
Multicore Programming

Peter Sewell Jaroslav Ševčík Tim Harris

University of Cambridge MSR

with thanks to

Francesco Zappa Nardelli, Susmit Sarkar, Tom Ridge, Scott Owens, Magnus
O. Myreen, Luc Maranget, Mark Batty, Jade Alglave

October – November, 2010

– p. 1

Small language – expressions

location, x address (or pointer value)
variable, r thread-local variable name
integer , n integer
thread id , t thread id

expression, e ::= term
| n integer literal
| ∗x read from pointer
| ∗x = e write to pointer
| r read from local variable
| r = e write to local variable
| e; e ′ sequential composition
| if e = e ′ then e1 else e2 conditional
| lock x lock
| unlock x unlock
| print e print
| (e) S

|

– p. 2

Small language – processes and states

Let memory M be a map from locations to integers and L be a set of locations.

process , p ::= process
| t :ρ;e expression
| p|p′ parallel composition

state, s ::= state
| 〈p, M , L〉

label , l ::= label
| W x=n write
| R x=n read
| L x lock
| U x unlock
| P n print
| τ internal action (tau)

– p. 3

Expression semantics

Let ρ be a map from thread-local variable names to integers.

ρ1;e1

l
−→ ρ2;e2 e1 does l to become e2

ρ; ∗ x
R x=n
−−−−→ ρ;n

READ

ρ; ∗ x = n
W x=n
−−−−→ ρ;n

WRITE

ρ(r) = n

ρ;r
τ
−→ ρ;n

VAR READ

ρ;r = n
τ
−→ ρ ⊕ (r 7→ n);n

VAR WRITE

ρ;e1

l
−→ ρ′;e ′

1

ρ;e1; e2

l
−→ ρ′;e ′

1
; e2

SEQ CONTEXT

– p. 4

Expression semantics

ρ;n; e
τ
−→ ρ;e

SEQ

ρ;e1

l
−→ ρ′;e ′

1

ρ;if e1 = e2 then e3 else e4

l
−→ ρ′;if e ′

1
= e2 then e3 else e4

IF CONTEXT 1

ρ;e2

l
−→ ρ′;e ′

2

ρ;if n = e2 then e3 else e4

l
−→ ρ′;if n = e ′

2
then e3 else e4

IF CONTEXT 2

ρ;if n = n then e3 else e4

τ
−→ ρ;e3

IF EQ

n 6= n ′

ρ;if n = n ′ then e3 else e4

τ
−→ ρ;e4

IF NEQ

ρ;lock x
L x
−−→ ρ;0

LOCK

– p. 5

Expression semantics

ρ;unlock x
U x
−−→ ρ;0

UNLOCK

ρ;e
l
−→ ρ′;e ′

ρ;print e
l
−→ ρ′;print e ′

PRINT CONTEXT

ρ;print n
Pn
−−→ ρ;n

PRINT

– p. 6

Process semantics

p1

t :l
−→ p2 p1 does l to become p2

ρ;e
l
−→ ρ′;e ′

t :ρ;e
t :l
−→ t :ρ′;e ′

THREAD

p1

t :l
−→ p′

1

p1|p2

t :l
−→ p′

1
|p2

PAR CONTEXT LEFT

p2

t :l
−→ p′

2

p1|p2

t :l
−→ p1|p′

2

PAR CONTEXT RIGHT

– p. 7

SC semantics

s1
t :l
−→ s2 s1 makes a step to become s2

p
t :R x=n
−−−−−→ p′

M (x) = n

〈p, M , L〉
t :R x=n
−−−−−→ 〈p′, M , L〉

SREAD

p
t :W x=n
−−−−−→ p′

〈p, M , L〉
t :W x=n
−−−−−→ 〈p′, M ⊕ (x 7→ n), L〉

SWRITE

p
t :τ
−−→ p′

〈p, M , L〉
t :τ
−−→ 〈p′, M , L〉

STAU

p
t :L x
−−−→ p′

x /∈ L

〈p, M , L〉
t :L x
−−−→ 〈p′, M , L ∪ {x}〉

SLOCK

p
t :U x
−−−→ p′

〈p, M , L〉
t :U x
−−−→ 〈p′, M , L \ {x}〉

SUNLOCK

p
t :Pn
−−−→ p′

〈p, M , L〉
t :Pn
−−−→ 〈p′, M , L〉

SPRINT

– p. 8

Compiler Optimisations

Correctness

Optimisations in SC

Optimisations of Data-race-free Programs

Data race freedom

Limitations of the DRF principle

Correctness under the DRF principle

Out-of-thin-air values

– p. 9

Compiler Optimisations

Correctness

Optimisations in SC

Optimisations of Data-race-free Programs

Data race freedom

Limitations of the DRF principle

Correctness under the DRF principle

Out-of-thin-air values

– p. 10

World of Optimisations

Typical compiler performs many optimisations.

For example, gcc 4.4.1. with -O2 option goes through 147
compilation passes (using -fdump-tree-all and
-fdump-rtl-all).

Sun Hotspot Server JVM has 18 high-level passes with each
pass composed of one or more smaller passes
(http://www.azulsystems.com/blog/cliff-click/2009-04-
14-odds-ends).

– p. 11

World of Optimisations

Typical compiler performs many optimisations.

