Chapter 2.3

Language Semantics, Mental Models and
Analogy

Jean-Michel Hoc and Anh Nguyen-Xuan

CNRS - Université de Paris 8, URA 1297: Psychologie Cognitive du
Traitement de ’Information Symbolique, 2, Rue de la Liberté, F-93526
Saint-Denis Cedex 2, France

Abstract

The semantics of a number of programming languages is related to the operation of
a computer device. Learning a programming language is considered here from the
point of view of learning the operating rules of the processing device that underlies
the language, as a complement to the learning of new notations, or a new means of
expression to be compared to natural language. This acquisition leads beginners to
elaborate a new representation and processing system (RPS) by analogy with other
systems that are associated to well-known devices. During acquisition, beginners not
only learn new basic operations but also the constraints of these operations upon
program structures. Learning therefore concerns a basic problem space as well as
abstract problem spaces within which planning takes place. The links between this
approach to learning to program and a number of related works on learning to use
software are underlined. Implications of these research findings in the programmer
training are drawn.

Psychology of Programming Copyright © 1990 by Academic Press Limited
ISBN 0-12-350772-3 ‘ . All rights of reproduction in any form reserved

140 J.-M. Hoc and A. Nguyen-Xuan

1 Introduction

At first glance, programming may be defined as a procedure specification task by
means of a computer language. This conception of programming, as pointed out by
Miller (1974), led a number of researchers to stress the importance of the acquisition
of the means — the computer language — in learning to program. Green offers an
overview of this perspective in this book with his phrase ‘dimensions of notations’
(Chapter 2.2). Such a view is also prevalent in the research done by the Soloway
team on Pascal (e.g. Bonar and Soloway, 1985). These researchers have established
a taxonomy of errors done by novices in situations where they have been able to collect
verbal protocols during program design. Their studies reveal the fact that many
novice errors are due to wrong transfers of natural language constructs to computer
programs (e.g. ‘then’ interpreted as ‘afterwards’ instead of ‘in these conditions’).
Confusion between Prolog notations of logic expressions and natural language or
other formalisms are also shown to be an important factor of novices difficulties in
learning Prolog (Taylor and du Boulay, 1986).

In teaching programming, the emphasis stressed on the means of expression can
lead to an overestimation of the learning of programming language syntax within the
triad determining human-computer interaction: external task structure, language
syntax, and language semantics (Moran, 1981). Certainly a number of difficulties for
beginners can be drastically reduced by designing ergonomic programming language
syntax. For example, some interesting properties of a two-level syntax have been
demonstrated (task-action grammar: Payne and Green, 1986). This enables the user
to learn a limited number of general rules that play the role of schemas and which
can be instantiated so that several specific rules can be generated. Nevertheless these
syntactic schemas have their semantic counterpart and the efficiency of this kind of
syntax is probably determined by a certain compatibility with a pre-existing two-level
structuration of the contents of the language.

Syntactic errors have been shown to be of limited importance even to beginners
(Youngs, 1974). In a number of studies on learning to program, which stress the
acquisition of a new communication means, semantic rather than syntactic difficul-
ties are shown. This is especially true of Soloway’s works which show that beginners
introduce distortions into programming language syntax when their programming
knowledge is lacking. These distortions are indicators of transfers from other knowl-
edge domains that are not compatible with the programming language structure.
Even with professional programmers, this kind of transfer, from a well-known pro-
gramming language to a new one, has been shown to exist (Hoc, 1988b). Syntactic
errors clearly revealed semantic difficulties when programmers did not succeed in
transforming well-known contents into quite different contents expressible in the new
language. This phenomenon often occurs in translation between natural languages.
Taylor and du Boulay (1987) show the Prolog experts’ ability to adopt a problem
representation compatible with the language in the very beginning of the design
process. Within the same study, programmers who are expert in programming but
unfamiliar with Prolog initiate their design activity with representations that are not
compatible with Prolog and very often fail to produce a program.

In this chapter, the relationship between task structure and programming lan-
guage semantics will be discussed as a critical component of learning to program.
Semantics and syntax are considered to be complementary components in the study

i

Language Semantics, Mental Models and Analogy 141

of user models. Although a major effort has been made to bridge the gap between
natural language and programming languages (mainly for English-speaking program-
mers) the semantic problem remains. As Jackson (1980) has pointed out, it is almost
impossible to design languages that are purely problem oriented. They remain largely
machine oriented and their semantics consist of controlling machine operation (es-
pecially a sequential mode of operating in performing tasks where human operators
may use parallel processing). Indeed, this machine is a formal one and varies with
the language used: e.g. the Pascal machine is different from the Cobol machine.
Research is only beginning on more ‘declarative’ languages such as Prolog but the
need to learn the operating rules of the Prolog machine is already shown to be a
necessary condition to designing complex programs in this kind of language (Taylor
and du Boulay, 1987).

The purpose of this chapter is to show that whatever the programming language,
beginners have to learn the operating rules of what is called the ‘device’ underlying
the programming language. This learning develops along two directions:

(1) construction of new elementary operations (primitives), different from familiar
ones, which are sometimes coded by the same wordings (especially the READ
and WRITE statements, as has very often been shown);

(2) restructuring of well-known plans which are incompatible with the new
primitives — beginners become aware of the constraints upon the structure of
the new plans defined by these new primitives.

