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Abstract

Computer programming and other design tasks have often been characterized as a
set of non-interacting subtasks. In principle, it may be possible to separate these
subtasks, but in practice there are substantial interactions between them. We argue
that this is a fundamental feature of programming deriving from the cognitive char-
acteristics of the subtasks, the high uncertainty in programming environments, and
the social nature of the environments in which complex software development takes
place. .

1 Introduction

A distinctive characteristic of computer programming derives from the variety of sub-
tasks and types of specialized knowledge that are necessary to perform effectively.
A skilled programmer must comprehend the problem to be solved by the program,
design an algorithm to solve the problem, code the algorithm into a conventional
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programming language, test the program and make modifications in the program
once it is completed. Success at these programming tasks requires knowledge of
the external problem domain (e.g. statistics, finance, electronics, communications),
knowledge of design strategies to develop and implement algorithms, knowledge of
programming languages, knowledge of computer hardware features that affect soft-
ware implementation, and knowledge of the manner in which the program will be
used. In the present chapter, we provide an overview of computer programming in
terms of programming subtasks, knowledge sources and the interrelations between
these components.

Computer programming may be characterized ‘as a whole’ as a design task
(Greeno and Simon, 1988). Examples of other design tasks include architecture,
electrical circuit design, music composition, choreographing a dance, writing an es-.
say or writing an instruction manual. There are several features that design tasks
have in common. First, the goal of the designer is to arrange a collection of prim-
itive elements in the design language in such a way as to achieve a particular set
of goals. For computer programming, this involves piecing together a set of pro-
gramming language instructions that will solve a specified problem. Secondly, two
fundamental activities in design task domains are composition and comprehension.
Composition is the development of a design and comprehension results in an under-
standing of a design. The essence of the composition task in programming is to map a
description of what the program is to accomplish, in the language of real-world prob-
lem domains, into a detailed list of instructions to the computer designating exactly
how to accomplish those goals in the programming language domain (Brooks, 1983).
Comprehension of a program may be viewed as the reverse series of transformations
from how to what. Thirdly, the composition and comprehension transformations are.
psychologically complex tasks because they entail multiple subtasks that draw on dif-
ferent knowledge domains and a variety of cognitive processes. For example, Brooks
(1977) divides the programming task into subtasks of understanding the problem,
method finding (planning) and coding. Other researchers include design, coding and
maintenance subtasks. Multiple subtasks are also typical of other design tasks such
as writing, for which planning, translating and reviewing have been suggested as
distinct component processes (Hayes and Flower, 1980).

In Figure 1 we depict this characterization of design tasks in general, and of com-
puter programming in particular. Basic programming subtasks of ( 1) understanding
the problem, (2) design, (3) coding and (4) maintenance are shown. Basic processes
of composition and comprehension are shown as processing tasks that cycle through
the different subtasks. With each subtask we have associated certain mental prod-
ucts and knowledge domains, tentatively adopting Brooks’ (1983) definition of the
programming process — the serial mapping from one knowledge domain to another,
beginning with the problem domain, through several intermediate knowledge do-
mains, and ending with the programming language domain — as a useful framework
within which to begin analysis.

The tidy separation of programming subtasks and representations shown in Fig-
ure 1 is, however, misleading as a description of software design and programming as
it usually occurs for any moderately complicated programming project (see Chapters
3.3 and 4.2). The programming subtasks described above have multiple interconnec-
tions that make them difficult to separate in practze. This is also true of other
complex design tasks such as architecture, planning, art and writing, in which con-
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Figure 1:  The tasks of programming.

ceptualization, design and implementation will influence each other in all directions
(Rowe, 1987).