– Common subexpression elimination (copy propagation, partial redundancy elimination, value
numbering)
– (conditional) constant propagation
– dead code elimination
– loop optimisations (loop invariant code motion, loop splitting/peeling, loop unrolling, etc.)
– vectorisation
– peephole optimisations
– tail duplication removal
– building graph representations/graph linearisation
– register allocation
– call inlining
– local memory to registers promotion
– spilling
– instruction scheduling. . .

– p. 11

Memory Optimisations

Only some optimisations change shared-memory traces.

– p. 12

Memory Optimisations

Only some optimisations change shared-memory traces.

– Common subexpression elimination (copy propagation, partial redundancy elimination, value
numbering)
– (conditional) constant propagation
– dead code elimination
– loop optimisations (loop invariant code motion, loop splitting/peeling, loop unrolling, etc.)
– vectorisation
– peephole optimisations
– tail duplication removal
– building graph representations/graph linearisation
– register allocation
– call inlining
– local memory to registers promotion
– spilling
– instruction scheduling. . .

– p. 12

Memory Optimisations

Only some optimisations change shared-memory traces.

The optimisations of shared-memory can perform:

Eliminations (of reads, writes, sometimes
synchronisation).

Reordering (of independent non-conflicting memory
accesses).

Introductions (of reads – rarely).

– p. 12

Eliminations

This includes common subexpression elimination, dead read
elimination, overwritten write elimination, redundant write
elimination.

Irrelevant read elimination:

r=*x; C → C,

where r is not free in C.

Redundant read after read elimination:

r1=*x; r2=*x → r1=*x; r2=r1.

Redundant read after write elimination:

*x=r1; r2=*x → *x=r1; r2=r1.

– p. 13

Reordering

Some loop optimisations, code motion.

Normal memory access reordering:

r1=*x; r2=*y → r2=*y; r1=*x,

*x=r1; *y=r2 → *y=r2; *x=r1,

r1=*x; *y=r2⇄ *y=r2; r1=*x.

Roach motel reordering:

memop; lock m → lock m; memop,

unlock m; memop → memop; unlock m,

where memop is *x=r1 or r1=*x.

– p. 14

Memory access introductions

Can an optimisation introduce memory accesses?

Note that the loop body is not executed.

– p. 15

Memory access introductions

Can an optimisation introduce memory accesses?

Yes, but rarely:

i = 0;

. . .

while (i != 0) (

j = *x + 1;

i = i - 1)

→

i = 0;

. . .

tmp = *x;

while (i != 0) (

j = tmp + 1;

i = i - 1)

Note that the loop body is not executed.

– p. 15

Compiler Optimisations

Correctness

Optimisations in SC

Optimisations of Data-race-free Programs

Data race freedom

Limitations of the DRF principle

Correctness under the DRF principle

Out-of-thin-air values

– p. 16

When is an optimisation correct?

Optimisation is correct if any behaviour of the optimised
program could be exhibited by the original program.

I.e., for any execution of the optimised program, there is an
execution of the original program with the same observable
behaviour.

– p. 17

When is an optimisation correct?

Optimisation is correct if any behaviour of the optimised
program could be exhibited by the original program.

I.e., for any execution of the optimised program, there is an
execution of the original program with the same observable
behaviour.

Where the observable behaviour of an execution is the
subtrace of external actions (let us ignore termination).

– p. 17

Example

P1 = *x = 1

∣

∣

∣

∣

∣

r1 = *x; r2 = *x;

if r1=r2 then print 1 else print 2

P2 = *x = 1

∣

∣

∣

∣

∣

r1 = *x; r2 = r1;

if r1=r2 then print 1 else print 2

Is the transformation from P1 to P2 correct (in our SC
semantics)?

– p. 18

Example

P1 = *x = 1

∣

∣

∣

∣

∣

r1 = *x; r2 = *x;

if r1=r2 then print 1 else print 2

P2 = *x = 1

∣

∣

∣

∣

∣

r1 = *x; r2 = r1;

if r1=r2 then print 1 else print 2

Executions of P1:

Wt1
x=1, Rt2

x=1, Rt2
x=1, Pt2

1

Rt2
x=0, Wt1

x=1, Rt2
x=1, Pt2

2

Rt2
x=0, Rt2

x=0, Wt1
x=1, Pt2

1

Rt2
x=0, Rt2

x=0, Pt2
1, Wt1

x=1

– p. 18

Example

P1 = *x = 1

∣

∣

∣

∣

∣

r1 = *x; r2 = *x;

if r1=r2 then print 1 else print 2

P2 = *x = 1

∣

∣

∣

∣

∣

r1 = *x; r2 = r1;

if r1=r2 then print 1 else print 2

Executions of P2:

Wt1
x=1, Rt2

x=1, Pt2
1

Rt2
x=0, Wt1

x=1, Pt2
1

Rt2
x=0, Pt2

1, Wt1
x=1

– p. 18

Example

P1 = *x = 1

∣

∣

∣

∣

∣

r1 = *x; r2 = *x;

if r1=r2 then print 1 else print 2

P2 = *x = 1

∣

∣

∣

∣

∣

r1 = *x; r2 = r1;

if r1=r2 then print 1 else print 2

Behaviours of P1: [Pt2
1], [Pt2

2].

Behaviours of P2: [Pt2
1].

It is correct to rewrite P1 → P2, but not the opposite!

