
Multicore Programming

Peter Sewell Jaroslav Ševčík Tim Harris

University of Cambridge MSR

with thanks to

Francesco Zappa Nardelli, Susmit Sarkar, Tom Ridge, Scott Owens,
Magnus O. Myreen, Luc Maranget, Mark Batty, Jade Alglave

October – November, 2010

– p. 1

The Golden Age, 1945–1972

Memory = An array of values

– p. 2

In an Ideal World

Multiprocessors would have sequentially consistent (SC)
shared memory:

“the result of any execution is the same as if the
operations of all the processors were executed in
some sequential order, and the operations of each
individual processor appear in this sequence in the
order specified by its program”.

Leslie Lamport, 1979

Shared RAM

Thread Thread

– p. 3

A Tiny Language

location, x address (or pointer value)
integer , n integer
thread id , t thread id

expression, e ::= expression
| n integer literal
| ∗x read from pointer
| ∗x = e write to pointer
| e; e ′ sequential composition

process , p ::= process
| t :e thread
| p|p′ parallel composition

– p. 4

... and an SC Semantics

Take a memory M to be a function from addresses to integers.

state, s ::= state
| 〈p, M 〉 process p paired with memory M

label , l ::= label
| W x=n write
| R x=n read
| τ internal action (tau)

and thread labels lt ::= Wt x=n | Rt x=n | τt

– p. 5

... and an SC Semantics: expressions

e
l
−→ e ′ e does l to become e ′

∗x
R x=n
−−−−→ n

READ

∗x = n
W x=n
−−−−→ n

WRITE

n; e
τ
−→ e

SEQ

e1
l
−→ e ′1

e1; e2
l
−→ e ′1; e2

SEQ CONTEXT

– p. 6

Example: SC Expression Trace

(∗x = ∗y); ∗x

– p. 7

Example: SC Expression Trace

(∗x = ∗y); ∗x

(∗x = ∗y); ∗x
R y=7
−−−→

W x=7
−−−−→

τ
−→

R x=9
−−−→ 9

– p. 7

Example: SC Expression Trace

(∗x = ∗y); ∗x

(∗x = ∗y); ∗x
R y=7
−−−→

W x=7
−−−−→

τ
−→

R x=9
−−−→ 9

∗y
R y=7
−−−→ 7

READ

∗x = ∗y
R y=7
−−−→ ∗x = 7

WRITE

(∗x = ∗y); ∗x
R y=7
−−−→ (∗x = 7); ∗x

SEQ CONTEXT

– p. 7

Example: SC Expression Trace

(∗x = ∗y); ∗x

(∗x = ∗y); ∗x
R y=7
−−−→

W x=7
−−−−→

τ
−→

R x=9
−−−→ 9

∗x = 7
W x=7
−−−−→ 7

WRITE

(∗x = 7); ∗x
W x=7
−−−−→ 7; ∗x

SEQ CONTEXT

– p. 7

Example: SC Expression Trace

(∗x = ∗y); ∗x

(∗x = ∗y); ∗x
R y=7
−−−→

W x=7
−−−−→

τ
−→

R x=9
−−−→ 9

7; ∗x
τ
−→ ∗x

SEQ

∗x
R x=9
−−−→ 9

READ

– p. 7

... and an SC Semantics: lifting to processes

p
lt−→ p′ p does lt to become p′

e
l
−→ e ′

t :e
lt−→ t :e ′

THREAD

p1
lt−→ p′

1

p1|p2
lt−→ p′

1|p2

PAR CONTEXT LEFT

p2
lt−→ p′

2

p1|p2
lt−→ p1|p′

2

PAR CONTEXT RIGHT

– p. 8

... and an SC Semantics: SC memory

M
l
−→ M ′ M does l to become M ′

M (x) = n

M
R x=n
−−−−→ M

MREAD

M
W x=n
−−−−→ M ⊕ (x 7→ n)

MWRITE

– p. 9

... and an SC Semantics: whole-system states

s
lt−→ s ′ s does lt to become s ′

p
Rt x=n
−−−−→ p′

M
R x=n
−−−−→ M ′

〈p, M 〉
Rt x=n
−−−−→ 〈p′, M ′〉

SREAD

p
Wt x=n
−−−−−→ p′

M
W x=n
−−−−→ M ′

〈p, M 〉
Wt x=n
−−−−−→ 〈p′, M ′〉

SWRITE

p
τt−→ p′

〈p, M 〉
τt−→ 〈p′, M 〉

STAU

– p. 10

Example: SC Whole-System Trace

〈t1:(∗x = ∗y); ∗x , {x 7→ 0, y 7→ 7}〉

Rt1
y=7

��

〈t1:(∗x = 7); ∗x , {x 7→ 0, y 7→ 7}〉

Wt1
x=7

��

〈t1:7; ∗x , {x 7→ 7, y 7→ 7}〉

τt1

��

〈t1:∗x , {x 7→ 7, y 7→ 7}〉

Rt1
x=7

��

〈t1:7, {x 7→ 7, y 7→ 7}〉

– p. 11

Example: SC Interleaving

All threads can read and write the shared memory.

Threads execute asynchronously – the semantics allows any
interleaving of the thread transitions. Here there are two:

〈t1:∗x = 1|t2:∗x = 2, {x 7→ 0}〉
Wt1

x=1

uukkkkkkkkkkkkkk
Wt2

x=2

))SSSSSSSSSSSSSS

〈t1:1|t2:∗x = 2, {x 7→ 1}〉

Wt2
x=2

��

〈t1:∗x = 1|t2:2, {x 7→ 2}〉

Wt1
x=1

��

〈t1:1|t2:2, {x 7→ 2}〉 〈t1:1|t2:2, {x 7→ 1}〉

But each interleaving has a linear order of reads and writes to
the memory.

– p. 12

In an Ideal World

Multiprocessors would have sequentially consistent shared
memory

Taken for granted, by almost all

concurrency theorists

program logics

concurrent verification tools

programmers

– p. 13

False, since 1972
IBM System 370/158MP

Mass-market since 2005.

– p. 14

The First Bizarre Example

At the heart of a mutual exclusion algorithm, e.g. Dekker’s,
you might find code like this, say on an x86.

Two memory locations x and y, initially 0

Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

What final states are allowed?

What are the possible sequential orders?

– p. 15

The First Bizarre Example

At the heart of a mutual exclusion algorithm, e.g. Dekker’s,
you might find code like this, say on an x86.

Two memory locations x and y, initially 0

Thread 0 Thread 1

MOV [x]←1 (write x=1)
MOV EAX←[y] (read y=0)

MOV [y]←1 (write y=1)
MOV EBX←[x] (read x=1)

Thread 0:EAX = 0 Thread 1:EBX=1

– p. 15

The First Bizarre Example

At the heart of a mutual exclusion algorithm, e.g. Dekker’s,
you might find code like this, say on an x86.

Two memory locations x and y, initially 0

Thread 0 Thread 1

MOV [x]←1 (write x=1)
MOV [y]←1 (write y=1)

MOV EAX←[y] (read y=1)
MOV EBX←[x] (read x=1)

Thread 0:EAX = 1 Thread 1:EBX=1

– p. 15

The First Bizarre Example

At the heart of a mutual exclusion algorithm, e.g. Dekker’s,
you might find code like this, say on an x86.

Two memory locations x and y, initially 0

Thread 0 Thread 1

MOV [x]←1 (write x=1)
MOV [y]←1 (write y=1)

MOV EBX←[x] (read x=1)
MOV EAX←[y] (read y=1)

Thread 0:EAX = 1 Thread 1:EBX=1

– p. 15

The First Bizarre Example

At the heart of a mutual exclusion algorithm, e.g. Dekker’s,
you might find code like this, say on an x86.

Two memory locations x and y, initially 0

Thread 0 Thread 1

MOV [y]←1 (write y=1)
MOV [x]←1 (write x=1)

MOV EAX←[y] (read y=1)
MOV EBX←[x] (read x=1)

Thread 0:EAX = 1 Thread 1:EBX=1

– p. 15

The First Bizarre Example

At the heart of a mutual exclusion algorithm, e.g. Dekker’s,
you might find code like this, say on an x86.

Two memory locations x and y, initially 0

Thread 0 Thread 1

MOV [y]←1 (write y=1)
MOV [x]←1 (write x=1)

MOV EBX←[x] (read x=1)
MOV EAX←[y] (read y=1)

Thread 0:EAX = 1 Thread 1:EBX=1

– p. 15

The First Bizarre Example

At the heart of a mutual exclusion algorithm, e.g. Dekker’s,
you might find code like this, say on an x86.

Two memory locations x and y, initially 0

Thread 0 Thread 1

MOV [y]←1 (write y=1)
MOV EBX←[x] (read x=0)

MOV [x]←1 (write x=1)
MOV EAX←[y] (read y=1)

Thread 0:EAX = 1 Thread 1:EBX=0

– p. 15

The First Bizarre Example
Conclusion:

0,1 and 1,1 and 1,0 can happen, but 0,0 is impossible

– p. 16

The First Bizarre Example
Conclusion:

0,1 and 1,1 and 1,0 can happen, but 0,0 is impossible

In fact, in the real world:
we observe 0,0 every 630/100000 runs
(on an Intel Core Duo x86)

(and so Dekker’s algorithm will fail)

– p. 16

Weakly Consistent Memory

Multiprocessors and compilers incorporate many performance
optimisations

(hierarchies of cache, load and store buffers, speculative execution,
cache protocols, common subexpression elimination, etc., etc.)