One way in which there are interactions between programming subtasks is that
programmers rarely complete one subtask before beginning the next. Rather, the
process is better described as repeated alternation among subtasks. Thus the pro-
grammer may continue to work on ‘understanding the problem’ in alternation with
design, coding, and revision (Malhotra et al., 1980; Chapter 3.3). A second feature
of the programming task that makes a clean decomposition into subtasks unrealistic
is that design not only takes place at different levels of abstraction (more than one
level of detail), but it involves multiple qualitatively different abstractions. Kant and
Newell (1985) call these different ‘problem spaces’; Pennington (1987b) labels the
idea ‘multiple abstractions’. This refers to the idea that the design may be described
in terms of its functional specifications, its procedural interrelations, its structural
or transformational properties. Different abstractions (or problem spaces) may be
most useful during different subtasks, yet each is needed throughout the entire pro-
gramming process (see also Chapters 1.1, 1.2 and 2.2). A third and related feature of
programming that connects subtasks is the interaction between knowledge domains
(Barstow, 1985; Kant and Newell, 1984). For example, the computational algorithms
will often depend on knowledge of problem-solving Leuristics in the application do-
main such as electronics, geometry or physics. A fourth aspect that complicates
the programming picture is related to the multiple and often messy environments in
which programming takes place (see Green, Chapter 1.2). Some environments allow
easy interaction between subtasks, some impose stricter separations. In addition,
subtasks are most often distributed over members of the project team, adding hefty
doses of communications and social problems to already difficult intellectual tasks
(see Chapter 4.1).

In sum, programiming is a complex cognitive and social task composed of a variety

of interacting subtasks and involving several kinds of specialized knowledge. We

will use Figure 1, in its bare analytical form to organize the following sections that

elaborate each subtask, returning throughout and at the end to further discussion of
the interrelations between component tasks.
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2 Understanding the problem and problem representation

Programming problems are unique in that they usually involve solving a problem in
another (application) problem domain, such as mathematics, accounting, electronics
or physics, in addition to solving the program design problem. For example, a com-
puter program may control the scheduling of a set of elevators (Guindon et al,, 1987).
Decisions about how the elevators should work are part of solving the application
problem.

It is usually expected that these application decisions will be set out in a require-
ments document listing the client’s goals, or the requirements may be established
through interaction with the client. One thing that is now clear, is that requirements
documents and client’s statements of goals are never complete. In some cases clients
may not know all of their goals at the outset (Thomas and Carroll, 1979); in other
cases there are assumptions of ‘common’ knowledge that will be brought to bear in
combination with the written problem description (Krasner et al, 1987); in other
cases there will simply be omissions. Thus, one critical aspect of understanding the
problem to be solved is that the programmer possesses knowledge of the application

problem domain (see Chapter 2.3).

Even in the blandest of problems, some domain knowledge will be required. For
example, in the text indexing problem used by Jeffries et al. (1981), the problem
description stated that the program must produce an index listing page numbers of
all instances of certain terms in the text. It requires knowledge of texts to realize
that there may be instances of terms in the text that are hyphenated and there-
fore need special treatment. Curtis and his colleagues, in an extensive field study of
programming teams (Krasner et al., 1987), found that one of the most critical prob-
lems facing teams designing complex systems was that programmers often lacked
critical domain knowledge that would allow them to detect incompletenesses in com-
plex requirements documents or in initial discussions of system plans. Adelson and
Soloway (1985) demonstrated that inexperience in a problem domain was associated
with programmer failure to develop a ‘global model’ of the design. Thus domain

knowledge is critical for providing a context for interpreting requirements, detecting
~ incompleteness, constraining initial design solutions, and developing a global design
model. However, even ezperts in a problem domain will not interpret system require-

ments identically, especially when they are stated in high-level terms (Thomas and
Carroll, 1979).

A second critical feature of understanding the problem is the form of the prob-
lem representation. By problem representation, we mean a mental conception of
the problem to be solved and/or an external characterization in the form of text or
diagrams. It is well documented in the psychological literature that the representa-
tion of the problem that is constructed is an important determinant of the range of
solutions that will be considered and is also an important source of problem-solving
difficulty (see e.g. Hayes and Simon, 1977). One frequently cited example of this is a
brain teaser called the mutilated checkerboard problem in which the task is to decide
whether or not a checkerboard that has certain squaies removed can be completely
covered by rectangles the size of two adjoining squares. Although the problem is
most readily represented in the spatial terms of checkerboards and rectangles, it is
most easily solved when it is represented in terms of the numbers of squares of each
colour that remain after mutilation. Similar results have been found in studies of
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design: both the surface form (e.g. spatial or temporal) of the problem and the
structuring of requirements will influence problem representation and consequently
the characteristics of problem solutions (Carroll et al., 1980; Ratcliffe and Siddiqi,
1985).

