite automata (angad measure of its power)
that every pattern making use of the complementation oiperat(—) can be replaced by
an equivalent regular expression just making use of theatipes on Slide 5. But why do
we stick to the minimalist syntax of regular expressionstat slide? The answer is that it
reduces the amount of work we will have to do to show that, ingiple, matching strings
against patterns can be decided via the use of finite automata

The answer to question (c) on Slide 9 is ‘yes’ and once agasnhil be a corollary of
the work we do on finite automata. (See Section 5.3.)

Finally, the answer to question (d) is easily seen to be ‘podyvided the alphabet
contains at least one symbol. For in that c&$eés countably infinite; and hence the number of
languages over, i.e. the number of subsets Bf is uncountable. (Recall Cantor’s diagonal
argument.) But sinc& is a finite set, there are only countably many regular exppBss
overX. (Why?) So the answer to (d) is ‘no’ for cardinality reasodswever, even amongst
the countably many languages that are ‘finitely describdateintuitive notion that we will
not formulate precisely) many are not of the foiir) for any regular expression For
example, in Section 5.2 we will use the ‘Pumping Lemma’ totbe

{a"b" | n >0}

is not of this form.

1.4 Exercises

Exercise 1.4.1.Write down an ML data type declaration for a type constru¢torregExp
whose values correspond to the regular expressions ovéplaabet’ a.

Exercise 1.4.2.Find regular expressions ovf, 1} that determine the following languages:

(@) {u | u contains an even number ot}

1.4 Exercises 9

(b) {u | u contains an odd number 6%}

Exercise 1.4.3.For which alphabet& is the set>* of all finite strings overX itself an
alphabet?

Tripos questions 2005.2.1(d) 1999.2.1(s) 1997.2.1(q) 1996.2.1()) 19925.

10

1 REGULAR EXPRESSIONS

11

2 Finite State Machines

We will be making use of mathematical models of physicaleyst calledinite automata
or finite state machinet recognise whether or not a string is in a particular laggua
This section introduces this idea and gives the preciseitlefirof what constitutes a finite
automaton. We look at several variations on the definitiandd with the concept of
determinism) and see that they are equivalent for the perpbeecognising whether or not
a string is in a given language.

2.1 Finite automata

Example of a finite automaton

a

w@v

States: qo, q1, G2, g3-
Input symbols: a, b.

Transitions: as indicated above.
Start state: qg.
Accepting state(s): g3.

b

Slide 10

The key features of this abstract notion of ‘machine’ areetidelow and are illustrated
by the example on Slide 10.

e There are only finitely many differestatesthat a finite automaton can be in. In the
example there are four states, labelgdq, ¢», andgs.

¢ We do not care at all about the internal structure of machizmes. All we care about
is whichtransitionsthe machine can make between the states. A symbol from some
fixed alphabet® is associated with each transition: we think of the elemehts
asinput symbols Thus all the possible transitions of the finite automaton loa
specified by giving a finite graph whose vertices are the statel whose edges have

12

2 FINITE STATE MACHINES

both a direction and a label (drawn fron). In the example: = {a, b} and the only
possible transitions from stage are

b a
@1 — q and ¢ — go.

In other words, in statg; the machine can either input the symband enter state
qo, Or it can input the symbal and enter statg,. (Note that transitions from a state
back to the same state are allowed: g;g— g5 in the example.)

There is a distinguishedtart state* In the example it isgo. In the graphical
representation of a finite automaton, the start state isllysndicated by means of
a unlabelled arrow.

The states are partitioned into two kindgcepting statesand non-accepting states.
In the graphical representation of a finite automaton, ticegting states are indicated
by double circles round the name of each such state, and thaguepting states are
indicated using single circles. In the example there is only accepting state;; the
other three states are non-accepting. (The two extremebjldies thatall states are
accepting, or thamo states are accepting, are allowed,; it is also allowed fostag
state to be accepting.)

The reason for the partitioning of the states of a finite a@timm into ‘accepting’ and

‘non-accepting’ has to do with the use to which one puts faiteomata—namely to recognise
whether or not a string € X* is in a particular language= subset of>*). Givenu we
begin in the start state of the automaton and traverse ifghgoatransitions, using up the
symbols inu in the correct order reading the string from left to rightwk can use up all the
symbols inu in this way and reach an accepting state, thes in the language ‘accepted’
(or ‘recognised’) by this particular automaton; otherwises not in that language. This is
summed up on Slide 11.

The terminitial state is a common synonym for ‘start state’.
The termfinal stateis a common synonym for ‘accepting state’.

2.1 Finite automata 13

L(M), language accepted by a finite automaton M

consists of all strings u over its alphabet of input symbols satisfying
qo L q with qg the start state and ¢ some accepting state. Here

U x

o — ¢

means, if u = a1a2 . .. a, say, that for some states q1,q2,...,qn = ¢
(not necessarily all distinct) there are transitions of the form

al a2 as an
Q —q1 —q2 — " —7(4n =(.

N.B.
casen =0 q=*¢ iff ¢q=¢

casen =1 q—=*¢ iff ¢-—=¢.

Slide 11

Example 2.1.1. Let M be the finite automaton pictured on Slide 10. Using the nmtati
introduced on Slide 11 we have:

" aaab a3 (soaaab € L(M))
Qo 2% g iff g=q (soabaa ¢ L(M))
% baaa % q iff q=qs3 (nO conclusion abOUL(M»

In fact in this case
L(M) = {u | u contains three consecutiués}.

(Forg; (: = 0,1,2) corresponds to the state in the process of reading a strimgdpich the
lasti symbols read were all's.) So L(M) coincides with the languagl(r) determined by
the regular expression

r = (alb)*aaa(alb)*

(cf. Slide 8).

14 2 FINITE STATE MACHINES

A non-deterministic finite automaton ~ (NFA), M,
is specified by

e afinite set States s (of states)
e a finite set X,/ (the alphabet of input symbols)

e for each g € States)s and each a € X/, a subset
An(q,a) C States s (the set of states that can be reached from
q with a single transition labelled a)

e anelement s); € States) (the start state)

e asubset Accept,,; C States s (of accepting states)

Slide 12

2.2 Determinism, non-determinism, ande-transitions

Slide 12 gives the formal definition of the notion of finite aoaton. Note that the function
Ay gives a precise way of specifying the allowed transitiondffvia: ¢ = ¢/ iff ¢ €
AM(q, CL).

The reason for the qualification ‘non-deterministic’ ond8lil2 is because in general,
for each statg € States); and each input symbal € X;,, we allow the possibilities that
there are no, one, or many states that can be reached in a siggition labelled from ¢,
corresponding to the cases tiat, (¢, a) has no, one, or many elements. For exampl@/ if
is the NFA pictured on Slide 13, then

Ap(g1,b) =0 i.e.in M, no state can be reached frgmwith a transition labelled;

An(q,a) ={q2} i.e.in M, precisely one state can be reached frgnwith a transition
labelleda;

An(qo,a) ={qo,q1} i.e. in M, precisely two states can be reached frgmwith a
transition labelled:.

2.2 Determinism, non-determinism, agxdransitions 15

Example of a non-deterministic finite automaton

Input alphabet: {a, b}.
States, transitions, start state, and accepting states as shown:

The language accepted by this automaton is the same as for the
automaton on Slide 10, namely

{u € {a,b}" | u contains three consecutive a’s}.

