
 
Multicore Programming 

 
 

Locks 

 
8 Nov 2010 (Part 2) 

 
Peter Sewell       Jaroslav Ševčík       Tim Harris 



Test-and-set (TAS) locks 

TATAS locks & backoff 

Queue-based locks 

Parallel performance 

Hierarchical locks 



Test and set (pseudo-code) 

bool testAndSet(bool *b) { 
  bool result; 
  atomic { 
    result = *b; 
    *b = TRUE; 
  } 
} 

Pointer to a location 
holding a boolean 

value (TRUE/FALSE) 

Read the current 
contents of the 

location b points to… 

…set the contents of 
*b to TRUE 



Test and set 

time 

• Suppose two threads use it at once 

Thread 2: 

Thread 1: 

testAndSet(b)->true 

testAndSet(b)->false 



Test and set lock 

FALSE 
lock: 

void acquireLock(bool *lock) { 
    while (testAndSet(lock)) { 
       /* Nothing */ 
    } 
} 

void releaseLock(bool *lock) { 
   *lock = FALSE; 
} 

FALSE => lock available 
TRUE => lock held 

Each call tries to acquire 
the lock, returning TRUE 

if it is already held 

NB: all this is pseudo-
code, assuming SC 

memory 



Test and set lock 

FALSE 
lock: 

void acquireLock(bool *lock) { 
    while (testAndSet(lock)) { 
       /* Nothing */ 
    } 
} 

void releaseLock(bool *lock) { 
   *lock = FALSE; 
} 

Thread 1 

TRUE 

Thread 2 



What are the problems here? 

Spinning may waste 
resources while 

waiting 

No control over 
locking policy 

testAndSet 
implementation 

causes contention 

Only supports mutual 
exclusion: not reader-

writer locking 



Single-
threaded 

core 

1 

2 

3 

4 

5 
... 

Contention from testAndSet 

1 

2 

3 

4 

5 
... 

L1 cache 

Single-
threaded 

core 

L1 cache 

Main memory 

L2 cache L2 cache 



Single-
threaded 

core 

1 

2 

3 

4 

5 
... 

Multi-core h/w – separate L2 

1 

2 

3 

4 

5 
... 

L1 cache 

Single-
threaded 

core 

L1 cache 

Main memory 

L2 cache L2 cache 

testAndSet(k) 

k 

k 



Single-
threaded 

core 

1 

2 

3 

4 

5 
... 

Multi-core h/w – separate L2 

1 

2 

3 

4 

5 
... 

L1 cache 

Single-
threaded 

core 

L1 cache 

Main memory 

L2 cache L2 cache 

testAndSet(k) 

k 

k 



Single-
threaded 

core 

1 

2 

3 

4 

5 
... 

Multi-core h/w – separate L2 

1 

2 

3 

4 

5 
... 

L1 cache 

Single-
threaded 

core 

L1 cache 

Main memory 

L2 cache L2 cache 

testAndSet(k) 

k 

k 



General problem 

• No logical conflict between two failed lock 
acquires 

• Cache protocol introduces a physical 
conflict 

• For a good algorithm: only introduce 
physical conflicts if a logical conflict occurs 



Test-and-set (TAS) locks 

TATAS locks & backoff 

Queue-based locks 

Parallel performance 

Hierarchical locks 



Test and test and set lock 

FALSE 
lock: 

void acquireLock(bool *lock) { 
  do { 
    while (*lock) { }          
  } while (testAndSet(lock)); 
} 

void releaseLock(bool *lock) { 
   *lock = FALSE; 
} 

FALSE => lock available 
TRUE => lock held 

Spin while the lock is 
held… only do 

testAndSet when it is 
clear 



Performance 

# Threads 

Ti
m

e
 

Ideal 

TATAS 
TAS 

Based on Fig 7.4, Herlihy & Shavit, “The Art of Multiprocessor Programming” 



Stampedes 

TRUE 
lock: 

void acquireLock(bool *lock) { 
  do { 
    while (*lock) { }          
  } while (testAndSet(lock)); 
} 

void releaseLock(bool *lock) { 
   *lock = FALSE; 
} 



Back-off algorithms 

1. Start by spinning, watching the lock 

2. After an interval c spin locally for s 
(without watching the lock) 

What should “c” be? 
What should “s” be? 



Time spent waiting “c” 

• Lower values: 

– Less time to build up a set of threads that will 
stampede 

• Higher values: 

– Less likelihood of a delay between a lock being 
released and a waiting thread noticing 



Spinning time “s” 

• Lower values: 

– More responsive to the lock becoming 
available 

• Higher values: 

– If the lock doesn’t become available then the 
thread makes fewer accesses to the shared 
variable 



Methodical approach 

• For a given workload and performance 
model: 
– What is the best that an oracle could do (e.g. 

given perfect knowledge of lock demands)? 

– How does a practical algorithm compare with this? 

