
PPIG2010
Proceedings of the 22nd Annual Workshop of the Psychology of

Programming Interest Group

Edited by:

Joey Lawrance and Rachel Bellamy

Proceedings of the 22nd Annual Psychology of Programming Interest Group.
September 19-22, 2010. Universidad Carlos III de Madrid, Leganés, Spain.

ISBN 978-84-693-3416-4

Joseph Lawrance and Rachel Bellamy, editors.
Maria Paloma Díaz Pérez and Mary Beth Rosson, publishers.

Psychology of Programming Interest Group (PPIG) 2010

Table of Contents i

Editors’ Note iii

Keynote

Gender HCI and Programming 1

Margaret Burnett, Oregon State University

Usability Issues in Programming Languages and Tools

Liveness in Notation Use: From Music to Programming 2

Luke Church, Chris Nash, and Alan F. Blackwell, Cambridge University

Usability Requirements of User Interface Tools 12

Catherine Letondal, Stéphane Chatty, Université de Toulouse - ENAC
W. Greg Phillips, Royal Military College of Canada
Fabien André, Stéphane Conversy, Université de Toulouse - ENAC

A Cognitive Neuroscience Perspective on Memory for Programming Tasks 27

Chris Parnin, Georgia Tech Institute of Technology

Perceived Self-Efficacy and APIs 42

John M. Daughtry and John M. Carroll, The Pennsylvania State University

Teaching and Learning Programming

WIP | Enhancing Comprehension by Using Random Access Memory (RAM) Diagrams in
Teaching Programming: Class Experiment 56

Leonard J. Mselle, The University of Dodoma, Tanzania

WIP | Evaluating Scratch to Introduce Younger Schoolchildren to Programming 64

Amanda Wilson and David C. Moffat, Glasgow Caledonian University

WIP | Students’ Early Attitudes and Possible Misconceptions about Programming 76

David C. Moffat, Glasgow Caledonian University

Characterizing Comprehension of Concurrency Concepts 88

Zhen Li, Zhe Zhao, and Eileen Kraemer, University of Georgia

The Construction of the Concept of Binary Search Algorithm 100

Sylvia da Rosa, Universidad de la Republica, Montevideo, Uruguay

Teaching Novice Programmers Programming Wisdom 112

Randy M. Kaplan, Kutztown University of Pennsylvania

 i

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Software Engineers and Practice

Project Kick-off with Distributed Pair Programming 121

Edna Rosen, Stephan Salinger, and Christopher Oezbek, Freie Universität Berlin

The use of MBTI in Software Engineering 136

Rien Sach, Marian Petre, and Helen Sharp, Open University

WIP | Confirmation Bias in Software Development and Testing: An Analysis of the Effects of
Company Size, Experience and Reasoning Skills 146

Gul Calikli, Berna Arslan, and Ayse Bener, Bogazici University, Turkey

WIP | Enhancing User-Centredness in Agile Teams: A Study on Programmer's Values for a better
Understanding on how to Position Usability Methods in XP 161

Michael Leitner, Peter Wolkerstorfer, Arjan Geven, Center for Usability Research & Engineering
Manfred Tscheligi, Center for Usability Research & Engineering and University of Salzburg

End-User Programming

A Logical Mind, not a Programming Mind: Psychology of a Professional End-User 175

Alan F. Blackwell and Cecily Morrison, Cambridge University

Empirically-Observed End-User Programming Behaviors in Yahoo! Pipes 185

Matthew D. Dinmore and C. Curtis Boylls, Johns Hopkins University

Bricolage Programming in the Creative Arts 200

Alex McLean and Geraint Wiggins, University of London

 ii

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Editors’ Note

It is our honor to welcome you to the 22nd Annual Workshop of the Psychology of Programming Interest
Group. This year's workshop will be co-located with the IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), and hosted at Universidad Carlos III de Madrid.

We are excited to welcome Margaret Burnett as the keynote speaker to PPIG. Margaret Burnett is a
Professor of Computer Science at Oregon State University, and has investigated how gender differences
interact with purportedly gender-neutral end-user programming and end-user software engineering
systems. Her work promises interventions that can help both males and females.

We are also pleased to provide PPIG attendees the opportunity to attend Ed Chi’s VL/HCC keynote
address on Model-Driven Research in Human-Centric Computing. Ed Chi is the Area Manager and a
Principal Scientist at Palo Alto Research Center's Augmented Social Cognition Group.

Many people have helped to make this event possible. We would especially like to thank the reviewers
who offered constructive feedback to the authors of all the papers, and Maria Kutar who once again
stepped-up to organize the doctoral consortium. We could not have organized this workshop more than
5,000 kilometers away without the help of the VL/HCC chairs Paloma Diaz and Mary Beth Rosson, and
the VL/HCC local committee Ignacio Aedo. As always, too many others to mention offered advice and a
helping hand along the way, we thank you all.