Slide 13

When each subset), (g, a) has exactly one element we say ttidtis deterministic
This is a particularly important case and is singled out ffirdtion on Slide 14.

The finite automaton pictured on Slide 10 is deterministiat Bote that if we took the
same graph of transitions but insisted that the alphabetmftisymbols waga, b, ¢} say,
then we have specified an NFA not a DFA, since for examiplg(qo, ¢) = 0. The moral of
this is: when specifying an NFA, as well as giving the graph of stateditions, it is important
to say what is the alphabet of input symbfidecause some input symbols may not appear in
the graph at all).

When constructing machines for matching strings with ragakpressions (as we will
do in Section 3) it is useful to consider finite state machieesibiting an ‘internal’ form
of non-determinism in which the machine is allowed to chastgée without consuming any
input symbol. One calls such transitionransitionsand writes them as

This leads to the definition on Slide 15. Note that in an NFA/, we always assume that
is not an element of the alphabef, of input symbols

16

2 FINITE STATE MACHINES

A deterministic finite automaton (DFA)

is an NFA M with the property that for each ¢ € States s and

a € Xy, the finite set Aj7(q, a) contains exactly one element—call it
5M(Qa a)'

Thus in this case transitions in M are essentially specified by a
next-state function , 7, mapping each (state, input symbol)-pair (q, a)
to the unique state 5M(q, a) which can be reached from g by a transition
labelled a:

q=q iff ¢ =0dmlqa)

Slide 14

An NFA with e-transitions (NFA®)
is specified by an NFA M together with a binary relation, called the
g-transition relation , on the set States s . We write

q9—4q

to indicate that the pair of states (¢, ¢') is in this relation.

Example (with input alphabet = {a, b}):

Slide 15

2.3 A subset construction 17

L(M), language accepted by an NFA € M

consists of all strings u over the alphabet X, of input symbols satisfying

qo0 = g with ¢ the initial state and ¢ some accepting state. Here - = -
is defined by:

g ! - / . € /
q = q' iffq = q orthere is a sequence ¢ — --- ¢ of one or more
e-transitions in M from ¢ to ¢

&/

g=q (orac Ty iffg=> -5 -=gq

q%gq’ (fora,bEEM)iffqé-i>-:€>-i>-:€>q’

and similarly for longer strings

Slide 16

When using an NFA M to accept a string € X* of input symbols, we are interested in
sequences of transitions in which the symbols iaccur in the correct order, but with zero
or mores-transitions before or after each one. We write

q=dq
to indicate that such a sequence exists from gtédestate;’ in the NFA. Then, by definition
wis accepted by the NFAM iff ¢y = ¢ holds forg, the start state anglsome accepting state:
see Slide 16. For example, for the NF8n Slide 15, it is not too hard to see that the language

accepted consists of all strings which either contain twosegutivea’s or contain two
consecutivé’s, i.e. the language determined by the regular expressidn* (aa|bb)(a|b)*.

2.3 A subset construction

Note that every DFA is an NFA (whose transition relation isedeinistic) and that every
NFA is an NFA (whoses-transition relation is empty). It might seem that non-date@ism
ande-transitions allow a greater range of languages to be ctaised as recognisable by a
finite automaton, but this is not so. We can use a constryataited thesubset construction

to convert an NFA M into a DFA PM accepting the same language (at the expense of
increasing the number of states, possibly exponentiafjifle 17 gives an example of this
construction. The name ‘subset construction’ refers tddbethat there is one state 6\

for each subset of the sBtates), of states of\/. Given two subsetS, S’ C States,, there

is a transitionS % S’ in PM just in caseS’ consists of all thel/-states;’ reachable from

18 2 FINITE STATE MACHINES

statesg in S via the- = - relation defined on Slide 16, i.e. such that we can get fycim
¢’ in M via finitely manye-transitions followed by an-transition followed by finitely many
e-transitions.

Example of the subset construction

M opM - a b
-]]]

@ {90} | {90, 01,02} {g2}
| {ai} {a}]

{q2} 0 {a2}

*ﬂ@@j}a {e0, 01} | {a0, 01,2} {a2}

{q0, 92} | {90, 01,02} {42}

{q1, 92} {a1} {a2}

{90, 1,92} | {90, 01,02} {q2}
b

Slide 17

By definition, the start state dP M is the subset obtates,; whose elements are the
states reachable lyytransitions from the start state 61; and a subse$ C States,, IS an
accepting state dP M iff some accepting state @i/ is an element ob. Thus in the example
on Slide 17 the start state {g¢, ¢1, g2} and

ab € L(M) because il qo % qo = g > o

. a b
abe L(PM) because iPM: {qo,q1,q2} — {90, 01,02} — {g2}.

Indeed, in this casé (M) = L(a*b*) = L(PM). The fact that\/ and P M accept the same
language in this case is no accident, as the Theorem on Sidkedvs. That slide also gives
the definition of the subset construction in general.

2.3 A subset construction 19

Theorem. For each NFA® M there is a DFA P M with the same
alphabet of input symbols and accepting exactly the same strings as

M,i.e. with L(PM) = L(M)
Definition of P M (refer to Slides 12 and 14):

o Statespnr «f {S | S C Statesp}

def

e Xpyv = Xy
e S L S inPMiffS' = dpp(S,a), where
def 2} .
opm(S;a) ={q' | 3q€ S(qg= ¢ inM)}

def
'SPMé{Q‘SMéQ}

o Acceptpys dof

{S € Statespns | 3q € S (q € Accept)}

Slide 18

To prove the theorem on Slide 18, given any NFEN we have to show that (M) =
L(PM). We split the proof into two halves.

Proof thatL(M) C L(PM). Consider the case affirst: if ¢ € L(M), thens,, = ¢ for
someq € Accept,,, hencespys € Acceptp,, and thuss € L(PM). Now given any non-
null stringu = aqas .. . an,, if uis accepted by then there is a sequence of transitions in
M of the form

1) S =g =2 g, € Accepty,.
Since it is deterministic, feeding, a- . . . a,, to PM results in the sequence of transitions
(2) spym — S 2 2 S,

Wheresl = 6PM(3PM7 al), Sy = 6PM(517 CLQ), etc. By definition Of(SPM (S'Ide 18), from
(1) we deduce

@1 € opm(spar,a1) =51
S0q2 € dprr(S1,az) = S

S0gn € 6PM(Sn—17an> = Sn

20 2 FINITE STATE MACHINES

and hencé,, € Accept p,, (because,, € Accept,,;). Therefore (2) shows thatis accepted
by PM. O

Proof thatZL(PM) C L(M). Consider the case of first: if ¢ € L(PM), thenspy, €
Accept p,; and so there is somg € spy; With ¢ € Accepty,, i.€.5y = q € Accepty,
and thuss € L(M). Now given any non-null string = ajas .. .a,, if u is accepted by
PM then there is a sequence of transitiongin/ of the form (2) withS,, € Acceptp,,,
i.e. with S,, containing somey,, € Accept,;. Now sinceq, € S, = dpp(Sn—1,an),
by definition of 6py; there is somey,_1 € S,_1 with ¢,—1 = ¢, in M. Then since
Gn—1 € Sn—1 = 0par(Sn_2,an_1), there is somey,_» € S,_» With g,—» 5" g,_1.
Working backwards in this way we can build up a sequence ostitians like (1) until, at the
last step, from the fact that € S = dpr(spas, ar) we deduce thaty, = ¢;. So we get
a sequence of transitions (1) wigh € Accept,,, and hence: is accepted by/. O

2.4 Summary

The important concepts in Section 2 are those @érministic finite automataofFA) and

the language of strings that it accepts. Note that if we krteav & languagé. is of the form

L = L(M) for some DFAM, then we have a method for deciding whether or not any given
stringwu (over the alphabet of) is in L or not: begin in the start state ai/ and carry out

the sequence of transitions given by readinffom left to right(at each step the next state
is uniquely determined becaugé is deterministic);f the final state reached is accepting,
thenw is in L, otherwise it is not.We also introduced other kinds of finite automata (with
non-determinism anekrtransitions) and proved that they determine exactly theesaass of
languages as DFAs.

