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Abstract

This chapter describes three ‘implicit theories’ of programming, which have at dif-
ferent times governed the styles of programming language design. Not surprisingly,
the experiments performed by empirical researchers have also been deeply influenced
by the prevailing theory of the day. (1) The first view regarded programming as
transcription from an internally-held representation of the program. This leads to
Fortran-like languages, and the early empirical studies of programming correspond-
ingly emphasised particular language features and their incidence of errors. (2) The
second view stressed program comprehension and required programs to be demon-
strably correct, leading to Pascal-like languages and the pseudo-psychological theory
of ‘structured programming’. Empirical research during this era showed that giving
programmers easy access to information they needed (whether structured or not)
was what really mattered. Visual programming began during this era, but most em-
pirical studies failed to demonstrate any inherent advantage to visual presentation.
Where advantages were found, they appeared to fit the same fundamental principle.
(3) Today’s view is that program design is exploratory, and that designs are created
opportunistically and incrementally. Supporting opportunistic design means putting
a minimum of unnecessary demands on working memory, permitting designers and
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programmers to postpone decisions until they are ready for them, allowing easy ad-
ditions or changes to existing code, etc. Empirical research on change processes and
reuse of code has demonstrated differences between language designs, but has a long
way to go. The chapter ends with suggestions for ‘lowering the cognitive barriers to
programming’ by more careful design of languages.

1 Introduction

Even a decade ago, a survey distinguished about 150 documentation techniques
(Jones, 1979). There are probably far more now — and far more programming lan-
guages. They vary a great deal in every possible respect. Even for experts, certain
details of language design — what I shall call the ‘information structure’ — are likely
to affect the speed and accuracy of using the language or the documentation tech-
nique. Any readers who belittle the relevance of notational structure, and prefer to
believe that ‘anyone can get used to anything’, are recommended to earn their living
doing arithmetic with roman numbers for a while. So, whereas other chapters (e.g.
Chapters 1.3, 2.4 and 3.2) describe what we know about the mental processes of
programming, this chapter describes research on how ezternal factors influence the
processes.

1.1 Imnformation structure

We can consider the user of a programming language as someone who has to find out
information from a program, add new information to it, and occasionally reorganize
it; and the details of the programming language will influence how easy it is to do
such tasks. The framework we shall adopt is that a program is a kind of information
structure, just as a library is a kind of information structure. Libraries can be
organized in many ways, and different choices will facilitate different tasks. Most
- libraries determine the shelf positions of books exclusively by subject indexing, but
a few use a different principle: in Cambridge University Library, for instance, shelf
positions are determined partly by subject matter but also by the physical size of
the book (so books of different size categories are stored separately). Both these
systems can be used to shelve the same books — in other words, they have equivalent
power; what is different is the way the information about the books is structured.
In consequence, different sets of user tasks are supported by the systems. Browsing
by subject in Cambridge University Library is notoriously unrewarding — but if you
happened to want unrelated books of the same size, it might be just what you wanted.

One of the themes of the chapter is that an information structure can make some
information more accessible, but usually at the cost of making other information less
accessible. Programs have in common with libraries and other information structures
that the structure of the information should match the structure of the task.

Given this outlook, I shall not make much distinction between a true program-
ming language, on the one hand, and a documentation format, on the other. The

principles governing access to information, ease of change, etc., will presumably be
the same.
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In subsequent sections we shall see how the view of the programmer’s task has
altered over the years. The design of programming languages has altered in sympathy
with different views of the task, and the style of programming research has likewise
altered.

1.2 The state of evidence

The aim of this chapter is to bring together the existing empirical evidence, rather
than to present responses from practitioners, however revealing. Much of the avail-
able evidence was gathered in pursuit of some other objective than comparisons of
notational structure, especially in studies of the problems of novice programmers. It
is still relevant but needs caution: learners and experts are likely to have different no-
tational needs. One would expect that while the problems of learners are often to do
with recognizing and recalling components, with fitting them together and with per-
ceiving relationships, the problems of experienced users would be ‘high-performance’
problems — finding information quickly, and modifying programs without unneces-
sary effort. (Comparisons of student and professional performance by Holt et al.,
1987, support this view.)

Rather than painfully distinguish all through the chapter between the problems
likely to affect learners and the problems likely to affect experts, I have simply tried to
clarify concepts and sources of difficulty. Anyone evaluating a programming language
for actual use will have to consider many criteria; among them should be sources of
difficulty for the intended users.

2 The programmer’s task

2.1 Types of task

Consider, therefore, what tasks are required of programmers. Present-day views have
been heavily influenced by the work of Sumiga and Siddiqi, Visser, and Guindon
(see Chapter 3.3) showing clearly that the design of large programs by professionals
corresponds to ‘opportunistic planning’, an activity in which a design is constructed
piecemeal with frequent redesign episodes. Much use is made of an external record,
whether on paper or a VDU, and new portions are inserted as they come to mind.
As far as we can tell at present, this picture applies in any activity which has a
large design component, regardless of the notation or of the stage in the development
process.

Now, this is not the ‘approved’ style of development. Software designers like
to speak of the ‘waterfall’ model, in which higher-level requirements are dealt with
before starting on lower-level processes; or of other similar methodologies. Perhaps
such disciplined approaches would be better, but they seem to be infeasible as a
general technique, because the consequences of higher-level decisions cannot always
be worked out fully until lower level ones are developed. Be that as it may, this
chapter will concentrate on what it seems that people really do, not on what they
might do if they were perfect.