Thank you, all! Welcome to Madrid!
¡Gracias a todos! ¡Bienvenido a Madrid!

Rachel Bellamy, IBM Research
Joseph Lawrance, Wentworth Institute of Technology

Back cover photograph courtesy of: http://www.flickr.com/photos/beeldenzeggenmeer/405092064/

 iii

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Gender HCI and Programming Tools

Margaret Burnett

Department of Electrical Engineering
and Computer Science

Oregon State University
Corvallis, Oregon

burnett@eecs.oregonstate.edu

Although there have been recent investigations into how to understand and ameliorate the low
representation of females in computing, there has been little research into how software tools fit into the
picture. We have been investigating how gender differences interact with purportedly gender-neutral
software tools that aim at supporting people doing programming. For example, what if female end-user
programmers' problem-solving effectiveness, when using end-user programming environments like
Excel, would accelerate if the environment were changed to take gender differences into account? This
talk reports the investigations my students and I have conducted into whether and how programming
tools affect males’ and females’ performance differently, and describes the beginnings of work on
promising interventions that help both males and females.

Margaret Burnett is a Professor of Computer Science at Oregon State University. Her research focuses
on human issues of programming languages and environments, especially when the programming is
done by males and females not trained as professional programmers. She has been investigating gender
differences in the context of problem-solving software for several years, considering populations ranging
from spreadsheet users to professional programmers. She is also a co-founder of the EUSES Consortium,
a collaboration among Oregon State University, Carnegie Mellon University, Drexel University,
Pennsylvania State University, University of Cambridge, University of Nebraska, University of
Washington, and IBM, to help End Users Shape Effective Software (EUSES).

Burnett 1

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Liveness in Notation Use: From Music to Programming

Luke Church

Computer Laboratory
Cambridge University

luke@church.name

Chris Nash

Computer Laboratory
Cambridge University

Christopher.Nash@cl.cam.ac.uk

Alan F. Blackwell

Computer Laboratory
Cambridge University

Alan.Blackwell@cl.cam.ac.uk

Abstract
In this paper we draw an analogy between musical systems and programming environments,
concentrating on user experience associated with feedback and its implications for flow. We present a
number of different analytical frames all of which, we suggest, influence the nature of this feedback
and with it, the user experience. We introduce a new diagrammatic analysis format, and use it to
explore the kinds of feedback loop present in musical systems, what such systems might teach us in
the analytical description of programming languages, and vice versa.

Introduction
The value of user feedback when interacting with computer systems is well-known. The need for
feedback is taught in standard textbooks (e.g. Preece, Sharp & Rogers 2007), undergraduate courses
(e.g. Blackwell 2009), and professional best practice (e.g. Microsoft 2009). In mainstream user
interface design, feedback is supported by the principles of direct manipulation (Shneiderman 1983).
In the analysis of programming languages, as we discuss later, a variety of kinds of feedback are
incorporated in Taminoto’s characterisation of liveness (Tanimoto 1990). Furthermore, in recent
analyses of domain specific programming for end-users, lack of feedback has been shown to be a key
impediment to usability. (Church & Whitten 2009, Church et al. 2009)

However the concept of user feedback is not a simple continuum. By drawing an analogy between
musical systems and programming IDEs (Integrated Development Environments), we can ask a
number of questions about different aspects of feedback; the source of the feedback, the level of
liveness of the feedback, and the trends over time as systems evolve.

We start this analysis with a discussion of feedback in the modern IDE, showing that Tanimoto’s
theoretical frame for types of liveness (Tanimoto 1990) is still relevant, and use it as the starting point
of the analogy to musical systems. We then apply this analogy to liveness in programming and
consider the different sources of feedback the programmer and the musician has access to.

Levels of liveness
Intuitively, liveness is an assessment of how 'responsive' a system is. When I perform an action, are
my changes immediately apparent? Do I have to go through a number of auxiliary steps in order to
understand the consequences of my actions? Liveness is a property both of the program notation, and
also of its execution environment. (Tanimoto 1990)

• Level 1 liveness
(informative; “ancillary”)
describes situations in which a visual representation is used as an aid to software design
(Tanimoto was referring to a user document such as a flowchart, not a programming
language). This provides a basic level of graphical representation, and can be made
continuously visible, although mainly because of the fact that a paper document can be placed
beside the screen, rather than on it.

Church, et al. 2

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

• Level 2 liveness
(informative, significant; “executable”)
describes situations in which the visual representation specifies a program that can be
manually executed, possibly after compilation. This provides a basic kind of physical action
mapping, in that modification of the representation will eventually change the behaviour of
the program.

• Level 3 liveness
(informative, significant, responsive; “edit-triggered”)
describes situations in which the representation responds to an edit with immediate feedback,
automatically executing or applying the changes. This allows users to make rapid actions, and
often (after noting the system response) an opportunity to quickly reverse an incorrect action.

• Level 4 liveness
(informative, significant, responsive, live; “stream-driven”)
describes situations in which the environment is continually active, showing the results of
program execution as changes are made to the program. This provides high visibility of the
effect of actions.