These are:

unobservable by single-threaded code

sometimes observable by concurrent code

Upshot: they provide only various relaxed (or weakly
consistent) memory models, not sequentially consistent
memory.

– p. 17

Problems

Memory 6= Array of values + Global time

– p. 18

Problems

Memory 6= Array of values + Global time

Real processor and language models are subtle & various

Memory model research mostly idealised

Concurrency verification research mostly SC

Industrial processor and language specs?

We’ve looked at the specs of x86, Power, ARM, Java, and
C++. They’re all flawed

– p. 18

Problems Research Opportunities

Memory 6= Array of values + Global time

Real processor and language models are subtle & various

Memory model research mostly idealised

Concurrency verification research mostly SC

Industrial processor and language specs?

We’ve looked at the specs of x86, Power, ARM, Java, and
C++. They’re all flawed

– p. 18

These Lectures
Part 1: Relaxed-memory concurrency, for multiprocessors and
programming languages (Peter Sewell, Jaroslav Ševčík, and
Mark Batty)

Establish a solid basis for thinking about relaxed-memory
executions, linking to usage, microarchitecture, experiment,
and semantics.

Part 2: Concurrent algorithms (Tim Harris)

Concurrent programming: simple algorithms, correctness
criteria, advanced synchronisation patterns, transactional
memory.

– p. 19

Hardware Models

x86 in detail

Why are industrial specs so often flawed?

A usable model: x86-TSO

Reasoning about x86-TSO code: races

Power/ARM

SPARC, Alpha, Itanium

Programming Language Models (Java/C++)

– p. 20

Uses

1. how to code low-level concurrent datastructures

2. how to build concurrency testing and verification tools

3. how to specify and test multiprocessors

4. how to design and express high-level language definitions

5. ... and in general, as an example of mathematically
rigorous computer engineering

– p. 21

Hardware Models

x86 in detail

Why are industrial specs so often flawed?

A usable model: x86-TSO

Reasoning about x86-TSO code: races

Power/ARM

SPARC, Alpha, Itanium

Programming Language Models (Java/C++)

– p. 22

Architectures

Hardware manufacturers document architectures:

Intel 64 and IA-32 Architectures Software Developer’s Manual
AMD64 Architecture Programmer’s Manual
Power ISA specification
ARM Architecture Reference Manual

loose specifications;

claimed to cover a wide range of past and future
processor implementations.

– p. 23

– p. 24

In practice

Architectures described by informal prose:

In a multiprocessor system, maintenance of cache
consistency may, in rare circumstances, require
intervention by system software.

(Intel SDM, Nov. 2006, vol 3a, 10-5)

As we shall see, such descriptions sometimes are:

1) vague; 2) incomplete; 3) unsound.

Fundamental problem: prose specifications cannot be used to
test programs or to test processor implementations.

– p. 25

A Cautionary Tale
Intel 64/IA32 and AMD64 - before August 2007 (Era of
Vagueness)

A model called Processor
Ordering, informal prose

Example: Linux Kernel mail-
ing list, 20 Nov 1999 - 7 Dec
1999 (143 posts)

Keywords: speculation, or-
dering, cache, retire, causal-
ity

A one-instruction program-
ming question, a microarchi-
tectural debate!

1. spin unlock() Optimization On Intel
20 Nov 1999 - 7 Dec 1999 (143 posts) Archive Link: "spin unloc
optimization(i386)"
Topics: BSD: FreeBSD, SMP
People: Linus Torvalds, Jeff V. Merkey, Erich Boleyn, Manfred
Spraul, Peter Samuelson, Ingo Molnar
Manfred Spraul thought he’d found a way to shave spin unloc
down from about 22 ticks for the "lock; btrl $0,%0" asm code
to 1 tick for a simple "movl $0,%0" instruction, a huge gain. Later
he reported that Ingo Molnar noticed a 4% speed-up in a bench-
mark test, making the optimization very valuable. Ingo also
added that the same optimization cropped up in the FreeBSD
mailing list a few days previously. But Linus Torvalds poured cold
water on the whole thing, saying:

It does NOT WORK!
Let the FreeBSD people use it, and let them get faster
timings. They will crash, eventually.
The window may be small, but if you do this, then sud-
denly spinlocks aren’t reliable any more. – p. 26

Resolved only by appeal to
an oracle:

that the piplines are no longer invalid and the buffers
should be blown out.
I have seen the behavior Linus describes on a hard-
ware analyzer, BUT ONLY ON SYSTEMS THAT
WERE PPRO AND ABOVE. I guess the BSD people
must still be on older Pentium hardware and that’s why
they don’t know this can bite in some cases.

Erich Boleyn, an Architect in an IA32 development group at Intel,
also replied to Linus, pointing out a possible misconception
his proposed exploit. Regarding the code Linus posted, Er
replied:

It will always return 0. You don’t need "spin un-

lock()" to be serializing.
The only thing you need is to make sure there is a
store in "spin unlock()", and that is kind of true by
the fact that you’re changing something to be observ-
able on other processors.
The reason for this is that stores can only possibly
be observed when all prior instructions have retired
(i.e. the store is not sent outside of the processor until
it is committed state, and the earlier instructions are
already committed by that time), so the any loads,
stores, etc absolutely have to have completed first,
cache-miss or not.

He went on:
Since the instructions for the store in the spin unlock– p. 27

IWP and AMD64, Aug. 2007/Oct. 2008 (Era of Causality)

Intel published a white paper (IWP) defining 8 informal-prose
principles, e.g.

P1. Loads are not reordered with older loads
P2. Stores are not reordered with older stores

supported by 10 litmus tests illustrating allowed or forbidden
behaviours, e.g.

Message Passing (MP)
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV EAX←[y] (read y=1)

MOV [y]←1 (write y=1) MOV EBX←[x] (read x=0)
Forbidden Final State: Thread 1:EAX=1 ∧ Thread 1:EBX=0

– p. 28

P3. Loads may be reordered with older stores to different
locations but not with older stores to the same location

Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y=0) MOV EBX←[x] (read x=0)
Allowed Final State: Thread 0:EAX=0 ∧ Thread 1:EBX=0

– p. 29

P3. Loads may be reordered with older stores to different
locations but not with older stores to the same location

Store Buffer (SB)
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y=0) MOV EBX←[x] (read x=0)
Allowed Final State: Thread 0:EAX=0 ∧ Thread 1:EBX=0

W
rite B

uffer

W
rite B

uffer

Shared Memory

ThreadThread

– p. 29

Litmus Test 2.4. Intra-processor forwarding is allowed
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[x] (read x=1) MOV ECX←[y] (read y=1)
MOV EBX←[y] (read y=0) MOV EDX←[x] (read x=0)
Allowed Final State: Thread 0:EBX=0 ∧ Thread 1:EDX=0

Thread 0:EAX=1 ∧ Thread 1:ECX=1

– p. 30

Litmus Test 2.4. Intra-processor forwarding is allowed
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[x] (read x=1) MOV ECX←[y] (read y=1)
MOV EBX←[y] (read y=0) MOV EDX←[x] (read x=0)
Allowed Final State: Thread 0:EBX=0 ∧ Thread 1:EDX=0

Thread 0:EAX=1 ∧ Thread 1:ECX=1

W
rite B

uffer

W
rite B

uffer

Shared Memory

ThreadThread

– p. 30

Problem 1: Weakness
Independent Reads of Independent Writes (IRIW)

Thread 0 Thread 1 Thread 2 Thread 3

(write x=1) (write y=1) (read x=1) (read y=1)

(read y=0) (read x=0)

Allowed or Forbidden?

– p. 31

Problem 1: Weakness
Independent Reads of Independent Writes (IRIW)

Thread 0 Thread 1 Thread 2 Thread 3

(write x=1) (write y=1) (read x=1) (read y=1)

(read y=0) (read x=0)

Allowed or Forbidden?

Microarchitecturally plausible? yes, e.g. with shared store
buffers

W
rite B

uffer

Thread 1 Thread 3

W
rite B

uffer

Thread 0 Thread 2

Shared Memory
– p. 31

Problem 1: Weakness
Independent Reads of Independent Writes (IRIW)

Thread 0 Thread 1 Thread 2 Thread 3

(write x=1) (write y=1) (read x=1) (read y=1)

(read y=0) (read x=0)

Allowed or Forbidden?

AMD3.14: Allowed

IWP: ???

Real hardware: unobserved

Problem for normal programming: ?

Weakness: adding memory barriers does not recover SC,
which was assumed in a Sun implementation of the JMM

– p. 31

Problem 2: Ambiguity

P1–4. ...may be reordered with...

