
Multicore Programming: C++0x

Mark Batty

University of Cambridge

in collaboration with

Scott Owens, Susmit Sarkar, Peter Sewell, Tjark Weber

November, 2010

– p. 1

C++0x: the next C++

Specified by the C++ Standards Committee

Defined in The Standard, a 1300 page prose document

The design is a detailed compromise:

performance, optimisations and hardware

usability

compatibility with the next C, C1X

legacy code

– p. 2

C++0x: the next C++

Our mathematical model is faithful to the intent of, and has
influenced The Standard

The model:

syntactically separates out expert features

has a weak memory

defines a happens-before relation

requires non-atomic reads and writes to be DRF

provides atomic reads and writes for racy programs

– p. 3

The syntactic divide

An example of the syntax
// for regular programmers:
atomic_int x = 0;
x.store(1);
y = x.load();

// for experts:
x.store(2, memory_order);
y = x.load(memory_order);
atomic_thread_fence(memory_order);

With a choice of memory order
mo_seq_cst mo_release mo_acquire
mo_acq_rel mo_consume mo_relaxed

– p. 4

A model of two parts

An operational semantics:

Processes programs, identifying memory actions

Constructs candidate executions, Eopsem

An axiomatic memory model:

Judges Eopsem paired with a memory ordering, Xwitness

Searches the consistent executions for races and
unconstrained reads

– p. 5

Judgement of the axiomatic model

cpp memory model opsem (p : program) =

let pre executions = {(Eopsem, Xwitness).

opsem p Eopsem ∧

consistent execution (Eopsem, Xwitness)} in
if ∃X ∈ pre executions .

(indeterminate reads X 6= {}) ∨

(unsequenced races X 6= {}) ∨

(data races X 6= {})

then NONE

else SOME pre executions

– p. 6

The relations of a pre-execution

An Eopsem part containing:

sb — sequenced before, program order

asw — additional synchronizes with, inter-thread ordering

dd — data-dependence

An Xwitness part containing:

rf — relates a write to any reads that take its value

sc — a total order over mo_seq_cst and mutex actions

mo — modification order, per location total order of writes

– p. 7

A single threaded program

int main() {
int x = 2;
int y = 0;
y = (x == x);
return 0; }

../examples/t1.c

a:Wna x=2

b:Wna y=0

c:Rna x=2 d:Rna x=2

e:Wna y=1

sb

rf rf

sb sb

sb sb

– p. 8

Memory actions

action ::=

a:Rna x=v non-atomic read
| a:Wna x=v non-atomic write
| a:Rmo x=v atomic read
| a:Wmo x=v atomic write
| a:RMWmo x=v1/v2 atomic read-modify-write
| a:L x lock
| a:U x unlock
| a:Fmo fence

– p. 9

Memory orders

Memory orders are shown as follows:

mo ::=

SC memory order seq cst

| RLX memory order relaxed

| REL memory order release

| ACQ memory order acquire

| CON memory order consume

| A/R memory order acq rel

– p. 10

Location kinds

location kind =

MUTEX

| NON ATOMIC

| ATOMIC

actions respect location kinds =

∀a.

case location a of SOME l →

(case location-kind l of
MUTEX → is lock or unlock a

‖ NON ATOMIC → is load or store a

‖ ATOMIC → is load or store a ∨ is atomic action a)

‖ NONE → T

– p. 11

That single threaded program again

int main() {
int x = 2;
int y = 0;
y = (x == x);
return 0; }

../examples/t1.c

a:Wna x=2

b:Wna y=0

c:Rna x=2 d:Rna x=2

e:Wna y=1

sb

rf rf

sb sb

sb sb

– p. 12

Unsequenced race

unsequenced races = {(a, b).