– p. 18

Optimisation Correctness Overview

Transformation SC JMM DRF

Trace-preserving transformations X X X

Reordering normal memory accesses × × X

Redundant read after read elimination X∗ × X

Redundant read after write elimination X∗ X X

Irrelevant read elimination X X X

Irrelevant read introduction X × ?

Redundant write before write elimination X∗ X X

Redundant write after read elimination X∗ × X

Roach-motel reordering X × X

External action reordering × × X

X– correct, ×– incorrect, X∗ – correct only for adjacent memory accesses.

– p. 19

Correctness proof strategy

Take an arbitrary execution of the optimised program.

– p. 20

Correctness proof strategy

Take an arbitrary execution of the optimised program.

Massage it into an execution of the original program. . .

– p. 20

Correctness proof strategy

Take an arbitrary execution of the optimised program.

Massage it into an execution of the original program. . .

. . . so that the massaged execution has the same sequence of
observable actions.

Memory actions are not observable.

– p. 20

Compiler Optimisations

Correctness

Optimisations in SC

Optimisations of Data-race-free Programs

Data race freedom

Limitations of the DRF principle

Correctness under the DRF principle

Out-of-thin-air values

– p. 21

General CSE incorrect in SC

*x = 1; if *y=1 then (

*y = 1; *x = 2;

if *y = 2 *y = 2

then print *x)

There is only one execution with a printing behaviour:

Wt1 x=1, Wt1 y=1, Rt2 x=1, Wt2 x=2, Wt2 y=2, Rt1 y=2, Rt1 x=2, Pt1 2

– p. 22

General CSE incorrect in SC

*x = 1; if *x=1 then (

*y = 1; *x = 2;

if *y = 2 *y = 2

then print *x)

But a compiler would optimise to:

*x = 1; if *x=1 then (

*y = 1; *x = 2;

if *y = 2 *y = 2

then print 1)

– p. 22

General CSE incorrect in SC

*x = 1; if *x=1 then (

*y = 1; *x = 2;

if *y = 2 *y = 2

then print 1)

The only execution with a printing behaviour in the optimised
program is:

Wt1 x=1, Wt1 y=1, Rt2 x=1, Wt2 x=2, Wt2 y=2, Rt1 y=2, Pt1 1

So the optimisation is not correct!

– p. 22

General CSE incorrect in SC II

*x = 1; r = *x;

*y = 1; print r;

print *y;

print *x;

The observable behaviours are:

[Pt2 1, Pt2 1, Pt2 1]

[Pt2 1, Pt2 0, Pt2 1]

[Pt2 0, Pt2 1, Pt2 1]

[Pt2 0, Pt2 0, Pt2 1]

[Pt2 0, Pt2 0, Pt2 0]

Note that [Pt2
0, Pt2

1, Pt2
0] is not observable.

– p. 23

General CSE incorrect in SC II

*x = 1; r = *x;

*y = 1; print r;

print *y;

print *x;

But a compiler would optimise to:

*x = 1; r = *x;

*y = 1; print r;

print *y;

print r;

– p. 23

General CSE incorrect in SC II

The optimised program

*x = 1; r = *x;

*y = 1; print r;

print *y;

print r;

has behaviours:

[Pt2 1, Pt2 1, Pt2 1]

[Pt2 1, Pt2 0, Pt2 1]

[Pt2 0, Pt2 1, Pt2 0] New behaviour!

[Pt2 0, Pt2 0, Pt2 0]

– p. 23

Reordering incorrect

*x = 1; *y = 1;

r1 = *y r2 = *x;

print r1 print r2

⇒

r1 = *y *y = 1;

*x = 1; r2 = *x;

print r1 print r2

Behaviours: Behaviours:

[Pt1
0, Pt2

1] [Pt1
0, Pt2

1]

[Pt1
1, Pt2

0] [Pt1
1, Pt2

0]

[Pt1
1, Pt2

1] [Pt1
1, Pt2

1]

[Pt1
0, Pt2

0]

This is essentially the same example as in the first x86 lecture.

– p. 24

Elimination of Adjacent Accesses

There are some correct optimisations under SC. For example,
it is correct to rewrite

r1 = *x; r2 = *x → r1 = *x; r2 = r1

in any context.

Why?

– p. 25

Elimination of Adjacent Accesses

There are some correct optimisations under SC. For example,
it is correct to rewrite

r1 = *x; r2 = *x → r1 = *x; r2 = r1

in any context.

Why?

The basic idea is: whenever we perform the read r1 = *x in
the transformed program, we perform both reads in the
original program.

– p. 25

Simulating Elimination
Original program Optimised program

. . .

��

. . .

��

〈t : ρ; r1=*x;r2=*x;e | p,M,L〉 〈t : ρ; r1=*x;r2=r1;e | p,M,L〉

– p. 26

Simulating Elimination
Original program Optimised program

. . .

��

. . .

��

〈t : ρ; r1=*x;r2=*x;e | p,M,L〉 〈t : ρ; r1=*x;r2=r1;e | p,M,L〉

Rt x=n
��

〈t : ρ(r1 7→ n); r2=r1;e | p,M,L〉

– p. 26

Simulating Elimination
Original program Optimised program

. . .

��

. . .