P5. Intel 64 memory ordering ensures transitive visibility of
stores — i.e. stores that are causally related appear to
execute in an order consistent with the causal relation

Write-to-Read Causality (WRC) (Litmus Test 2.5)
Thread 0 Thread 1 Thread 2

MOV [x]←1 (W x=1) MOV EAX←[x] (R x=1) MOV EBX←[y] (R y=1)

MOV [y]←1 (W y=1) MOV ECX←[x] (R x=0)

Forbidden Final State: Thread 1:EAX=1 ∧ Thread 2:EBX=1

∧ Thread 2:ECX=0

– p. 32

Problem 3: Unsoundness!
Example from Paul Loewenstein:
n6

Thread 0 Thread 1

MOV [x]←1 (a:W x=1) MOV [y]←2 (d:W y=2)
MOV EAX←[x] (b:R x=1) MOV [x]←2 (e:W x=2)
MOV EBX←[y] (c:R y=0)
Allowed Final State: Thread 0:EAX=1 ∧ Thread 0:EBX=0 ∧ x=1

Observed on real hardware, but not allowed by (any
interpretation we can make of) the IWP ‘principles’.

(can see allowed in store-buffer microarchitecture)

– p. 33

Problem 3: Unsoundness!
Example from Paul Loewenstein:
n6

Thread 0 Thread 1

MOV [x]←1 (a:W x=1) MOV [y]←2 (d:W y=2)
MOV EAX←[x] (b:R x=1) MOV [x]←2 (e:W x=2)
MOV EBX←[y] (c:R y=0)
Allowed Final State: Thread 0:EAX=1 ∧ Thread 0:EBX=0 ∧ x=1

In the view of Thread 0:
a→b by P4: Reads may [...] not be reordered with older writes to the same location.
b→c by P1: Reads are not reordered with other reads.
c→d, otherwise c would read 2 from d
d→e by P3. Writes are not reordered with older reads.
so a:Wx=1 → e:Wx=2

But then that should be respected in the final state, by P6: In a multiprocessor system, stores to

the same location have a total order, and it isn’t.

(can see allowed in store-buffer microarchitecture) – p. 33

Problem 3: Unsoundness!
Example from Paul Loewenstein:
n6

Thread 0 Thread 1

MOV [x]←1 (a:W x=1) MOV [y]←2 (d:W y=2)
MOV EAX←[x] (b:R x=1) MOV [x]←2 (e:W x=2)
MOV EBX←[y] (c:R y=0)
Allowed Final State: Thread 0:EAX=1 ∧ Thread 0:EBX=0 ∧ x=1

Observed on real hardware, but not allowed by (any
interpretation we can make of) the IWP ‘principles’.

(can see allowed in store-buffer microarchitecture)

So spec unsound (and also our POPL09 model based on it).

– p. 33

Intel SDM and AMD64, Nov. 2008 – now

Intel SDM rev. 29–35 and AMD3.17

Not unsound in the previous sense

Explicitly exclude IRIW, so not weak in that sense. New
principle:

Any two stores are seen in a consistent order by
processors other than those performing the stores

But, still ambiguous, and the view by those processors is left
entirely unspecified

– p. 34

Intel:
http://www.intel.com/products/processor/manuals/index.htm

(rev. 35 on 6/10/2010).
See especially SDM Vol. 3A, Ch. 8.

AMD:
http://developer.amd.com/documentation/guides/Pages

/default.aspx

(rev. 3.17 on 6/10/2010).
See especially APM Vol. 2, Ch. 7.

– p. 35

Why all these problems?
Recall that the vendor architectures are:

loose specifications;

claimed to cover a wide range of past and future
processor implementations.

Architectures should:

reveal enough for effective programming;

without revealing sensitive IP; and

without unduly constraining future processor design.

There’s a big tension between these, compounded by internal
politics and inertia.

– p. 36

Fundamental Problem

Architecture texts: informal prose attempts at subtle loose
specifications

Fundamental problem: prose specifications cannot be used

to test programs against, or

to test processor implementations, or

to prove properties of either, or even

to communicate precisely.

– p. 37

Aside: x86 ISA, Locked Instructions

Thread 0 Thread 1

INC x INC x

– p. 38

Aside: x86 ISA, Locked Instructions

Thread 0 Thread 1

INC x (read x=0; write x=1) INC x (read x=0; write x=1)
Allowed Final State: [x]=1

Non-atomic (even in SC semantics)

– p. 38

Aside: x86 ISA, Locked Instructions

Thread 0 Thread 1

INC x (read x=0; write x=1) INC x (read x=0; write x=1)
Allowed Final State: [x]=1

Non-atomic (even in SC semantics)

Thread 0 Thread 1

LOCK;INC x LOCK;INC x

Forbidden Final State: [x]=1

– p. 38

Aside: x86 ISA, Locked Instructions

Thread 0 Thread 1

INC x (read x=0; write x=1) INC x (read x=0; write x=1)
Allowed Final State: [x]=1

Non-atomic (even in SC semantics)

Thread 0 Thread 1

LOCK;INC x LOCK;INC x

Forbidden Final State: [x]=1

Also LOCK’d ADD, SUB, XCHG, etc., and CMPXCHG

– p. 38

Aside: x86 ISA, Locked Instructions

Compare-and-swap (CAS):

CMPXCHG dest←src

compares EAX with dest, then:

if equal, set ZF=1 and load src into dest,

otherwise, clear ZF=0 and load dest into EAX

All this is one atomic step.

Can use to solve consensus problem...

– p. 39

Aside: x86 ISA, Memory Barriers

MFENCE memory barrier

(also SFENCE and LFENCE)

– p. 40

Hardware Models

x86 in detail

Why are industrial specs so often flawed?

A usable model: x86-TSO

Reasoning about x86-TSO code: races

Power/ARM

SPARC, Alpha, Itanium

Programming Language Models (Java/C++)

– p. 41

Inventing a Usable Abstraction
Have to be:

Unambiguous

Sound w.r.t. experimentally observable behaviour

Easy to understand

Consistent with what we know of vendors intentions

Consistent with expert-programmer reasoning

Key facts:

Store buffering (with forwarding) is observable

IRIW is not observable, and is forbidden by the recent
docs

Various other reorderings are not observable and are
forbidden

These suggest that x86 is, in practice, like SPARC TSO.
– p. 42

x86-TSO Abstract Machine

Separate instruction semantics and memory model

Define the memory model in two (provably equivalent) styles:

an abstract machine (or operational model)

an axiomatic model

Put the instruction semantics and abstract machine in
parallel, exchanging read and write messages (and
lock/unlock messages).

– p. 43

x86-TSO Abstract Machine

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

– p. 44

x86-TSO Abstract Machine: Interface
Events
e ::= Wt x=v a write of value v to address x by thread t

| Rt x=v a read of v from x by t

| Bt an MFENCE memory barrier by t

| Lt start of an instruction with LOCK prefix by t

| Ut end of an instruction with LOCK prefix by t

| τt x=v an internal action of the machine,
moving x = v from the write buffer on t to
shared memory

where

t is a hardware thread id, of type tid,

x and y are memory addresses, of type addr

v and w are machine words, of type value

– p. 45

x86-TSO Abstract Machine: Machine States

A machine state s is a record

s : 〈[M : addr→ value;

B : tid→ (addr× value) list;
L : tid option]〉

Here:

s.M is the shared memory, mapping addresses to values

s.B gives the store buffer for each thread

s.L is the global machine lock indicating when a thread
has exclusive access to memory

– p. 46

x86-TSO Abstract Machine: Auxiliary Definitions

Say t is not blocked in machine state s if either it holds the
lock (s.L = SOME t) or the lock is not held (s.L = NONE).

Say there are no pending writes in t’s buffer s.B(t) for address
x if there are no (x, v) elements in s.B(t).

– p. 47

x86-TSO Abstract Machine: Behaviour

RM: Read from memory

not blocked(s , t)

s .M (x) = v

no pending(s .B(t), x)

s
Rt x=v
−−−−−→ s

Thread t can read v from memory at address x if t is

not blocked, the memory does contain v at x , and

there are no writes to x in t ’s store buffer.

– p. 48

x86-TSO Abstract Machine: Behaviour

RB: Read from write buffer
not blocked(s , t)

∃b1 b2. s .B(t) = b1 ++[(x , v)] ++b2

no pending(b1, x)

s
Rt x=v
−−−−−→ s

Thread t can read v from its store buffer for address x

if t is not blocked and has v as the newest write to x

in its buffer;

– p. 49

x86-TSO Abstract Machine: Behaviour

WB: Write to write buffer

s
Wt x=v
−−−−−→ s ⊕ 〈[B := s .B ⊕ (t 7→ ([(x , v)] ++s .B(t)))]〉

Thread t can write v to its store buffer for address x

at any time;

– p. 50

x86-TSO Abstract Machine: Behaviour

WM: Write from write buffer to memory

not blocked(s , t)

s .B(t) = b ++[(x , v)]

s
τt x=v
−−−−→

s ⊕ 〈[M := s .M ⊕ (x 7→ v)]〉 ⊕ 〈[B := s .B ⊕ (t 7→ b)]〉

If t is not blocked, it can silently dequeue the oldest

write from its store buffer and place the value in

memory at the given address, without coordinating

with any hardware thread

– p. 51

x86-TSO Abstract Machine: Behaviour

L: Lock
s .L = NONE

s .B(t) = []

s
Lt−→ s ⊕ 〈[L := SOME(t)]〉

If the lock is not held and its buffer is empty, thread t

can begin a LOCK’d instruction.

Note that if a hardware thread t comes to a LOCK’d instruction

when its store buffer is not empty, the machine can take one or

more τt x=v steps to empty the buffer and then proceed.