Because it spans both notation and execution, the degree of liveness within a programming
environment is not a single factor, but can vary significantly across different components. The user
experience of feedback in a typical professional IDE, such as Visual Studio or Eclipse, is far from
homogenous.

Some aspects have a high degree of live responsiveness which span multiple steps of the traditional
programming and compilation cycle. For example, code completion (e.g. Visual Studio's IntelliSense),
much loved by developers, offers real-time feedback on code, not only from its explicit feedback
(suggesting options for code-completion) but from implicit feedback when the programmer notices
errors in the code by virtue of the IntelliSense engine failing to correctly suggest possibilities. Whilst
this is still very much feedback from the notation (the source code and the IDE) rather than the
domain (the executing behaviour of the program) it is rapid, typically appearing in under a second,
and brings some of the benefits of Level 3 liveness.

However, a professional programmer spends much of her time doing other things than entering new
code. At the simplest level activities include compiling, debugging and deploying. The Level 2-live
compile cycle of even a small application on a high-performance workstation can take in the order of
30s, potentially disrupting the programmers flow and requiring distracting context shifts of attention.

The story for debugging is equally variable, though step-through debuggers offer the ability to provide
real-time feedback (Level 3 liveness), albeit at a much slower pace than typical execution. However
the programmer may have to manually walk through a series of steps in order to put the system in the
desired state for debugging. Tool support such as Inform 7’s Skein (Nelson 2006) allows replaying of
a set of pre-recorded steps, but this is still an unusual feature.

In order to look at the way the different levels of liveness affect the different aspects of the process of
developing, we shall consider a domain where the importance of feedback has been appreciated for a
long time, and where the boundaries of liveness levels are starker: music.

Feedback in music
In music, feedback comes in many forms – tactile, haptic, visual and, most importantly, aural. In
acoustic performance, such feedback occurs in realtime, but when you move to the digital domain, a
latency is necessarily introduced, to enable efficient buffered DSP processing. Nonetheless, the
tolerable delay is stricter than typical program feedback (e.g. Nielsen 1993); only a few milliseconds
can be distracting (Walker 1999).

Modern music production software, such as the sequencer or digital audio workstation (DAW), is
centred on the idea of recording such a performance, either in MIDI or audio, and exploits the
provisionality of the digital domain to support experimentation and improvisation. However, after

Church, et al. 3

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

capturing the initial realtime performance, editing is mediated through abstract visual notations, often
entailing cumbersome WIMP interfaces (van Dam 1997) and overly-literalistic visual metaphors
(Duignan 2004). Increasingly complex features and interactions slow down the feedback cycle, and
interaction is driven by abstract feedback from the visual notation, rather than concrete feedback from
the domain itself, such as sound.

The DAW can be seen as a reversal of the classical composition process, in which the composer
creates the notation before the music is performed, and the musical structure may be sketched in
abstract form before a more concrete instantiation is required (Sloboda 1985). Instead, sequencers are
more suited to the scenario where the initial performance is more representative of the actual end
product; the musical idea must be largely formed before the user interacts with the program. As such,
it is the tight interaction and feedback cycle with the physical instrument (either acoustic or MIDI)
that provides immediate musical feedback in the sequencer model, rather than with the notation itself.

Fluid and fluent user experiences have been identified as critical to the creative user experience (e.g.
Norman 1993, Shneiderman et al 2005). Relatedly, the notion of ‘flow’ (Csikszenmihalyi 1990) has
been closely linked with creativity, and advocates “direct and immediate feedback”. Similarly, Leman
(2007) argues that more “direct involvement” in the music can be afforded by fast feedback loops,
which he calls action-reaction cycles.

Our own research has been investigating an alternative style of composition tool, which prioritises
musical feedback over richer, graphical affordances. The soundtracker (e.g. Nash 2004) offers a
spreadsheet-like interface, using a grid of text to describe musical phrases, where each cell has a fixed
number of spaces to specify pitch, instrument, volume (or panning) and one of a variety of musical
ornaments (or effects), for example: C#5 01 64 D01 starts playing a note [C#] in octave [5];
instrument [01]; maximum volume [64]; with a slow [01] diminuendo [D]. Despite the unorthadox
appearance of tracker notation (see Figure 1), the music produced by its users is quite conventional –
from dance tracks and pop songs to film scores and orchestral symphonies. Using the computer
keyboard, the musical text can be edited very efficiently, prompting some to liken the process to a
form of “musical touch-typing” (MacDonald 2007).

Figure 1 – The reViSiT soundtracker, a text-based music composition tool

Unlike the performance-based approach of sequencers, trackers encourage interaction with the
notation, but crucially keep sound feedback close-at-hand – notes, phrases, parts or the whole song
can be auditioned instantly, with a single keypress. In Figure 2, we illustrate this difference between
the approaches, as a function of the feedback loops they produce.