• Look for an algorithm with a bound between 
its performance and that of the oracle 

• “Competitive spinning” 



Rule of thumb 

• Spin for a duration that’s comparable with 
the shortest back-off interval 

• Exponentially increase the per-thread back-
off interval (resetting it when the lock is 
acquired) 

• Use a maximum back-off interval that is 
large enough that waiting threads don’t 
interfere with the system’s performance 



Test-and-set (TAS) locks 

TATAS locks & backoff 

Queue-based locks 

Parallel performance 

Hierarchical locks 



Queue-based locks 

• Lock holders queue up: immediately 
provides FCFS behavior 

• Each spins locally on a flag in their queue 
entry: no remote memory accesses while 
waiting 

• A lock release wakes the next thread 
directly: no stampede 



MCS locks 

lock: 

FALSE FALSE FALSE 

QNode 1 QNode 2 QNode 3 

Head Tail 

Local flag 

Lock 
identifies tail 



MCS lock acquire 
lock: 

FALSE 

void acquireMCS(mcs *lock, QNode *qn) { 
  QNode *prev; 
  qn->flag = false; 
  qn->next = NULL; 
  while (true) { 
     prev = lock->tail; 
     /*Label 1*/ 
     if (CAS(&lock->tail, prev, qn)) break; 
  } 
  if (prev != NULL) { 
    prev->next = qn; /*Label 2*/ 
    while (!qn->flag) { } // Spin 
} } 

Find previous 
tail node 

Atomically replace 
“prev” with “qn” in 

the lock itself 

Add link within 
the queue 

NB: the two labels in the source code are referred to in 
the exercise sheet; they are not necessary for the algorithm 



MCS lock release 
lock: 

FALSE 

void releaseMCS(mcs *lock, QNode *qn) { 
  if (lock->tail = qn) { 
     if (CAS(&lock->tail, qn, NULL)) return; 
  } 
  while (qn->next != NULL) { } 
  qn->next->flag = TRUE; 
} 

TRUE 
qn: 

If we were at the tail 
then remove us 

Wait for next lock holder 
to announce themselves; 

signal them 



Test-and-set (TAS) locks 

TATAS locks & backoff 

Queue-based locks 

Parallel performance 

Hierarchical locks 



Hierarchical locks 

Core 1 Core 2 

Core 3 Core 4 

Shared L2 cache 

Core 5 Core 6 

Core 7 Core 8 

Shared L2 cache 

Memory bus 

Memory 



Hierarchical locks 

Core 1 Core 2 

Core 3 Core 4 

Shared L2 cache 

Core 5 Core 6 

Core 7 Core 8 

Shared L2 cache 

Memory bus 

Memory 



Hierarchical locks 

Core 1 Core 2 

Core 3 Core 4 

Shared L2 cache 

Core 5 Core 6 

Core 7 Core 8 

Shared L2 cache 

Memory bus 

Memory 

Pass lock 
“nearby” if 

possible 

Call this a 
“cluster” of 

cores 



Hierarchical TATAS with backoff 

-1 
lock: 

void acquireLock(bool *lock) { 
  do { 
    holder = *lock; 
    if (holder != -1) { 
       if (holder == MY_CLUSTER) { 
         BackOff(SHORT); 
       } else { 
          BackOff(LONG); 
       } 
    }  
  } while (!CAS(lock, -1, MY_CLUSTER)); 
} 

-1 => lock available 
n => lock held by cluster n 



Hierarchical locks 

Core 1 Core 2 

Core 3 Core 4 

Shared L2 cache 

Core 5 Core 6 

Core 7 Core 8 

Shared L2 cache 

Memory bus 

Memory 

Avoid this cycle 
repeating, 

starving 5 & 7… 



Hierarchical CLH queue lock 

Local queue: 

Lock 
identifies tail 

Based on hierarchical CLH lock of Luchangco, Nussbaum, Shavit 

TRUE 

myNode myPred 

NULL 

Flag => successor 
must wait 

Thread private variables 
represent links implicitly 



Hierarchical CLH queue lock 

Local queue: 

Lock 
identifies tail 

Based on hierarchical CLH lock of Luchangco, Nussbaum, Shavit 

TRUE 

myNode myPred 

TRUE 

myNode myPred 

NULL 

Flag => successor 
must wait 



Hierarchical CLH queue lock 

Local queue: 

Based on hierarchical CLH lock of Luchangco, Nussbaum, Shavit 

TRUE 

myNode myPred 

TRUE 

myNode myPred 

NULL 

Global queue: myNode myPred 

TRUE 

NULL 
Current lock 

holder 

Cluster master: sees lock is held, so 
waits a “combining delay” 



Hierarchical CLH queue lock 

Local queue: 

Based on hierarchical CLH lock of Luchangco, Nussbaum, Shavit 

TRUE 

myNode myPred 

TRUE 

myNode myPred 

Global queue: myNode myPred 

TRUE 

NULL 
Splice whole list to 
tail of global queue 

Set “Tail When Spliced” flag: next 
local queue entry will be a new 

cluster master 



Test-and-set (TAS) locks 

TATAS locks & backoff 

Queue-based locks 

Parallel performance 

Hierarchical locks 



An aside: is this a better algorithm? 

• How fast does it run without contention? 
– Each thread acquires and releases different 

locks 

– Threads acquire and release the same lock… 
but not at the same time  

• How fast does it run with contention? 
– n threads trying to acquire the same lock at 

the same time 

– How does performance scale as n varies? 



An aside: is this a better algorithm? 

Wall-clock 
time? 

Instruction 
count? 

Memory 
accesses? 

Cache lines 
read/written? 



An aside: is this a better algorithm? 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 2 4 6 8 10 12

Ex
ec

u
ti

o
n

 t
im

e 
o

n
 M

ac
h

in
e 

M
1

 

Number of threads 

Algorithm A

Algorithm B

Low contention:  
B is best 

High contention:  
A is best 



An aside: is this a better algorithm? 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12

Ex
ec

u
ti

o
n

 t
im

e 
o

n
 M

ac
h

in
e 

M
2

 

Number of threads 

Algorithm A

Algorithm B

…and on this machine B 
is best everywhere! 