– p. 52

x86-TSO Abstract Machine: Behaviour

U: Unlock
s .L = SOME(t)

s .B(t) = []

s
Ut−→ s ⊕ 〈[L := NONE]〉

If t holds the lock, and its store buffer is empty, it can end a
LOCK’d instruction.

– p. 53

x86-TSO Abstract Machine: Behaviour

B: Barrier

s .B(t) = []

s
Bt−→ s

If t ’s store buffer is empty, it can execute an MFENCE.

– p. 54

Notation Reference

SOME and NONE construct optional values

(·, ·) builds tuples

[] builds lists

++ appends lists

· ⊕ 〈[· := ·]〉 updates records

·(· 7→ ·) updates functions.

– p. 55

First Example, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

y= 0x=0

– p. 56

First Example, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

y= 0

Wt0
x=1

x= 0

– p. 56

First Example, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

y= 0

(x,1)

x= 0

– p. 56

First Example, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

y= 0

(x,1)

Wt1
y=1

x= 0

– p. 56

First Example, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

y= 0

(y,1)(x,1)

x= 0

– p. 56

First Example, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

y= 0

Rt0
y=0 (y,1)(x,1)

x= 0

– p. 56

First Example, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

y= 0

Rt1
x=0(y,1)(x,1)

x= 0

– p. 56

First Example, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

y= 0

τt0 x=1

(y,1)(x,1)

x= 0

– p. 56

First Example, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

y= 0

(y,1)

x= 1

– p. 56

First Example, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

y= 0

τt1 y=1

(y,1)

x= 1

– p. 56

First Example, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

y= 1x= 1

– p. 56

Barriers and LOCK’d Instructions, recap

MFENCE memory barrier
flushes local write buffer

LOCK’d instructions (atomic INC, ADD, CMPXCHG, etc.)
flush local write buffer
globally locks memory

Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MFENCE MFENCE

MOV EAX←[y] (read y=0) MOV EBX←[x] (read x=0)
Forbidden Final State: Thread 0:EAX=0 ∧ Thread 1:EBX=0

NB: both are expensive

– p. 57

NB: This is an Abstract Machine

A tool to specify exactly and only the programmer-visible
behavior, not a description of the implementation internals

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread ⊇beh

6=hw

Force: Of the internal optimizations of processors, only
per-thread FIFO write buffers are visible to programmers.

Still quite a loose spec: unbounded buffers, nondeterministic
unbuffering, arbitrary interleaving

– p. 58

Processors, Hardware Threads, and Threads

Our ‘Threads’ are hardware threads.

Some processors have simultaneous multithreading (Intel:
hyperthreading): multiple hardware threads/core sharing
resources.

If the OS flushes store buffers on context switch, software
threads should have the same semantics.

– p. 59

Validating the Semantics

Testing tools:

LITMUS, runs litmus tests on real h/w

MEMEVENTS, symbolically finds all possible results

EMUL, daemonic emulator

(Also modelling & testing instruction semantics)

Informal vendor support

Formalized in theorem prover (HOL4)

One reasonable model

– p. 60

Liveness

Question: is every memory write guaranteed to eventually
propagate from store buffer to shared memory?

We tentatively assume so (with a progress condition on
machine traces).

AMD: yes

Intel: unclear

(ARM: yes)

– p. 61

NB: Not All of x86

Coherent write-back memory (almost all code), but assume

no exceptions

no misaligned or mixed-size accesses

no ‘non-temporal’ operations

no device memory

no self-modifying code

no page-table changes

– p. 62

x86-TSO: The Axiomatic Model

The abstract machine generates x86-TSO executions
stepwise.

The axiomatic model says whether a complete candidate
execution is admitted by x86-TSO.

– p. 63

Events: i:Wt x=v, i:Rt x=v and i:Bt as before, but with unique
ids i.

Event structures E:

a set of events

program order (po) and intra-instruction causality order
(iico) over them (strict partial orders)

an atomicity relation over them (a partial equivalence
relation)

Execution witness X:

execution witness =

〈[memory order : event reln;

rfmap : event reln;

initial state : addr→ value]〉
– p. 64

tso1 Thread t0 Thread t1

MOV [x]←$1 MOV [x]←$2
MOV EAX←[x]

a:Wt0
x=1

MOV [x]←$1

b:Rt0
x=2

MOV EAX←[x]

d:Wt1
x=2

MOV [x]←$2

po

– p. 65

Axioms: Memory Order

X.memory order is a partial order over memory read and write
events of E

X.memory order , when restricted to the write events of E, is a
linear order.

– p. 66

Axioms: Reads-from map

The rfmap only relates such pairs with the same address and
value:

reads from map candidates E rfmap =

∀(ew , er) ∈ rfmap.(er ∈ mem reads E) ∧ (ew ∈ mem writes E) ∧

(loc ew = loc er) ∧ (value of ew = value of er)

Auxiliary functions over events: loc, value of

Auxiliary functions over event structures:
mem reads, mem writes, mem accesses, mfences

– p. 67

Axioms: check rfmap written

Let po iico E be the union of (strict) program order and
intra-instruction causality.
Check that the rfmap relates a read to the most recent
preceding write.
previous writes E er <order =

{ew ′ | ew ′ ∈ mem writes E ∧ ew ′ <order er ∧ (loc ew ′ = loc er)}

check rfmap written E X =

∀(ew , er) ∈ (X .rfmap).

ew ∈ maximal elements (previous writes E er (<X .memory order) ∪

previous writes E er (<(po iico E)))

(<X .memory order)

– p. 68

Axioms: check rfmap initial

And similarly for the initial state:
check rfmap initial E X =

∀er ∈ (mem reads E \ range X .rfmap).

(∃l .(loc er = l) ∧ (value of er = X .initial state l)) ∧

(previous writes E er (<X .memory order) ∪

previous writes E er (<(po iico E)) = {})

– p. 69

Axioms: R/A Program Order

Program order is included in memory order, for a memory
read before a memory access (mo po read access)
(SPARCv8’s LoadOp):

∀er ∈ (mem reads E).∀e ∈ (mem accesses E).

er <(po iico E) e =⇒ er <X .memory order e

– p. 70

Axioms: W/W Program Order

Program order is included in memory order, for a memory
write before a memory write (mo po write write) (the
SPARCv8 StoreStore):

∀ew 1 ew 2 ∈ (mem writes E).

ew 1 <(po iico E) ew 2 =⇒ ew 1 <X .memory order ew 2

– p. 71

Axioms: Fencing

Program order is included in memory order, for a memory
write before a memory read, if there is an MFENCE between
(mo po mfence).

∀ew ∈ (mem writes E).∀er ∈ (mem reads E).∀ef ∈ (mfences E).

(ew <(po iico E) ef ∧ ef <(po iico E) er) =⇒ ew <X .memory order er

– p. 72

Axioms: Locked Instructions

Program order is included in memory order, for any two
memory accesses where at least one is from a LOCK’d
instruction (mo po access/lock):

∀e1 e2 ∈ (mem accesses E).∀es ∈ (E .atomicity).

((e1 ∈ es ∨ e2 ∈ es) ∧ e1 <(po iico E) e2) =⇒ e1 <X .memory order e2

– p. 73

Axioms: Atomicity

The memory accesses of a LOCK’d instruction occur
atomically in memory order (mo atomicity), i.e., there must be
no intervening memory events.

Further, all program order relationships between the locked
memory accesses and other memory accesses are included
in the memory order (this is a generalization of the SPARCv8
Atomicity axiom):

∀es ∈ (E .atomicity).∀e ∈ (mem accesses E \ es).

(∀e ′ ∈ (es ∩ mem accesses E).e <X .memory order e ′) ∨

(∀e ′ ∈ (es ∩ mem accesses E).e ′ <X .memory order e)

– p. 74

Axioms: Infinite Executions

For this course, consider only finite executions (E with finite
sets of events).

(In general, we require that the prefixes of the memory order
are all finite, ensuring that there are no limit points, and, to
ensure that each write eventually takes effect globally, there
must not be an infinite set of reads unrelated to any particular
write, all on the same memory location (this formalizes the
SPARCv8 Termination axiom).)

– p. 75

Say valid execution E X iff all the above hold.

– p. 76

Example

a:Wt0 x=1

MOV [x]←$1

b:Rt0 x=2

MOV EAX←[x]

d:Wt1 x=2

MOV [x]←$2

po

mo non-po write write

rf mo rf

a:Wt0
x=1

MOV [x]←$1

b:Rt0
x=2

MOV EAX←[x]

d:Wt1
x=2

MOV [x]←$2

porf mo non-po write write

– p. 77

Equivalence of the two models
Loosely:

Theorem 1 For any abstract-machine execution with

atomic sets properly bracketed by lock/unlock pairs

non-τ /L/U events E

ordered according to po iico

there is an X such that valid execution E X , with the
X .memory order the order in which machine memory reads
and buffer flushes occurred.

Theorem 2 For any axiomatic valid execution E X , there is
some abstract-machine path which when τ /L/U-erased has the
same events (ordered according to po iico and with atomic
sets properly bracketed by lock/unlock pairs) in which memory
reads and buffer flushes respect X .memory order .

– p. 78

Hardware Models

x86 in detail

Why are industrial specs so often flawed?