For programming problems it is clear that understanding the problem will result
in a mental conception of the problem and that there will also be external notes
and documents. Questions of interest concern what form the problem representation
does take or should take, and what kinds of information are explicit at this stage of
analysis. One view of problem comprehension and representation stresses an external
problem domain model that includes descriptions of the various objects, their proper-
ties and relations, their initial and final states, and the operations available for going
from initial to final states (Brooks, 1983; Goldman et al., 1977; Miller and Goldstein,
1977). This conception of the appropriate problem representation is analogous to
the development of a ‘situation model’, a mental representation of the situation to
which the to-be-solved problem refers (van Dijk and Kintsch, 1983). For example,
Kintsch has found that in solving algebra word problems, a key to success is having
constructed an accurate mental representation of the real-world situation described
in the problem. People who did not do this often correctly solved the wrong problem
(Cummins et al., 1988). Similarly in programming, Pennington (1987a) has found
that the best programmers constructed a mental representation of the real world
problem domain. Some, but not all prescriptions for programming embody this con-
cept. For example, the Jackson design methodology (Jackson, 1975, 1983) advocates
careful description of various domain objects, their properties and relations, as a first
step in designing a computer prograim.

Tt has also been suggested that expert programmers have ‘problem categories’.
That is, when presented with a design problem, the designer will determine its nature
by associating it with previously known problems. For experts, it is thought that
each of the problem categories is closely associated with a problem solution plan
that applies to problems of that type, in contrast to novices who might categorize
problems according to surface features such as application area. Thus, when the
expert recognizes that a problem is of a certain type, he/she also knows how to begin
solving it. In an empirical test of this idea, Weiser and Shertz (1983) found that
novices tended to categorize problems by application area and experts classified by
algorithm. Other studies of novice programmers suggest that the ability to classify
simple problems according to type distinguishes the talented from the average novice
(Kahney, 1983) and that the ability to retrieve abstract solution types is an important
aspect of learning to program (Anderson et al., 1984). Studying initial problem
representation in terms of problem categories is limited-because most real-world
programming problems are too complex to be assigned to a single category and
the study of programming problem categories is more relevant to the later design
and planning processes, when smaller subproblems are identified and when design
strategies form the basis of categories (Hoc, 1988).

For practical reasons, this aspect of programming (understanding and represent-
ing the programming problem) has not been much studied; researchers have even
tried to choose programming problems to study for which little specialized domain
knowledge is required (e.g. Jeflvies et al, 1981; Pennington, 1987a,b). However,
there is ample evidence in other problem-solving domains and some evidence in pro-
gramming research that how the problem is understood and represented is of critical
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importance in how easily it is solved, and in the correctness of solution (Hayes and
Simon, 1977; Larkin, 1983; Kintsch and Greeno, 1985). Secondly, since programming
may be seen, in part, as successive transformations of the external problem domain
representation into the programming language representation (Brooks, 1983), the re-
lations between domains will critically determine the difficulty of the programming
task.

3 Program design and the representation of programming plans

Program design plays a central role in the programming process. Design in this
context is often considered to be synonymous with planning, that is, laying out at
some level of abstraction, the pieces of the solution and their interrelations. Because
plans are structures that are subject to inspection and reorganization, planning serves
the dual functions of preventing costly mistakes and simplifying problem solving
by providing an overall structure for the problem solution (Anderson, 1983). For
programming, most researchers and practitioners agree that this is an important
step in determining the quality of the final program, particularly for large or complex
programs. In this phase, design strategies and design knowledge are co-ordinated to
map the problem representation into a program plan (see Figure 1). Design occurs at
both a general design level in which requirements and specifications are decomposed
Into a system structure and at a detailed level in which algorithms to implement
different modules are selected or created (Yau and Tsai, 1986).

The design of software, as with the design of any complicated artifact, presents
challenging problems for the developer. One particular source of difficulty results
from the fact that the design subtask interacts with other programming subtasks.
That is, as we have already noted, design will alternate with work on problem under-
standing, coding and revision. One reason this occurs is because of the high degree of
uncertainty and incomplete information that is typical of a large-scale programming
project. Uncertainty may have many causes but some examples include changing re-
quirements or interfacing technologies under simultaneous development. Information
may be incomplete when clients are not clear about their own goals, developers are
inventing new products or no one has experience with the application area. A second
reason for alternating among subtasks is that decisions made in later subtasks, and
problems discovered in later subtasks, may alter decisions made in previous subtasks,
necessitating a return to problem understanding or early design phases.