Beginners learn to program by building programs. Hence they learn by problem-
solving. The important features of this problem solving situation will be presented
here, giving reasons for the theoretical framework used in analysing the elaboration
of user models of language and devices: learning by doing and by analogy. A basic
construct will then be introduced (after Hoc, 1977, 1988a), in relation to mental
models, to define the knowledge architecture within which these learning mechanisms
take place: the representation and processing system (RPS). General problem solving
by analogy strategies will be discussed in the context of human computer interaction
studies aimed at describing the beginner’s acquisition of computerized tasks. And
finally, some implications on training will be stressed.

Mainly research on the learning of procedural languages will be referred to, since
it is available in books or journals. Similar components can be found in the learning
of more declarative and recent languages as shown by studies that have not been
widely published.

2 Problem solving by beginners in programming

Whatever the kind of learner and whatever the teaching method may be (e.g. top-
down structured programming methods, or algorithmics), programming language
acquisition remains the first necessary step to more advanced acquisitions.

As has been stressed above, learning to program is learning by problem solving.
A number of studies have been devoted to beginner problem solving strategies in
these learning-by-doing situations and it is now possible to define their principal
features. After Hoc (1988a), the notion of problem is to be contrasted against the
notion of task: A task is defined by a goal and conditions for reaching it. A problem

142 J.-M. Hoc and A. Nguyen-Xuan

1s a representation of a 'task a subject evokes or elaborates that cannot yet trigger an
acceptable procedure to reach the goal (i.e. a procedure which is in conformity with
the prescribed conditions).

Beginners are confronted with computer tasks, like stock updating, file sorting,
etc., for which they have no available procedures. These tasks cannot be considered
as problems for professional programmers who can activate well-known computer
schemas ready to fulfil them (see Chapter 3.1). The notion of problem is therefore
subjective: it is related to the interaction between subject and task and must be
defined by both the task characteristics and the subject’s knowledge. What then
constitutes a programming problem for a beginner in contrast to an expert?

More often than not teachers do not ask beginners to invent algorithms. Begin-
ners are required to produce programs for familiar tasks they can perform by hand.
In other words the goals are familiar to them and they have procedures at their
disposal so that these goals can be reached. These familiar tasks become problems
because there are mainly two new conditions that must be satisfied:

(1) Programs have to be practicable by a computer through a definite means of
communication: the programming language (this communication situation is
very different from the human-human communication situations where inter-
pretation takes place). Programmers thus have to restrict themselves to the use
of elementary operations the computer can perform and of procedure structures
compatible with these operations.

(2) New procedures have to be explicitly stated beforehand (in most of the cases
new elaborations cannot take place at the execution time); hence a strong
planning constraint is introduced.

In this chapter the first kind of condition will be discussed, the second one is
examined elsewhere in this book (see Chapter 2.4). However, some short comments
on the constraints on procedure expression must be given here. To be able to express
procedures in a program, beginners must elaborate representations of these proce-
dures, such representations may not be necessary in usual problem-solving situations.
In ordinary situations the procedure can be elaborated at execution time, where con-
crete feedback is available after the execution of each operation: in programming,
feedback is delayed. Usually the goal is specific (e.g. sorting of a particular file for
which a particular procedure can be adopted) while in most of the programming sit-
uations the goal is a class of specific goals (e.g. the sorting procedure must be valid
for any file defined by a set of characteristics). This creates two kinds of difficulty
for beginners:

* shift from value to variable processing,

* elaboration of a representation of the procedure control structures of which
beginners are not necessarily aware in usual problem solving situations.

In several experiments, we have adopted a methodology whereby the two as-
pects of problem solving in beginners — the design of a procedure practicable by the
computer, and the expression of this procedure — are studied separately (Hoc, 1983;
Nguyen-Xuan and Hoc, 1987). Beginners are first asked to perform a task by hand in

Language Semantics, Mental Models and Analogy 143

a situation with as few constraints as possible and the familiar procedure is observed.
They are then asked to command a computer device to carry out the task step by
step: the elementary commands available correspond to elementary instructions of a
programming language. In this command situation all the data to be processed (e.g.
an entire file) and the content of the computer memory cells are visible in a first
stage and covered in a second stage. These two situations enable the experimenter to
observe the adaptation of the familiar procedures to the operating rules of the device
and force the beginners to adopt a general procedure (covered situation). Finally the
beginners are asked to verbally state their general procedure after having elaborated
it in the command situations where they had feedback information (step-by-step
error messages in the covered situations). Figure 1 illustrates the application of this
kind of methodology to the sorting of a list.

This methodology enables the observer to identify the diverse sources of difficul-
ties that beginners encounter when designing a program in standard programming
situations: acquisition of the operating rules of the new device and procedure expres-
sion.

3 The concept of representation and processing system

In human-computer interaction as well as process control areas the notion of the
mental model has been introduced to describe operator knowledge about machines
(Rouse and Morris, 1986). Although the uses of this concept are various, the common
idea is to describe a kind of operational knowledge that is specific to a limited class of
situations. The application of mental models to operator behaviour raises method-
ological difficulties that will not be discussed here. In particular these mental models
must be opposed to ‘conceptualizations’ as observer constructs (Norman, 1983). Al-
though conceptualizations can only be defined by the observer as compatible with
expert behaviour (instead of being actually used by the operator), explicit teaching
of these conceptualizations in learning to use a device can provide the learner with a
helpful representation of the device, and can be of interest (du Boulay et al., 1981).