A usable model: x86-TSO

Reasoning about x86-TSO code: races

Power/ARM

SPARC, Alpha, Itanium

Programming Language Models (Java/C++)

– p. 79

For some applications, achieving sequential
consistency may not be worth the price of slowing
down the processors. In this case, one must be
aware that conventional methods for designing
multiprocess algorithms cannot be relied upon to
produce correctly executing programs. Protocols for
synchronizing the processors must be designed at
the lowest level of the machine instruction code, and
verifying their correctness becomes a monumental
task.

Leslie Lamport, 1979

– p. 80

Data Race Freedom (DRF)

Basic Principle (you’d hope):

If a program has no data races in any sequentially consistent
(SC) execution, then any relaxed-memory execution is
equivalent to some sequentially consistent execution.

NB: premise only involves SC execution.

– p. 81

Data Race Freedom (DRF)

Basic Principle (you’d hope):

If a program has no data races in any sequentially consistent
(SC) execution, then any relaxed-memory execution is
equivalent to some sequentially consistent execution.

NB: premise only involves SC execution.

But what is a data race?
what does equivalent mean?

– p. 81

What is a data race — first attempt

Suppose SC executions are traces of events

Rt x=v for thread t reading value v from address x

Wt x=v for thread t writing value v to address x

(erase τ ’s, and ignore lock/unlock/mfence for a moment)

Then say an SC execution has a data race if it contains a pair
of adjacent accesses, by different threads, to the same
location, that are not both reads:

. . ., Rt1
x=u , Wt2

x=v, . . .

. . ., Wt1
x=u , Rt2

x=v, . . .

. . ., Wt1
x=u , Wt2

x=v, . . .

– p. 82

What is a data race — for x86

1. Need not consider write/write pairs to be races

2. Have to consider SC semantics for LOCK’d instructions
(and MFENCE), with events:

Lt at the start of a LOCK’d instruction by t
Ut at the end of a LOCK’d instruction by t
Bt for an MFENCE by thread t

3. Need not consider a LOCK’d read/any write pair to be a
race

Say an x86 data race is an execution of one of these shapes:

. . ., Rt1
x=u , Wt2

x=v, . . .

. . ., Rt1
x=u , Lt2

,. . . ,Wt2
x=v, . . .

(or v.v. No unlocks between the Lt2
and Wt2

x=v)
– p. 83

DRF Principle for x86-TSO
Say a program is data race free (DRF) if no SC execution
contains an x86 data race.

Theorem 3 (DRF) If a program is DRF then any x86-TSO
execution is equivalent to some SC execution.

(where equivalent means that there is an SC execution with
the same subsequence of writes and in which each read
reads from the corresponding write)

Proof: via the x86-TSO axiomatic model
Scott Owens, ECOOP 2010

– p. 84

Happens-Before Version

Here:

An SC race is two adjacent conflicting actions.

In the setting of an axiomatic model:

Often have a happens before partial order over events

...and a race is two conflicting actions that aren’t ordered by
happens-before

– p. 85

What is a data race, again?

acquire mutex(l) acquire mutex(l)
write x←1 read x
release mutex(l) release mutex(l)

– p. 86

Simple Spinlock

acquire mutex(x)

critical section

release mutex(x)

– p. 87

Simple Spinlock

while atomic decrement(x) < 0 {
skip

}

critical section

release mutex(x)

Invariant:
lock taken if x ≤ 0
lock free if x=1

– p. 87

Simple Spinlock

while atomic decrement(x) < 0 {
while x ≤ 0 { skip }

}

critical section

release mutex(x)

– p. 87

Simple Spinlock

while atomic decrement(x) < 0 {
while x ≤ 0 { skip }

}

critical section

x←1 OR atomic write(x, 1)

– p. 87

Simple Spinlock

while atomic decrement(x) < 0 {
while x ≤ 0 { skip }

}

critical section

x←1

– p. 87

Simple x86 Spinlock
The address of x is stored in register eax.

acquire: LOCK DEC [eax]
JNS enter

spin: CMP [eax],0
JLE spin
JMP acquire

enter:

critical section

release: MOV [eax]←1

From Linux v2.6.24.7

NB: don’t confuse levels — we’re using x86 LOCK’d instructions in implementations of Linux

spinlocks. – p. 88

Spinlock Example (SC)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1

– p. 89

Spinlock Example (SC)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire

– p. 89

Spinlock Example (SC)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = 0 critical

– p. 89

Spinlock Example (SC)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = 0 critical
x = -1 critical acquire

– p. 89

Spinlock Example (SC)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = 0 critical
x = -1 critical acquire
x = -1 critical spin, reading x

– p. 89

Spinlock Example (SC)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = 0 critical
x = -1 critical acquire
x = -1 critical spin, reading x
x = 1 release, writing x

– p. 89

Spinlock Example (SC)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = 0 critical
x = -1 critical acquire
x = -1 critical spin, reading x
x = 1 release, writing x
x = 1 read x

– p. 89

Spinlock Example (SC)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = 0 critical
x = -1 critical acquire
x = -1 critical spin, reading x
x = 1 release, writing x
x = 1 read x
x = 0 acquire

– p. 89

Spinlock SC Data Race
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = 0 critical
x = -1 critical acquire
x = -1 critical spin, reading x
x = 1 release, writing x

– p. 90

Spinlock Example (x86-TSO)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1

– p. 91

Spinlock Example (x86-TSO)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire

– p. 91

Spinlock Example (x86-TSO)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire

– p. 91

Spinlock Example (x86-TSO)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x

– p. 91

Spinlock Example (x86-TSO)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x
x = -1 release, writing x to buffer

– p. 91

Spinlock Example (x86-TSO)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x
x = -1 release, writing x to buffer
x = -1 . . . spin, reading x

– p. 91

Spinlock Example (x86-TSO)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x
x = -1 release, writing x to buffer
x = -1 . . . spin, reading x
x = 1 write x from buffer

– p. 91

Spinlock Example (x86-TSO)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x
x = -1 release, writing x to buffer
x = -1 . . . spin, reading x
x = 1 write x from buffer
x = 1 read x

– p. 91

Spinlock Example (x86-TSO)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x
x = -1 release, writing x to buffer
x = -1 . . . spin, reading x
x = 1 write x from buffer
x = 1 read x
x = 0 acquire

– p. 91

Triangular Races (Owens)

Read/write data race

Only if there is a bufferable write preceding the read

Triangular race
... y←v2

...
...

x←v1 x
...

...

– p. 92

Triangular Races

Read/write data race

Only if there is a bufferable write preceding the read

Triangular race Not triangular race
... y←v2

...
...

x←v1 x
...

...

... y←v2

...
...

x←v1 x←w
...

...

– p. 92

Triangular Races

Read/write data race

Only if there is a bufferable write preceding the read

Triangular race Not triangular race
... y←v2

...
...

x←v1 x
...

...

... y←v2

... mfence
x←v1 x
...

...

– p. 92

Triangular Races

Read/write data race

Only if there is a bufferable write preceding the read

Triangular race Not triangular race
... y←v2

...
...

x←v1 x
...

...

... y←v2

...
...

x←v1 lock x
...

...

– p. 92

Triangular Races

Read/write data race

Only if there is a bufferable write preceding the read

Triangular race Not triangular race
... y←v2

...
...

x←v1 x
...

...

... lock y←v2

...
...

x←v1 x
...

...

– p. 92

Triangular Races

Read/write data race

Only if there is a bufferable write preceding the read

Triangular race Triangular race
... y←v2

...
...

x←v1 x
...

...

... y←v2

...
...

lock x←v1 x
...

...

– p. 92

TRF Principle for x86-TSO

Say a program is triangular race free (TRF) if no SC execution
has a triangular race.

Theorem 4 (TRF) If a program is TRF then any x86-TSO
execution is equivalent to some SC execution.

If a program has no triangular races when run on a
sequentially consistent memory, then

x86-TSO = SC

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

Lock Shared Memory

Thread Thread

– p. 93

Spinlock Data Race

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x←1

x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x
x = 1 release, writing x

acquire’s writes are locked

– p. 94

Program Correctness

Theorem 5 Any well-synchronized program that uses the
spinlock correctly is TRF.

Theorem 6 Spinlock-enforced critical sections provide mutual
exclusion.

– p. 95

Other Applications

A concurrency bug in the HotSpot JVM

Found by Dave Dice (Sun) in Nov. 2009

java.util.concurrent.LockSupport (‘Parker’)

Platform specific C++

Rare hung thread

Since “day-one” (missing MFENCE)

Simple explanation in terms of TRF

Also: Ticketed spinlock, Linux SeqLocks, Double-checked
locking

– p. 96

Reflections

We’ve introduced a plausible model, x86-TSO.

Usable:

as spec to test h/w against

to give a solid intuition for systems programmers

to develop reasoning tools above

to develop code testing tools above (daemonic emulator)

In terms of that model, we can clearly see why (and indeed
prove) that that Linux spinlock optimisation is correct.

– p. 97

x86-TSO: A Rigorous and Usable Programmer’s Model for x86 Multiprocessors by P. Sewell, S.
Sarkar, S. Owens, F. Zappa Nardelli, and M. O. Myreen. CACM, to appear.

A Better x86 Memory Model: x86-TSO by S. Owens, S. Sarkar, and P. Sewell. TPHOLs 2009.

Reasoning about the Implementation of Concurrency Abstractions on x86-TSO by S. Owens.
ECOOP 2010.