The dominant view of planning discussed in the psychology and artificial in-
telligence literatures is one of step-wise refinement (Sacerdoti, 1977), in which the
primary process is one of top-down, breadth-first decomposition. In this method, a
complex problem is decomposed into a collection of (ideally) non-overlapping sub-
problems. The subproblems are decomposed into further subproblems and this is
repeated until the subproblems are simple enough to be solved by retrieving or spec-
ifying a known plan for solution (Wirth, 1974). There is some empirical support for
software design by step-wise refinement (Jeffries et al., 1981; Carroll et al., 1979;
Adelson and Soloway, 1988) and some automatic programming models design in this
way (Miller and Goldstein, 1977). However, as a view of what the design subtask
actually involves, design by step-wise refinement presents an overly simple view.

First, there is evidence to suggest that the design process is not as orderly as that
required by step-wise refinement. Miller and Goldst=in (1977) found that in many
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instances their computer coach needed a mechanism to alter the coach’s approved
(orderly) expansion. Other data also suggest that there is some amount of alternation
between levels of planning as early decisions have implications for later steps and
later steps may call into question some aspects of earlier decompositions (Atwood
and Jeffries, 1980; Ratcliffe and Siddiqi, 1985). Some are even more pessimistic,
suggesting that good programmers ‘leap intuitively ahead, from stepping stone to
stepping stone, following a vision of the final program; and then they solidify, check,
and construct a proper path’ (Green 1980, p. 306).

This evidence is more consistent with a second view of planning called opportunis-
tic planning (Hayes-Roth and Hayes-Roth, 1979) in which the plan exists at different
levels of abstraction simultaneously and the planner continually alternates between
levels. The characterization of planning in this view is multidirectional rather than
top-down since observations that arise from planning at lower levels may guide plan-
ning at a more abstract level. Evidence from a variety of planning domains suggests
that alternation between levels of planning, coping with interdependent subgoals,
and opportunism in planning are frequently observed (Rowe, 1987). Opportunism in
planning has been explicitly described in work by Visser (1987, 1988; Chapter 3.3)
and by Guindon (Guindon et al., 1987). These researchers present ample evidence
that software designers skip between levels of detail in design development. It is
likely that step-wise refinement methods are used when problems are familiar and of
reasonable size, and that more complex and novel design problems must of necessity
involve opportunism and less-balanced design.

To describe the design subtask in terms of step-wise refinement also glosses over
a major design difficulty: deciding what the units of problem decomposition are or
ought to be. This, of course, is the topic of most books on programming technique
(see e.g. Wirth, 1974; Dahl et al., 1972; Jackson, 1975, 1983; Yourdon and Constan-
tine, 1979), and is a matter of some dispute (Bergland, 1981). If one subscribes to the
original structured programming sequencing constructs, then structural decomposi-
tions, even at the abstract level, will focus on the scheduling scheme of subprocedures.
Jackson (1975, 1983) argues that the process rather than the procedure is appropri-
ate as a fundamental structural component because of its suitability as a modelling
medium of the external problem domain. Yourdon and Constantine (1979) stress
dataflow decomposition. There is little empirical research on what kinds of decom-
positions programmers produce in designing complex programs (see Ratcliffe and
Siddiqi, 1985; Guindon et al., 1987, for exceptions) and it is reasonable to expect
that the nature of program decompositions will be related to the type of program-
ming task, the programming language, the programmer’s training and knowledge.
Different decompositions, however, will have implications for later ease of compre-
hension and maintenance of the program (Bergland, 1981), depending on the extent
to which different types of relations between design- parts such as the purpose or
function of a particular plan unit, the structure of data objects, the sequencing of
operations (control flow), and the transformations of data objects (data flow) are
explicit or obscure (see Green (1980) and Pennington (1987b) for more discussion of
multiple decompositions of program plans).

In their pure forms, problem decomposition and step-wise refinement represent
‘analytic’ approaches to design (Carroll and Rosson, 1985) and, as descriptions, they
miss some important features of design problem solving. For example, prototyping
methods of design often involve implementing a kernel solution and then adding to
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the design by increments (Boehm et al., 1984; Ratcliffe and Siddiqi, 1985; Kant
and Newell, 1984). Discovery aspects of design involve trial solutions, keeping fea-
tures that work and discarding those that don’t (Carroll and Rosson, 1985). Mental
simulation to estimate design effects and interactions is used extensively (Adelson
and Soloway, 1988). It is also the case that design often does not start from scratch,
but rather, a prior design is used as a starting point and modified (Visser, 1988;
Carroll and Rossen, 1985; Pennington, 1988; Silverman, 1985).