Typical activities therefore include: comprehending or ‘parsing’ the partially
developed design, to remind oneself what has been written so far and how it works;
making modifications, of any scale, large or small; inserting new components into
what exists already; looking ahead to foresee consequences of design decisions (this 1s




120 T.R.G. Green

often done in an ancillary formalism of some sort — see, for example, self-observational
studies by Naur, 1983); and recording degree of commitment to particular design
choices.

Although typical experimental studies do not, unfortunately, record such a wide
variety of activities, the importance of discriminating between them has been demon-
strated, at least for the comprehension case. Comprehension has been shown to be
a complex task (see Chapter 1.3), of which one facet is conveniently labelled ‘depro-
gramming’, meaning that after a portion of the mental representation of the problem
has been translated into code (or specifications language, or some other notation),
it is then translated back again into mental representation language, as a check. In
many notations there is an apparent asymmetry of effort: it seems to be easier to
develop the code than to recover its meaning. (Spreadsheets, for example, are cre-
ated quickly and easily, but discovering precisely what a spreadsheet does can be
difficult.) In other notations, the asymmetry is much less, and ‘deprogramming’ is
relatively straightforward.

To appreciate how deprogramming was identified as a problem we need to look
ahead a bit and mention some studies; we shall return to them in their proper place.
The asymmetry of effort between writing and comprehending was first postulated
by Sime et al. (1977), after they had shown that novices debugged their own pro-
grams much faster in one miniature language than in two others. The languages
were based on conditional structures, and it was claimed that the deprogramming
problem lay in working ‘backwards’ through the program, to discover what set of cir-
cumstances (‘taxon’) caused a particular outcome. Later, Green ( 1977) strengthened
that conjecture, by showing that professional programmers could trace one type of
conditional program backwards much faster than another, even when the forwards
tracing times were not significantly different. The clincher was given by Curtis et
al. (1988), who showed a statistical separation between different types of question in
the same experiment, and thereby demonstrated that the concept had discriminant
validity. Their study also showed that understanding data flow was a third type of
task, again statistically separable from the previous two.

What all this shows, therefore, is that detailed aspects of information structure
can have large effects on particular parts of the process of creating designs and
programs. Other parts of the process may be almost entirely unaffected. To discover
the virtues or difficulties inherent in particular notational structures it is therefore
necessary to consider many different tasks.

2.2 How information structure affects behaviour

Differences in information structure are sure to affect the programmer, but not nec-
essarily directly. Green (1989) has used the idea of opportunistic planning to develop
an analysis of ‘cognitive dimensions’ of notations, with suggestions as to how varia-
tions along each dimension affect typical programming tasks. (More accurately, what
affects the usability is the combination of a notation and the environment in which it
1s used: a notation suitable for ‘pen and paper’ might be less suitable for a top-down
structure-based editor.) We cannot investigate these dimensions in any detail here,
but we can give a few examples.

The first is wiscosity, or the degree of resistance to local changes. The degree of
viscosity clearly depends on what change is being mace, for we can see that it is often
very easy to make a minor change to a relatively loose structure, like Basic, but a
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if soft:
if poor: fly
not poor:
if blue:
if cheap: ride i
not cheap: swim
end cheap
not blue:
if round: drive
not round: run
end round
end blue
end poor
not soft:
if flat: walk
not flat: jump
end flat
end soft

................................................................................

TRUE FALSE IRREL UNDEF

soft @ & @ ®
poor & @ o o

®
blue @ ® ® s
cheap @ & ® ®
round @ & @ ]
flat ® o | @ ®
Figure 1: An experimental task from Green (1977), simulating the postulated mental

_ activity of ‘deprogramming’. Given the program (upper panel), the subject’s task was
to report the conditions under which the designated action ‘ride’ will be the first action
performed. Responses were made using a stylus, touching studs on a response display
(lower panel). Here, the full response has been set up; touching the far right-hand spot will
complete it. Subjects who were professional programmers found this task much easier in
this type of miniature language than in the types based either on GOTOs or on conventional
nested structures.
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large change tends to create ‘knock-on’ effects, further changes that are consequence
of the original one. The object-oriented programming systems are particularly e
fective in reducing knock-on effects, and to that degree are an improvement on th
dimension of viscosity. A second example is premature commitment, where the prc
grammer is forced to make a decision before the consequences can be foreseen. Thi
can happen where the notation and the editor, or some other construction systerr
are incompatible, or where the system has been designed around a different viey
of programmers’ tasks. Hoc (1981, 1988) has demonstrated the problems that aris
with editing systems that enforce commitment to outline program designs befor
the programmer is fully ready. It is noteworthy that many designs for structure
based editors, despite being intended to help programmers, seem likely to deman
premature commitments. The third example is role expressiveness, the ease of ‘de
programming’, discovering what the parts of an existing program are and what i
the role or purpose of each part. An excellent study by Pennington (1987), describe
by Gilmore (in Chapter 1.5), has demonstrated notational differences in role expres
siveness, by showing that role-hased abstractions are more easily constructed abou
Fortran programs than about Cobol ones.