Church, et al. 4

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

(A) a performance-driven system,

(e.g. a MIDI sequencer)

(B) a manipulation-driven system,

(e.g. a soundtracker)

Figure 2 – Two computer music experiences, modelled as intrinsic feedback loops combining the
user (u) and musical domain (d) with notation (n), connected by arcs representing common creative
processes (performance, audition, data manipulation, visualisation, transcription and realisation).

Performance-based systems as represented in Figure 2 (A) support flow by allowing episodes of tight
feedback between the user (u) and the musical domain (d), and capturing the musical output of their
instrument. Between these episodes, users must interact with some transcription of the performance,
which may only represent a crude adumbration of the original performance (e.g. Figure 2 (A), in the
case of DAWs). By contrast, manipulation-driven systems like trackers, as represented in Figure 2
(B), do not rely on such transcription, restricting the musical possibilities to those realisable in the
notation, and driving interaction from sonic feedback from the encapsulated music, keeping the visual
feedback between the user (u) and the notation (n) as direct, minimal, and tight as possible.

Adapting the earlier classification of liveness to our musical examples, we note that Level 4 liveness
is that supported by "live" musical performance - where the effects of actions (on the instrument) are
continuously and immediately audible - and, as such, we can clearly see its utility in sequencers and
other performance-based music software. At the other end of the spectrum, Level 1 liveness can be
seen in the offline notations used by composers, such as the sketching of ideas and musical processes
on paper, and the ancillary visual representation presented by a sequencer’s “Arrange Window”.

The majority of other computer music scenarios are centred on editing a visual specification of what
will happen in the music, as in both a sequencer/DAW’s GUI and trackers, and thus such programs lie
somewhere on a continuum between Level 2 and Level 3 liveness, based on the immediacy and
quality of feedback provided. Sequencers are unable to sustain Level 4 liveness after the point at
which the performance is captured, instead providing sub-devices (e.g. Arrange Window, Score
Editor, Piano Roll, etc.) each allowing the visualisation and editing of specific and distinct aspects of
the recorded data, where interaction is driven by visual feedback, and less frequently auditioned by
spooling to the appropriate point and initiating playback. Although the music is then realised in
realtime, the feedback is far from a continuous interpretation, and most often offers only Level 2
liveness, requiring the user to spool to an appropriate point and press play. Conversely, the rapid
actions and prominent role of frequent sonic feedback, leads us to consider trackers more in terms of
Level 3 liveness, where small edits are made and almost immediately auditioned - the execution is
still triggered by the user, but the single keypress becomes cognitively automatic, following the edit.

(A) a digital audio workstation (DAW)

(B) a soundtracker

Figure 3 – Feedback loops in two music program types, annotated with levels of liveness.

Church, et al. 5

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

In Figure 3, we annotate the feedback loops related to two scenarios in computer music interactions
with the level of perceived liveness. DAWs (3A) do not have a central primary notation, instead
offering numerous different tools to present different aspects a musical recording, splitting interaction
between different editing features, views and windows, each using pointer-based direct manipulation
and often triggering slow and a complex non-realtime (“offline”) processes. By contrast, the tracker
environment (3B) prioritises a single musical notation, and supports rapid sound feedback and a
generally higher level of liveness, without supporting the Level 4 liveness of a direct performance.

Towards Liveness in Programming

Level of Liveness Programming Music

1 flow chart, UML diagram composer shorthand

2 code editor, compiler score, sequencer/DAW GUI

3 code completion, syntax highlighting,
realtime compilation, edit and continue

soundtracker, live coding

4 macro recording, Scratch, Data Canvas1 sequencer/DAW recording

Table 1 - Examples of liveness levels in programming and music

Thus, in music, we can see that the tools strive to offer higher levels of liveness, supporting more fluid
interactions, by tightening the feedback cycles between the notation and/or the domain. We can see
the same trend in IDEs (as illustrated in Table 1). The introduction of Edit-and-Continue in Visual
Studio, where a program can be paused, edited and then directly resumed, decreases the need for a full
compile cycle after minor changes to the code, supporting Level 3 liveness. However, in other places
we are moving in the opposite direction. The migration from compilers to in-line syntax checkers was
an increase in liveness, but is now being supplemented by static analysis tools such as Coverity2.
Currently, such tools tend to execute in a separate pass, being more a Level 2 tool.

Figure 4 shows the different cycles of feedback that occur in a typical modern IDE (4A) and a code
editor (4B). We can see that the core interaction cycle between the users, the source code notation and
the domain, is the same, with roughly the same degree of liveness, Level 3. However, the ancillary
support tools, the profiler and the static analyser currently have lower liveness properties, Level 2.

(A) an integrated development environment (IDE)

(e.g. Visual Studio)

(B) standalone code editor
(e.g. EMACS)

Figure 4 – Two programming experiences, modelled as feedback loops combining the user (u),
execution domain (d), source notation (n/ns), profiler notation (np) and static analyser notation (na).