Design is also a very knowledge-intensive subtask, utilizing several different kinds
of knowledge (see Figure 1). Brooks (1977) has suggested that an expert programmer
may have 50000 to 100000 chunks of programming knowledge. The nature of these
knowledge chunks would be critical in determining problem decompositions in design.
Soloway and his colleagues have described this knowledge base as ‘plan knowledge’;
a program plan is a stereotypical sequence of program actions that accomplish a
certain computational goal (Soloway et al., 1988; Rich, 1981; Chapter 3.1). Other
kinds of knowledge implicated in design are: knowledge of design and programming
conventions and efficiencies (Soloway et al., 1988), knowledge of design methods and
strategies (Jeffries et al., 1981; Guindon et al., 1987; Vessey, 1985: Chapter 3.2), and
in some cases, knowledge of a program design language (Ramsey et al., 1983).

4 Coding

Coding a program involves translating the most detailed level of the plan formulation
into a programming language. In spite of the importance assigned to the design of
the program, some studies of programming have found that planning occupies a
relatively small amount of design time compared to the programming phase. For
example Visser (1987) found that her subject spent 1 hour planning compared to 4
weeks coding. This implies that, in practice, design is intimately intertwined with
coding in contrast to a common assumption that coding doesn’t begin until the
design is complete. This is especially true in environments in which prototyping
design methods are prevalent. Although, in principle, a prototyping method does not
preclude ‘requirements before design before coding’, in practice the implementation
of kernel solutions often precedes full understanding of the problem or full design
(see Chapter 3.3). It is also true in environments where high uncertainty causes
certain design decisions to be held up or to be made only tentatively and coding
works around these problem areas.

The coding process has been described as one of symbolic execution, in which
a plan element triggers a series of steps through which a piece of code is generated
and then the programmer symbolically executes (i.e. mentally simulates) that piece
of code in order to assign an effect to it. This effect is compared with the intended
effect of the plan element; any discrepancy causes more code to be generated until
the intended effect is achieved. Then the next plan element is retrieved and the pro-
cess continues (Brooks, 1977). In coding, perhaps more than in any other subtask,
the creation of segments of code alternates frequently with evaluation, not only for
correctness, but for style, efficiency, consistency of notation, etc. (Gray and Ander-
son, 1987; Visser, 1987). This alternation between composition and evaluation leads
inevitably to the reconsideration of design decisions when the implementation in code
fails to achieve the intended effects or does so awkwardly.
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To the extent that the plan elements are lost from memory or never completely
specified, the evolving code may serve to help reconstruct or alter the guiding plan
(Green et al., 1987). In addition, the coding process may be interrupted and changed
as a result of processes such as symbolic execution and the evaluation of programming
effects. Gray (Gray and Anderson, 1987) calls these episodes ‘change episodes’ and
estimates that they occur as frequently as once every minute, giving the coding
process a sporadic and halting nature (Green et al., 1987).

It is well established that when people are learning to write computer programs,
they will often find an example piece of code to use as a model for the piece of
code they wish to write. However, for experienced programmers, coding is most
often described as if the code were generated directly from the plan elements, i.e.
from scratch. However, observations of programmers coding real (as opposed to toy)
programs reveals that most coding does not occur from scratch (Visser, 1987; Pen-
nington, 1988). Rather, the programmer finds a program or parts of other programs
to use as coding models, or blatantly borrows old code and modifies it. This means
that an important part of programming will be the ability to easily access relevant
examples of code that are similar to the program under construction.

Throughout the coding process a representation of the program is built up, stor-
ing information about the objects (variables, data structures, etc.), their meanings
and their properties. In Brooks’ theory and in other speculations about coding be-
haviour (Shneiderman, 1980; Barstow, 1979), syntactic knowledge is generally con-
sidered to be represented independently of semantic programming knowledge. Syn-
tactic knowledge is thought to include a relatively small number (Brooks (1977),
estimates 50 to 154) of coding templates detailing internal statement order and syn-
tax, in contrast to the large size estimates of semantic programming knowledge. It
is, however, difficult to separate programming language knowledge from the various
kinds of knowledge implicated in design phases. Knowledge that is necessary in the
coding subtask also includes knowledge of the system on which the program will be
implemented and the constraints that that imposes on the code.