2.5 Exercises

Exercise 2.5.1.For each of the two languages mentioned in Exercise 1.4.2aflDBA that
accepts exactly that set of strings.

Exercise 2.5.2.The example of the subset construction given on Slide 17tagts a DFA
with eight states whose language of accepted strings hagpdmeL(a*b*). Give a DFA
with the same language of accepted strings, but fewer st@ige an NFA with even fewer
states that does the same job.

Exercise 2.5.3.Given a DFAM, construct a new DFAY/’ with the same alphabet of input
symbolsX:,; and with the property that for all € X% ,, u is accepted by’ iff u is not
accepted by\/.

Exercise 2.5.4.Given two DFAs M;, M, with the same alphabet of input symbols,
construct a third such DFA/ with the property that: € X* is accepted byl/ iff it is

accepted by botld/; and M,. [Hint: take the states af/ to be ordered pairéq, ¢2) of
states withy; € Statesys, andqs € Statesy, .]

2.5 Exercises 21

Tripos questions 2009.2.9 2004.2.1(d) 2001.2.1(d) 2000.2.1(b) 1998.2.1(s
1995.2.19

22

2 FINITE STATE MACHINES

23

3 Regular Languages, |

Slide 19 defines the notion ofragular language which is a set of strings of the ford(M)
for some DFAM (cf. Slides 11 and 14). The slide also gives the statementle¢ne’s
Theorem, which connects regular languages with the notionatching strings to regular
expressions introduced in Section 1: the collection of lmglanguages coincides with the
collection of languages determined by matching stringhk vagular expressions. The aim of
this section is to prove part (a) of Kleene’s Theorem. We taitkle part (b) in Section 4.

Definition
A language is regular iff it is the set of strings accepted by some
deterministic finite automaton.

Kleene’s Theorem
(a) For any regular expression r, L(r) is a regular language
(cf. Slide 8).

(b) Conversely, every regular language is the form L(r) for some

regular expression 7.

Slide 19

3.1 Finite automata from regular expressions

Given a regular expression over an alphabet say, we wish to construct a DFA/ with
alphabet of input symbols and with the property that for eache ¥*, u matches- iff u is
accepted byW//—so thatL(r) = L(M).

Note that by the Theorem on Slide 18 it is enough to constrndiBA® N with the
propertyL(N) = L(r). For then we can apply the subset constructioiVttm obtain a DFA
M = PN with L(M) = L(PN) = L(N) = L(r). Working with finite automata that
are non-deterministic and havetransitions simplifies the construction of a suitable &nit
automaton fronr.

Let us fix on a particular alphabét and from now on only consider finite automata
whose set of input symbols }s. The construction of an NFAfor each regular expression
over proceeds by recursion on the syntactic structure of thdaegupression, as follows.

24 3 REGULAR LANGUAGES, |

(i) For each atomic form of regular expressian(a € X), ¢, and(), we give an NFA
accepting just the strings matching that regular exprassio

(i) Given any NFA's M, and M5, we construct a new NFA Union(M;, M) with the
property

L(Union(My, Ms)) ={u|u e L(M;)oru e L(Ms)}.

ThUSL(T1|’I°2> = L(U’IZZO’IZ(Ml, Mg)) WhenL(Tl) = L(M1> andL(Tg) = L(Mg)

(iii) Given any NFA's M, and M5, we construct a new NFA Concat (M, Ms) with the
property

L(COTLCCLt(Ml,Mg)) = {U1UQ ‘ U € L(Ml) andUQ S L(MQ)}

ThUSL(T‘lTQ) = L(Concat(Ml, Mg)) WhenL(Tl) = L(Ml) andL(Tg) = L(Mg)

(iv) Given any NFA M, we construct a new NFA Star (M) with the property
L(Star(M)) = {ujuy...u, | n > 0and eachy; € L(M)}.

ThusL(r*) = L(Star(M)) whenL(r) = L(M).

Thus starting with step (i) and applying the constructiansteps (ii)—(iv) over and over
again, we eventually build NFA with the required property for every regular expression

Put more formally, one can prove the statement

for all n > 0, and for all regular expressions of sizen, there exists an NFA
M such thatlL(r) = L(M)

by mathematical induction on, using step (i) for the base case and steps (ii)—(iv) for the
induction steps. Here we can take thigeof a regular expression to be the number of
occurrences of union{|—), concatenation+{ —), or star *) in it.

Step (i) Slide 20 gives NFAs whose languages of accepted stringespectivelyl(a) =
{a} (@anya €), L(¢) = {e}, andL(() = 0.

3.1 Finite automata from regular expressions 25

NFAs for atomic regular expressions

&)

:

just accepts the one-symbol string a

just accepts the null string, €

o

accepts no strings

Slide 20

Step (i) Given NFA's M, and Ms, the construction ofUnion(M;, Ms) is pictured on
Slide 21. First, renaming states if necessary, we assumeSthes,;, and Statesy,, are
disjoint. Then the states dfnion(M;, Ms) are all the states in eithér/; or Ms, together
with a new state, calleg say. The start state dfnion (M, M,) is thisqy and its accepting
states are all the states that are accepting in eitligior M. Finally, the transitions of
Union(My, Ms) are given by all those in eithe¥/; or M,, together with two newe-
transitions out ofyy to the start states af/; and M.

Thus ifu € L(M,), i.e. if we havesy;, = ¢, for someq; € Accepty;,, then we
getqo = sa, = ¢ showing thatu € L(Union(Mi, My). Similarly for M,. So
L(Union(M, M)) contains the union af (M) andL(M-). Conversely ifu is accepted by
Union (M, M5), there is a transition sequenge= q with ¢ € Acceptyy, Orq € Accept yy, .
Clearly, in either case this transition sequence has tonbegh one or other of the-
transitions fromg,, and thereafter we get a transition sequence entirely inooregher of
M, or M finishing in an acceptable state for that one. So & L(Union(M;, Ms)), then
eitheru € L(M,) oru € L(M,). So we do indeed have

L(Union(My, Ms)) ={u|u € L(M;)oru e L(Ms)}.

26 3 REGULAR LANGUAGES, |

Union (M, My)

Set of accepting states is union of Accept y;, and Accept y;, .