is load or store a ∧ is load or store b ∧

(a 6= b) ∧ same location a b ∧ (is write a ∨ is write b) ∧

same thread a b ∧

¬(a
sequenced-before
−−−−−−−−−→ b ∨ b

sequenced-before
−−−−−−−−−→ a)}

– p. 13

An unsequenced race

int main() {
int x = 2;
int y = 0;
y = (x == (x=3));
return 0; }

a:Wna x=2

c:Wna x=3d:Rna x=2

b:Wna y=0

e:Wna y=0

sb

dummy

sb

dummy

sbsb

rf

sb
ur

– p. 14

A multi-threaded program

void foo(int* p) {*p=3;}

int main() {

int x = 2;

int y;

thread t1(foo, &x);

y = 3;

t1.join();

return 0; }

becomes:

int main() {

int x = 2;

int y;

{{{ x = 3;

||| y = 3;

}}}

return 0; }

../examples/t3-parallel.c

a:Wna x=2

b:Wna x=3 c:Wna y=3
asw asw

– p. 15

Synchronizes-with and happens-before

The parent thread has synchronization edges, labeled asw, to
its child threads. There are other ways to synchronize.

We will define the happens-before relation later. It contains
the transitive closure of all synchronization edges and all
sequenced before edges (amongst other things).

– p. 16

Data race

data races = {(a, b).

(a 6= b) ∧ same location a b ∧ (is write a ∨ is write b) ∧

¬ same thread a b ∧

¬(is atomic action a ∧ is atomic action b) ∧

¬(a
happens-before
−−−−−−−−→ b ∨ b

happens-before
−−−−−−−−→ a)}

– p. 17

A data race

int main() {

int x = 2;

int y;

{{{ x=3;

||| y=(x==3);

}}};

return 0; }

a:Wna x=2

b:Wna x=3 c:Rna x=2

d:Wna y=0

drdr
asw asw,rf

sb

– p. 18

Modification order

A total order of the writes at each atomic location, similar to
coherence order on Power

int main() {

atomic_int x = 0;

int y = 0;

{{{ { x.store(1);

x.store(2); }

||| { y = 1; }

}}}

return 0; }

../examples/t70-na-mo.c

a:Wna x=0

b:Wna y=0

c:WSC x=1 e:Wna y=1

d:WSC x=2

sb mo

asw asw

sb,mo

– p. 19

SC order

There is a total order over all sequentially consistent atomic
actions. SC atomics read the last prior write in SC order (or a
non SC write).

consistent sc order =

let sc happens before =
happens-before
−−−−−−−−→|all sc actions in

let sc mod order =
modification-order
−−−−−−−−−→|all sc actions in

strict total order over all sc actions (
sc
−→) ∧

sc happens before
−−−−−−−−−−→ ⊆

sc
−→∧

sc mod order
−−−−−−−→ ⊆

sc
−→

– p. 20

Atomic actions do not race

int main() {

atomic_int x;

x.store(2, mo_seq_cst);

int y = 0;

{{{ x.store(3);

||| y = ((x.load()) == 3);

}}};

return 0; }

a:WSC x=2

b:Wna y=0

e:Wna y=0

d:RSC x=2c:WSC x=3

sb
rf,sc

asw
asw

sc

sb

– p. 21

The release-acquire idiom

// sender
x = ...
y = 1;

// receiver
while (0 == y);
r = x;

../examples/t15.c

a:Wna x=1

b:WREL y=1

c:RACQ y=1

d:Rna x=1

sb

sw

sb

– p. 22

Release-acquire synchronization

../examples/t8a.c

a:Wna x=1

b:WREL y=1

c:WRLX y=2

d:RACQ y=2

e:Rna x=1

sb

sb,mo,rs sw

rf

sb

– p. 23

The release sequence

The release sequence is a sub-sequence of the the
modification order following a release

rs element rs head a =

same thread a rs head ∨ is atomic rmw a

arel

release-sequence
−−−−−−−−−→ b =

is at atomic location b ∧

is release arel ∧ (

(b = arel) ∨

(rs element arel b ∧ arel
modification-order
−−−−−−−−−→ b ∧

(∀c. arel
modification-order
−−−−−−−−−→ c

modification-order
−−−−−−−−−→ b =⇒

rs element arel c)))