The study of coding also cannot be separated clearly from planning in that a
definitional line between refinement steps leading up to coding and the actual trans-
lation into code may be somewhat arbitrary. Moreover, certain aspects of coding
must be taken into account during the design phase, such as language constraints
and hardware constraints. Failure to do this has resulted in the creation of whole
programs that cannot be executed on the target hardware because they, for example,
exceed memory restrictions, or depend on transmission speeds not supported by the
device (Krasner et al., 1987).

At one or more points in the development of software, the code must be sys-
tematically tested for its correctness. Testing may be performed by the person who
coded the program, or may be performed by a separate person or group. It is usually
impossible to explicitly test the program on all possible combinations of inputs to the
program that might occur in practice, but this is the goal. The development of and
knowledge about testing methods and test data generation is a software development
skill quite distinct from coding or design (see Chapter 4.2). It is the difficulty of
testing for program correctness, among other things, that has led some to advocate
formal proofs of correctness as an essential step in program development. Unfortu-
nately, these methods have not yet proved practicable for programs of any realistic
complexity.
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5 Program maintenance subtasks

Program maintenance subtasks include debugging and modification. Both of these
subtasks rely heavily on program comprehension (Jeffries, 1982; Gugerty and Olson,
1986; Nanja and Cook, 1987; Littman et al., 1986). Thus we will also include
program comprehension as a maintenance subtask although we believe it is a more
fundamental process crossing all subtasks as shown in Figure 1. Green (1980, p.
307) writes, ‘Understanding is what it’s all about’. In spite of this, we do not have
a complete picture of what is involved in program comprehension; as a consequence,
our understanding of debugging and modification is similarly limited.

5.1 Program comprehension

Understanding a program involves assigning meaning to a program text, more mean-
ing than is literally ‘there’. A programmer must understand not only what each
program statement does, but also the execution sequence (control flow), the trans-
formational effects on data objects (data flow), and the purposes of groups of state-
ments (function) (Pennington, 1987a,b). In order to do this, the programmer will
employ a comprehension strategy that co-ordinates information ‘in the program text’
with the programmer’s knowledge about programs and the application area. This
results in a mental representation of the program meaning. A variety of strategies
and representations have been suggested.

It has been suggested that program comprehension involves successive recodings
of groups of program statements into increasingly higher-level semantic structures
(Shneiderman, 1980; Basili and Mills, 1982). Thus, patterns of operation are recog-
nized as higher-order chunks; patterns of chunks are recognized as algorithms, and
so on. This view suggests that a hierarchical internal semantic representation of
the program is built during program comprehension from the bottom up. An al-
ternate view is that comprehension is a process of hypothesis testing and successive
refinement (Brooks, 1983). In this view, the meanings of the program begin to be
built at the outset. For example, even with the name of the program (e.g. main
file update) the programmer will have hypotheses about the general function of the
program and its major constituents. This implies that the programmer accesses and
activates a high-level program schema which partially guides a search for evidence
about the expected program components. During the search, the programmer will
generate subsidiary hypotheses until they can be matched against beacons (Brooks,
1983) which may confirm parts of the programmer’s hypotheses, further refine them
or suggest alternatives. Beacons may be procedure names, variable names, or stereo-
typical code sequences; for example, a particular manner of exchanging values in an
array may be recognized as indicating a sort routine and thus serve as a beacon.
The programmer’s internal representation of the program starts at the top with the
program’s general function. As higher-level hypotheses are refined and divided, plan
elements are added to the representation, followed by the integration of lower-level
chunks. The comprehension of a program is complete when the lowest-level plan
elements can be bound to actual code sequences in the program. Without a doubt,
both top-down and bottom-up processes are involved (Pennington, 1987a,b; Curtis et
al., 1984; Letovsky, 1986). For example, matching program plan knowledge to code
allows the programmer to make inferences about the goals of the program. This in
turn leads to further predictions about program contents, a ‘top-down’ process. In
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contrast, mental simulation of program effects is a ‘bottom-up’ process that enables
the programmer to reason about the goal-code relations.