1 introduced later
2 www.coverity.com

Church, et al. 6

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

There is a general theme here that when tools first get introduced they are at a relatively low level of
liveness (e.g. Code Profilers are frequently found at Level 2 at the time of writing), but as technology
progresses they migrate towards increasing liveness. This tendency lends weight to our suggestion
that this is a crucial, but under-recognised, aspect of the user experience of programming, in that it
seems to emerge in response to actual usage, rather than being designed-in at the outset.

Sources of Feedback: Notation, Domain
Previously, we have talked about the different sources of feedback that are available to the musician,
the most obvious being the domain of sound itself. There is also feedback to be derived from the
notation, in whatever form. This is similar to the experience of a programmer who gains feedback
about their current task, say a programming or debugging activity, both from the executing behaviour
of the program and from interactions with the notation, the source code and associated environment.

In most professional programming environments, these two worlds, the world of notation (source
code) and of ‘performance’ (execution) are completely distinct. A common strategy for attempting to
tighten the feedback loop is to batch-simulate the behaviour of small sections of the code in close to
realtime, independent of the rest of the program. The Windows Presentation Foundation preview in
Visual Studio does this, as does the Sprite view in Scratch (Malan & Leitner 2007).

Feedback in Scratch

The Scratch programming environment from MIT (ibid.), is one of the latest in a series of attempts to
build educational programming environments for children, in which the main motivating element of
the environment is that children are able to create their own videogames. There have been many other
examples in the past of programming environments oriented toward videogame children, recently
including Alice (Pausch et al 1995), Robertson and Good's AdventureAuthor (2005), and Microsoft’s
Kodu3. Scratch was explicitly motivated by a metaphor of media construction as musical
improvisation, referring to the scratching techniques of turntable artists when they create new works
from existing media. Many of these systems motivate children by providing rich libraries of media,
artwork, and language primitives that can be rapidly composed into a satisfying result.

The feedback cycles in tools of this kind have two main effects. One is to maintain the level of
motivation, by rewarding the child either with a functional product, or at least with a believable
promise that a functional product is within reach. The other is to quickly correct faulty mental models
of the system behaviour, in order that misconceptions about programming do not become entrenched.
Both of these factors contribute to developing expertise. We believe that the same factors are likely to
apply in adult development of expertise, although in children both are more dramatic (children
generally have less patience, and are also more likely to acquire fundamental misconceptions).

A screenshot of the Scratch development environment can be seen in Figure 5. It shares the properties
of many simple programming IDEs, and is very similar in overall structure to other recent
instructional programming environments, such as Alice. It includes a) a live preview of the game
display 'stage'; b) a list of those objects ('sprites') that appear on the stage; c) a canvas on which the
behaviour of the sprite 'scripts' can be specified by assembling language primitives; and d) a
navigation interface for finding and selecting primitives.

Most significant to our argument is the effort that has been devoted in this kind of environment to
offering an experience in which the program is constantly 'running' (or using Tanimoto's term, 'live').
Any aspect of object behaviour can be evaluated at any time – whether a single language primitive or
a whole script – to preview the effect it will have on the stage. An executing loop can be edited while
it executes, and the next iteration of the loop will follow the new behaviour. All values can be
inspected or modified at any time. No doubt it has taken substantial engineering effort to allow this
much user freedom while maintaining a consistent execution state4.

3 http://research.microsoft.com/en-us/projects/kodu/
4 From personal experience, and based on reports from its increasingly wide use in UK schools, Scratch is very robust.

Church, et al. 7

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Figure 5 - The Scratch development environment

We find it interesting to reflect on the design principles that are apparent in this successful product.
There are two kinds of direct visual feedback – sprites on the stage can be dragged with the mouse,
and syntax elements can be moved around within the script window. However, both kinds of action
also have effects on system state as a result of maintaining the consistency between the internal state
of the execution engine and the direct manipulation interface. Dragging a sprite on the stage updates
the current state of that sprite (potentially overriding state that resulted from script execution), but
with the program continuing to run, so that it is possible to explore the effect of program execution
from alternative screen states. Even if program execution is halted, the current position of a sprite is
used as the default location for new operations added to the script – for example, allowing a character
movement to be specified simply by dragging the sprite to the desired location, then inserting a move-
to command in which the current location will have become the desired location.

These are examples of the close coupling between behaviour and notation that allow Scratch to
provide feedback at multiple levels, and to maintain motivation during the acquisition of expertise.

Another challenge for abstraction

The increasingly close coupling of behaviour and notation that makes Scratch successful is, as we
suggested earlier, part of a general progression of tools that work at the levels of the notation and the
domain towards increasing liveness. An example is the range of refactoring tools, which started out as
separate monolithic entities of the kind that many static analysis tools often are today, but have been
progressively merged into mainstream interaction.