In a study of the learning of programming, Hoc (1977) has introduced the notion
of the representation and processing system (RPS) which is similar to a ‘mental
model’. A RPS is a part of the semantic memory network that can be activated
in executing tasks belonging to a common task domain (see Hoc, 1988a, for further
developments). Such a network is elaborated by instruction and by doing, and has
the double status of a social and individual construct. As different task domains are
separately taught — algebra, French, physics, etc. — they are separately internalized
in the form of different RPSs. Connections between pieces of knowledge belonging
to the same RPS are stronger than connections betwsen different RPSs.

In a RPS, declarative (representation) and procedural (processing) knowledge
are strongly connected as dual aspects of knowledge. This accounts for the fact
that formally isomorphic tasks may not be processed in the same way, because they
are represented differently by the subject. A particular kind of task representation
opens access to certain procedural skills that cannot be so easily triggered by another
representation. It may happen that the same problem statement triggers different
RPSs for solving various sub-problems, and the communication between different
RPSs may be difficult to manage. In an experiment conducted by Hoc (1977), sub-
jects at different levels of programming expertise had to solve a problem of ticket

144 J.-M. Hoc and A. Nguyen-Xuan

Step a: Sorting of boxes

Q W E R T U

Inserting a box atomatically

; % pushes the other boxes

Step b: sorting the row of an array (decreasing order)

step bl: visible device

2 ch 4 5 6 7 Command keys:
Q W E[R| T| Y] U COMPARE 1] 21 3
COPY 4| 51 6
DELETE 7] 8] 9
N Syntax:
COMPARE CELL(A,B) WITH CELL(C,D) Result: e.g.: CELL(C,D)>CELL(A,B)
COPY CELL(A,B) IN CELL(C,D) Result: as an ordinary assignment
DELETE CELL(A,B) Result: CELL(A,B) empty
step b2: covered device
While processing, the content of the cells are covered.
1 2 3 4 5 6 7 3 extra commands are available:
2 ANYTHING IN CELL...7

DISPLACE '*' ON CELL...
DISPLACE '~ ON CELL... -

In trying to transfer the box insertion procedure,
a shifting sub-procedure has to be applied before

inserting a letter.

Figure 1: Sorting of a list (after Nguyen-Xuan and Hoc, 1987). (a) Familiar situation:
sorting of boxes. (b) Sorting of a row in an array: (bl) visible contents, (b2) covered
contents.

o BT e S i

Language Semantics, Mental Models and Analogy 145

machine control simulation in a Metro station. In solving this kind of problem, a
number of difficulties encountered by subjects were representation and processing
translations from four separate RPSs into a common ‘computer’ RPS:

% ‘traveller’, in which traveller goals (e.g. ticket asked) and actions (coins in-
serted) were represented; '

% ‘ticket machine’, describing the machine reactions to the traveller and computer
messages;

% ‘numerical code’, the transfer of information and commands between the com-
puter and the ticket-machine;

% ‘accounting’, the knowledge domain in which the relation between informa-
tion and commands took its meaning (e.g. computation of the change to be
returned).

Given the multiplicity of task domains that have been internalized by an indi-
vidual, a number of RPSs are available and are triggered by problem statements
or perceptual cues. These knowledge structures play a central role in learning new
domains and dealing with novel tasks. They are the source of problem solving by
analogy; for example in learning computerized tasks — triggering of a RPS related
to the typewriter domain in learning to use a text editor (Waern, 1989), or to the
calculator in learning to use a turtle command language (Shrager and Klahr, 1986:
calculator ‘view application’).

RPS can be defined at several levels of abstraction; from a basic definition of
elementary operations (e.g. the operation meant by a read statement), and data
properties or relations (e.g. an integer variable), to abstract operations (e.g. iteration
to go through a file) and representations (e.g. file structure). This hierarchy enables
individuals to plan their actions (see Hoc, 1988a, for further developments about
this hierarchy of abstract spaces). The basic definition is called the (basic) device
associated to the RPS, the precision of which depends upon the individual’s expertise
and goals. For example the Pascal machine can be considered as the basic device in
designing programs, but a more elementary device would be considered if compiler
or execution error messages had to be understood.

Research into use of computer devices offers a comparison between two types of
knowledge that are embedded in the same RPS (Hoc, 1978; Young, 1981; Richard,
1983):

+ operating rules that describe the conditions of validity of the operations and
their effects, and can only be ‘surrogates’ (Young, 1981) without causal seman-
tics or based on deeper knowledge; E

% utilization rules that describe operations to be used in relation to goals, and
make task-action mapping easier.

Each of these types of knowledge can be defined at different levels of abstraction.
Operating rules can not only refer to very elementary operations of the device but
also to macro-operations. Utilization rules may reflect different levels of analysis of
situations, as has been shown in different contexts (Card et al., 1983; Weern, 1989;
Richard, 1986):

146 J.-M. Hoc and A. Nguyen-Xuan

* the goal (or task) level describing the intentional or functional aspects of the
activity;

* the means (or method) level at which procedural aspects of goal attainment
are processed;

* and the prerequisite (or condition) level giving access to details such as those
that are necessary to process interactions between elementary operations.