��

〈t : ρ; r1=*x;r2=*x;e | p,M,L〉

Rt x=n
��

〈t : ρ; r1=*x;r2=r1;e | p,M,L〉

Rt x=n
��

〈t : ρ(r1 7→ n); r2=*x;e | p,M,L〉

Rt x=n��

〈t : ρ(r1 7→ n); r2=r1;e | p,M,L〉

〈t : ρ

(

r1 7→ n

r2 7→ n

)

; e | p,M,L〉

– p. 26

Simulating Elimination
Original program Optimised program

. . .

��

. . .

��

〈t : ρ; r1=*x;r2=*x;e | p,M,L〉

Rt x=n
��

〈t : ρ; r1=*x;r2=r1;e | p,M,L〉

Rt x=n
��

〈t : ρ(r1 7→ n); r2=*x;e | p,M,L〉

Rt x=n��

〈t : ρ(r1 7→ n); r2=r1;e | p,M,L〉

��
〈t : ρ

(

r1 7→ n

r2 7→ n

)

; e | p,M,L〉 . . .

��

〈t : ρ(r1 7→ n); r2=r1;e | p′,M ′, L′〉

– p. 26

Simulating Elimination
Original program Optimised program

. . .

��

. . .

��

〈t : ρ; r1=*x;r2=*x;e | p,M,L〉

Rt x=n
��

〈t : ρ; r1=*x;r2=r1;e | p,M,L〉

Rt x=n
��

〈t : ρ(r1 7→ n); r2=*x;e | p,M,L〉

Rt x=n��

〈t : ρ(r1 7→ n); r2=r1;e | p,M,L〉

��
〈t : ρ

(

r1 7→ n

r2 7→ n

)

; e | p,M,L〉

��

. . .

��
. . .

��

〈t : ρ(r1 7→ n); r2=r1;e | p′,M ′, L′〉

〈t : ρ

(

r1 7→ n

r2 7→ n

)

; e | p′,M ′, L′〉

– p. 26

Simulating Elimination
Original program Optimised program

. . .

��

. . .

��

〈t : ρ; r1=*x;r2=*x;e | p,M,L〉

Rt x=n
��

〈t : ρ; r1=*x;r2=r1;e | p,M,L〉

Rt x=n
��

〈t : ρ(r1 7→ n); r2=*x;e | p,M,L〉

Rt x=n��

〈t : ρ(r1 7→ n); r2=r1;e | p,M,L〉

��
〈t : ρ

(

r1 7→ n

r2 7→ n

)

; e | p,M,L〉

��

. . .

��
. . .

��

〈t : ρ(r1 7→ n); r2=r1;e | p′,M ′, L′〉

τ��

〈t : ρ

(

r1 7→ n

r2 7→ n

)

; e | p′,M ′, L′〉 〈t : ρ

(

r1 7→ n

r2 7→ n

)

; e | p′,M ′, L′〉

– p. 26

Simulating Elimination
Original program Optimised program

. . .

��

. . .

��

〈t : ρ; r1=*x;r2=*x;e | p,M,L〉

Rt x=n
��

〈t : ρ; r1=*x;r2=r1;e | p,M,L〉

Rt x=n
��

〈t : ρ(r1 7→ n); r2=*x;e | p,M,L〉

Rt x=n��

〈t : ρ(r1 7→ n); r2=r1;e | p,M,L〉

��
〈t : ρ

(

r1 7→ n

r2 7→ n

)

; e | p,M,L〉

��

. . .

��
. . .

��

〈t : ρ(r1 7→ n); r2=r1;e | p′,M ′, L′〉

τ��

〈t : ρ

(

r1 7→ n

r2 7→ n

)

; e | p′,M ′, L′〉

��

〈t : ρ

(

r1 7→ n

r2 7→ n

)

; e | p′,M ′, L′〉

��.

Note: there is a bit of cheating w.r.t. the semantics.

– p. 26

Elimination Formally

e1 e2 e2 is an elimination of e1

r1 = ∗x ; r2 = ∗x r1 = ∗x ; r2 = r1

EELIM

e e
EID

e e ′

r = e r = e ′
EASSIGN CONTEXT

e e ′

∗x = e ∗x = e ′
EWRITE CONTEXT

e1 e ′
1

e2 e ′
2

e1; e2 e ′
1
; e ′

2

ESEQ CONTEXT

e e ′

print e print e ′
EPRINT CONTEXT

– p. 27

Elimination Formally

e1 e ′
1

e2 e ′
2

e3 e ′
3

e4 e ′
4

if e1 = e2 then e3 else e4 if e ′
1

= e ′
2
then e ′

3
else e ′

4

EIF CONTEXT

p1 p2 p2 is an elimination of p1

e e ′

t :ρ;e t :ρ;e ′
ETHREAD

p1 p′

1

p2 p′

2

p1|p2 p′

1
|p′

2

EPAR

– p. 27

Proof

We want to show that for every trace of the optimised
program, there is a trace of the original program with the same
behaviour.

What do we mean by the trace of program 〈p, M , L〉, exactly?

– p. 28

Proof

We want to show that for every trace of the optimised
program, there is a trace of the original program with the same
behaviour.

What do we mean by the trace of program 〈p, M , L〉, exactly?

We write 〈p, M , L〉
t
−→ 〈p′,M ′, L′〉 if

〈p, M , L〉
l1−→ 〈p1,M1, L1〉

l2−→ · · ·
ln−→ 〈p′,M ′, L′〉

for some pi, Mi, Li and li such that t = [l1, . . . , ln].

– p. 28

Proof

We want to show that for every trace of the optimised
program, there is a trace of the original program with the same
behaviour.