However, herein lays an interesting challenge for the psychology of programming. In many music
production environments, a cumbersome visual metaphor fails to provide the kind of liveness
experienced in trackers, where notation and domain are separate, but offer rapid feedback cycles. The
abstraction manager/sub-device in an IDE constitutes an analogous obstacle. A common design
manoeuvre in Cognitive Dimensions is to respond to viscosity by introducing an abstraction and an
abstraction manager. However doing so typically encumbers the user interface and provides a slow
rate of interaction, albeit more powerful interaction. Whilst initially from an Attention Investment
(Blackwell 2002) point of view this may be a rational trade-off, we are suggesting that there is an

Church, et al. 8

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

experiential difference, notably in the ease of achieving flow, between a small number of abstraction
driven interactions and a large number of micro-interactions, as supported by (e.g. Resnick et al
2005). An interesting objective for programming usability is to achieve the same flow interaction, just
at the higher level of abstraction – or “high-level hacking”, as Thomas Green calls it (Green, personal
communications).

One step along this path is to use technological innovations to minimise the cost of every operation.
This is the approach the Data Canvas5 takes. This project uses extensive pre-computation and cluster
computing to achieve operations over statistical amounts of data at interactive speed, thus enabling the
user to view and manipulate a statistical profile of their data in real-time. This, we predict, will have
two effects:

1. It will increase the likelihood of the programmer achieving flow, by preventing disruptive
delays and mode switching (e.g. Data Canvas, like Scratch, contains no notion of a separate
mode for debugging)

2. It will allow the programmer to interact with emergent behaviours of their data through a
large number of very rapid micro-operations. This will help decrease the premature
commitment risk associated with abstraction over unknown data. (Church & Whitten 2009)

Sources of Feedback: Other Worlds
We have talked so far about feedback from the notation and the domain. However there are other
sources of feedback that are important to both the programmer and the musician. First we have hinted
above that there are analysis tools that do not form a strict layering of feedback but rather a graph.
These feedback arcs can be extended beyond the technical, into the social (the feedback to the
developer from the user in participatory design).

So the level of liveness of a technical ecosystem can be broken down into considering the properties
of each sub-device and operation. Previous attempts to extend the analytic purchase of Cognitive
Dimensions have struggled with the need to describe different notational 'levels' - structured
representations that contain the same information, and can potentially be translated from one to
another, but have different notational properties. The music analogy emphasises the ways in which the
user's experience constitutes a web of interconnections between artefactual, cognitive, social and
cultural structures. All of these can be represented digitally, and all offer different kinds of feedback
between the computer and a user. We suggest that making the same kind of description for
programming systems as for music systems may be a productive avenue for future work.

Conclusion
In this paper we have considered the liveness of a number of the interactive elements of musical
systems and IDEs. We have observed structural correspondences between the systems and drawn
analogies between the ways in which they influence their respective experiences of use. We discussed
the trend towards increasing liveness in such systems, considering Scratch in detail. We introduced a
diagrammatic model of the different places in which tightly coupled feedback might occur, and the
way that this can be used to explain different kinds of usability relationship between notations and
experienced domains. We concluded with a suggestion as to how this analysis may fix a difficulty
with the Cognitive Dimensions’ notion of levels. We believe that considering different kinds of
feedback loop within musical systems provides new and interesting possibilities for the analytical
description of the experience of programming languages.

5 www.riversofdata.com

Church, et al. 9

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

References
Blackwell, A.F. (2001). Pictorial representation and metaphor in visual language design. J. Visual

Lang. Comput. 12, 3, 223--252.

Blackwell, A.F. (2002). First steps in programming: A rationale for Attention Investment models. In
Proceedings of the IEEE Symposia on Human-Centric Computing Languages and Environments,
pp. 2-10.

Blackwell, A.F. (2006). The reification of metaphor as a design tool. ACM Transactions on
Computer-Human Interaction (TOCHI), 13(4), 490-530.

Blackwell (2009) Human-Computer Interaction (undergraduate course notes)
http://www.cl.cam.ac.uk/teaching/0910/HCI/HCI2009.pdf

Carroll, J. M, Mazur, S. A. (1986) LisaLearning, Computer, v.19 n.11, p.35-49, Nov.

Church, L. and Whitten, A. (2009). Generative usability: security and user centered design beyond the
appliance. In Proceedings of the 2009 Workshop on New Security Paradigms Workshop (Oxford,
United Kingdom, September 08 - 11, 2009). NSPW '09. ACM, New York, NY, 51-58. DOI=
http://doi.acm.org/10.1145/1719030.1719038

Church, L., Anderson, J., Bonneau, J., and Stajano, F. (2009). Privacy stories: confidence in privacy
behaviors through end user programming. In Proceedings of the 5th Symposium on Usable
Privacy and Security (Mountain View, California, July 15 - 17, 2009). SOUPS '09. ACM, New
York, NY, 1-1. DOI= http://doi.acm.org/10.1145/1572532.1572559

Csikszentmihalyi, M. 1990. Flow: The Psychology of Optimal Experience. New York: Harper
Perennial.

van Dam, A. 1997. “Post-WIMP User-Interfaces”, in Communications of the ACM, 40(2):63-67.
Association of Computing Machinery.

