Multicore Programming

Locks

8 Nov 2010 (Part 2)

Peter Sewell Jaroslav Sevéik Tim Harris

Microsoft

Research

Test-and-set (TAS) locks

Microsoft

Research

Test and set (pseudo-code)

Pointer to a location

/ holding a boolean
bool testAndSet(bool *b) { value (TRUE/FALSE)
bool result; [
a:z:ﬁ {_ *h- Read the current
*p = TI;UE-’ contents of the
} i ' location b points to...

\})

...set the contents of
*b to TRUE

Microsoft’

Research

Test and set

» Suppose two threads use it at once

testAndSet(b)->true

Thread 1:

time

Thread 2:

testAndSet(b)->false

Microsoft’

Research

Test and set lock

lock:
FALSE

L N
void acquireLock(bool *lock) {

while (testAndSet(lock)) {

/* Nothing */

}

}
(& o

void releaselLock(bool *lock) {
*lock = FALSE;

}

FALSE => lock available
TRUE => lock held

Each call tries to acquire
the lock, returning TRUE
if it is already held

NB: all this is pseudo-
code, assuming SC
memory

Microsoft

Research

Test and set lock

lock:
TRUE

Thread 1 Thread 2
void acquireLock(bool *lock) {
while (testAndSet(lock)) {
/* Nothing */
I .
!

N Y,

void releaselLock(bool *lock) {
*lock = FALSE; ‘

}

Microsoft’

Research

What are the problems here?

N I
testAndSet
. . No control over
implementation . :
tenti locking policy
_ Causescontention | | -
4 N .. I
Only supports mutual Spinning may waste
exclusion: not reader- resources while
- writer locking) L waiting -

Microsoft

Research

Contention from testAndSet

| B WIN[EP

Single- Single-
threaded threaded
core core
L1 cache L1 cache
L2 cache L2 cache

B IWNE

Main memory

Microsoft

Research

Multi-core h/w — separate L2

testAndSet(k) Single- Single-
"N\ threaded || threaded
core core
1 1
9 2
3 L1c L1 cache 3
4 4
> L2 ¢ L2 cache :

Main memory

Microsoft

Research

Multi-core h/w — separate L2

| B WIN[EP

Fnele: Sl testAndSet(k)
—1
threaded threaded ™
core core

1
2

L1 cache L1 3
4
5

L2 cache L2 c

Main memory

Microsoft

Research

Multi-core h/w — separate L2

testAndSet(k) Single- Single-
"N\ threaded || threaded
core core
1 1
9 2
3 L1c L1 cache 3
4 4
> L2 ¢ L2 cache :

Main memory

Microsoft’

Research

General problem

* No logical conflict between two failed lock
acquires

» Cache protocol introduces a physical
conflict

* For a good algorithm: only introduce
physical conflicts if a logical conflict occurs

Microsoft
Research

TATAS locks & backoff

Microsoft

Research

Test and test and set lock

lock:
FALSE

\r FALSE => lock available
TRUE => lock held

void acquireLock(bool *lock) {
do {
while (*lock) { } N Spin while the lock is
} while (testAndSet(lock)); held... only do
} testAndSet when it is
K / clear

void releaselLock(bool *lock) {
*lock = FALSE;

}

Time

Microsoft

Research

Performance

TAS
TATAS

Ideal

Threads

Based on Fig 7.4, Herlihy & Shavit, “The Art of Multiprocessor Programming”

Microsoft

Research

Stampedes

lock:
TRUE

void acquireLock(bool *lock) {
do {
while (*lock) {}

N7
N7
N7
N |7
N7
N7
N |7

} while (testAndSet(lock));
}
_ /

[void releaseLock(bool *lock) { }

*lock = FALSE;
!

Microsoft’

Research
Back-off algorithms

1. Start by spinning, watching the lock

2. After an interval ¢ spin locally for s
(without watching the lock)

What should “c” be?
What should “s” be?

Microsoft’

Research
Time spent waliting “c”

 |Lower values:

— Less time to build up a set of threads that will
stampede

* Higher values:

— Less likelihood of a delay between a lock being
released and a waiting thread noticing

Microsoft’

Research

Spinning time “s”

 |Lower values:

— More responsive to the lock becoming
available

* Higher values:

— If the
threac

ock doesn’t become available then the
makes fewer accesses to the shared

variab

e

Microsoft’

Research

Methodical approach

* For a given workload and performance
model.

— What is the best that an oracle could do (e.g.
given perfect knowledge of lock demands)?

— How does a practical algorithm compare with this?