Slide 21

Step (iii) Given NFA's M; and Ms, the construction oConcat(M;, Ms) is pictured on
Slide 22. First, renaming states if necessary, we assumethés,,, and States,;, are
disjoint. Then the states @foncat(M;, M) are all the states in eithéd; or M,. The start
state ofConcat (M, M,) is the start state af/;. The accepting states 6foncat (M, M)
are the accepting states df;. Finally, the transitions o€oncat(M;, M) are given by all
those in eithefV/; or M, together with new-transitions from each accepting stateléf to
the start state ak/, (only one such new transition is shown in the picture).

Thus ifu; € L(M;) andus € L(Ms), there are transition sequencesg, 2 ¢ in My
with ¢; € Accepty,, andsy, =5 go in Mo with g» € Accept ;. These combine to yield

u 5 u
SM, :éQI — SM, :gQZ

in Concat (M, Ms) witnessing the fact that, u- is accepted byConcat(M;, M3). Con-
versely, it is not hard to see that evarye L(Concat(M;, Ms)) is of this form. For any
transition sequence witnessing the fact thas accepted starts out in the states\éf but

finishes in the disjoint set of states &f,. At some point in the sequence one of the new

e-transitions occurs to get from/; to M, and thus we can split asv = wujug With uy
accepted by/; andusy accepted by/,. So we do indeed have

L(Concat(My, M3)) = {ujus | uy € L(M;) anduy € L(Ms)}.

3.1 Finite automata from regular expressions 27

Concat(My, Ms)

- — 7 7 7 \ - - — - - 7 7 7 7 \
\ le | \
@ My O | Mo |
Lo - _ _ _ _ | Lo - - _ _ _ _ _ \

Set of accepting states is Accept My

Slide 22

Step (iv) Given an NFA M, the construction obtar(M) is pictured on Slide 23. The
states ofStar(M) are all those of\/ together with a new state, callegl say. The start state
of Star (M) is qo and this is also the only accepting stateSedr (M). Finally, the transitions
of Star(M) are all those of\/ together with newe-transitions fromy, to the start state af/
and from each accepting state/df to gy (only one of this latter kind of transition is shown
in the picture).

Clearly, Star(M) accepts (since its start state is accepting) and any concatenafion o
one or more strings accepted bi. Conversely, ifv is accepted bytar (M), the occurrences
of ¢o in a transition sequence witnessing this fact allow us ti sphto the concatenation of
zero or more strings, each of which is acceptedibySo we do indeed have

L(Star(M)) = {ujus ... u, | n > 0and eachs; € L(M)}.

28 3 REGULAR LANGUAGES, |

The only accepting state of Star (M) is qq.

Slide 23

This completes the proof of part (a) of Kleene’s Theorend&ii9). Figure 1 shows how
the step-by-step construction applies in the case of thdaegxpressiofia|b)*a to produce
an NFA M satisfyingL(M) = L((alb)*a). Of course an automaton with fewer states and
e-transitions doing the same job can be crafted by hand. Tim pbthe construction is that
it provides an automatic way of producing automata for angmgregular expression.

3.2 Decidability of matching

The proof of part (a) of Kleene’s Theorem provides us with sifdge answer to question (a)
on Slide 9. In other words, it provides a method that, givgnsanngu and regular expression
r, decides whether or natmatches. The method is:

e construct a DFAV/ satisfyingL(M) = L(r);

e beginning in)M'’s start state, carry out the sequence of transitiond inorresponding
to the stringu, reaching some statgof M (becauseV/ is deterministic, there is a
unique such transition sequence);

e check whethey is accepting or not: if itis, then € L(M) = L(r), sou matches:;
otherwiseu ¢ L(M) = L(r), sou does not match .

Note. The subset construction used to convert the NFdsulting from steps (i)—(iv) of
Section 3.1 to a DFA produces an exponential blow-up of thabmr of states. RV has

3.2 Decidability of matching 29

Step of type (i): a

Step of type (i): b

Step of type (ii): a|b

Step of type (iv): (a|b)*

Step of type (iii): (a|b)*a

Figure 1: Steps in constructing an NFA® for (a|b)*a

30 3 REGULAR LANGUAGES, |

2" states ifM hasn.) This makes the method described above very inefficienticfiMmore
efficient algorithms exist.)
3.3 Exercises

Exercise 3.3.1.Why can'’t the automatotar (M) required in step (iv) of Section 3.1 be
constructed simply by taking/, making its start state the only accepting state and adding
newe-transitions back from each old accepting state to its state?

Exercise 3.3.2.Work through the steps in Section 3.1 to construct an NEA satisfying
L(M) = L((¢]b)*aab*). Do the same for some other regular expressions.

Exercise 3.3.3.Show that any finite set of strings is a regular language.

31

4 Regular Languages, Il

The aim of this section is to prove part (b) of Kleene’s Theo(Slide 19).

4.1 Regular expressions from finite automata

Given any DFAM, we have to find a regular expressiofover the alphabet of input symbols

of M) satisfyingL(r) = L(M). In fact we do something more general than this, as described
in the Lemma on Slide 24.Note that if we can find such regular expressioﬁg for any
choice ofQ, ¢, andq’, then the problem is solved. For takiggto be the whole ofStates,

andq to be the start state, say, then by definition ofgq, , a stringu matches this regular

expression iff there is a transition sequences* ¢’ in M. As ¢’ ranges over the finitely
many accepting stateg,, . . ., ¢x say, then we match exactly all the strings acceptedhby
In other words the regular expressiﬁﬁql| e |rqu has the property we want for part (b)

of Kleene’s Theorem. (In cage= 0, i.e. there ar@o accepting states in/, thenL(M) is
empty and so we can use the regular expresaipn

Lemma Given an NFA M, for each subset Q C States)s and each
pair of states ¢, ¢/ € States)y, there is a regular expression r?q,
satisfying
L(r(?q,) ={uc (Zp)*| g2 ¢ in M with allinter-
mediate states of the sequence

inQ}.

Hence L(M) = L(r), where r = 71| - - - |r} and
k = number of accepting states,

ri = rgqi with) = States s,

s = start state,

q; = 1th accepting state.

(In case k = 0, take 7 to be the regular expression ().)

Slide 24

Proof of the Lemma on Slid&l. The regular expressio;rﬁq, can be constructed by induc-
tion on the number of elements in the subQet

The lemma works just as well wheth&f is deterministic or non-deterministic; it also works for
NFA*<s, provided we replace=* by = (cf. Slide 16).

32 4 REGULAR LANGUAGES, II

Base case(is empty. In this case, for each pair of statgs,’, we are looking for a regular
expression to describe the set of strings

{u] ¢ & ¢’ with nointermediate statés

So each element of this set is either a single input symb@ ¢ = ¢’ holds in M) or
possiblye, in caseg = ¢. If there are no input symbols that take us frqrto ¢’ in M, we
can simply take

r

0 det |0 ifqgF#d
v e ifg=4.

On the other hand, if there are some such input symhels. ., a; say, we can take

!

o def {a1|---|ak if ¢ # ¢

r = .
€4 ai|---larle ifqg=¢.