– p. 24

An execution with a release sequence

../examples/t8a-no-sw.c

a:Wna x=1

b:WREL y=1

c:WRLX y=2

d:RACQ y=2

e:Rna x=1

sb

sb,mo,rs

rf

sb

– p. 25

Synchronizes-with

a
synchronizes-with
−−−−−−−−−→ b =

(* – additional synchronization, from thread create etc. – *)

a
additional-synchronized-with
−−−−−−−−−−−−−−−→ b ∨

(same location a b ∧ a ∈ actions ∧ b ∈ actions ∧ (

(* – mutex synchronization – *)

(is unlock a ∧ is lock b ∧ a
sc
−→ b) ∨

(* – release/acquire synchronization – *)
(is release a ∧ is acquire b ∧ ¬ same thread a b ∧

(∃c. a
release-sequence
−−−−−−−−−→ c

rf
−→ b)) ∨

[. . .]))

– p. 26

Release-acquire synchronization

../examples/t8a.c

a:Wna x=1

b:WREL y=1

c:WRLX y=2

d:RACQ y=2

e:Rna x=1

sb

sb,mo,rs sw

rf

sb

– p. 27

Happens-before (without consume)

simple happens before
−−−−−−−−−−−−→ =

(
sequenced-before
−−−−−−−−−→∪

synchronizes-with
−−−−−−−−−→)+

consistent simple happens before =

irreflexive (
simple happens before
−−−−−−−−−−−−→)

– p. 28

Happens-before

inter-thread-happens-before
−−−−−−−−−−−−−−−→ =

let r =
synchronizes-with
−−−−−−−−−→∪

dependency-ordered-before
−−−−−−−−−−−−−−−→∪

(
synchronizes-with
−−−−−−−−−→ ◦

sequenced-before
−−−−−−−−−→) in

(
r
−→∪ (

sequenced-before
−−−−−−−−−→ ◦

r
−→))+

consistent inter thread happens before =

irreflexive (
inter-thread-happens-before
−−−−−−−−−−−−−−−→)

happens-before
−−−−−−−−→ =

sequenced-before
−−−−−−−−−→∪

inter-thread-happens-before
−−−−−−−−−−−−−−−→

– p. 29

Visible side effect

Non-atomic reads read from one of their visible side effects

a
visible-side-effect
−−−−−−−−−→ b =

a
happens-before
−−−−−−−−→ b ∧

is write a ∧ is read b ∧ same location a b ∧

¬(∃c. (c 6= a) ∧ (c 6= b) ∧

is write c ∧ same location c b ∧

a
happens-before
−−−−−−−−→ c

happens-before
−−−−−−−−→ b)

– p. 30

Visible sequence of side effects

Atomic reads read from a write in one of their visible
sequences of side effects.

visible sequence of side effects tail vsse head b =

{c. vsse head
modification-order
−−−−−−−−−→ c ∧

¬(b
happens-before
−−−−−−−−→ c) ∧

(∀a. vsse head
modification-order
−−−−−−−−−→ a

modification-order
−−−−−−−−−→ c

=⇒ ¬(b
happens-before
−−−−−−−−→ a))}

– p. 31

An atomic read

../examples/t8a.c

a:Wna x=1

b:WREL y=1

c:WRLX y=2

d:RACQ y=2

e:Rna x=1

sb

sb,mo,rs sw

rf

sb

– p. 32

Consistent reads-from mapping

consistent reads from mapping =

(∀b. (is read b ∧ is at non atomic location b) =⇒

(if (∃avse . avse
visible-side-effect
−−−−−−−−−→ b)

then (∃avse . avse
visible-side-effect
−−−−−−−−−→ b ∧ avse

rf
−→ b)

else ¬(∃a. a
rf
−→ b))) ∧

(∀b. (is read b ∧ is at atomic location b) =⇒

(if (∃(b ′, vsse) ∈ visible-sequences-of-side-effects. (b ′ = b))

then (∃(b ′, vsse) ∈ visible-sequences-of-side-effects.