The suggestion is that programmers will choose their style of working accordm
to the particular combination of information structure and editing tools. If th
system is viscous, they will attempt to avoid local changes and will therefore avoi
exploratory programming. If the system has poor role expressiveness, at least th
less experienced programmers will avoid exploratory programming, since they wi
have trouble in recognizing program components. If the system enforces prematur
commitment, the effect will depend on the viscosity; with low viscosity, prematur
commitment is only a small risk; as viscosity rises, postponing commitment become
more urgent.

2.3 TImplicit theories of low-level programming

Clearly, if we take opportunistic planning seriously, the demands on the notation ar
subtle and various. Both language designers and language researchers have taken .
long time to reach today’s views, and no doubt further complexities are still to come
But to understand the research tradition it is necessary to realize that the generall
accepted view of programming has changed over the years, and with it the focus ¢
empirical research has also shifted. Language designs attempt to meet the designer’
view of programming, and so the design presents us with an ‘implicit theory’ of wha
tasks the programmer must accomplish.

Three main stages can be distinguished in the implicit theories apparent i
programming languages. First, the implicit theory was that programming was a
errorless transcription. So long as a program performed the correct computation
its comprehensibility was immaterial; no thought at all seems to have been given t«
problems of the modifying programs. In the second stage, language designers gav
more attention to programs as constructions that had to be comprehended by others
or possibly by programmers themselves at some later date. Languages conformin;
to this view still paid little attention to the modification of programs; they wer
presented as solutions to well-defined problems, and much was said about the desir
ability of knowing that the solution was correct before starting to code the program
In the third stage, where we are at present, many designers accept the ‘evolution
ary’ style of programming, in which the activity of program design is one of repeate
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modification — frequently starting from a seed which was an already-existing program
that solved a related problem.

Since the prevailing view has affected the type of research question that empiri-
cists asked, we shall review the research under appropriate headings.

3 The errorless transcription view of programming

3.1 The implicit theory

We will take the Fortran-Basic tradition as a model of how programming languages
were originally designed. The implicit theory could be described as the ‘one-way,
error-free’ view. Fortran I was a very great success in its day, showing that the
implicit theory was clearly at least partially correct — in its day.

The one-way view of programming is very simple. It sees programming as
errorless transcription from a previously worked-out representation (possibly held
in the head, possibly on paper). The mental representation of a program is appar-
ently viewed as a sequence of steps — step 1, step 2, step 3, ... — and each step
is individually translated into its coded representation in the target programming
language. Nothing more is involved. Consider some of the design features of this
tradition:

+ The Fortran programming system (punched cards) and the Basic line-numbering
system encouraged programmers to create their programs in the order of the
text — i.e. line 1 of the final text was also the first line to be punched in.
Thus, the program was fully developed at the start of coding, needing only to be
transcribed.

+ Fortran and Basic have very few guards against typing errors, which can read-
ily create a new text that is syntactically acceptable but not, of course, the
intended program. By implication, programmers do not make typing errors.

+ Neither Fortran nor Basic originally supported any use of perceptual cues to
help indicate structure. Possible cues would have included indented FOR-
loops, demarcated subroutines, bold face or capitals to indicate particular lex-
ical classes, etc. The implication is that programmers can comprehend the
program text without assistance.

+ The use of GOTOs as the sole method to determine control flow encourages
small changes but makes large changes extremely tedious. The implication here
is programmers do not need to modify their first version, except trivially.

Fine, you think. All that used to be true, but we have moved on. But have
we? Consider the structure of spreadsheets (a form of programming language), of
Prolog, and of the production system languages used in expert systems. In many
important respects these three systems continue the tradition of the ‘one-way’ implicit
theory. None of them guard against typing errors, none of them supply perceptual
cues, none of them limit the complexity of program structures that have later to
be understood. Prolog and production systems allow the text to be generated in
the order the programmer prefers, rather than starting at line 1, but spreadsheets
encourage starting at the top left-hand corner, whether convenient or not. One
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advance that has been made is that subsequent modifications are sometimes easier.
Not always: some types of modification are really long winded, in each of these three
languages. Many other systems could be pointed to. In short, the implicit theory of
programming as transcription is still alive.

3.2 Research on language features

Empirical research arising from this view of programming is likely to focus on the in-
dividual features or syntax constructions of programming languages. From the 1970s
onwards there have been several such studies. Youngs (1974) reported frequencies of
errors for a number of different statement types (comments, assignments, iterations,
GOTOs, conditionals, etc.) in several languages. These results were achieved sim-
ply by looking at programs that had been written and looking for where the bugs
occurred. Although his study was more comprehensive than most similar studies,
it is difficult to see what has been learnt from a collection of error frequencies that
can usefully be generalized to the problem of language design. Slightly more can be
learnt by comparing different designs for the same language feature, such as logical
versus arithmetic IF statements in Fortran (Shneiderman, 1976) or nesting versus
GOTO styles of conditional (Sime et al., 1973, 1977; Mayer, 1976).

Many of the early studies asked simplistic questions: ‘Are logical conditionals
[always] better than arithmetic ones?’, ‘Are flowcharts [always] better than code?’,
‘Are nested conditionals better than GOTOs?’, etc. It is easy to see today that in
general the answer is going to be ‘X is better than Y for some things, and worse for
others’. But that is because we can clearly see now that programming is a complex
set of skills, not a unitary process.