What do we mean by the trace of program 〈p, M , L〉, exactly?

We write 〈p, M , L〉
t
−→ 〈p′,M ′, L′〉 if

〈p, M , L〉
l1−→ 〈p1,M1, L1〉

l2−→ · · ·
ln−→ 〈p′,M ′, L′〉

for some pi, Mi, Li and li such that t = [l1, . . . , ln].

Then we can say that 〈p, M , L〉 has trace t (written

〈p, M , L〉 ↓ t) if 〈p, M , L〉
t
−→ 〈p′, M ′, L′〉 for some p′, M ′ and L′.

– p. 28

Proof - failed attempt

Let p q. We want to show that for any t, if 〈q,M,L〉 ↓ t, then
there is t′ such that 〈p,M,L〉 ↓ t′ and P (t) = P (t′), where P (t)
is the subsequence of observable events in t.

1. Strategy: by induction on the length of trace t.

2. Base case is trivial.

– p. 29

Proof - failed attempt

Let p q. We want to show that for any t, if 〈q,M,L〉 ↓ t, then
there is t′ such that 〈p,M,L〉 ↓ t′ and P (t) = P (t′), where P (t)
is the subsequence of observable events in t.

1. Strategy: by induction on the length of trace t.

2. Base case is trivial.

3. Induction step is interesting: We have

〈q,M,L〉
t
−→ 〈q′,M ′, L′〉 where 0 < |t|.

Suppose t = t′ ++[l], so we have

〈q,M,L〉
t′

−→ 〈q̄, M̄ , L̄〉
l
−→ 〈q′,M ′, L′〉 and we can use the

induction hypothesis to get 〈p,M,L〉
t′

−→ 〈p̂, M̂ , L̂〉.

– p. 29

Proof - failed attempt

Let p q. We want to show that for any t, if 〈q,M,L〉 ↓ t, then
there is t′ such that 〈p,M,L〉 ↓ t′ and P (t) = P (t′), where P (t)
is the subsequence of observable events in t.

1. Strategy: by induction on the length of trace t.

2. Base case is trivial.

3. Induction step is interesting: We have

〈q,M,L〉
t
−→ 〈q′,M ′, L′〉 where 0 < |t|.

Suppose t = t′ ++[l], so we have

〈q,M,L〉
t′

−→ 〈q̄, M̄ , L̄〉
l
−→ 〈q′,M ′, L′〉 and we can use the

induction hypothesis to get 〈p,M,L〉
t′

−→ 〈p̂, M̂ , L̂〉.

Uhm, this is no good because we do not know anything
about p̂, M̂ , L̂!

– p. 29

Formal proof - simulation relation

Idea: we need to relate the state of the optimised and original
programs so that we can simulate the step and keep being
related. Our simulation relation ∼ must:

Relate a program and its eliminated counterpart, i.e., if
p q, then p ∼ q.

But it must also account for the intermediate step:
〈t : ρ; r1=*x;r2=*x;e | p,M,L〉

Rt x=n
��

〈t : ρ; r1=*x;r2=r1;e | p,M,L〉

Rt x=n
��

o/ o/ o/ o/

〈t : ρ; r1=n;r2=*x;e | p,M,L〉

τ
��
��

〈t : ρ; r1=n;r2=r1;e | p,M,L〉

τ
��

v6 v6

〈t : ρ(r1 7→ n); r2=*x;e | p,M,L〉

Rt x=n
��

〈t : ρ(r1 7→ n); r2=r1;e | p,M,L〉

r2 r2 r2 r2 r2 r2 r2 r2 r2 r2 r2 r2 r2 r2 r2 r2

��

〈t : ρ(r1 7→ n); r2=n;e | p,M,L〉 /o/o/o/o 〈t : ρ(r1 7→ n); r2=n;e | p,M,L〉

– p. 30

Simulation relation formally

Simulation relation for elimination and intermediate states:

e e ′

ρ, e ∼ ρ, e ′
SEELIM

ρ ⊕ (r1 7→ n), r2 = n ∼ ρ, r1 = n; r2 = r1

SEASSIGN N

ρ ⊕ (r1 7→ n), r2 = n ∼ ρ ⊕ (r1 7→ n), n; r2 = r1

SESEQ

ρ ⊕ (r1 7→ n), r2 = n ∼ ρ ⊕ (r1 7→ n), r2 = r1

SEASSIGN REG

– p. 31

Simulation relation formally

Simulation relation context rules:

ρ, e1 ∼ ρ′, e ′
1

e2 e ′
2

ρ, e1; e2 ∼ ρ′, e ′
1
; e ′

2

SESEQ CONTEXT

ρ, e ∼ ρ′, e ′

ρ,print e ∼ ρ′,print e ′
SEPRINT CONTEXT

ρ, e ∼ ρ′, e ′

ρ, r = e ∼ ρ′, r = e ′
SEASSIGN CONTEXT

ρ, e ∼ ρ′, e ′

ρ, ∗x = e ∼ ρ′, ∗x = e ′
SEWRITE CONTEXT

– p. 31

Simulation relation formally

Simulation relation lifiting to processes:

p1 ∼ p2 p1 simulates p2

ρ, e ∼ ρ′, e ′

t :ρ;e ∼ t :ρ′;e ′
SPTHREAD

p1 ∼ p′

1

p2 ∼ p′

2

p1|p2 ∼ p′

1
|p′

2

SPPAR

– p. 31

Simulation of expressions

First, we should make sure that a step in an optimised
expression can be simulated by step in any related
expression. Formally, we want to establish that if ρ1, e1 ∼ ρ′

1
, e ′

1
,

ρ′
1
;e ′

1

l
−→ ρ′

2
;e ′

2
then there are ρ2, e2 and trace l′ such that

ρ1;e1

l
′

−→ ρ2;e2, ρ2, e2 ∼ ρ′
2
, e ′

2
, P ([l]) = P (l′) (we should also

show that l and l′ have the same effect on locks/memory).