A Rely-Guarantee proof system for x86-TSO assembly code programs by Tom Ridge. VSTTE
2010.

The Semantics of x86-CC Multiprocessor Machine Code by S. Sarkar, P. Sewell, F. Zappa
Nardelli, S. Owens, T. Ridge, T. Braibant, M. O. Myreen, and J. Alglave. POPL 2009.

– p. 98

Hardware Models

x86 in detail

Why are industrial specs so often flawed?

A usable model: x86-TSO

Reasoning about x86-TSO code: races

Power/ARM

SPARC, Alpha, Itanium

Programming Language Models (Java/C++)

– p. 99

Hardware Models

SC

Coherence

(x86−)TSO

Alpha

Power/ARM
IA−64 (Itanium)

RMO

PSO

– p. 100

Coherence

Minimal property of a ‘cache coherent’ system:

for each location independently, each thread sees the same
order of writes to that location.

(Ambiguity: does a thread ‘see’ its own writes?)

Abstract Machine: bi-FIFO from each processor to each
memory cell?

Then need to add some additional facilities for programming
synchronisation

– p. 101

Hardware Models

x86 in detail

Why are industrial specs so often flawed?

A usable model: x86-TSO

Reasoning about x86-TSO code: races

Power/ARM

SPARC, Alpha, Itanium

Programming Language Models (Java/C++)

– p. 102

Power ISA 2.06 and ARM v7

Visible behaviour is much weaker & more subtle than x86

Key spec concept: actions being performed or observed.

A load by a processor (P1) is performed with respect
to any processor (P2) when the value to be returned
by the load can no longer be changed by a store by
P2.

Used to define the semantics of dependencies and barriers.

This style of definition goes back to the work of Dubois et al.
(1986).

– p. 103

Power ISA 2.06 and ARM v7

Visible behaviour is much weaker & more subtle than x86

Key spec concept: actions being performed or observed.

A load by a processor (P1) is performed with respect
to any processor (P2) when the value to be returned
by the load can no longer be changed by a store by
P2.

Used to define the semantics of dependencies and barriers.

This style of definition goes back to the work of Dubois et al.
(1986).

But it’s subjunctive: it refers to a hypothetical store by P2.
– p. 103

Power ISA Version 2.06 Revision B (July 23, 2010):
http://www.power.org/resources/downloads/PowerISA
V2.06B V2 PUBLIC.pdf
see Book II Chapters 1 and 4

– p. 104

By Example

Work in progress: developing usable Power/ARM models.

For now: introduce behaviour by example, with some
experimental data.

– p. 105

Store Buffering (SB)
SB x86

Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y=0) MOV EBX←[x] (read x=0)
Allowed Final State: Thread 0:EAX=0 ∧ Thread 1:EBX=0

SB PPC
Thread 0 Thread 1

stw r6,0(r4) stw r6,0(r5)
lwz r2,0(r5) lwz r2,0(r4)
Initial state: 0:r4=x ∧ 0:r5=y ∧ 0:r6=1

∧ 1:r4=x ∧ 1:r5=y ∧ 1:r6=1

Allowed: 0:r2=0 ∧ 1:r2=0

SB ARM
Thread 0 Thread 1

STR R6, [R4] STR R6, [R5]
LDR R2, [R5] LDR R2, [R4]
Initial state: 0:R4=x ∧ 0:R5=y ∧ 0:R6=1

∧ 1:R4=x ∧ 1:R5=y ∧ 1:R6=1

Allowed: 0:R2=0 ∧ 1:R2=0

– p. 106

Store Buffering (SB)

Test SB (c1): Allowed

Thread 0

a: W[x]=1

b: R[y]=0

Thread 1

c: W[y]=1

d: R[x]=0rf rf

Power 6: Observed, 4e7/2e9

– p. 107

Message Passing (MP)

Test MP (b1): Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

rf

rf

Power 6: Observed, 9e6/2e9

– p. 108

Load Buffering (LB)

Test LB (d1): Allowed

Thread 0

a: R[y]=1

b: W[x]=1

c: R[x]=1

Thread 1

d: W[y]=1

rfrf

Power 6: Not observed, but architecturally permitted

– p. 109

Write-to-Read Causality (WRC)

Test WRC (m3): Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf rf

rf

Power 6: Observed 1e4/1e9

– p. 110

Independent Reads of Independent Writes (IRIW)

Test IRIW (ppc-cookbook6.5-amd6-cpp.iriw.nofence): Allowed

Thread 0

a: W[x]=1 c: R[x]=1

Thread 1

b: W[y]=1 e: R[y]=1

Thread 2

d: R[y]=0

Thread 3

f: R[x]=0

rf rf

rf rf

Power 6: Observed 259/8e8

– p. 111

So how can we ever write concurrent code?

Dependencies (various kinds)

Memory Barriers (various kinds)

Load-reserve/Store-conditional exclusive pairs

– p. 112

Dependencies

From a load to a load: address dependencies

(data-flow path through registers and arith/logical operations from the
value of the first load to the address of the second)

(intensional — even if the address doesn’t numerically depend...)

(not via memory)

From a load to a store: address, data & control dependencies

(as above, or to the value stored, or data flow to the test of an
intermediate conditional branch)

– p. 113

LB+deps

Test LB+deps (d5): Forbidden

Thread 0

a: R[y]=1

b: W[x]=1

c: R[x]=1

Thread 1

d: W[y]=1

ls
rf

ls
rf

LB+deps ARM
Thread 0 Thread 1

LDR R2, [R5] LDR R2, [R4]
AND R3, R2, #0 AND R3, R2, #0
STR R1, [R3,R4] STR R1, [R3,R5]
Initial state: 0:R1=1 ∧ 0:R4=x ∧ 0:R5=y

∧ 1:R1=1 ∧ 1:R4=x ∧ 1:R5=y

Forbidden: 0:R2=1 ∧ 1:R2=1

– p. 114

WRC+deps

Test WRC+deps (isa1v2): Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=2

d: R[y]=2

Thread 2

e: R[x]=0

rf
ls

rf
ll

rf

Power 6: observed 1e4/1e9

– p. 115

Memory Barriers
Power: ptesync, hwsync, lwsync, eieio, mbar, isync

ARM: DSB, DMB

– p. 116

Memory Barriers
Power: ptesync, hwsync, lwsync, eieio, mbar, isync

ARM: DSB, DMB

For each applicable pair ai,bj the memory barrier ensures that ai

will be performed with respect to any processor or mechanism,
to the extent required by the associated Memory Coherence Re-
quired attributes, before bj is performed with respect to that pro-
cessor or mechanism.

A includes all applicable storage accesses by any such
processor or mechanism that have been performed with
respect to P1 before the memory barrier is created.

B includes all applicable storage accesses by any such
processor or mechanism that are performed after a Load
instruction executed by that processor or mechanism has
returned the value stored by a store that is in B.

– p. 116

Memory Barriers
Power: ptesync, hwsync, lwsync, eieio, mbar, isync

ARM: DSB, DMB

For each applicable pair ai,bj the memory barrier ensures that ai

will be performed with respect to any processor or mechanism,
to the extent required by the associated Memory Coherence Re-
quired attributes, before bj is performed with respect to that pro-
cessor or mechanism.

A includes all applicable storage accesses by any such
processor or mechanism that have been performed with
respect to P1 before the memory barrier is created.

B includes all applicable storage accesses by any such
processor or mechanism that are performed after a Load
instruction executed by that processor or mechanism has
returned the value stored by a store that is in B.

l

– p. 116

WRC+syncs (or +DMBs)

Test WRC+syncs (m3s): Forbidden

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
sync

rf
sync

rf

Power 6: not observed (0/8e8)

– p. 117

Load-reserve/Store-conditional

lwarx/LDREX atomically (a) loads, and (b) creates a
reservation for this “storage granule”

stwcx/STREX atomically (a) stores and (b) sets a flag, if the
storage granule hasn’t been written to by any thread in the
meantime

– p. 118

Reads from Different Writes (RDW)

Test RDW (ppo3): Forbidden

Thread 0

a: R[y]=2

b: R[x]=0

c: R[x]=1

d: R[z]=0

Thread 1

e: W[z]=1

f: W[y]=2

Thread 2

g: W[x]=1

ll

ll

sync
rf

rf

rf

rf

Power 6: Not observed (0/1e9) Power 5: Not observed (0/1e10)

– p. 119

Reads from Same Write (RSW)

Test RSW (ppo1): Allowed

Thread 0

a: R[y]=2

b: R[x]=0

c: R[x]=0

d: R[z]=0

Thread 1

e: W[z]=1

f: W[y]=2

ll

ll

sync
rf

rf

rf

rf

Power 6: Not observed (0/2e9) Power 5: Observed (5e5/2e10)

– p. 120

Sources of H/W Relaxed Memory

Microarchitecture:

store buffering (hierarchical, split)

cache protocol (e.g. not waiting for invalidates)

speculative execution in the pipeline

Changes radically (e.g. Power 57→67→7)

Unclear what it is ... so no pictures

– p. 121

Other Issues

Not touched on:

precise specification for any of this

when barriers and/or dependencies suffice

lwsync, isync

visibility of register shadowing

ARM conditional instructions

progress properties

other memory types

self-modifying code

page table management

– p. 122

Hardware Models

x86 in detail

Why are industrial specs so often flawed?