As far as operating rules are concerned, it has been shown that the levels of
abstraction correspond to processing priorities, from the analysis of goals down to
the analysis of prerequisites (Richard, 1986; Morais and Visser, 1987). So, if a goal
representation can trigger a familiar procedure, this procedure is applied to a novel
device before detecting mismatches which lead to a deeper analysis of the situation.

4 Problem solving by analogy in programming

4.1 Rationale for an analogical transfer

We argue above that people learn to program throﬁgh practice, i.e. they learn by
problem solving. But unlike learning a knowledge domain (e.g. physics), the learner
knows a procedure in a RPS associated to a well known device (e.g. a box-sorting
procedure by hand, although the task has to be accomplished by a computer with
an array: see Figure 1). That is, a means is available for reaching an analogue goal
state from an analogue initial state. The problem consists in making the computer
reach the goal.

We suggest that in such a situation the learner is prone to relying on a familiar
RPS to build the goal structure needed, instead of elaborating a new goal structure
compatible with the computer from scratch. In other words, the learner will consider
that the computer solution is analogous to the familiar one. But goal structures
available within this RPS are compatible with the device associated to the RPS
without being necessarily compatible with the device underlying the programming
language. So some more-or-less profound adaptation will take place before reaching
an acceptable program.

4.2 Empirical evidence

Hoc (1977) has shown that, in learning procedural programming, beginners who are
dealing with tasks they can execute by hand may evoke procedural plans that are
available in familiar RPS. They then try to refine these plans until reaching the
level of the programming language statements: in most cases, this refinement leads
either to a detection of incompatibilities between the plans and the device, or to
reach programs which are not optimal. This phenomenon is reinforced in training
beginners to use top-down programming methodology before learning the operating
rules of the computer device (Hoc, 1983). The incompatibilities between these plans
and the device involve mainly sequential data access and result production modes
different from those used by the human cognitivé system which is capable of parallel
processing.

Most of the beginner programming errors can be interpreted as wrong analogical
transfers from other RPS to use of the computer device (Bonar and Soloway, 1985).

Language Semantics, Mental Models and Analogy 147

1 1

2
__% 4
2 3
(a) (b)
Figure 2: The two representations of the cross (after Mendelsohn, 1986): (a) two

orthogonal lines (before LOGO learning), (b) four orthogonal lines (after LOGO learning).

Moreover, in executing a task where several methods are available, the program is
designed from the method most frequently executed by hand. This has been shown
in an experiment on sorting: beginners tried at first to adapt the sorting-by-insertion
method they readily used by hand, even if it was more difficult to program than the
extremum method (Nguyen-Xuan and Hoc, 1987).

In learning a new programming language, the RPS elaborated to program in an
already familiar programming language can be used as an analogue. Van Someren
(1984) points out that when starting to program in Prolog beginners who already
know an instruction-oriented language just try to implement an algorithm and then
translate it into Prolog rules.

Indeed, analogical transfer is a paramount phenomenon. Beginners have been
shown to borrow plans from their execution-by-hand RPS. But experienced program-
mers hand-manipulate files in a different way from novices: they use the plans they
would have used in a computer program (Eisenstadt et al., 1985). This ‘reverse’ ana-
logical transfer may concern the structure of the representation of well-known objects
which has been modified in order to be adapted to computer programming. Mendel-
sohn (1986) has found such transformations in elementary school pupils who learn
Logo. For example, the cross which is genuinely seen as composed of two orthogonal
lines is seen after the Logo course as composed of four orthogonal lines (Figure 2).

The importance of analogical transfers at the outset of new device learning has
been stressed by a number of authors in very different contexts: text editing (Weern,
1985; Allwood and Eliasson, 1987), pocket calculator use (Bayman and Mayer, 1984;
Friemel and Richard, 1987). When analogical transfer is impossible from well-known
RPSs this transfer may come from previously acquired constructs in the same lan-
guage as has been shown in learning Lisp (Anderson et al., 1984) or in operating a

robot (Klahr and Dunbar, 1988).
4.3 Effects of analogy

More often than not authors stress the negative effects of the analogical transfer
when trying to interpret novice errors. However, two kinds of analogical transfer

148 J.-M. Hoc and A. Nguyen-Xuan

must be distinguished: a transfer through an abstract schema, the effect of which
can be positive, and a transfer by direct mapping, which has been frequently shown
to be confusing.

An experiment on learning to use electronic devices — such as notepad, clock, or
chequebook — conducted by Kamouri et al. (1986) clearly demonstrates the superior-
ity of an exploration-based training over an instruction-based training, thanks to the
inducement of analogical reasoning in the exploration situation. This experiment,
however, uses a well-suited frame to obtain positive effects from analogy, and follows
Gick and Holyoak’s works (1980, 1983) which reveal in particular that the condi-
tion for an efficient analogical transfer to occur is a prior elaboration of an abstract
schema. This elaboration of an abstract schema has been shown to be improved when
subjects are required to solve several analogous problems. So Kamouri et al. had
their subjects solve problems with three analogous devices before discovering a new
device either analogous to the previously acquired ones or not. The authors insist
that this kind of situation is difficult to find in real work settings. But it may be a
possible explanation of the well-known fact that learning a new programming lan-
guage or software is improved by previous knowledge of other similar programming
languages or software.