Induction step. Suppose we have defined the required regular expressioafl gubsets
of states withn elements. I1)) is a subset witlh + 1 elements, choose some elemgnt Q
and consider the-element set) \ {¢} = {¢ € Q | ¢ # qo}. Then for any pair of states
q,q € States s, by inductive hypothesis we have already constructed tndaeexpressions

p Ok Mok O} ang oy QN 0),

’ 4,90 ’ 40,90 90,9’

Consider the regular expression
def *
r = rq|re(rs3)*ry.

Clearly every string matchingis in the set
{u | ¢ =¥ ¢’ with all intermediate states in this sequenc&ih

Conversely, ifu is in this set, consider the number of times the sequenceaokitions

q = ¢ passes through staig. If this number is zero then € L(r1) (by definition of
r1). Otherwise this number s > 1 and the sequence splits intot 1 pieces: the first piece
isin L(r2) (as the sequence goes frgno the first occurrence af), the nextt — 1 pieces
are inL(r3) (as the sequence goes from one occurrengg tf the next), and the last piece
isin L(ry) (as the sequence goes from the last occurrengg twfq’). So in this case is in
L(ro(r3)*ry). Soin either case is in L(r). So to complete the induction step we can define
rf’q, to be this regular expression= rq|ry(rs)*ry. O

4.2 Anexample

Perhaps an example will help to understand the rather clgeiment in Section 4.1. The
example will also demonstrate that we do not have to pursumthuctive construction of the
regular expression to the bitter end (the base ¢ase(): often it is possible to find some of
the regular expressiomf’q, one needs bgd hocarguments.

4.2 Anexample 33

Note also that at the inductive steps in the construction i&gallar expression fob/
we are free to choose which stageto remove from the current state €¢t A good rule of
thumb is:choose a state that disconnects the automaton as much ablposs

Example

Direct inspection yields:

A0 1 2 A2 g 1 9
i i
0 0 a* a*b
1 0 e a 1
2 |aa® a*b € 2

Slide 25

As an example, consider the NFA shown on Slide 25. Since Hre&ate i) and this
is also the only accepting state, the language of acceptegsis that determined by the
regular expression ;"> Choosing to remove statefrom the state set, we have

3) L(rgg ™) = Lirgg” Iroy™ 1) i ™).
. . . {0,2}y __ * {0,2} *
Direct inspection shows that(r; ;*') = L(a*) and L(rg ;) = L(a™b). To calculate
L(r{%?), andL(r{*), we choose to remove state
L(Ti()l:?}) = L(r! {0} {0}({0}>* {0})
L(ry % 2}> L(Ti{oo}““foz}(?"éoz}) Téoo})

These regular expressions can all be determined by inspeets shown on Slide 25. Thus
L(r15™) = L(la(e)*(a™D))

and it's not hard to see that this is equali|aa*b); and

L(r{%™) = L(0]a(e)* (aa®))

34 4 REGULAR LANGUAGES, II

which is equal ta..(aaa™). Substituting all these values into (3), we get

L(Té?61’2}> = L(a™|a*b(e|laa™b)*aaa™).

So a*|a*b(elaa*b)*aaa™ is a regular expression whose matching strings comprise the
language accepted by the NFA on Slide 25. (Clearly, one caiaiglify this to a smaller, but
equivalent regular expression (in the sense of Slide 8weuio not bother to do so.)

4.3 Complement and intersection of regular languages

We saw in Section 3.2 that part (a) of Kleene’s Theorem allow/$o answer question (a)
on Slide 9. Now that we have proved the other half of the thepsmee can say more about
question (b) on that slide.

Complementation Recall that on page 8 we mentioned that for each regular ssiome-
over an alphabet, we can find a regular expressier{r) that determines the complement
of the language determined by

L(~(r)) ={ue ¥ [u ¢ L(r)}.

As we now show, this is a consequence of Kleene’s Theorem.

Not(M)

States yot(nr) def States s

def
® Ynot(M) = XM

transitions of Not(M) = transitions of M

start state of Not (M) = start state of M

Accept yopary = {q € Statesnr | q ¢ Accepty}.

Provided M is a deterministic finite automaton, then w is accepted by
Not (M) iff it is not accepted by M:

L(Not(M)) = {u € * | u ¢ L(M)}.

Slide 26

4.3 Complement and intersection of regular languages 35

Lemma 4.3.1.If L is a regular language over alphabg&}, then its complemertu € ¥* |
u ¢ L} is also regular.

Proof. SinceL is regular, by definition there is a DEN suchthatl = L(M). Let Not(M)
be the DFA constructed from/ as indicated on Slide 26. Thdm € ¥* | u ¢ L} is the set
of strings accepted b¥ot(M) and hence is regular. O

Given a regular expression by part (a) of Kleene’s Theorem there is a DBA such
that L(r) = L(M). Then by part (b) of the theorem applied to the DFaA¢(M), we can
find a regular expression(r) so thatL(~(r)) = L(Not(M)). Since

L(Not(M))={uve¥ |u¢ LIM)} ={ue X |ud¢ L(r)},

this ~(r) is the regular expression we need for the complement of

Note. The construction given on Slide 26 can be applied to a finiteraaton)/ whether or
not it is deterministic. However, fak(Not(M)) to equal{u € ¥* | u ¢ L(M)} we need
M to be deterministic. See Exercise 4.4.2.

Intersection As another example of the power of Kleene’s Theorem, givguoleg expres-
sionsr; andry we can show the existence of a regular expresgipfir;) with the property:

u matchegri &rs) iff w matches; andu matches:s.
This can be deduced from the following lemma.

Lemma 4.3.2. If L; and L, are a regular languages over an alphabEgt then their
intersection

LinL, ¥ {ues* |ue L andu € Lo}

is also regular.

Proof. Since L; and L, are regular languages, there are DBA and M, such that
L; = L(M;) (: = 1,2). Let And (M, M,) be the DFA constructed from/; and M, as on
Slide 27. Itis not hard to see that.d (M, M>) has the property that any< ¥* is accepted
by And(Ml, Mg) iffitis accepted by both\/; andMs. ThusL, N Ly = L(And(Ml, Mg))
is a regular language.]

36 4 REGULAR LANGUAGES, II

And(Ml, Mg)

e states of And(M;, My) are all ordered pairs (g1, g2) with
q1 € Statesy, and g2 € Statesyy,

e alphabet of And(M;, My) is the common alphabet of M7 and Mo
o (q1,2) = (4}, q5) in And(My, Ma) iff 1 LN ¢y in M, and
a .
q2 — g5 in My
e start state of And (M7, Ma) is (Spr,, Sh,)

e (q1,q2) accepting in And (M, Ms) iff q1 accepting in M and g2
accepting in M.

Slide 27

Thus given regular expressionsandr,, by part (a) of Kleene’s Theorem we can find
DFA M, and M, with L(r;) = L(M;) (¢ = 1,2). Then by part (b) of the theorem we can
find a regular expression &rs so thatL(r1&ry) = L(And(M;i, Ms)). Thusu matches
r1&ry iff And(My, My) acceptsy, iff both Ay and M; acceptu, iff «w matches both; and
ro, as required.

4.4 Exercises

Exercise 4.4.1.Use the construction in Section 4.1 to find a regular expoedsir the DFA

M whose state set i), 1,2}, whose start state i§ whose only accepting statedswhose
alphabet of input symbols iz, b}, and whose next-state function is given by the following
table.