In so far as a unitary process can be expected, it might be ‘readiness to build a
program rather than use repeated operations’. In a thorough set of investigations,
Wandke and his colleagues have investigated changes in programming readiness dur-
ing the acquisition of expertise in very simple situations. In much of their work,
subjects practised searching a database for various targets, using a miniature search
language. Typically, the language contained five commands plus one command to
define a macro-instruction. A carefully designed study (Wandke, 1988) showed that
subjects were reluctant to define macros for conditional constructions even when
very large numbers of keystrokes in subsequent search operations would have been
saved. The inclusion of control structure dramatically increased cognitive effort;
simply counting keystrokes gives no indication of the real effort involved.

In a further study from the same group, Wetzenstein-Ollenschlaeger and Schult
(1988) also put subjects in a situation where it would save effort to build macros,
and after each of four sessions tested subjects’ knowledge of sethantics and syntax
and of the interrelationships between the commands in the miniature language. The
task structure had a core command sequence, which had to be repeatedly typed out
in full unless a procedure was defined for it. Numbers of subjects using procedures
rose with experience. Subjects using procedures scored slightly higher on knowledge
of syntax and semantics, though not much. But they scored a great deal higher on
knowledge of interrelationships between commands (about 70% against 11 to 50%).
The interesting fact is that the bulk of this difference came not from the core task,
but from the other parts of the task — the commands that were not proceduralized.
Readiness to use procedures, in short, depended on understanding the whole of the
language, not just the immediately relevant parts.
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4 The ‘demonstrable correctness’ view of programming claims

4.1 The implicit theory

With the rise of ‘structured programming’ in the 1970s a new implicit theory emerged:
programs had to be clearly seen to be correct. Comprehensibility was equated with
formal structural simplicity, which favoured hierarchical composition, and harsh
words were used of earlier programming languages (‘Basic causes brain damage’,
‘Fortran programmers can never learn sound programming principles’). Programs
were to be built from a small number of structures which could be related to each
other in simple ways. This was the hey-day of the ‘neats’ (see Chapter 1.2).

Pascal, a powerful influence, rejected GOTOs in favour of a small repertoire
of nestable loop and conditional structures, and also contributed a technique for
defining hierarchically composed data structures. After Pascal, further developments
down the ‘neat’ line rejected variables and iterative constructions in favour of pure
compositions of functions. The argument in all cases was that the correctness of
programs was easier to perceive.

4.2 Research on program structures and the structured programming
claims

The second phase of empirical research on programming can be seen as confronting
the structured programming dogma with empirical data which showed that the story
was more complex. One line of research concentrated on the recommended style of
program construction. The structured-programming methodology of ‘stepwise refine-
ment’ instructed the programmer to decompose difficult problems into easier prob-
lems, and then into still-easier problems. For this reason, hierarchically structured
notations were preferred, and much opprobrium was poured on users of notations
that allowed ‘unstructured’ control flow. Doubts were soon raised as to whether

research on problem solving really supported the enforced use of hierarchical struc-

tures — among other questioners, Green (1980) contrasted the computer scientists’
assertions with evidence that showed that problem solvers did not customarily use
such simple methods as stepwise refinement.

These doubts were matched by empirical evidence. Sime et al. (1977) compared
novice programming in three types of notation, one of which was unstructured, one
of which was structured in the usual way, and one of which was structured in the
same way but also contained additional information. The additional information was
logically redundant, since it could be deduced from what was already present. They
showed that both the nested notations were improvements over the unstructured no-
tation, as predicted by the structured programming school, but that the additional .
information greatly helped novices to find solutions to short programming problems
using conditional structures. In particular, as mentioned above, it greatly aided ‘de- .
programming’. Thus the structured programming approach had grasped only some
of the truth. Another study (Arblaster et al., 1979) explored the difference between
structured and unstructured notations. Was it vital to have a hierarchical struc-
ture, as claimed by structured programmers, or would other types of structure also
be effective? Their results showed that of three types of structuring (hierarchical,
decision-table-like, and compromise), all were better than a condition with no struc-
ture but that the hierarchical structure was not markedly better than the other two.
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Once again it appeared that the structured programming school had only grasped
some of the truth.

An important qualification was made by Vessey and Weber (1984), showing that
it was possible to differentiate between effects due to problem solving and effects
due to coding. They held the problem-solving component constant by presenting
problems in a neutral language, and extended Sime and co-workers’ three languages
to include unindented and indented forms. (Sime et al. had studied indented nested
languages versus unindented GOTO languages.) Apparently novices’ performance
was determined much more by indentation than Sime et al. had supposed, and the
relative advantages of nested conditionals were less clear cut.

Laboratory-based research using ‘micro-languages’ may not readily generalize, of
course, but at least it was shown that these results generalized to professional pro-
grammers: Green (1977) showed that the hierarchical structure with added informa-
tion allowed professional programmers a small but highly significant speed advantage
in answering certain types of questions about programming. This result shows that
the ‘coding’ explanation advanced by Vessey and Weber is not entirely sufficient.