* Look for an algorithm with a bound between
Its performance and that of the oracle

» "Competitive spinning”

Microsoft’

Research

Rule of thumb

 Spin for a duration that's comparable with
the shortest back-off interval

» Exponentially increase the per-thread back-
off interval (resetting it when the lock is
acquired)

* Use a maximum back-off interval that is
large enough that waiting threads don't
interfere with the system’s performance

Microsoft

Research

Queue-based locks

Microsoft’

Research

Queue-based locks

» Lock holders queue up: immediately
provides FCFS behavior

 Each spins locally on a flag in their queue
entry: no remote memory accesses while
waiting

* A lock release wakes the next thread
directly: no stampede

Microsoft

Research

MCS locks

Lock
identifies tail

lock:

Local flag

FALSE ——> FALSE ——> FALSE

QNode 1 QNode 2 QNode 3

Head Tail

Microsoft’

Research
lock:
md acquireMCS(mcs *lock, QNode *gn) { \
QNode *prey; FALSE
gn->flag = false;
gn->next = NULL; Find previous
while (true) { __ tail node
prev = lock->tail;
/*Label 1*/ :
if (CAS(&lock->tail, prev, qn)) break; Atomlcal.ly replac.e
) - “prev” with “gn” in
if (prev I= NULL) { ™~ the lock itself
prev->next = gn; /*Label 2™/ . . ‘
while (Ign->flag) { } // Spin Add link within
1} the queue
/ NB: the two labels in the source code are referred to in

the exercise sheet; they are not necessary for the algorithm

Microsoft’

Research

MCS lock release

lock:

A TRUE FALSE

If we were at the tail

/void releaseMCS(mcs *lock, QNode *qn) { then remove us

if (lock->tail = gn) { S
if (CAS(&lock->tail, gn, NULL)) return; /’

})
while (gn->next I= NULL) { } Wait for next lock holder

gn->next->flag = TRUE; to announce themselves;
’ signal them

< >

Microsoft

Research

Hierarchical locks

Microsoft

Research

Hierarchical locks

Core 1 Core 2

Core 3 Core 4

Shared L2 cache

Core 5 Core 6

Core 7 Core 8

Shared L2 cache

Memory

Memory bus

Microsoft

Research

Hierarchical locks

Core 1 ‘

Core 2

| Core 5 Core 6

Core 3

(‘nr?

>

/|‘(‘an 7 Core 8

—>

Shared L2 cache

Shared L2 cache

Memory

Memory bus

Microsoft

Research
Pass lock " "
ssock | Hierarchical locks
possible
‘ | Call this a
Core 1 Core 2 Core 5 Core 6 “cluster” of
\ ,,ﬁ cores
Core 3 Core 4 | (‘Im 7 Core 8
|
Shared L2 cache Shared L2 cache
Memory bus

Memory

Microsoft

Research

Hierarchical TATAS with backoff

lock:
-1

i

Md acquireLock(bool *lock) { \
do {

holder = *lock;
if (holder !=-1) {
if (holder == MY_CLUSTER) {
BackOff(SHORT);
} else {
BackOff(LONG);

}
}

\\}while (!CAS(lock, -1, MY_CLUSTER));
} -

-1 => lock available
n => lock held by cluster n

Microsoft’

Hierarchicg| |ocks

Avoid this cycle
repeating,

Care 1 ‘ Core 2
/

starving 5 & 7...

~—~—

4

Core 3

Shared L2 cache

Research
< ore 5 Core 6
A
|
\Im 7 Core 8
Shared L2 cache
Memory bus

Memory

Microsoft

Research

Hierarchical CLH queue lock

Lock
identifies tail

Local queue: —
_‘ Flag => successor

must wait

> TRUE

[

myNode = myPred

s

Thread private variables
represent links implicitly

Based on hierarchical CLH lock of Luchangco, Nussbaum, Shavit

Microsoft

Research

Hierarchical CLH queue lock

Lock

identifies tail

Local queue:
> TRUE
A
/
myNode | myPred

Flag => successor

must wait
-
TRUE
Z\ NULL
e
/

myNode @ myPred

Based on hierarchical CLH lock of Luchangco, Nussbaum, Shavit

Microsoft

Research

Hierarchical CLH queue lock

Local queue:

Global queue:

—> TRUE TRUE
T ']‘ NULL
myNode | myPred myNode | myPred
Cluster master: sees lock is held, so
waits a “combining delay”
TRUE
Current lock
holder T NULL
> myNode | myPred

Based on hierarchical CLH lock of Luchangco, Nussbaum, Shavit

Microsoft’

Research

Set “Tail When Spliced” flag: next
local queue entry will be a new C k

H ie ra rC h ica | clust(?r master

Local queue: / T

myNode | myPred myNode | myPred

——> TRUE
Splice whole list to

tail of global queue T NULL

/

— myNode | myPred

Global queue:

Based on hierarchical CLH lock of Luchangco, Nussbaum, Shavit

Microsoft

Research

Parallel performance

Microsoft’

Research

An aside: Is this a better algorithm?

« How fast does it run without contention?

— Each thread acquires and releases different
locks

— Threads acquire and release the same lock...
but not at the same time

« How fast does it run with contention?

— n threads trying to acquire the same lock at
the same time

— How does performance scale as n varies?

Microso ft-

Research

An aside: Is this a better algorithm?

L Wall-clock }{ Memory }
time? accesses?

count? read/written?

{ Instruction } L Cache lines J

Microsoft

Research

An aside: Is this a better algorithm?

Execution time on Machine M1

1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

- ——Algorithm A 4/\

| -=-Algorithm B High contention:

_ A is best
I\ : | I '

0 5 6 10 12

Low contention:
B is best

Microsoft

Research

An aside: Is this a better algorithm?

Execution time on Machine M2

0.6 -

0.5 -

0.4 -

0.3 -

0.2 -

0.1 -

0.0

—e—Algorithm A
-=-Algorithm B

Number of threads

...and on this machine B
is best everywhere!