(5]\/[: a b
01 2
112 1
212 1

Exercise 4.4.2.The construction\ — Not(M) given on Slide 26 applies to both DFA and
NFA; but for L(Not(M)) to be the complement df (M) we needM to be deterministic.
Give an example of an alphabEtand a NFAM with set of input symbolg:, such that
{u € ¥* |u¢ L(M)}is not the same set d5 Not(M)).

4.4 Exercises 37

Exercise 4.4.3.Let r = (alb)*ab(a|b)*. Find a complement for over the alphabet
Y = {a, b}, i.e. aregular expressions(r) over the alphabet satisfyingL(~(r)) = {u €
5w ¢ L(r)}

Tripos questions 2003.2.9 2000.2.7 1995.2.20 1994.3.3 1988.2.3

38

4 REGULAR LANGUAGES, II

39

5 The Pumping Lemma

In the context of programming languages, a typical examf¢eregular language (Slide 19)
is the set of all strings of characters which are well-fornoangbasic keywords, identifiers,
etc) in a particular programming language, Java say. Byrasttthe set of all strings which
represent well-formed Jayaogramsis a typical example of a language that is not regular.
Slide 28 gives some simpler examples of non-regular langgiagor example, there is no
way to use a search based on matching a regular expressiowl allfthe palindromes in a
piece of text (although of course there are other kinds adrétlyn for doing this).

Examples of non-regular languages

e The set of strings over {(,),a, b, ..., z} in which the parentheses
‘(* and *)’ occur well-nested.

e The set of strings over {a, b,..., z} which are palindromes,
i.e. which read the same backwards as forwards.

o {a"b" | n >0}

Slide 28

The intuitive reason why the languages listed on Slide 28areegular is that a machine
for recognising whether or not any given string is in the laexge would neeahfinitely many
different states (whereas a characteristic feature of taehmes we have been using is that
they have onlyinitelymany states). For example, to recognise that a string igdbtima”b™
one would need to remember how marg/had been seen before the fisss encountered,
requiring countably many states of the form ‘juséenn_as’. This section make this intuitive

argument rigorous and describes a useful way of showingldhguages such as these are
not regular.

The fact that a finite automaton does only have finitely maagestmeans that as we look

at longer and longer strings that it accepts, we see a céxitadrof repetition—thgumping
lemma propertygiven on Slide 29.

40 5 THE PUMPING LEMMA

The Pumping Lemma

For every regular language L, there is a number ¢ > 1 satisfying the
pumping lemma property

allw € L with length(w) > £ can be expressed as a concatenation of
three strings, w = u1vu2, where u1, v and us satisfy:
e length(v) > 1
(i.e. v # €)
o length(uyv) < ¥
e forallmn > 0, ugv"ug € L

(.e. uqug € L, wjvug € L [but we knew that anyway], ujvvug € L,
uVVVUg € L, etc).

Slide 29

5.1 Proving the Pumping Lemma

SinceL is regular, it is equal to the sét M) of strings accepted by some DBA. Thenwe

can take the numbermentioned on Slid29 to be the number of states M. For suppose

w = ajasy...a, Withn > £. If w € L(M), then there is a transition sequence as shown at
the top of Slide 30. Thew can be split into three pieces as shown on that slide. Note tha
by choice ofi andj, length(v) = 7 — i > 1 andlength(uiv) = j < £. So it just remains

to check that,,v"us € L for all n > 0. As shown on the lower half of Slide 30, the string

v takes the machin@/ from stateg; back to the same state (singe= ¢;). So for anyn,
uyv"ug takes us from the initial state,;, = ¢, to ¢;, thenn times round the loop from; to
itself, and then fromy; to q,, € Accept,,. Therefore for any: > 0, u;v™us is accepted by
M,i.e.uv™us € L. O

Note. In the above construction it is perfectly possible that 0, in which caseu; is the
null-string,e.

5.2 Using the Pumping Lemma 41

If n > ¢ = number of states of M, then in

. ay az ag an
SM=q0 — q1 = G2 —> Qe — qn € Accept

/41 states

qo; - - - , q¢ can't all be distinct states. So g; = g, for some
0 <17 < j < /. So the above transition sequence looks like

v

*
Su=qo—" ¢ = ¢ =¥ q, € Accepty,

where

def def def
Uy = a1...0a4 UV = Qj41...05 U2 = Gj41-...0n.

Slide 30

Remark 5.1.1. One consequence of the pumping lemma property ahd/ is that if there
is any stringw in L of length> ¢, thenL contains arbitrarily long strings. (We just ‘pump
up’ w by increasingz.)

If you did Exercise 3.3.3, you will know that if is afinite set of strings then it is regular.
In this case, what is the numbéwith the property on Slide 29? The answer is that we can
take any/ strictly greater than the length of any string in the finite 5eThen the Pumping
Lemma property is trivially satisfied because there arevne L with length(w) > ¢ for
which we have to check the condition!

5.2 Using the Pumping Lemma

The Pumping Lemma (Slide 5.1) says that every regular laggghas a certain property—
namely that there exists a numbéewith the pumping lemma property. So to show that
a languagel is not regular, it suffices to show that n6 > 1 possesses the pumping
lemma property for the languade Because the pumping lemma property involves quite a
complicated alternation of quantifiers, it will help to dpmit explicitly what is its negation.
This is done on Slide 31. Slide 32 gives some examples.

42

5 THE PUMPING LEMMA

How to use the Pumping Lemma to prove
that a language L is not regular

For each ¢ > 1, find some w € L of length > £ so that

no matter how w is split into three, w = ujvuo,
0 with length(uiv) < £ and length(v) > 1,

there is some n > 0 for which w1 v™us is not in L.

Slide 31

Examples

() Ly «f {a™b" | n > 0} is not regular.

[Foreach £ > 1, a’b® € L is of length > £ and has property (f) on
Slide 31.]

(i) Ly % {w € {a,b}* | wapalindrome} is not regular.

[Foreach £ > 1, a*ba’ € L is of length > ¢ and has property (1).]

def . .

(iiy Lz = {aP | p prime} is not regular.
[For each ¢ > 1, we can find a prime p with p > 2/ and then a? € L3 has
length > ¢ and has property (}).]

Slide 32

5.2 Using the Pumping Lemma 43

Proof of the examples on Sli@2. We use the method on Slide 31.

(i) Forany/¢ > 1, consider the stringy = a‘b*. Itis in L; and has length> ¢. We show
that property) holds for thisw. For supposey = a‘b’ is split asw = wujvus With
length(uqv) < ¢ andlength(v) > 1. Thenwu;v must consist entirely ofs, sou; = a”
andv = a® say, and hence, = a*~"~*b*. Then the case = 0 of u;v"™us is notinL; since

u0us = uguy = ar(ag_’"_sbg) = a'sp’
anda’~—*b" ¢ L, becausé — s # { (sinces = length(v) > 1).

(i) The argument is very similar to that for example (i), &tarting with the palindrome
w = a’ba’. Once again, the = 0 of u;v™us yields a stringuius = a’~*ba’ which is
not a palindrome (becauge- s # /).