– p. 32

Simulation of expressions

First, we should make sure that a step in an optimised
expression can be simulated by step in any related
expression. Formally, we want to establish that if ρ1, e1 ∼ ρ′

1
, e ′

1
,

ρ′
1
;e ′

1

l
−→ ρ′

2
;e ′

2
then there are ρ2, e2 and trace l′ such that

ρ1;e1

l
′

−→ ρ2;e2, ρ2, e2 ∼ ρ′
2
, e ′

2
, P ([l]) = P (l′) (we should also

show that l and l′ have the same effect on locks/memory).

More graphically, we want show:

ρ1, e1

�O
�O
�O

ρ′
1
, e′

1

l
// ρ′

2
, e′

2

⇒ ∃ρ2, e2, l
′.

ρ1, e1

�O
�O
�O

l′
// ρ2, e2

�O
�O
�O

ρ′
1
, e′

1

l
// ρ′

2
, e′

2

∧P ([l]) = P (l′)

– p. 32

Simulation of expressions

First, we should make sure that a step in an optimised
expression can be simulated by step in any related
expression. Formally, we want to establish that if ρ1, e1 ∼ ρ′

1
, e ′

1
,

ρ′
1
;e ′

1

l
−→ ρ′

2
;e ′

2
then there are ρ2, e2 and trace l′ such that

ρ1;e1

l
′

−→ ρ2;e2, ρ2, e2 ∼ ρ′
2
, e ′

2
, P ([l]) = P (l′) (we should also

show that l and l′ have the same effect on locks/memory).

Proof strategy: by induction on the derivation of ρ′
1
;e ′

1

l
−→ ρ′

2
;e ′

2

and then by case analysis on ρ1, e1 ∼ ρ′
1
, e ′

1
.

Most of the induction cases are trivial. For example, if

ρ′
1
;e ′

1

l
−→ ρ′

2
;e ′

2
was obtained by the READ rule, then e′

1
= ∗x ,

hence e1 = ∗x and ρ1 = ρ′
1

(by definition of ∼). As a result, we
can take ρ2 = ρ′

2
, e2 = e′

2
and l′ = [l].

– p. 32

Simulation of ‘SEQ CONTEXT’

If ρ′
1
;e ′

1

l
−→ ρ′

2
;e ′

2
was derived by SEQ CONTEXT then e′

1
= e1

1
; e2

1
.

In this case, the case analysis on ρ1, e1 ∼ ρ′
1
, e ′

1
admits four

rules: SEELIM, SEASSIGN N and SESEQ.

Consider, for example, SEASSIGN N. Then
e′
1

= (r1 = n; r2 = r1), ρ1 = ρ′
1
⊕ (r1 7→ n), e1 = (r2 = n). Since

only the CONTEXT SEQ and VAR WRITE rules apply to e′
1
, we

have ρ′
2

= ρ′
1
⊕ (r1 7→ n) and e′

2
= (n; r2 = r1). Let us set

ρ2 = ρ1, e2 = e1 and l′ = []. Using SEASSIGN SEQ, we obtain
ρ1, e1 ∼ ρ′

2
, e′

2
. Since l = τ , we have P (l′) = P ([l]).

– p. 33

Simulation of ‘SEQ CONTEXT’

If ρ′
1
;e ′

1

l
−→ ρ′

2
;e ′

2
was derived by SEQ CONTEXT then e′

1
= e1

1
; e2

1
.

In this case, the case analysis on ρ1, e1 ∼ ρ′
1
, e ′

1
admits four

rules: SEELIM, SEASSIGN N and SESEQ.

Consider, for example, SEASSIGN N. Then
e′
1

= (r1 = n; r2 = r1), ρ1 = ρ′
1
⊕ (r1 7→ n), e1 = (r2 = n). Since

only the CONTEXT SEQ and VAR WRITE rules apply to e′
1
, we

have ρ′
2

= ρ′
1
⊕ (r1 7→ n) and e′

2
= (n; r2 = r1). Let us set

ρ2 = ρ1, e2 = e1 and l′ = []. Using SEASSIGN SEQ, we obtain
ρ1, e1 ∼ ρ′

2
, e′

2
. Since l = τ , we have P (l′) = P ([l]).

The other cases are similarly tedious. You do not want to do
this kind of reasoning manually! We advise to use Isabelle or
HOL or Coq to check your proofs.

– p. 33

Proof plumbing

We want to show that for any t, if 〈q,M,L〉
t
−→ 〈q′,M ′, L′〉, then

there are t′ and p′ such that 〈p,M,L〉
t′

−→ 〈p′,M ′, L′〉, p′ ∼ q′ and
P (t) = P (t′).

Base case still trivial. Induction step:

〈p,M,L〉

�O
�O
�O

〈q,M,L〉
t̄

// 〈q̄, M̄ , L̄〉
l

// 〈q′,M ′, L′〉

Use induction hypothesis!