In the human-computer interaction area, analogical transfer by direct mapping is
very often observed in beginners: two analogous objects are confused instead of being
considered as different instantiations of the same schema. For example, the text editor
space bar is considered to have exactly the same function as the typewriter space
bar. These confusions are reinforced by the choice of familiar command names or
programming language statements similar to natural language descriptions of actions.
If feedback is available, this kind of direct transfer can stimulate active learning, for

it can trigger accommodation processes, and differences are as useful as similarities
(Carroll and Mack, 1985).

4.4 Mechanisms of learning by analogy

Several research studies shed light on the mechanisms of acquisition of operating rules
in diverse learning-by-doing situations and on the conditions of efficiency of these
situations. In experimental game situations where subjects are mostly unfamiliar
with the games (Anzai and Simon, 1979; Nguyen-Xuan and Grumbach, 1985), four
main mechanisms have been described: -

* progressive elaboration of the problem space;

* identification of wrong actions which lead to errors, and generation of proce-
dures in order to avoid them;

* identification of correct actions which lead to the goal, and creation of subgoals
to which these actions can be applied;

* structuring of the subgoals by processing goal interactions.

But the story could be somewhat different in learning to program, and, more gener-
ally, in learning to use a command device.

.

Language Semantics, Mental Models and Analogy 149

4.4.1 Borrowing problem space and goal structure

In learning to use software or to program, the problem space is not generated from
scratch, but rather from familiar problem spaces relating to familiar devices (e.g.
typewriter when using and editor) or RPSs that are related to the problem domains
(e.g. algebra, management, accountancy, etc., when programming). In the case of
programming, familiar goal structures are transferred from familiar RPS as a number
of studies have shown (Hoc, 1977, 1983; Nguyen-Xuan and Hoc, 1987). Hence, in
contrast to usual learning by solving problems, the novice programmer already has a
goal structure at the outset, although it may not be quite relevant. Sometimes, this
goal structure comes from other programs (examples used in programming courses
or handbooks, programs written by anybody else, etc.).

In Hoc’s experiment (1983) on stock updating by the mean of a computer device,
novices tried to use the ‘+’ command corresponding to the ordinary binary addition
as a summation operation after having entered a list of numbers to be added into
the same memory cell. In our experiment on sorting (op. cit.) we observed a clear
transfer of the insertion method used by all the subjects in the execution-by-hand
situation. The goal structure of this method consists in decomposing the problem
into iterative subgoals. Each one corresponds to the insertion of a new element into a
well-sorted sub series. This goal structure was transferred into the command device
situation, although it was very costly in comparison to the constraints of the device.
Most of the subjects tried to locally modify subgoals, instead of building a totally
new goal structure.

4.4.2 Repairing goal structure

When a goal structure is available, attempts are made to reach the subgoals by means
of the device operators. A number of difficulties have been pointed out, which lead
the learner to modifying the borrowed goal structure (Carbonell, 1983; Nguyen-Xuan,
1987). Some of them are particularly relevant to the use of a new computer device:

+ The necessity to satisfy preconditions in the target situation, which are auto-
matically satisfied in the source situation. For example, in our experiment on
sorting (op. cit.) the subjects transferred the insertion method. In the source
situation where boxes are sorted, the insertion action automatically pushes the
adjacent boxes to make room. In the target situation, where an array is used,
‘room made’ is a precondition that must be satisfied by a quite complex shifting
procedure (see Figure 1). '

+ The necessity to decompose elementary source.actions into even more elemen-
_tary ones. The already cited example of assimilating the ‘4’ operator to a
summation is illustrative of this decomposition.

+ The discovery of unexpected goal interactions that are not present in the source
procedure. An example can be found in Burstein’s work on learning Basic
(1986). Some novices assimilate the assignment statement to stacking in a box.
Interaction occurs when they want to store a series of values: each new value

deletes the previous one, which does not happen in the case of stacking in a
{ box. '

150 J.-M. Hoc and A. Nguyen-Xuar

Old stock file Transaction file New stock file
Item Item . Item
number | Quantity number | Quantity) number | Quantity
- 5 |10 4 [-18 ey I |19 i
6 | 18 6 |-16 I 2 |20 !
7|12 6 | 90 ‘ 3 |45 1
T 8 |26 7| 50 T l
| 9 |n 8 |-20 | :
9|0 8 30
88 | O ‘

|

| I
| |
Computer | :
|

05=99 ‘t’ |
P <> Memory cells | i
‘f | Lost executed instruction : |
|
\ 7 Cells 0S \ Cells T | |

| Enter OS
_ 4|35 3|-13 s f
N S |
| |
0 I
. |
e i i e il i e g A

Figure 3: Updating device (after Hoc, 1983): (a) visible situation, subjects can see the
contents of the files and they visually compute the number of transactions before entering
an item from the old stock file; (b) covered situation, they have only access to the contents
of the memory cells and cannot identify the number of transactions before processing an
item.

* The incompatibility between the source goal structure and the data identifica-
tion means. In a procedure, not only transformation operations but also identi-
fication operations must be considered. Identifications concern data properties
that are relevant for choosing the appropriate action to perform (e.g. in an
updating task, the identification of the number of transaction per item). The
available means to perform the identifications may deeply affect the goal struc-
ture. This is the reason for difficulties encountered by novices when they had to
transform a ‘read-process’ iterative schema into a ‘process-read’ one (Soloway
et al., 1982; Samurcay, 1985) as is shown by an experiment conducted by Hoc
(1983).