The mental representation of program meaning that is constructed by the pro-
grammer is thought to be multilevelled. Drawing on current theories of text compre-
hension, it has been described in terms of two distinct but cross-referenced represen-
tations of a text that are constructed in the course of text comprehension (van Dijk
and Kintsch, 1983; Kintsch, 1986). The first representation, the textbase, includes a
hierarchy of representations consisting of a surface memory of the text, a microstruc-
ture of interrelations among text propositions and a macrostructure that organizes
the text representation. The second representation, the situation model is a mental
model of what the text is about referentially. Because the program text is fundamen-
tally about- computations, we have called the textbase a ‘program model’; similarly,
the situation model refers to the application domain, and we have called it a ‘domain
model’. We have further proposed that the program model will be dominated by pro-
cedural relations between program parts and the domain model will be dominated
by functional relations (Pennington, 1987a). Exceptional performance in program
comprehension is associated with the construction of both mental representations
and with mappings between them (Brooks, 1983; Pennington, 1987a).

5.2 Debugging and program modification

The term debugging is sometimes used to refer to the combination of testing and
debugging, where testing is a systematic search for program errors. Here, we use de-
bugging to refer to the activities involved in locating and repairing errors in programs
once they are known to exist. These errors could have been detected either through
testing or through feedback from users of the program. Much of the software in use
has associated with it a list of ‘outstanding bugs’ or known malfunctions. Some of
these bugs have consequences that are merely annoying to users of the software but
others have serious economic and potentially life-threatening consequences. Thus
“debugging is a major activity and cost in software development and maintenance.

Debugging is a diagnostic task, similar to other diagnostic tasks such as medical
diagnosis and electronic troubleshooting. That is, the program displays some ‘symp-
toms’ and the debugger must discover the ‘disease’ that is causing those symptoms,
and ‘treat’ the disease until the program is ‘well’ or symptom free. As such, program
diagnosis (debugging) usually involves the following activities: (a) understanding
the program or system of programs being debugged; (b) generating and evaluating
hypotheses concerning the problem; (c) repairing the problem; and (d) testing the
system, once repaired (Clancey, 1988; Katz and Anderson, 1988; Vessey, 1985, 1986).

Debugging largely involves understanding what a program ts doing and what it is
supposed to be doing (Kessler and Anderson, 1986; Gugerty and Olson, 1986; Nanja
and Cook, 1987), and experts in debugging spend much longer understanding the
program than do novices (Jeffries, 1982). As a consequence, expert programmers
appear to develop a fairly complete mental representation (model) of the program
and to understand the possibilities for program errors as causal models of error in
this context (Vessey, 1985, 1986, 1989; Jeffries, 1982; Gugerty and Olson, 1986). One
way to insure adequate comprehension for debugging is to have written the program
yourself. However, most debugging will involve diagnosing programs written and/or
designed by others. Thus comprehension skill is central to debugging.
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A general debugging strategy is to form a hypothesis about what kind of a bug
may create the observed symptoms, to search the code for the location of the bug,
modify the program, and run the program to see what effect the changes had. A
second key skill then is the ability to generate hypotheses about bugs. Some strategies
observed in programmers include: using clues in the output, using tests of internal
program states, recalling prior bugs that generated symptoms like the current ones,
simulation of program parts, and trial and error (Gugerty and Olson, 1986; Gould,
1975).

A more general model of diagnosis has been put forth by Clancey ( 1988) in the
domain of medical diagnosis that may have a clear application to understanding
program debugging. One emphasis of this model is to be specific about the kinds
of knowledge that the experienced diagnostician might possess, and how these dif-
ferent kinds of knowledge work together to narrow the diagnostic hypotheses under
consideration. One important kind of knowledge is knowledge of diagnostic strate-
gles such as elaborating symptoms when symptoms are known to have many possible
causes, and such as thinking at an intermediate level of generality in terms of cate-
gories of errors rather than in terms of very specific errors (see also Vessey (1985);
and Chapter 3.2 on the importance of strategic knowledge). Strategic knowledge,
however, must work on a large network of domain-specific relations between diseases
(or categories of diseases) and symptoms (or categories of symptoms). Thus the
program debugger should possess debugging strategies and a network of knowledge
about which kinds of errors and programmer actions result in which kinds of program
bugs.