– p. 34

Proof plumbing

We want to show that for any t, if 〈q,M,L〉
t
−→ 〈q′,M ′, L′〉, then

there are t′ and p′ such that 〈p,M,L〉
t′

−→ 〈p′,M ′, L′〉, p′ ∼ q′ and
P (t) = P (t′).

Base case still trivial. Induction step:

By induction hypothesis we obtain t̄′ and p̄ such that p̄ ∼ q̄,
P (t̄) = P (t̄′) and

〈p,M,L〉

�O
�O
�O

t̄′
// 〈p̄, M̄ , L̄〉

�O
�O
�O

〈q,M,L〉
t̄

// 〈q̄, M̄ , L̄〉
l

// 〈q′,M ′, L′〉

– p. 34

Proof plumbing

We need to find p′ and t′ such that P (t′) = P ([l′]) and

〈p̄, M̄ , L̄〉

�O
�O
�O

t′
// 〈p′,M ′, L′〉

�O
�O
�O

〈q̄, M̄ , L̄〉
l

// 〈q′,M ′, L′〉

This is an easy proof by induction on the derivation of

〈q̄, M̄ , L̄〉
l
−→ 〈q′,M ′, L′〉, using our (sketched) expression

simulation lemma to do the heavy lifting.

– p. 35

Compiler Optimisations

Correctness

Optimisations in SC

Optimisations of Data-race-free Programs

Data race freedom

Limitations of the DRF principle

Correctness under the DRF principle

Out-of-thin-air values

– p. 36

Data Race Freedom Principle

Since many common optimisations are not valid in SC,
language designers specify relaxed models.

Insight: to observe an optimisation one needs to be able to
observe other thread’s memory accesses at the same time
when they are performed — data race!

So, in data race free programs, common optimisations are not
observable.

DRF principle: each behaviour of a data race free program
(after optimisation) must be the same as the behaviour of
some (SC) execution of the program (before optimisation).

Says nothing about programs with data races!

– p. 37

Compiler Optimisations

Correctness

Optimisations in SC

Optimisations of Data-race-free Programs

Data race freedom

Limitations of the DRF principle

Correctness under the DRF principle

Out-of-thin-air values

– p. 38

What is DRF, exactly?

There is no execution with adjacent conflicting memory
accesses from different threads, where a pair of memory
accesses is conflicting if they access the same memory
location and at least one of them is a write.

Program with a data race:

*y = 1 if *x = 1

*x = 1 then print *y

A racy execution:

Wt1 y=1, Wt1 x=1, Rt2 x=1, Rt2 y=1, Pt2 1

– p. 39

What is DRF, exactly?

There is no execution with adjacent conflicting memory
accesses from different threads, where a pair of memory
accesses is conflicting if they access the same memory
location and at least one of them is a write.

Data race free program:

*y = 1 lock x;

lock x r = *x;

*x = 1 unlock x;

unlock x if r = 1

then print *y

– p. 39

What is DRF, exactly?

There is no execution with adjacent conflicting memory
accesses from different threads, where a pair of memory
accesses is conflicting if they access the same memory
location and at least one of them is a write.

Data race free program:

if *x = 1 if *y = 1

then *y = 1 then *x = 1

Note that the writes cannot be executed in any SC execution!
So they cannot participate in a data race. . .

– p. 39

Another DRF definition

In literature, you will often find a different different definition of
data race freedom — using happens-before relation.

The intuition:

happens-before relates events that are ordered in time by
synchronisation or by sequencing in a thread.

a data race is a pair of conflicting memory accesses that
is not ordered by happens-before.

a pair of memory accesses is conflicting if they access the
same memory location and at least one of them is a write.

– p. 40

Happens-before order

Suppose that t is a trace t = [l1, . . . , ln].

Let 1 ≤ i, j ≤ n. We say that

i synchronizes-with j if i < j, li = Uti
x and lj = Ltj

x.

i is before j in program order if i < j and li, lj belong to
the same thread.

i happens-before j if 〈i, j〉 is in the transitive closure of the
union of the synchronizes-with and program orders.

– p. 41

Happens-before order

Suppose that t is a trace t = [l1, . . . , ln].

Let 1 ≤ i, j ≤ n. We say that

i synchronizes-with j if i < j, li = Uti
x and lj = Ltj

x.

i is before j in program order if i < j and li, lj belong to
the same thread.

i happens-before j if 〈i, j〉 is in the transitive closure of the
union of the synchronizes-with and program orders.

Wt2
y=2

po

22

hb

44
Lt1

x
po

// Wt1
y=1

po
//

hb

''

Ut1
x sw

// Lt2
x

po
// Rt2

y=1
po

// Ut2
x

– p. 41

DRF via happens-before

We say that program is hb-data-race-free if in all executions,
all different pairs of conflicting actions in the executions are
ordered by the happens-before order. Here, actions are
conflicting if they are memory accesses to the same location
and at least one of them is a write.

Theorem (cf. Boehm, Adve, PLDI 2008): An execution is
hb-data-race-free if and only if it is data-race-free.

This a very useful theorem to prove correctness of
optimisations under the DRF principle.

– p. 42

Compiler Optimisations

Correctness

Optimisations in SC

Optimisations of Data-race-free Programs

Data race freedom

Limitations of the DRF principle

Correctness under the DRF principle

Out-of-thin-air values

– p. 43

Limitations of the DRF

The DRF principle allows most optimisations, but not all.