Leman, M. 2008. Embodied Music Cognition and Mediation Techology. Cambridge, MA: MIT Press.

MacDonald, R. 2007. “Trackers!”, in Computer Music, 113:27-35. Bath, UK: Future Publishing, ltd.

Malan, D. J. and Leitner, H. H. 2007. Scratch for budding computer scientists. SIGCSE Bull. 39, 1
(Mar. 2007), 223-227. DOI= http://doi.acm.org/10.1145/1227504.1227388

Microsoft, 2009. User Experience and Interaction Guidelines for Windows 7 and Windows Vista.
Available from: http://msdn.microsoft.com/en-us/library/aa511258.aspx

Nash, C. 2004. VSTrack: Tracking Software for VST Hosts. MPhil Thesis. Trinity College, Available
from: http://vstrack.nashnet.co.uk.

Nelson, G. 2006. Inform 7. Available from: http://inform7.com/

Nelson, T.H. 1990. The right way to think about software design. In The Art of Human-Computer
Interface Design. B. Laurel, ed. Addison Wesley, Reading, MA. 235-243.

Nielsen, J. 1993. Usability Engineering. Cambridge, MA: AP Professional.

Norman, D.A. 1993. Things That Make Us Smart. New York: Basic Books.

Pausch, R., Burnette, T. Capeheart, A. Conway, M. Cosgrove, D. DeLine R., Durbin, J. Gossweiler,
R., Jeff S. K. Alice: Rapid Prototyping System for Virtual Reality White, IEEE Computer
Graphics and Applications, May 1995

Preece, J., Sharp, H. Rogers Y. (2007) Interaction Design: Beyond human-computer interaction (2nd
Edition).

Resnick, M., Myers, B., Nakakoji, K., Shneiderman, B., Pausch, R., Selker, T., and Eisenberg, M.
2005. NSF Workshop Report on Creativity Support Tools, Available: Workshop on Creativity
Support Tools, http://www.cs.umd.edu/hcil/CST/ [Accessed: 13 Apr. 2010].

Church, et al. 10

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Robertson, J. and Good, J. (2005). Adventure Author: An Authoring Tool for 3D Virtual Reality
Story Construction. In theProceedings of the AIED-05 Workshop on Narrative Learning
Environments, pp. 63-69.

Shneiderman, B. 1983. “Direct Manipulation: A Step Beyond Programming Languages”, in
Computer, August 1983:57-69, Washington, DC: IEEE Computer Society.

Sloboda, J. 1985. The Musical Mind. Oxford, UK: Oxford Science Publications.

Tanimoto S.L. 1990. VIVA: A Visual Language for Image Processing. Journal of Visual Languages
and Computing 1(2), 127-139.

Tanimoto S.L. 2003 Programming in a data factory. Proc. IEEE Symposium on Human Centric
Computing Languages and Environments (HCC'03), pp.100-107.

Walker, M. 1999. “Mind the Gap: Dealing with Computer Audio Latency”, in Sound On Sound, April
1999. Cambridge, UK: SOS Publications Group.

Church, et al. 11

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Usability requirements for interaction-oriented development tools

Catherine Letondal, Stéphane Chatty, W. Greg Phillips1, Fabien André, and
Stéphane Conversy

Université de Toulouse - ENAC 1Royal Military College of Canada
7 avenue Edouard Belin, 31400 Toulouse, France Kingston, Ontario, Canada K7K 7B4

firstname.name@enac.fr greg.phillips@rmc.ca

Abstract. Building interactive software is a notoriously complex task, for which many program-
ming tools have been proposed over the years. Although the research community has sporadically
identified usability requirements for such tools, tool proponents rarely document their design pro-
cesses and there is no established reference for comparing tools with requirements. Furthermore,
the design of most tools is strongly influenced by the design of their underlying general purpose
programming languages. These in turn were designed from their own set of little-documented re-
quirements, which adds to the confusion. In this paper, we provide a review and classification of the
requirements and properties expected of interactive development tools. We review how designers of
APIs and toolkits for interaction-oriented systems set the usability requirements for the program-
ming interface of their systems. We relate our analysis to other studies in related domains such as
end-user programming, natural programming, and teaching.

1 Introduction

Throughout the last several decades, programming interactive software has consistently been
documented as complex and costly [59]. Dozens of tools, languages, architecture patterns and
formal models have been proposed to address aspects of this complexity. However, these have
seldom had a significant or lasting impact on programming practices. Most interactive software
is still written in languages whose evolution was driven by other forces, and commercial user
interface programming frameworks make little use of principles deriving from research – for
example, few frameworks include constraints, data-flow, or standardised architecture patterns.
In an era when most computers are used for interaction, it is striking that programming languages
are still based on requirements derived from computation and that user interface programming
still comes as an afterthought in language design.