A more important aspect of Green’s study was that the task of ‘program com-
prehension’, which had previously been treated rather casually, was given a deeper
analysis. Many previous studies had asked subjects to execute the program mentally
and to report on what output was achieved for given input. Green added the in-
verse, or ‘deprogramming’, task of asking what input was required to achieve given
output (see Figure 1). It was this second task that differentiated between the dif-
ferent notational structures. The results obtained earlier by Sime et al. (1977),
which had shown that novice programmers debugged their programs faster in the
language with additional information, were therefore ascribed to differences in the
ease of deprogramming the different notations.

4.3 Generalizing to other computational models

The explanations advanced by most researchers studying notational design have been
phrased in terms of information-processing demands. In principle, therefore, they
could be applied to any programming paradigm, not only to procedural programming
languages. Gilmore and Green (1984) set out to demonstrate a parallel of Green’s
procedural-language results, this time using a declarative programming system. They
based their study on what looked like a very obvious claim: if it was easier to answer
procedural-type questions than declarative ones, given a procedural program, then
it should be easier to answer declarative-type questions than procedural ones, given
a declarative program.

Looking at their study in more detail, Gilmore and Green argued that Green’s
‘deprogramming’ task was equivalent to asking subjects to convert from a procedural
representation into a declarative representation. The additional information given in
one of Green’s notations assisted the subjects because it contained cues to the declar-
ative form. The other two notations contained no such cues and hence answering the
declarative-type questions was harder. Mutatis mutandis, similar results should be
obtained by starting with a declarative notation: procedural questions would be
harder than declarative ones, since they would require information in a structure not
provided by the notation. The extra difficulty would be lessened if additional infor-
mation were given, containing cues to the procedural form. So they compared the
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difficulty of answering both declarative questions and procedural questions, working
from declarative programs with and without cues to procedural information.

The results were, however, less clear cut than was expected: the anticipated
effects were present but weak, except when the subjects were working from memory,
in which case quite effective results were obtained. Why should this be? We do
not, at present, know: but at least two factors could contribute. The first is that the
‘natural’ mental representation for the type of problem used may often be procedural
rather than declarative. This has been suggested by work such as that of Hoc (see
Chapter 2.3) which indicate that novices frequently conceive programs as a series
of steps rather than as what-if structures. The second factor may be simply that
the cues used in Green’s study were more perceptual in nature, while the Gilmore
and Green study used cues that were more symbolic in nature. The importance of
perceptual cues to program structure will be taken up below.

4.4 Program visualization: diagrammatic notations

Many attempts have been made to replace text-based programming notations by dia-
grammatic notations, in the hope of improving comprehension. Reviewing them will
take a rather long section because a subsidiary argument must be included: whether
one must use genuine diagrams, proper little pictures; or whether perceptual en-
hancements to program text will be adequate. Is there evidence that diagrammatic
notations genuinely offer something that symbolic notations cannot match? If so,
what: and how do we balance the trade-off against the disadvantages of having no
text editor, no easy electronic mail, and all the other infra-structure of text? This
is a crucial issue, at present little understood. It is disturbing to observe that many
workers have not even asked the question, and instead assert uncritically that ‘Pic-
tures are more powerful than words ... Pictures aid understanding and remembering
.. Pictures do not have language barriers. When properly designed, they are under-
stood by people regardless of what language they speak’ (Shu, 1988, pp. 7-9).

If the more dewy-eyed propositions of program visualization enthusiasts are ac-

* cepted, then we can expect diagrams to be better for all purposes (and enhanced tex-

tual presentations to offer no advantages). The alternative position, more in keeping
with the outlook of this chapter, is that the critical factor determining comprehen-
sibility of notations is accessibility of information. Certain types of information are
likely to be accessed more easily from diagrams. In many cases, however, perceptual
enhancements to text-based presentations will also improve access.

(We should also note that all the questions that might affect choices in a real
world have been brusquely suppressed. What about the sheer physical size of a
diagrammatic representation of a complex program, or the memory requirements,
the editing facilities, the speed of display, compilation and execution? We leave all
those aside so that we can concentrate on the prior question: are diagrams any good?)

Although developments in program visualization are a lively area, and have given
rise to various reviews and taxonomies (Myers, 1986; Shu, 1988; Chang, 1990) and
some special issues of appropriate journals, we have at present nothing remotely re-

~ sembling an adequate body of empirical research. There is clear evidence that both

diagrams and enhanced text presentations can improve performance, but we do not at
present know the types of task that are most improved. We shall consider diagram-
matic notations in this section, and enhanced symbolic notations in the following
one.
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Despite the wide variety of diagrammatic representations that have been pro
posed, almost all the existing empirical studies deal with comprehensibility o
flowcharts, a notation now widely believed to be rather poor. Early studies tendec
to support that opinion. Thus Shneiderman et al. (1977) found little advantage
for novices in having a flowchart as supplementary documentation, over a variety
of tasks; Atwood and Ramsay (1978) found that a program design language was
actually better than a flowchart for software design by graduate computer science
students; Brooke and Duncan (1980a,b), who improved on the experimental tech
niques previously used, again found that flowcharts were of little help in debugging
(though they did help in tracing execution flow) and that although they helped tc
localize the area where a bug was, they were insufficient to identify the bug,

Gilmore and Smith (1984) compared listings, flowcharts and structure diagrams
as aids to debugging, and found no overall differences. Unlike most authors they were
able to pursue the data analysis at a more detailed level, and found that subjects
were using two main debugging strategies: some attempted to extract as much in-
formation as possible from program breakpoints, while others tried to form a menta
model of the program. It appeared that among the subjects choosing the mod-
elling strategy, listings — i.e. straight text, with no diagram at all — gave the fastest
performance, while among the breakpoint-using subjects, flowcharts gave fastest per-
formance. Thus, diagrammatic notations are likely to be good for certain purposes
only. (Although even this picture was also affected by some individual differences
between subjects and problems.)