A second key idea pursued in Clancey’s (1988) model of diagnosis and elsewhere
in work on explanation-based decision making (Pennington and Hastie, 1988), is that
diagnosis for complex problems is often not a result of simple associations between
symptoms and diseases. Rather, disease (diagnostic category) is understood as the
result of a causal process that in turn resulted in the symptoms (evidence). Under this
view, the task of the diagnostician is to build an account of a disease process that can
account for the symptoms. Thus, a program error would be understood as something
that resulted from programmer or designer activity and diagnosis would centre on
trying to understand what actions could have produced an error that produced the
symptoms. These aspects of debugging need to be better understood.

The greatest difficulty in debugging appears to be diagnosis. Repair of the pro-
gram presents many fewer problems (Katz and Anderson, 1988), at least in simple
programs. In more complex programs, repairs may involve redesign and may have
unanticipated consequences due to interactions between program parts or modules.

Program modification may, of course, take place outside of the context of debug-
ging. For example, users may change their minds about what they want the program
to do, resulting in added functions. Once again, it has been proposed that the ba-
sis of program modification is program understanding (Fjeldstad and Hamlen, 1983;
Littman et al., 1986). Furthermore, the style of comprehension has been shown to
be strongly related to success in program modification. For example, Littman et
al. found that programmers using a systematic comprehension strategy rather than
an ‘as-needed’ strategy were successful at performing a required modification. This
result was attributed to the completeness of the mental representation that resulted
when a systematic comprehension strategy was used. Obviously, program modifica-
tion will include, in addition to a base of comprehension, most other programming
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subtasks as well. Extensive modifications will involve changes to design, extensive
coding, retesting, and debugging.

6 Interrelations between programming subtasks

The subtasks of programming are not very different from the subtasks of any design
task, or of any problem-solving activity that involves planning: the problem must
be understood, the solution sketched out at some level of detail, the solution imple-
mented, corrected and/or modified. Strategies of decomposition, pattern recognition,
mental simulation, analogy and causal reasoning will be used. However, as we have
stressed, the concept of programming as an unbroken progression through subtasks
is not descriptive of programming practices for complicated programming projects.
At the level of individual cognition, it is simply difficult to delineate precisely
where one cognitive activity finishes and another begins, such as the distinctions
between understanding and design, between design and coding, and so on. This is
partly due to our lack of knowledge of the exact cognitive mechanisms underlying
these activities but it is also due to their interdependence in reality. The activity of
design causes the developer to elaborate his or her understanding. The activity of
coding may force one to consider the impossibility or inadequacy of design elements.
There is also inevitable programming subtask interaction at the level of the envi-
ronments in which software development takes place. Software development is usually
distributed over one or more teams (see Chapter 4.1) causing problems in communi-
cation and shared understanding. Within a single group, shared conceptualizations
of the problem, the design, the code, and so on must be built up. External represen-
tations in the form of documents (see Figure 1) serve as central recordings of this.
These documents, however, are always incomplete in that they assume certain shared
knowledge. They are also notoriously slow to change to reflect current thinking, leav-
ing informal communication as the avenue of building shared views. This problem is
exacerbated when different groups are assigned different subtasks. In addition to the
problem of building a concensus on the problem being solved, this conceptualization
must be passed on to the group attacking the next subtask. For example, environ-
ments in which requirements are developed by one group and passed on to another
group for high-level design need to pass not only an official document but also their
often considerable knowledge of the problem domain. Curtis and Walz (Chapter 4.1)
point to the need for team members in these instances whose knowledge ‘spans the
boundaries’ of the two subtasks, to alleviate the information transmission problems.
Finally, software development that is not ‘routine’, i.e. a slight modification of
something that has been done before, is usually characterized by high uncert ainty and
the need for tentative decisions at every phase of development. This element of the
environment is pervasive and of great influence, yet people seem to treat it each time
as if it is an aberration and not ‘typical’ (Krasner et al., 1987). Tt is a fact of the world
that people change their minds about what they want, especially when they see it or
use it, and software has already come to be seen as evolving in this sense. However,
it is also not uncommon for a software project to require, for one of its components,
a piece of software or hardware that is being developed concurrently within the same
company or even by another company or government agency. Sometimes features of
this import are unknown, or change radically in the course of development, causing
reverberating alterations in the development of anything connected to it. Software
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development and the tasks of programming must be viewed above all within this
context of high uncertainty and incomplete knowledge.
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