(iif) Given ¢ > 1, since there are infinitely many primgswe can certainly find one satisfying
p > 2(. | claim thatw = a? has property{). For supposer = a? is split asw = ujvus
with length(uiv) < ¢ andlength(v) > 1. Lettingr o length(uy) ands o length(v), SO
thatlength(us) = p — r — s, we have

pa— — pa— — — 2 — —
ulvp su2 _ aras(p s)ap T=8 _ oSP—S +p—s _ a(s—l—l)(p s).

Now (s + 1)(p — s) is not prime, because + 1 > 1 (sinces = length(v) > 1) and
p—s>20—¢=1/{>1(sincep > 2¢ by choice, and < r + s = length(ujv) < /).
Thereforeu;v™us ¢ Ls whenn = p — s.

Remark 5.2.1. Unfortunately, the method on Slide 31 can’t cope with evesp-negular
language. This is because the pumping lemma property isessaxy, but not a sufficient
condition for a language to be regular. In other words therexdst languages for which a
number/ > 1 can be found satisfying the pumping lemma property on SllebRt which
nonetheless, are not regular. Slide 33 gives an examplechfasul..

44 5 THE PUMPING LEMMA

Example of a non-regular language
that satisfies the ‘pumping lemma property’

LY {c™a™" | m >1landn > 0}

U
{a™b™ | m,n > 0}
satisfies the pumping lemma property on Slide 29 with £ = 1.

[Forany w € L of length > 1, can take u; = €, v = first letter of w,

Ug = rest of w.]

But L is not regular. [See Exercise 5.4.2.]

Slide 33

5.3 Decidability of language equivalence

The proof of the Pumping Lemma provides us with a positivena@ndo question (c) on
Slide 9. In other words, it provides a method that, given any iegular expressions and

ro (over the same alphabg) decides whether or not the languages they determine aet, equ
L(Tl) = L(TQ).

First note that this problem can be reduceddexiding whether or not the set of
strings accepted by any given DFA is empBor L(r;) = L(ry) iff L(r;) C L(re) and
L(re) € L(r1). Using the results about complementation and interseati®ection 4.3, we
can reduce the question of whether or agt;) C L(r2) to the question of whether or not
L(r1&(~r3)) = 0, since

L(r1) C L(rg) iff L(ri)N{ue X |u¢ L(ry)} = 0.

By Kleene’s theorem, given; andr, we can first construct regular expression& (~72)
andrq&(~ry), then construct DFAS//; and M, such thatL(M;) = L(r1&(~r2)) and
L(Ms) = L(r2&(~r1)). Thenr; andr, are equivalent iff the languages acceptediy
and byM, are both empty.

The fact that, given any DFA/, one can decide whether or b)) = () follows from
the Lemma on Slide 34. For then, to check whether orInd) is empty, we just have to
check whether or not any of the finitely many strings of lerigls than the number of states
of M is accepted by

5.4 Exercises 45

Lemma If a DFA M accepts any string at all, it accepts one whose
length is less than the number of states in M.

Proof. Suppose M has / states (so £ > 1). If L(M) is not empty, then
we can find an element of it of shortest length, ajas . . . a,, say (where
n > 0). Thus there is a transition sequence

SM =0 5 q1 < g g € Accept .

If n > /¢, then not all the n + 1 states in this sequence can be distinct
and we can shorten it as on Slide 30. But then we would obtain a strictly
shorter string in L(M) contradicting the choice of a1as ... a,. So we
must have n < /. O

Slide 34

5.4 Exercises

Exercise 5.4.1.Show that the first language mentioned on Slide 28 is not aegul

Exercise 5.4.2.Show that there is no DFA/ for which L(M) is the language on Slide 33.
[Hint: argue by contradiction. If there were such&h consider the DFAVI’ with the same
states ad\/, with alphabet of input symbols just consistingcotindb, with transitions all
those of M which are labelled by: or b, with start statey,, (sas, ¢) (Wheres), is the start
state of M), and with the same accepting states\és Show that the language accepted by
M’ has to bela™b™ | n > 0} and deduce that no sudif can exist.]

Exercise 5.4.3.Check the claim made on Slide 33 that the language mentitieed satisfies
the pumping lemma property of Slide 29 with-= 1.

Tripos questions 2006.2.8 2004.2.9 2002.2.9 2001.2.7 1999.2.7 1998.2.7
1996.2.1(j)) 1996.2.8 1995.2.27 1993.6.12

46

5 THE PUMPING LEMMA

47

6 Grammars

We have seen that regular languages can be specified in téfmgepautomata that accept
or reject strings, and equivalently, in terms of pattermsegular expressions, which strings
are to match. This section briefly introduces an alternatiyenerative’ way of specifying
languages.

6.1 Context-free grammars

Some production rules for ‘English’ sentences

SENTENCE — SUBJECT VERB OBJECT
SUBJECT — ARTICLE NOUNPHRASE
OBJECT — ARTICLE NOUNPHRASE

ARTICLE — a
ARTICLE — the

NOUNPHRASE — NOUN
NOUNPHRASE — ADJECTIVE NOUN

ADJECTIVE — big
ADJECTIVE — small

NOUN — cat
NOUN — dog

VERB — eats

Slide 35

Slide 35 gives an example of a context-free grammar for geimegr strings over the seven

element alphabet
def

Y = {a,big, cat,dog, eats, small, the}.
The elements of the alphabet are calledninalsfor reasons that will emerge below. The
grammar uses finitely many extra symbols, called-terminals namely the eight symbols

ADJECTIVE, ARTICLE, NOUN, NOUNPHRASE, OBJECT, SENTENCE, SUBJECT, VERB.

One of these is designated as #tart symbal In this case it iISENTENCE (because we are
interested in generating sentences). Finally, the cotftegtgrammar contains a finite set
of productionrules, each of which consists of a pair, written— «, wherex is one of the
non-terminals and is a string of terminals and non-terminals. In this caseelaee twelve
productions, as shown on the slide.

48 6 GRAMMARS

The idea is that we begin with the start symB8NTENCE and use the productions to
continually replace non-terminal symbols by strings. Atcassive stages in this process we
have a string which may contain both terminals and non-tesitei We choose one of the
non-terminals in the string and a production which has tbatterminal as its left-hand side.
Replacing the non-terminal by the right-hand side of thelpotion we obtain the next string
in the sequence, aterivationas it is called. The derivation stops when we obtain a string
containing only terminals. The set of strings ovethat may be obtained in this way from
the start symbol is by definition tHanguage generated the context-free grammar

A derivation

SENTENCE — SUBJECT VERB OBJECT
— ARTICLE NOUNPHRASE VERB OBJECT
— the NOUNPHRASE VERB OBJECT
— the NOUNPHRASE eats OBJECT
— the ADJECTIVE NOUN eats OBJECT
— the big NOUN eats OBJECT
— the big cat eats OBJECT
— the big cat eats ARTICLE NOUNPHRASE
— the big cat eats a NOUNPHRASE
— the big cat eats a ADJECTIVE NOUN
— the big cat eats a small NOUN
— the big cat eats a small dog

Slide 36

For example, the string
the big cat eats a small dog

is in this language, as witnessed by the derivation on Sl@jer8which we have indicated
left-hand sides of production rules by underlining. On theeo hand, the string

(4) the dog a
is notin the language, because there is no derivation 8NTENCE to the string. (Why?)