The dangerous “optimisations” are usually the ones that
introduce shared-memory accesses (this is very rare):

Write introducing code transformations
often speculatively, or
writes that would be redundant in sequential code.

Read introducing optimisations
often harmless by themselves, but can be dangerous
in combination with optimisations that are correct
under DRF.

– p. 44

Loop variable register promotion

Is the following transformation valid (in any context)?

while (j != 0) (

j = j - 1;

*x = *x - 1)

→

r = *x;

while (j != 0) (

j = j - 1;

r = r - 1)

*x = r

– p. 45

Loop variable register promotion

Assume the initial state *x = 0.

while (j!=0) *x=1

(j = j - 1; print *x

*x = *x - 1)

→

r=*x; *x=1

while (j!=0) print *x

(j = j - 1;

r = r - 1)

*x=r

Can the process print 0?

– p. 45

Aggressive write speculation

Is the following transformation valid (in any context)?

if *x = 1

then *y = 1
→

r = *y

*y = 1;

if *x != 1

then *y = r

– p. 46

Aggressive write speculation

Assume initial state *x = *y = 0.

if *x=1 if *y=1

then *y=1 then *x=1

print *x

→

r=*y if *y=1

*y=1; then *x=1

if *x!=1 print *x

then *y=r

Can the program print 1?

– p. 46

Read introduction?

It is correct to introduce a read and then throw away its value.

But. . .

– p. 47

Read introduction?

It is correct to introduce a read and then throw away its value.

But. . .

Observe that it is correct (under DRF) to do CSE across lock
(or unlock but not both):

r1 = *x; lock m; r2 = *x → r1 = *x; lock m; r2 = r1

– p. 47

Read introduction?

It is correct to introduce a read and then throw away its value.

But. . .

Consider the following program and assume that initially
*x = *y = 0.

lock m; lock m;

*x = 1; *y = 1;

print *y print *x

unlock m unlock m

Can the program print two zeros?

– p. 47

Read introduction?

It is correct to introduce a read and then throw away its value.

But. . .

Consider the following program and assume that initially
*x = *y = 0.

r1=*y; r2=*x;

lock m; lock m;

*x = 1; *y = 1;

print *y print *x

unlock m unlock m

Can the program print two zeros?

– p. 47

Read introduction?

It is correct to introduce a read and then throw away its value.

But. . .

Consider the following program and assume that initially
*x = *y = 0.

r1=*y; r2=*x;

lock m; lock m;

*x = 1; *y = 1;

print *y print *x

unlock m unlock m

Can the program print two zeros?

– p. 47

Read introduction?

It is correct to introduce a read and then throw away its value.

But. . .

Consider the following program and assume that initially
*x = *y = 0.

r1=*y; r2=*x;

lock m; lock m;

*x = 1; *y = 1;

print r1 print r2

unlock m unlock m

Now the program can print two zeros.

– p. 47

Practical limitations of DRF principle

Data race detection is hard!

There are type systems for DRF, but they are
restrictive. . .

There are static analyses for DRF, but they are imprecise
and they must see whole program. . .

There are run-time data race detectors, but they are slow
and incomplete (they cannot guarantee data race
freedom). . .

– p. 48

	Small language -- expressions
	Small language -- processes and states
	Expression semantics
	Expression semantics
	Expression semantics
	Process semantics
	SC semantics
	World of Optimisations
	World of Optimisations

	Memory Optimisations
	Memory Optimisations
	Memory Optimisations

	Eliminations
	Reordering
	Memory access introductions
	Memory access introductions

	When is an optimisation correct?
	When is an optimisation correct?

	Example
	Example
	Example
	Example

	Optimisation Correctness Overview
	Correctness proof strategy
	Correctness proof strategy
	Correctness proof strategy

	General CSE incorrect in SC
	General CSE incorrect in SC
	General CSE incorrect in SC

	General CSE incorrect in SC II
	General CSE incorrect in SC II
	General CSE incorrect in SC II

	Reordering incorrect
	Elimination of Adjacent Accesses
	Elimination of Adjacent Accesses

	Simulating Elimination
	Simulating Elimination
	Simulating Elimination
	Simulating Elimination
	Simulating Elimination
	Simulating Elimination
	Simulating Elimination

	Elimination Formally
	Elimination Formally

	Proof
	Proof
	Proof

	Proof - failed attempt
	Proof - failed attempt
	Proof - failed attempt

	Formal proof - simulation relation
	Simulation relation formally
	Simulation relation formally
	Simulation relation formally

	Simulation of expressions
	Simulation of expressions
	Simulation of expressions

	Simulation of `	extsc {seq_context}'
	Simulation of `	extsc {seq_context}'

	Proof plumbing
	Proof plumbing

	Proof plumbing
	Data Race Freedom Principle
	What is DRF, exactly?
	What is DRF, exactly?
	What is DRF, exactly?

	Another DRF definition
	Happens-before order
	Happens-before order

	DRF via happens-before
	Limitations of the DRF
	Loop variable register promotion
	Loop variable register promotion

	Aggressive write speculation
	Aggressive write speculation

	Read introduction?
	Read introduction?
	Read introduction?
	Read introduction?
	Read introduction?
	Read introduction?

	Practical limitations of DRF principle