(b ′ = b) ∧ (∃c ∈ vsse. c
rf
−→ b))

else ¬(∃a. a
rf
−→ b))) ∧

(∀(x , a) ∈
rf
−→.

∀(y , b) ∈
rf
−→.

a
happens-before
−−−−−−−−→ b ∧

same location a b ∧ is at atomic location b

=⇒ (x = y) ∨ x
modification-order
−−−−−−−−−→ y) ∧

(∀(a, b) ∈
rf
−→. is atomic rmw b

=⇒ a |
modification-order
−−−−−−−−−→ b) ∧

(∀(a, b) ∈
rf
−→. is seq cst b

=⇒ ¬ is seq cst a ∨

a |
sc
−→λc. is write c∧same location b c b) ∧

[. . .]

– p. 33

Coherence

Coherence is defined an absence of four execution fragments:

../examples/coherence-axiom-1.exc

a:WRLX x=1 c:RRLX x=1

b:WRLX x=2 d:RRLX x=2

rf
mo

rf

hb

../examples/coherence-axiom-2.exc

b:WRLX x=2 c:WRLX x=1

d:RRLX x=2

mo

rf
hb

../examples/coherence-axiom-4.exc

a:WRLX x=1

b:WRLX x=2

hb mo

../examples/coherence-axiom-3.exc

a:WRLX x=1 c:RRLX x=1

d:WRLX x=2

hb

rf

mo

– p. 34

Concurrency examples that can be observed

The model allows the following non-SC behaviour:

message passing (RLX, REL-CON)

store buffering (REL-ACQ, RLX, REL-CON)

load buffering (RLX, CON)

write-to-read causality (RLX, CON)

IRIW (REL-ACQ, RLX, REL-CON)

...but DRF programs that use only the
memory_order_seq_cst atomics should be sequentially
consistent

– p. 35

An execution compiler

Operation x86 Implementation

Load non-SC mov

Load Seq cst lock xadd(0) OR: mfence, mov

Store non-SC mov

Store Seq cst lock xchg OR: mov , mfence

Fence non-SC no-op

Fence Seq cst mfence

– p. 36

Theorem

Eopsem
consistent execution

evt comp

Xwitness

Ex86
valid execution

Xx86

evt comp
−1

– p. 37

Conclusion

C++0x offers a simple model to normal programmers while
experts get a highly configurable language that abstracts the
hardware memory model

we have arrived just in time to point out a few bugs, and many
changes have been made as a result of our work

the intricacy of such models makes tools important,
CPPMEM helps in exploring and understanding the model

formal models provide an opportunity to provide guarantees
about programs based on the specification, like our compiler
correctness result

– p. 38

	C++0x: the next C++
	C++0x: the next C++
	The syntactic divide
	A model of two parts
	Judgement of the axiomatic model
	The relations of a pre-execution
	A single threaded program
	Memory actions
	Memory orders
	Location kinds
	That single threaded program again
	Unsequenced race
	An unsequenced race
	A multi-threaded program
	Synchronizes-with and happens-before
	Data race
	A data race
	Modification order
	SC order
	Atomic actions do not race
	The release-acquire idiom
	Release-acquire synchronization
	The release sequence
	An execution with a release sequence
	Synchronizes-with
	Release-acquire synchronization
	Happens-before (without consume)
	Happens-before
	Visible side effect
	Visible sequence of side effects
	An atomic read
	Consistent reads-from mapping
	Coherence
	Concurrency examples that can be observed
	An execution compiler
	Theorem
	Conclusion