Curtis et al. (1988) report systematic comparisons of several notations across sev-
eral tasks using professional programmers. They compared three types of
elements (flowchart symbols, pseudo-code, and natural language) arranged in three
types of diagram (sequential listing, branching flowchart, or hierarchical construc-
tion), and studied the comprehension, coding, debugging, and modification of small-
ish programs. In the comprehension experiment they examined mental execution
of programs; ‘backwards’ or ‘deprogramming’ problems, asking what input condi-
tions must be met to achieve specified program behaviour; and comprehension of
dataflow. Analysis of results from this large and well-designed study was unusually
thorough and rigorous. Results indicated that the pseudo-code (or PDL, program
design language) was best overall, although flowchart-like representations gave the
best performance on tasks ‘that accentuated the importance of tracing the control
flow rather than grasping higher-order relationships’. The least-effective formats were
those that employed natural language; ‘in particular, sequentially presented natural
language, the format of ordinary text, was especially ineffective on their tasks’. In
general, the choice of element types carried more weight than the spatial arrange-
ment. They also noted that individual differences accounted for more of the variance
than any other variable! Later work (Boehm-Davis et al., 1987) has shown that the
reason for the superiority of the PDL may be that it lessens the ‘translation distance’
from the documentation format to the program code.

Despite these negative findings concerning flowcharts, Cunniff and Taylor (1987)
and their co-workers have achieved reasonable success. Disturbed by student difficul-
ties with introductory Pascal, they have devised a graphical language, FPL, which
is a structured flowchart ‘informationally equivalent’ to Pascal. In one experiment
they compared speed and accuracy of novices (drawn from a course teaching both
FPL and Pascal in tandem) on recognition of simple structures, flow of control, and
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input/output, and evaluation (hand simulation) of simple program fragments. FPL
was clearly superior. Note, however, that they did not use the ‘deprogramming’
tasks.

A further study (Cunniff et al., 1989) has investigated novices’ program construc-
tion. At present, although the data is scant, it seems that certain typical semantic
errors are just as common in FPL as in Pascal (cf. the study by Spohrer et al. (1989)
of novices’ Pascal bug frequencies), but that certain other bugs appear to be rarer
in FPL. The authors’ explanation is a clear statement of the importance of making
information accessible: FPL’s ‘spatial arrangement allows the user to think more
clearly about the placement of such assignments [e.g. missing initializations]. This
is especially helpful in the performance of updating and incrementing counters and
running totals. The user is able to ‘see’ where the looping begins and ends, resulting
in a more clear-cut definition of the correct location for updating’ (p. 428). This
explanation is, in fact, a statement that users must ‘deprogram’ their programs. Had
the authors’ previous study included a deprogramming task, it would have been very
helpful to their argument.

FPL is an example of the structure diagram, of which a wide variety of differ-
ent forms were critiqued by Green (1982). Some problems can be foreseen without
empirical investigation. Take, for instance, the Nassi-Shneiderman diagram, which
indicates that process B is a subcomponent of process A by writing the icon for
B inside the icon for A: clearly the user will have to write smaller and smaller as
the nesting gets deeper! Also some notations lent themselves better to subsequent
modification than other notations, a vital requirement, as we saw above. However,
there was — and still is — little empirical evidence available by which to make com-
parisons.

Recently, the hegemony of control-flow studies of traditional procedural nota-
tions has been challenged. Boehm-Davis and Fregly (1985), arguing that concurrent
programming systems raised special problems, compared Petri nets to pseudocode
and resource-sharing documentation. Swigger and Brazile (1989) compared times

- and errors for experienced subjects making modifications of two kinds (procedural

and data oriented) to a rule-based expert system, supported by one of two types of
diagram, entity relationship or Petri net, respectively expressing data relationships
and order dependencies. Both these studies found that Petri nets, with their strong
expression of control flow, were less successful, but both also concluded that the pro-
gram size affected the issue and that further investigation of large programs would
be needed. Regrettably, no determined effort has been reported to locate which tasks
are best supported by each of these various types of documentation.

Bonar’s work on BridgeTalk (Bonar and Liffick, 1990) offers a different alterna- .
tive to control-flow, by working at the level of programming plans. (See Chapters
2.4, 3.1 and 3.2 for a description of programming plans.) Programs in BridgeTalk
are constructed by slotting together plan components, and a simple set of subcom-
ponents is used to show the data flow. The interleaved character of Pascal (not to
mention of flowcharts), in which the initialization subcomponent of a plan may be
located arbitrarily far from the ‘focal line’, is thereby replaced by a simple regime
in which all the subcomponents are kept together, even at the price of simplifying
the semantics. Other interesting decisions were made, which are not strictly at the
level of information structure and will not be described here. This is virtually the
only serious investigation of the design of a notation, rather than the comparison of
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existing notations; but, being motivated by educational objectives, it was not de-
signed to yield general-purpose conclusions. Nevertheless, it brings out, better than
the flowchart studies reviewed above, an important notational principle: strongly
related subcomponents should be kept together, not dispersed.