A usable model: x86-TSO

Reasoning about x86-TSO code: races

Power/ARM

SPARC, Alpha, Itanium

Programming Language Models (Java/C++)

– p. 123

SPARC

TSO: introduced as SPARC model, fairly clearly defined.

Also two weaker models, PSO and RMO.

But... Solaris always uses TSO. Linux ‘uses’ RMO, but most
processors actually implement TSO

– p. 124

Alpha

Very weak model.

No longer produced — but the Linux memory barrier macros
are based on the Alpha memory model

– p. 125

Itanium (IA-64 6=Intel 64=AMD64)

Axiomatic definition

unordered load and store

store-release (become remotely visible to all procs in the
same order)

load-acquire

MP-rel-acq
Thread 0 Thread 1

st [x]=1 (write x=1) ld.acq r1=[y] (read.acq y=1)
st.rel [y]=1 (write.rel y=1) ld r2=[x] (read x=0)
Forbidden

– p. 126

Hardware Models

x86 in detail

Why are industrial specs so often flawed?

A usable model: x86-TSO

Reasoning about x86-TSO code: races

Power/ARM

SPARC, Alpha, Itanium

Programming Language Models (Java/C++)

– p. 127

High-level languages

High-level languages are not immune to these problems.

Actually, the situation is even worse:

the compiler might reorder/remove/add memory
accesses;

and then the hardware will do some relaxed execution.

– p. 128

Constant Propagation

x = 3287

y = 7 - x / 2
→ x = 3287

y = 7 - 3287 / 2

– p. 129

Constant Propagation

x = 3287

y = 7 - x / 2
→ x = 3287

y = 7 - 3287 / 2

Initially x = y = 0

x = 1 if (x==1) {

if (y==1) x = 0

print x y=1 }

SC: can never print 1

Sun HotSpot JVM or GCJ: always prints 1

– p. 129

Non-atomic Accesses

Consider misaligned 4-byte accesses

Initially int32 t a = 0

a = 0x44332211 if a = 0x00002211

print "oops"

– p. 130

Non-atomic Accesses

Consider misaligned 4-byte accesses

Initially int32 t a = 0

a = 0x44332211 if a = 0x00002211

print "oops"

(Compiler will normally ensure alignment)

Intel SDM x86 atomic accesses:

n-bytes on an n-byte boundary (n=1,2,4,16)

P6 or later: ...or if unaligned but within a cache line

What about multi-word high-level language values?

– p. 130

Defining PL Memory Models

– p. 131

Defining PL Memory Models

Option 1: Don’t. No Concurrency

Poor match for current trends

– p. 132

Defining PL Memory Models

Option 2: Don’t. No Shared Memory

A good match for some problems

Erlang, MPI

– p. 132

Defining PL Memory Models

Option 3: Don’t. SC Shared Memory, with Races

(What OCaml gives you — but that’s not a true concurrent
impl.)

(What Haskell gives you for MVars?)

In general, it’s going to be expensive...

Naive impl: barriers between every memory access

(smarter: analysis to approximate the thread-local or non-racy accesses, but
aliasing always hard)

– p. 132

Defining PL Memory Models

Option 4: Don’t. Shared Memory, but Language ensures
Race-Free

e.g. by ensuring data accesses protected by associated locks

Possible — but inflexible... (pointer aliasing?)

What about all those fancy high-performance concurrent
algorithms?

– p. 132

Defining PL Memory Models

Option 5: Don’t. Shared Memory, but verify programs in
concurrent separation logic and prove that implies
race-freedom (and hence all executions are SC)

Appel et al.

great — but “verify”?!

– p. 132

Defining PL Memory Models

Option 6: Don’t. Leave it (sort of) up to the hardware

Example: MLton

(high-performance ML-to-x86 compiler, with concurrency
extensions)

Accesses to ML refs will exhibit the underlying x86-TSO
behaviour

But, they will at least be atomic

– p. 132

Defining PL Memory Models

Option 7: Do(!) Use Data race freedom as a definition

programs that are race-free in SC semantics have SC
behaviour

programs that have a race in some execution in SC
semantics can behave in any way at all

Sarita Adve & Mark Hill, 1990

– p. 132

Option 7: DRF as a definition

Core of C++0x draft. Hans Boehm & Sarita Adve, PLDI 2008

Pro:

Simple!

Strong guarantees for most code

Allows lots of freedom for compiler and hardware
optimisations

‘Programmer-Centric’

– p. 133

Option 7: DRF as a definition

Core of C++0x draft. Hans Boehm & Sarita Adve, PLDI 2008

Con:

programs that have a race in some execution in SC
semantics can behave in any way at all

Undecidable premise.

Imagine debugging: either bug is X ... or there is a potential race in
some execution

No guarantees for untrusted code

restrictive. Forbids those fancy concurrent algorithms

need to define exactly what a race is
what about races in synchronisation and concurrent datastructure
libraries?

– p. 133

Defining PL Memory Models
Option 8: Don’t. Take a concurrency-oblivious language
spec (e.g. C) and bolt on a thread library (e.g. Posix or
Windows threads)

Posix is sort-of DRF:

Applications shall ensure that access to any memory location by
more than one thread of control (threads or processes) is
restricted such that no thread of control can read or modify a
memory location while another thread of control may be
modifying it . Such access is restricted using functions that
synchronize thread execution and also synchronize memory with
respect to other threads Single Unix SPEC V3 & others

Threads Cannot be Implemented as a Library, Hans Boehm,
PLDI 2005

– p. 134

Defining PL Memory Models
Recall DRF gives no guarantees for untrusted code

Would be a disaster for Java, which relies on unforgeable
pointers for its security guarantees

Option 9: Do. DRF + some out-of-thin-air guarantee for all
code

– p. 135

Option 9: The Java Memory Model(s)
Java has integrated multithreading, and it attempts to specify
the precise behaviour of concurrent programs.

By the year 2000, the initial specification was shown:

to allow unexpected behaviours;

to prohibit common compiler optimisations,

to be challenging to implement on top of a
weakly-consistent multiprocessor.

Superseded around 2004 by the JSR-133 memory model.
The Java Memory Model, Jeremy Manson, Bill Pugh & Sarita Adve, POPL05

– p. 136

Option 9: JSR-133

Goal 1: data-race free programs are sequentially
consistent;

Goal 2: all programs satisfy some memory safety and
security requirements;

Goal 3: common compiler optimisations are sound.

– p. 137

Option 9: JSR-133 — Unsoundness

The model is intricate, and fails to meet Goal 3.: Some
optimisations may generate code that exhibits more
behaviours than those allowed by the un-optimised source.

As an example, JSR-133 allows r2=1 in the optimised code
below, but forbids r2=1 in the source code:

x = y = 0

r1=x r2=y

y=r1 x=(r2==1)?y:1

HotSpot optimisation
−→

x = y = 0

r1=x x=1

y=r1 r2=y

Jaroslav Ševčík & Dave Aspinall, ECOOP 2008

– p. 138

Defining PL Memory Models
Recall DRF is restrictive, forbidding racy concurrent
algorithms (also costly on Power)

And note that C and C++ don’t guarantee type safety in any
case.

– p. 139

Defining PL Memory Models
Recall DRF is restrictive, forbidding racy concurrent
algorithms (also costly on Power)

And note that C and C++ don’t guarantee type safety in any
case.

Option 10: Do. DRF + low-level atomic operations with
relaxed semantics

C++0x approach.

Foundations of the C++ Memory Model, Boehm&Adve PLDI08

Working Draft, Standard for Programming Language C++, N3090, 2010-03
http://www.open-std.org/JTC1/sc22/wg21/docs/papers/2010/

with Lawrence Crowl, Paul McKenney, Clark Nelson, Herb Sutter,...

– p. 139

http://www.open-std.org/JTC1/sc22/wg21/docs/papers/2010/

Option 10: C++0x

normal loads and stores

lock/unlock

atomic operations (load, store, read-modify-write, ...)
seq cst

relaxed, consume, acquire, release, acq rel

Idea: if you only use SC atomics, you get DRF guarantee
Non-SC atomics there for experts.

Informal-prose spec.

Formalisation in progress, in HOL — Mark Batty

– p. 140

Option 10: C++0x — Formalisation
Some (easy to fix) ambiguities are made manifest

Suspicion: most of the specification is (informally) axiomatic,
except (§29.3:10):

The requirements do allow r1 == r2 == 42 in the
following example, with x and y initially zero:

Thread 1:
r1 = x.load(memory order relaxed);
if (r1 == 42) y.store(r1, memory order

relaxed);

Thread 2:
r2 = y.load(memory order relaxed);
if (r2 == 42) x.store(42, memory order

relaxed);

However, implementations should not allow such – p. 141

Option 10: C++0x

Basic out-of-thin-air problem from Java, recurring

Solutions?

Dependency tracking

Better type systems?

Dynamic race detection (with H/W assist)? Or SC violation
detection?

– p. 142

Wrapping up

– p. 143

Hardware Models

x86 in detail

Why are industrial specs so often flawed?

A usable model: x86-TSO

Reasoning about x86-TSO code: races

Power/ARM

SPARC, Alpha, Itanium

Programming Language Models (Java/C++)

– p. 144

Problem: Loose Specifications
Architectures are the key interface between h/w and low-level
s/w

(and language definitions between low-level s/w and
applications).