In the above-mentioned experiment by Hoc, novices had, successively, to update
a stock file either with visual access to the files or with access to only one item and one
transaction at a time in computer memory cells (Figure 3). In the former situation
the identification of the type of item (number of transactions) was performed before
processing the item, so the ‘read transaction - process it’ schema was used. In the

Language Semantics, Mental Models and Analogy 151

latter this identification was no longer possible, so the ‘process transaction —read the
next one’ schema had to be used to identify the end of the processing of the current
item. The subjects showed very strong reluctance to abandon the ‘read-process’
goal structure: they tried to stick to it by attempting to perform actions that were
not allowed. When they noticed that the transaction that had just been entered
did not correspond to the item being processed, some subjects tried to return the
transaction to the input file so they could enter it when they processed the item to
which it corresponded.

5 Implications for training

From the results presented above, some implications on training design can be drawn,
which could facilitate the elaboration of an operative device model and lead to the
generation of optimal procedures. In most of the cases, the learner relies too heavily
on available goal structures which may be inadequate, following the processing prior-
ity of the goal analysis level and neglecting the other levels: means and prerequisite
analysis (see above).

(a) Learning situations have to be designed to prevent the learners from only being
oriented towards the attainment of the task goal.

Friemel and Richard (1987) noticed that the presentation of a visual simu-
lation of the internal operation of a pocket calculator was not efficient enough
to enable the acquisition of operating rules. Novices devoted more attention
to attaining of the goal than to analysing the display. This led the authors
to ask novices to predict the effects of written procedures before learning by
doing. This method has proved to be efficient when different procedures lead-
ing to the same result are presented: the novices are then encouraged to turn
from a goal-level analysis to a means-level analysis. Certain recommendations
proposed by Weern (1989) lead in the same direction: encouraging the learner
to use various methods of performing the same task, to process unexpected
results, and to reflect on observations.

(b) Goal structures which could be transferred have to be known by the teacher
so that learning situations can be designed, which force the learner to abandon
" these structures or which facilitate the adaptation.

In the first case constraints can be imposed which reveal the inadequacy
of the source goal structure. In our experiment on sorting (op. cit.) the
subjects had a two-dimensional array at their disposal (see Figure 1). The
elements to be sorted were displayed on the first line and the well sorted series

~could be constructed on the second line. In this situation most of the subjects
adhered to their insertion method without being able to discover an optimal
procedure. However, when the subjects were given a single line and an extra
cell (transfer) they rapidly turned from the insertion procedure to an optimal
extremum procedure. In the second case the question concerns the effectiveness
of the error identification and the possibility of recovering from errors. This
principle underlies the recommendation (Carroll and Carrither, 1984) to design

" successive devices which from the onset restrict degrees of freedom in behaviour
so that the feedback should be easy to manage.

152 J.-M. Hoc and A. Nguyen-Xua

(c) Even analogical transfer by direct mapping may be helpful, but with the con
dition that a sufficient amount of feedback is provided to the learner.

Immediate feedback has been shown to be more effective than delayed feed
back. In an experiment on learning to use a pocket calculator Friemel anc
Richard (1987) found that an exploration-based situation is more efficient thai
a situation where subjects are encouraged to program their procedures bhefor
executing them. Immediate feedback is more effective, probably because i
enables subjects to causally connect elementary actions to their direct effects
This has been shown in an experiment where naive subjects had to elaborat
a sorting procedure in a stepwise command situation (Nguyen-Xuan and Hoc
1987). At the beginning of the experiment subjects were given access to th
content of the cells of a table they had to sort (see Figure 1). They then had t«
do the same task without access to the content of cells. No subject succeedec
in changing his/her procedure to an optimal one in the covered situation: thi
change, when it occurred, was made in the visible situation.

Unfortunately, in a programming situation, one has to write an entire progran
before being able to get feedback from the execution. In addition, error messages ar
not as easily understood as they should be. The aim of these messages is to protec
the compiler or the operating system rather than operative evaluation of the error (d
Boulay and Matthew, 1984). Nevertheless, the absence of feedback for the beginner:
may be somewhat repaired by the presentation of a concrete model of the compute:
device. Several experiments conducted by Mayer (1975, 1976, 1981) have shown tha:
the presentation of a device model prior to learning did have a positive effect or
program interpretation, iteration management, and transfer to novel situations, ir
contrast to the sole presentation of the language rules. However, these effects are nof
found neither in program generation nor when subjects are good at mathematics
These results are interpreted by the author in the context of meaningful learning
the model enables subjects to assimilate new pieces of knowledge with previously
acquired knowledge.

6 Conclusion

Research into the acquisition of mental models of computer devices shows how im-
portant it is to consider the programming language as a semiotic tool, the content
of which corresponds to the operation of a device. This acquisition implies learning-
by-analogy mechanisms which cannot be successful without analysis of the feedback
obtained from execution.

Learning-by-doing situations, however, have been shown to present limitations if
they are not designed to improve spontaneous mechanisms. The crucial improvement
consists in discouraging the learner to concentrate on goal-level analysis of the task
and encouraging him to access to means level and prerequisite level, In addition the
learner has to be assisted in identifying and recovering from errors. Investigation
into learning-by-doing mechanisms points towards design of this kind of support.