Unfortunately there are many more diagrammatic possibilities being touted by
their supporters, than there are investigations.

Y

4.5 Diagrams versus enhanced text

Instead of drawing diagrams and creating a new notation, one can continue to use
the existing notation but use enhanced typography to make perceptual cues reflect
the notational structure. There are obvious practical advantages, such as existing
compilers, in sticking with existing notations. There are also more scientific advan-
tages: it will help to clarify which claims about program visualization are true, and
which are ‘eyewash’.

A whole string of studies has now shown that ordinary program text can be made
more comprehensible by supplying perceptual cues to important types of information.

- Payne et al. (1984) showed that a simple but hard-to-use command language for

string editing was easier to use when commands were in upper case, argument strings
in lower case. Isa et al. (1985) found that a meta-language for expressing syntax
rules was more usable when structural cues were included. Gilmore (1986) showed
that an improved version of Lisp ‘pretty printing’ helped his subjects both in writing
and in comprehending programs, and Saariluoma and Sajaniemi (1989) showed that
the components of spreadsheet programs were better recognized when the structure
of the layout closely matched the internal structure of the spreadsheet, so that the
perceived structure could be used to chunk the cells meaningfully.

In general, what ought to be useful is improved access to the mfomataon that is
(a) required, and (b) obscured. The ‘deprogramming’ problem (Figure 1) illustrates
one type of obscured information; ‘programming plan’ information is another type,
since plans consist of statements that are dispersed in different places in the program.
Gilmore and Green (1988) used colour cues, using the same colour for all components
of the same plan, and showed that this one perceptual cue could improve learners’
recognition of plan-based errors; their experiment also showed that control-flow er-
ror recognition was improved by indenting, and that cues to plans did not improve
control-flow debugging, nor cues to control flow improve plan debugging. Thus the
information-access hypothesis was well supported.

The Gilmore and Green results were obtained for small Pascal programs; Basic
learners did not show the plan effect, but a later study by Davies (1990) showed that
Basic programmers who had been taught structured programming techniques gave
results similar to the Pascal programmers, while other Basic programmers thought
mainly in terms of control flow — and were therefore presumably not seeking plan-
like information. Van Laar (1989) has used the same technique to show that colour
can supplement indentation in showing control flow in Pascal programs, with some
net performance gain for learners answering a variety of comprehension questions. It
would be extremely interesting to combine some of these techniques with the ‘fish-eye’
display (Furnas, 1986; see Chapter 1.2).

So the evidence is that the claims for improved comprehension from diagrams
may be as well supported by non-diagrammatic techniques. The best conclusion at
the moment, in the comparison between genuinely diagrammatic notations versus
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10 program probl2;
20 vars depth, days, rainfall : integer;

30 average : real;

40 begin

50 for days := 1 to 40 do
60 begin

80

90

100 _
110 end;

120 [verage = OepEh/AU ]
130 writeln('Average 1s', average);
140 end.

Figure 2: A small Pascal program from Gilmore and Green (1988). Shading represents
the coloured highlighting of two plan structures, for forming a total in the variable depth
and for inputting a value with a prompt. This program contains a ‘plan’ error at line 100 (it
should read depth := rainfall + depth) and an “interaction’ error, combining plan and
control-flow components, at line 70 (this line should be outside the For loop).

perceptual enhancements to text, seems to be that both are effective. There is no
reason to suppose at present that diagrammatic notations are inherently superior.
But it must be stressed that far too few of the diagrammatic possibilities have been
properly investigated.

5 Programming as exploration

5.1 The impljcit theory

We come now to the present view, which sees programming as opportunistic ex-

ploration or evolution, in which different alternatives are tried out and their conse-
quences are considered. A favoured procedure is to find an old piece of program that
‘almost’ solves the present problem, and then to modify it bit by bit until the solution
has been created. Recent languages and programming environments, led perhaps by
Smalltalk, have put much emphasis both on re-usability and on the process of grad-
ual, incremental change.

5.2 Research on change processes

We need to ask ourselves what features of notational and environmental design will
support the process programming by placing fewest demands on the programmer. For
learners, the tactical details of writing and changing code will be important. Gray and
Anderson (1987) report the analysis of ‘change episodes’, points where a programmer
(an advanced novice, in their study) altered the code that had been written. They
argued that the most frequent changes would be made to those notational structures
where the most planning was required, and further, that notational structures which
could take a wider variety of forms would require more planning than structures
that were more rigid. An example of such a plastic structure is the Lisp conditional
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structure. ‘All conditionals have a Left parenthesis, a predicate, one or more clauses,
and a Right parenthesis. Within this rigid structure the number, type, and the
order of clauses can vary and it was these attributes that were involved in 15 change
episodes. Because of the variability in how it can be used in Lisp, the goal-structure
for the conditional ... must contain a large proportion of planning goals. The presence
of planning goals is reflected by the frequency with which the conditional is involved

' in change-episodes’ (p. 192). The authors contrast this with another form, the

: conditional clause, which is more rigid and which was involved only in the statistically

| expected number of change episodes.