They are necessarily loose specifications

But informal prose is a terrible way to express loose
specifications: ambiguous, untestable, and usually wrong.

Instead, architectures should be mathematically rigorous,
clarifying precisely just how loose one wants them to be.

(common misconception: precise = tight ?)

– p. 145

Problem: Untested Subtlety
For any such subtle and loose specification, how can we have
any confidence that it:

is well-defined?
must be mathematically precise

has the desired behaviour on key examples?
exploration tools

is internally self-consistent?
formalisation and proof of metatheory

is what is implemented by compiler+hw?
testing tools; compiler proof

is comprehensible to the programmer?
must be maths explained in prose

lets us write programs above the model?
static analysis/dynamic checker/daemonic emulator

is implementable with good performance?
implement...

– p. 146

Problem/Opportunity: Legacy Complexity

Most of these talks have been dominated by complex legacy
choices:

hw: x86, Power, Alpha, Sparc, Itanium

sw: C, C++ and Java compiler optimisations, language
standards and programming idioms

We may be stuck with these - but maybe not... Can we build
radically more scalable systems with a better hw/sw or
lang/app interface?

– p. 147

The End

Thanks!

– p. 148

	execution 0.40em0.1ex witness
	reads 0.40em0.1ex from 0.40em0.1ex map 0.40em0.1ex candidates
	previous 0.40em0.1ex writes
	check 0.40em0.1ex rfmap 0.40em0.1ex written
	check 0.40em0.1ex rfmap 0.40em0.1ex initial
	ve5
	ve6
	ve7
	ve8
	ve9
	The Golden Age, 1945--1972
	In an Ideal World
	A Tiny Language
	... and an SC Semantics
	... and an SC Semantics: expressions
	Example: SC Expression Trace
	Example: SC Expression Trace
	Example: SC Expression Trace
	Example: SC Expression Trace
	Example: SC Expression Trace

	... and an SC Semantics: lifting to processes
	... and an SC Semantics: SC memory
	... and an SC Semantics: whole-system states
	Example: SC Whole-System Trace
	Example: SC Interleaving
	In an Ideal World
	False, since 1972
	The First Bizarre Example
	The First Bizarre Example
	The First Bizarre Example
	The First Bizarre Example
	The First Bizarre Example
	The First Bizarre Example
	The First Bizarre Example

	The First Bizarre Example
	The First Bizarre Example

	Weakly Consistent Memory
	
ewcommand {hackit }{makebox [0pt][l]{etextc aisebox {-1mm}[0mm]{�egin {picture}(400,80)Thicklines
put (0,0){line (5,1){70}}end {picture}}}}onlySlide *{1}{Problems}
onlySlide *{2}{Problems} onlySlide *{3}{makebox [0pt][r]{hackit
{}Problems }{etextc {}Research Opportunities} }
	
ewcommand {hackit }{makebox [0pt][l]{etextc aisebox {-1mm}[0mm]{�egin {picture}(400,80)Thicklines
put (0,0){line (5,1){70}}end {picture}}}}onlySlide *{1}{Problems}
onlySlide *{2}{Problems} onlySlide *{3}{makebox [0pt][r]{hackit
{}Problems }{etextc {}Research Opportunities} }
	
ewcommand {hackit }{makebox [0pt][l]{etextc aisebox {-1mm}[0mm]{�egin {picture}(400,80)Thicklines
put (0,0){line (5,1){70}}end {picture}}}}onlySlide *{1}{Problems}
onlySlide *{2}{Problems} onlySlide *{3}{makebox [0pt][r]{hackit
{}Problems }{etextc {}Research Opportunities} }

	These Lectures
	Uses
	Architectures
	In practice
	A Cautionary Tale
	
ormalsize IWP and AMD64, Aug.~2007/Oct.~2008 (Era of Causality)
	Problem 1: Weakness
	Problem 1: Weakness
	Problem 1: Weakness

	Problem 2: Ambiguity
	Problem 3: Unsoundness!
	Problem 3: Unsoundness!
	Problem 3: Unsoundness!

	
ormalsize Intel SDM and AMD64, Nov.~2008 -- now
	Why all these problems?
	Fundamental Problem
	Aside: x86 ISA, Locked Instructions
	Aside: x86 ISA, Locked Instructions
	Aside: x86 ISA, Locked Instructions
	Aside: x86 ISA, Locked Instructions

	Aside: x86 ISA, Locked Instructions
	Aside: x86 ISA, Memory Barriers
	Inventing a Usable Abstraction
	x86-TSO Abstract Machine
	x86-TSO Abstract Machine
	x86-TSO Abstract Machine: Interface
	x86-TSO Abstract Machine: Machine States
	x86-TSO Abstract Machine: Auxiliary Definitions
	x86-TSO Abstract Machine: Behaviour
	x86-TSO Abstract Machine: Behaviour
	x86-TSO Abstract Machine: Behaviour
	x86-TSO Abstract Machine: Behaviour
	x86-TSO Abstract Machine: Behaviour
	x86-TSO Abstract Machine: Behaviour
	x86-TSO Abstract Machine: Behaviour
	Notation Reference
	First Example, Revisited
	First Example, Revisited
	First Example, Revisited
	First Example, Revisited
	First Example, Revisited
	First Example, Revisited
	First Example, Revisited
	First Example, Revisited
	First Example, Revisited
	First Example, Revisited
	First Example, Revisited

	Barriers and LOCK'd Instructions, recap
	NB: This is an emph {Abstract} Machine
	Processors, Hardware Threads, and Threads
	Validating the Semantics
	Liveness
	NB: Not emph {All} of x86
	x86-TSO: The Axiomatic Model
	Axioms: Memory Order
	Axioms: Reads-from map
	Axioms: emph {check_rfmap_written}
	Axioms: emph {check_rfmap_initial}
	Axioms: R/A Program Order
	Axioms: W/W Program Order
	Axioms: Fencing
	Axioms: Locked Instructions
	Axioms: Atomicity
	Axioms: Infinite Executions
	Example
	Equivalence of the two models
	Data Race Freedom (DRF)
	Data Race Freedom (DRF)

	What is a data race --- first attempt
	What is a data race --- for x86
	DRF Principle for x86-TSO
	Happens-Before Version
	What is a data race, again?
	Simple Spinlock
	Simple Spinlock
	Simple Spinlock
	Simple Spinlock
	Simple Spinlock

	Simple x86 Spinlock
	Spinlock Example (SC)
	Spinlock Example (SC)
	Spinlock Example (SC)
	Spinlock Example (SC)
	Spinlock Example (SC)
	Spinlock Example (SC)
	Spinlock Example (SC)
	Spinlock Example (SC)

	Spinlock SC Data Race
	Spinlock Example (x86-TSO)
	Spinlock Example (x86-TSO)
	Spinlock Example (x86-TSO)
	Spinlock Example (x86-TSO)
	Spinlock Example (x86-TSO)
	Spinlock Example (x86-TSO)
	Spinlock Example (x86-TSO)
	Spinlock Example (x86-TSO)
	Spinlock Example (x86-TSO)

	Triangular Races onlySlide *{1}{(Owens)}
	Triangular Races onlySlide *{1}{(Owens)}
	Triangular Races onlySlide *{1}{(Owens)}
	Triangular Races onlySlide *{1}{(Owens)}
	Triangular Races onlySlide *{1}{(Owens)}
	Triangular Races onlySlide *{1}{(Owens)}

	TRF Principle for x86-TSO
	Spinlock Data Race
	Program Correctness
	Other Applications
	Reflections
	Hardware Models
	Coherence
	Power ISA 2.06 and ARM v7
	Power ISA 2.06 and ARM v7

	By Example
	Store Buffering (SB)
	Store Buffering (SB)
	Message Passing (MP)
	Load Buffering (LB)
	Write-to-Read Causality (WRC)
	Independent Reads of Independent Writes (IRIW)
	So how can we ever write concurrent code?
	Dependencies
	LB+deps
	WRC+deps
	Memory Barriers
	Memory Barriers
	Memory Barriers

	WRC+syncs (or +DMBs)
	Load-reserve/Store-conditional
	Reads from Different Writes (RDW)
	Reads from Same Write (RSW)
	Sources of H/W Relaxed Memory
	Other Issues
	SPARC
	Alpha
	Itanium (IA-64 $
ot =$Intel 64$=$AMD64)
	High-level languages
	Constant Propagation
	Constant Propagation

	Non-atomic Accesses
	Non-atomic Accesses

	Defining PL Memory Models
	Defining PL Memory Models
	Defining PL Memory Models
	Defining PL Memory Models
	Defining PL Memory Models
	Defining PL Memory Models
	Defining PL Memory Models
	Defining PL Memory Models

	Option 7: DRF as a definition
	Option 7: DRF as a definition

	Defining PL Memory Models
	Defining PL Memory Models
	Option 9: The Java Memory Model(s)
	Option 9: JSR-133
	Option 9: JSR-133 --- Unsoundness
	Defining PL Memory Models
	Defining PL Memory Models

	Option 10: C++0x
	Option 10: C++0x --- Formalisation
	Option 10: C++0x
	Problem: Loose Specifications
	onlySlide *{1}{Problem}: Untested Subtlety
	Problem/Opportunity: Legacy Complexity