Remark 6.1.1. The phrase ‘context-free’ refers to the fact that in a déiaovewe are allowed
to replace an occurrence of a non-terminal by the right-rede of a production without
regard to the strings that occur on either side of the ocnueéts ‘context’). A more general
form of grammar (a ‘typ® grammar’ in the Chomsky hierarchy—see page 257 of Kozen’s

6.2 Backus-Naur Form 49

book, for example) has productions of the form- v whereu andv are arbitrary strings of
terminals and non-terminals. For example a production®fohm

a ADJECTIVE cat — dog

would allow occurrences ofADJECTIVE’ that occur betweena’ and ‘cat’ to be replaced
by ‘dog’, deleting the surrounding symbols at the same time. Thid kif production is not
permitted in a context-free grammar.

Example of Backus-Naur Form (BNF)
Terminals:
x '+ — % ()
Non-terminals:
id op exp
Start symbol:
exp
Productions:
id == x|id
op = +[—|*
exp = 1id|exp op exp | (exp)
Slide 37

6.2 Backus-Naur Form

It is quite likely that the same non-terminal will appear ¢ teft-hand side of several
productions in a context-free grammar. Because of this,dbmmon to use a more compact
notation for specifying productions, callddbckus-Naur Form (BNF), in which all the
productions for a given non-terminal are specified togetivih the different right-hand
sides being separated by the symholBNF also tends to use the symbal=’ rather than
‘—’in the notation for productions. An example of a contexeigrammar in BNF is given
on Slide 37. Written out in full, the context-free grammartbis slide has eight productions,

50 6 GRAMMARS

namely:

id — x
id — id’
op — +
op — —
op — *
exp — id
exp — eXxp op exp

exp — (exp)

The language generated by this grammar is supposed to eepeestain arithmetic expres-
sions. For example

(5) x + (x")
is in the language, but
(6) x + (x)”

is not. (See Exercise 6.4.2.)

A context-free grammar for the language
{a™b" | n > 0}
Terminals:
a b

Non-terminal:

1
Start symbol:

1
Productions:

I:=¢]|alb

Slide 38

6.3 Regular grammars 51
6.3 Regular grammars

A languagelL over an alphabel is context-freeiff L is the set of strings generated by
some context-free grammar (with set of terming)s The context-free grammar on Slide 38
generates the languadge™b” | n > 0}. We saw in Section 5.2 that this is not a regular
language. So the class of context-free languages is notatime ss the class of regular
languages. Nevertheless, as Slide 39 points out, everyardguguage is context-free. For
the grammar defined on that slide clearly has the propertydéavations from the start
symbol to a string ir2* must be of the form of a finite number of productions of the first
kind followed by a single production of the second kind, i.e.

SM — ai1qr — a1a2q2 — - —> 41042 .. .Ap(dn — Q1042 .. .Ap

where inM the following transition sequence holds

SM o - 5 g € Accept .

Thus a string is in the language generated by the grammaisfaccepted by/.

Every regular language is context-free

Given a DFA M, the set L(M) of strings accepted by M can be
generated by the following context-free grammar:

set of terminals = X1
set of non-terminals = States s
start symbol = start state of M

productions of two kinds:
q— aq whenever ¢ — ¢ in M

q— € whenever ¢ € Accept

Slide 39

(ii)

52 6 GRAMMARS

Definition A context-free grammar is regular iff all its productions are of
the form
r — uy

or
r—Uu

where u is a string of terminals and x and y are non-terminals.

Theorem

(a) Every language generated by a regular grammar is a regular
language (i.e. is the set of strings accepted by some DFA).

(b) Every regular language can be generated by a regular grammar.

Slide 40

It is possible to single out context-free grammars of a sddorm, calledregular (or
right linear), which do generate regular languages. The definition isliole 80. Indeed, as
the theorem on that slide states, this type of grammar gesadapossible regular languages.

Proof of the Theorem on Slidk. First note that part (b) of the theorem has already been
proved, because the context-free grammar generating) on Slide 39 is a regular grammar
(of a special kind).

To prove part (a), given a regular grammar we have to cons&ri@A M whose set
of accepted strings coincides with the strings generatethbygrammar. By the Subset
Construction (Theorem on Slide 18), it is enough to constancNFA® with this property.
This makes the task much easier. The construction is iitestron Slide 41. We take the
states ofM to be the non-terminals, augmented by some extra stateslebsbelow. Of
course the alphabet of input symbols &f should be the set of terminal symbols of the
grammar. The start state is the start symbol. Finally, thesitions and the accepting states
of M are defined as follows.

For each production of the formp — uq’ with length(u) > 1, sayu = ajas...a, with

n > 1, we addn — 1 fresh stateg, ¢o, . . ., ¢,—1 t0 the automaton and transitions
al ao as QAn /
q—q@ —q2— " "4n-1 — (.

For each production of the form — uq’ with length(u) = 0, i.e. withu = ¢, we add an

e-transition
!

q=q.

6.4 Exercises 53

(ii) For each production of the formp — w with length(u) > 1, sayu = aqas . . .a, Withn > 1,

(iv)

we addn fresh stateg., ¢0, g3, . . ., ¢, to the automaton and transitions
ail as as QAnp,
q—q1 —q2 — 43 " — (qn-

Moreover we make the stag accepting.

For each production of the formn — u with length(u) = 0, i.e. withu = ¢, we do not add
in any new states or transitions, but we do malen accepting state.

If we have a transition sequence M of the formsy;, = ¢ with ¢ € Accept,;, we
can divide it up into pieces according to where non-ternsiregicur and then convert each
piece into a use of one of the production rules, thereby fogna derivation ofu in the
grammar. Reversing this process, every derivation of agwf terminals can be converted
into a transition sequence in the automaton from the stai# $6 an accepting state. Thus
this NFA*does indeed accept exactly the set of strings generated ebgitten regular
grammar.]

Example of the construction used
in the proof of the Theorem on Slide 40

regular grammar: ~ | NFA®:
S—abX
X—bbY CSD Y)
Y—>X a S b
Ao S0)
Y —e¢ @ KX/ ©
(start symbol = .5) 6

Slide 41

6.4 Exercises

Exercise 6.4.1.Why is the string (4) not in the language generated by theestiitee
grammar in Section 6.17?

54 6 GRAMMARS

Exercise 6.4.2.Give a derivation showing that (5) is in the language geeerdity the
context-free grammar on Slide 37. Prove that (6) is not im ldr@guage. [Hint: show that
if u is a string of terminals and non-terminals occurring in awdion of this grammar and
that ¥’ occurs inu, then it does so in a substring of the fotorv”, orv’”’, etc., wherey is
eitherx or id.]

Exercise 6.4.3.Give a context-free grammar generating all the palindroowesthe alphabet
{a, b} (cf. Slide 28).

Exercise 6.4.4.Give a context-free grammar generating all the regularesgons over the
alphabet{a, b}.

Exercise 6.4.5.Using the construction given in the proof of part (a) of thee®fem on
Slide 40, convert the regular grammar with start symjgand productions

qo — €
qo — abqo

qo — C€q1
q1 — ab

into an NFAwhose language is that generated by the grammar.

Exercise 6.4.6.1s the language generated by the context-free grammar da S a regular
language? What about the one on Slide 377

Tripos questions 2008.2.8 2005.2.9 2002.2.1(d) 1997.2.7 1996.2.1(K)
1994.4.3