Most of the research works concerning the very start of learning to program
have mainly been concerned with procedural languages. Research on more recent
programming languages such as Prolog or object-oriented lan guages (Smalltalk) are
now in progress. Results concerning Prolog (Bundy et al., 1986; Taylor and

Language Semantics, Mental Models and Analogy 153

du Boulay, 1986; White, 1988) suggest that the story could be somewhat different.
Prolog has some special features (backtracking, unification, pattern-directed control,
etc.) that cannot be found in other procedural languages or everyday situations.
But although the Prolog user has to deal with logic specification, the learning of the
Prolog machine is necessary to the implementation of the specification. Procedural
aspects of Prolog programs are shown to play an important role even at an expert
level, where tracing tools are very often used (Taylor and du Boulay, 1987). Results
on object-oriented languages are not yet available.

This construction of a mental model of device operating rules mainly applies to
the start of the learning process. It results in the acquisition of elementary rules
as well as goal structures compatible with the novel device. Macro-operators and
programming plans, which contain the operation constraints of the device as built-in
constructs, are learnt. Complex procedures can then be designed without analysing
the details of the device operation. Certainly these learning-by-doing situations have
to be restricted to the elaboration of simple procedures. The stepwise command of
complex procedures (e.g. with deep iteration embedding) would lead to a mental
load too heavy to be practicable.

The subsequent stages of learning to program, through the acquisition of ade-
quate problem representations, programming plans, and schemas, are examined in
the next chapter of this book.

References

Allwood, C.M. and Eliasson, M. (1987). Analogy and other sources of difficulty in novices’
very first text editing. International Journal of Man-Machine Studies, 27, 1-22.

Anderson, J.R., Farrell, R. and Sauers, R. (1984). Learning to program in LISP. Cognitive
Science, 8, 87-129.

Anzai, Y. and Simon, H.A. (1979). The theory of learning by doing. Psychological Review,
86, 124-140. '

Bayman, P. and Mayer, R.E. (1984). Instructional manipulation of user’s mental models
‘for electronic calculators. International Journal of Man-Machine Studies, 20, 189-199.

Bonar, J. and Soloway, E. (1985). Preprogramming knowledge: a major source of miscon-
ceptions in novice programmers. Human-Computer Interaction, 1, 133-161.

Bundy, A., Pain, H., Brna, P. and Lynch, L. (1986). A proposed PROLOG story. Uni-
versity of Edinburgh, Department of Artificial Intelligence, Research paper no 283.

Burstein, M.H. (1986). Concept formation by incremen};a.l analogical reasoning and debug-
ging. In R.S. Michalski, J.G. Carbonell and T. Mitchell (Eds), Machine Learning:
An Artificial Intelligence Approach, vol. 2. Los Altos, CA: Kaufmann.

Carbonell, J.G. (1983). Learning by analogy: formulating and generalizing plans from past
) experience. In R.S. Michalski, J.G. Carbonell and T.M. Mitchell (Eds), Machine
Learning. Palo Alto, CA: Tioga, pp. 137-161.

E .
- Card, S.K., Moran, T.P. and Newell, A. (1983). The Psychology of Human-Computer
i Interaction. Hillsdale, NJ: Erlbaum.

154 J.-M. Hoc and A. Nguyen-Xuan

Carroll, J.M and Carrithers, C. (1984). Training wheels in a user interface. Communica-
tions of the ACM, 27, 800-806.

Carroll, J.M. and Mack, R.L. (1985). Metaphor, computing systems, and active learning.
International Journal of Man-Machine Studies, 22, 39-57.

du Boulay, B. and Matthew, I. (1984). Fatal errors in pass zero: how not to confuse novices.
In G. van der Veer, M.J. Tauber, T.R.G. Green and P. Gorny (Eds), Readings on
Cognitive Ergonomics — Mind and Computers. Berlin: Springer-Verlag, pp. 132-143.

du Boulay, B., O’Shea, T. and Monk, J. (1981). The black box inside the glass box:
presenting computing concepts to novices. International Journal of Man-Machine
Studies, 14, 237-249. :

Eisenstadt, M., Breuker, J. and Evertsz, R. (1985). A cognitive account of ‘natural’ looping
constructs. In B. Schackel (Ed.), Human-Computer Interaction — INTERACT 84.
Amsterdam: North-Holland, pp. 455-459.

Friemel, E. and Richard, J.F. (1987). Apprentissage de I’utilisation d’une calculette. Psy-
chologie Francaise, 32, 227-236.

Gick, M.L. and Holyoak, K.J. (1980). Analogical problem solving. Cognitive Psychology,
12, 306-355.

Gick, M.L. and Holyoak, K.J. (1983). Schema induction and analogical transfer. Cognitive
Psychology, 15, 1-38. '

Hoc, J.-M. (1977). Role of mental representation in learning a programming langunage.
International Journal of Man-Machine Studies, 9, 87-105.

Hoc, J.-M. (1978). La programmation comme situation de résolution de probleme. Paris,
Université René-Descartes, Doctoral Dissertation.

Hoc, J.-M. (1983). Analysis of beginner’s problem-solving strategies in programming. In
T.R.G. Green, S.J. Payne and G. van der Veer (Eds), The Psychology of Computer
Use. London: Academic Press, pp. 143-158.