As the authors point out, this study should not be over-interpreted, since it used
only fifteen subjects and only a single notation: moreover, the fact that conditional
structures cause problems was entirely predictable from earlier research. What they
have done is to predict those problems from theoretical grounds, and to supply the
firm prediction that notations with a more rigid, conventionalized structure would
_ create fewer planning goals and therefore make programming easier. _

' Green et al. (1987) report a study scrutinizing performance in a variety of lan-
guages instead of only one, but paying correspondingly less attention to the fine
details of individual behaviour. Using professional programmers working in their
language of choice, they posed very simple problems (to reduce problem-solving be-
haviour to a minimum) and took detailed records of keystrokes as solutions were
constructed. The key variable studied was the frequency of a ‘backward move’ to in-
sert new material into part of the text that had already been written. The languages
compared were Pascal, Basic and Prolog. Very similar solutions were produced in
Pascal and Basic, but about four times as many backward moves were made in Pascal
as in Basic, with Prolog occupying an intermediate position.

The most interesting aspects, from our viewpoint of notational design, came from
considering the interplay of knowledge structures and code design. These authors
accepted the ‘programming plan’ model of programmers’ knowledge as a working hy-
pothesis (see Chapters 3.1 and 3.2) in which plans contain a “focal line’ which achieves
the goal of the plan. Sometimes a plan contains a precondition also, for example the
counting plan, which contains a focal line x := x 4+ 1 and a precondition x := 0.
They postulated that these preconditions would be forgotten more frequently than
other plan components. Their data showed that the Pascal programmers more fre-
quently went back to insert preconditions than the Basic programmers, and that the
Prolog equivalent (the ‘base case’) was hardly ever the target of such a retrospective
addition to the text. Could that be because base cases are spatially located right
beside their associated focal line in the main case?

Davies (1989) extended this paradigm by examining the backward moves made by
experts and intermediate learners in generating Pascal and Basic programs. The level
of expertise was a more important discriminator than the programming language,
but the most remarkable result was that intermediates jumped within plans while
experts jumped between plans. Very similar results were found in a free-recall study.
"This takes us to questions of how knowledge representation interacts with notational
structure, which we cannot consider here.

Research in this area is currently well behind the technology. Object-oriented
programming languages are specifically designed with an information structure in-
tended to support processes of change and modification, and especially of software
reuse; yet we have very little evidence on whether they are successful — let alone on
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which of their many variations! Lange and Moher (1989) report a prolonged study
of a single subject, who indeed frequently reused code, but — despite the intentions
behind object-oriented programming languages — did so by copying text, rather than
by using the special facilities of method-inheritance provided by the system. In gen-
( eral, ‘the subject ... avoided techniques requiring deep understanding of code details
or symbolic execution whenever possible’. While disappointing, no doubt, to the
language designers, results like this do highlight the problems to be solved.

6 Lowering the barriers to programming

| Studying how to improve programming notation has led us from considering whether
| some language features are intrinsically hard, through the problems of comprehen-
sion, into the question of how the notational structure interacts with the cognitive
| processes of planning and the “fit” between the notational structure and the knowl-
g edge structure. As a side issue on the way we have examined the claim that visual
notations are especially revealing, and have found little evidence to support it.
| There is an urgent need for research on the interrelationship of notations and
' environments. To date, surprisingly little comparative work has been reported on
environments, and virtually none that treats the problem of matching notation to en-
vironment. As it becomes easier to construct environments to support programming
and programming-like activities, the possibilities will be explored and our knowledge
will grow. _

Knowledge structures and their interaction with notational design also need to be
investigated in far greater detail than to date. Other chapters in this volume describe
how our understanding of these topics is being investigated. No doubt, future studies
will report further details of how notational designs can increase or decrease the need
for local planning during coding, but also how the programmer’s knowledge base can
n similarly affect the issue, in line with the work by Gray and Anderson reported above.

~ Where do we stand now? It seems that existing notations too often act to raise

barriers against programming: barriers to learners, preventing understanding, and

! likewise to experts, preventing the fast access to information and modification that

! they need. There have been a few attempts to state design requirements for good

languages, drawing on cognitive principles. Lewis and Olson (1987) suggest that, for

the learner, one of the most important requirements is to suppress the ‘inner world’

of programming, the world of variable declarations, loops and input/output. The

spreadsheet may be the model of the future, as they see it. (Although the information
structure of ordinary spreadsheets has some problems — see Green, 1989).

Fitter and Green (1979) analysed the purported advantages of diagrammatic

notations. Ten years later, I believe that their conclusions about notational design

still hold good. Curtis (1989, p. 96) restated them so succinctly that I shall use his
words:

Fitter and Green (1979) argued that the primary problems in specification formats are
the tractability and visibility of structure. Useful notations contained not only sym-
bolic information, but also perceptual cues. For instance, maps use spatial location,
histograms use variation in size, and Venn diagrams use spatial containment. They
listed five attributes of a good notational scheme. These attributes are:

(1) Relevance — highlights information useful to the reader.
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(2) Restriction — the syntax prohibits the creation of disallowable expressions. [Le.
hard to understand, or likely to be confused with closely-related forms.]

(3) Redundant recoding — both perceptual and symbolic characteristics highlight
information.

(4) Revelation — perceptually mimics the solution structure, and

(5) Revisability — easily revised when changes are made.

Of course, there is more to be said. But if programming notations met just those
requirements, it would make a start.
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