Hoc, J.-M. (1988a). Cognitive Psychology of Planning. London: Academic Press.

Hoc, J.-M. (1988b). Towards effective computer aids to planning in computer program-
ming. In G. van der Veer, T.R.G. Green, J.M. Hoc and D. Murray (Eds), Working

with Computers: Theory Versus Outcomes. London: Academic Press.

Jackson, M. (1980). The design of conventional programming languages. Irn H.T. Smith
and T.R.G. Green (Eds), Human Interaction with Computers. London: Academic
Press, pp. 321-347.

Kamouri, A.L., Kamouri, J. and Smith, K.H. (1986). Training by exploration: facilitat-
ing the transfer of procedural knowledge through analogical reasoning. International
Journal of Man-Machine Studies, 24, 171-192.

Klahr, D. and Dunbar, K. (1988). Dual space search during scientific reasoning. Cognitive
"Seience, 12, 1-48.

Mayer, R.E. (1975). Different problem-solving competencies established in learning com-
puter programming with and without meaningful models. Journal of Educational
Psychology, 67, T725-734.

Language Semantics, Mental Models and Analogy 155

Mayer, R.E. (1976). Some conditions of meaningful learning for computer programming:
. advanced organizers and subject control of frame order. Journal of Educational Psy-
chology, 68, 143-150.

Mayer, R.E. (1981). The psychology of how novices learn computer programming. ACM
Computing Surveys, 18, 121-141.

Mendelsohn, P. (1986). Activation de schemes de programmation et mémorisation de
figures géométriques. European Journal of Psychology of Education, 1, 126-138.

Miller, L.A. (1974). Programming by non programmers. International Journal of Man-
Machine Studies, 6, 237-260.

Morais, A. and Visser, W. (1987). Programmation d’automates industriels: adaptation par
des débutants d’une méthode de spécification de procédures automatisées. Psychologie
Frangaise, 32, 253-259.

Moran, T.P. (1981). The command language grammar: a representation for the user inter-
face of interactive computer systems. International Journal of Man-Machine Studies,
15, 3-50.

Nguyen-Xuan, A. (1987). Apprentissage par ’action d’un domaine de connaissance et ap-
prentissage par Paction du fonctionnement d’un dispositif de commande. Psychologie
Frangaise, 32, 237-246.

Nguyen-Xuan, A. and Grumbach, A. (1985). A model of learning by solving problems
with elementary reasoning abilities. In G. d’Ydewalle (Ed.), Cognition, Information
Processing, and Motivation. Amsterdam: North-Holland.

Nguyen-Xuan, A. and Hoc, J.-M. (1987). Learning to use a command device. Furopean
Bulletin of Cognitive Psychology, 7, 5-31.

Norman, D. (1983). Some observations on mental models. In D. Gentner and A.L. Stevens
(Eds), Mental Models. Hillsdale, NJ: Erlbaum, pp. 7-14.

Payne, S.J. and Green, T.R.G. (1986). Task-Action Grammars: a model of mental repre-
sentation of task languages. Human-Computer Interaction, 2, 93-133.

Ricﬁard, J.F. (1983). Logique du fonctionnement et logique de P’utilisation. Le Chesnay
(F), INRIA, Research Report No. 202. d

Richard, J.F. (1986). The semantics of action: its processing as a function of the task. Le
Chesnay (F), INRIA, Research Report No. 542.

Rouse, W.B. and Morris, N.M. (1986). On looking into the black box: prospects and
limits in the search for mental models. Psychological Bulletin, 100, 349-363.

Samurcay, R. (1985). Learning programming: an analysis of looping strategies used by
beginning students. For the Learning of Mathematics, 5, 37-43.

Shrager, J. and Klahr, D. (1986). Instructionless learning about a complex device: the

paradigm and observations. International Journal of Man-Machine Studies, 25, 153-
189.

Soloway, E., Ehrlich, K., Bonar, J. and Greenspan, J. (1982). What do novices know
~about programming? In A.Badre and B. Shneiderman (Eds), Directions in Human-
Computer Interactions. Norwood, NJ: Ablex.

156 J.-M. Hoc and A. Nguyen-Xuan

Taylor, J. and du Boulay, B. (1986). Why novices may find programming in Prolog hard?
University of Sussex, Cognitive Studies Research Paper No. 60. v

Taylor, J. and du Boulay, B. (1987). Learning and using Prolog: an empirical investigation.
University of Sussex, Cognitive Studies Research Paper No. 90.

Van Someren, M. (1984). Misconceptions of beginning Prolog programmers. University of
Amsterdam, Department of Experimental Psychology, Memorandum 30.

Weern, Y. (1985). Learning computerized tasks as related to prior task knowledge. Inter-
national Journal of Man-Machine Studies, 22, 441-455.

Weern, Y. (1989). Cognitive Aspects of Computer Supported Tasks. Chichester: Wiley.

White, R. (1988). Effects of Pascal upon the learning of Prolog: an initial study. University
of Edinburgh, Working paper.

Young, R.M. (1981). The machine inside the machine users’ models of pocket calculators.
International Journal of Man-Machine Studies, 15, 51-85.

Youngs, E.A. (1974). Human errors in programming. International Journal of Man-
Machine Studies, 6, 361-376.