Several reasons can be suggested for this state of affairs. First, user interfaces are a moving
target: for example, principles proposed for programming command languages became partly
obsolete with the advent of direct manipulation [60]. It is also possible that researchers have
proposed solutions that differ too radically from industry practices. For instance, interpreted
languages are thought to facilitate iterative design, but their use conflicts with intellectual prop-
erty protection. However, it may be simply that the proposed designs have failed to properly
capture and address the domain’s true requirements.

As far back as the early 1970s, Weinberg suggested that we analyse programming tools in
terms of their usability, proposed a simple framework for analysing the corresponding require-
ments, and observed that language designers rarely document the requirements they address [95].
Since then little progress has been made on the articulation of explicit usability requirements
by designers, neither for mainstream programming languages nor for interactive software tools.
Therefore, when addressing particular requirements, researchers may have produced solutions
that ignore or even conflict with other important requirements.

We wish to explore the problem of interactive software tools from this angle. More specifically,
we wish to explore the relationship between the usability requirements of programming tools
for two classes of software: interaction-oriented software and computation-oriented software.
Do they differ, complement, or conflict? Is one a subclass of the other? How can one combine
requirements, and thus solutions? To carry out this investigation, we need a framework for
comparing requirements. Development of such a framework is the principal goal of this article.

Letondal, et al. 12

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

To create the framework, we begin with a top-down approach in which we analyse the
nature of interaction-oriented software and its development, in order to arrive at an initial
understanding of the relationship between interactive software and programming languages. We
use this understanding to propose a requirement analysis framework that, hopefully, will help us
understand where requirements meet or conflict. We then survey more than 50 research works on
tools for interactive software, using a bottom-up approach to refine the framework and classify
these works according to the usability requirements they appear to address. In the future we plan
to analyse and classify programming languages in the same framework, and to use convergences
and conflicts to inform the design of future programming languages and tools for interactive
systems.

2 The nature of interaction-oriented programming

2.1 A subset of general-purpose programming?

Is programming interaction-oriented software a subset of general-purpose programming? An-
swering this question is important: if the answer is “yes”, then the requirements of interactive
software can be met through general-purpose programming language design. However, if the re-
quirements of interactive software in some sense exceed those of general-purpose software, either
as an intersecting set or a superset, then a different approach is required. (Spoiler: Wegner has
argued convincingly that interaction is larger than computation [93]!)

The designers of programming languages more or less explicitly take this stance: each lan-
guage is designed from a list of concepts that are intended to match all core requirements of
programmers, and software libraries based on the language are supposed to address all special-
isations of the programming activity. This has been a tremendously successful approach, even
though the existence of a superset of all programming activities is only supported by the formal
argument of Turing completeness.

With the notable exception of Smalltalk [48], most work on interactive systems has relied on
the implicit hypothesis that there is such a thing as a general programming activity, supported
by programming languages, and that programming interactive systems is a specialisation of it.

However, given the difficulties observed in designing toolkits and frameworks for interactive
systems, this implicit hypothesis needs to be reassessed.

2.2 Commonalities

All programming activities, including that of interactive software, share a number of features.
They are intellectual activities aimed at manipulating abstract objects, and as such are similar
to mathematics, physics and similar domains. This induces requirements such as supporting the
limits of human cognition – for instance in terms of working memory and visual information
processing. More specifically, programming activities are creative activities aimed at building
complex, dynamic, structured objects: sequences of nested actions, conditions and reactions.
This induces specific requirements, some related to the links between our cognitive mechanisms
and human languages, some related to our perception-action loop. And, of course, most pro-
gramming activities sooner or later become collective activities with issues such as reuse and
traceability; this invokes complex processes, and the corresponding requirements gave birth to
software engineering. It seems evident that many software engineering issues are shared by in-
teractive software.

These common features explain why user interface programmers find it legitimate to use
generic programming language and tools, even though their experience degrades in some situa-
tions. The existence of common features also explains why tool designers, aiming at economy of
design and at reaching the largest possible user base, have generally designed their tools on top
of existing languages. These commonalities even explain why some graphical designers find it
reasonable go beyond their traditional tasks and write interactive programs or components [61].

Letondal, et al. 13

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

2.3 Discrepancies

So, in some ways, interactive software looks similar to other software. But in our experience
with interactive software toolkits we often find ourselves asking “why?” Why do toolkits for
interaction offer not only specialised objects such as graphics or interactors but also unique
component structuring mechanisms [58] and distinct control flow mechanisms like events or
data-flow instead of function calls [18]? In these ways they act on languages more as “corrective
patches” than as specialisations, and in some cases we suspect the inconsistencies arising from
these patches are actively harmful.

The discrepancies we see between interactive and non-interactive software are in the structure
of code itself and in the nature of development processes [18]:

Contravariance in reuse and control. The control flow in interactive systems often goes
from the outside to the main program. The code that transfers control (input drivers, inter-
actors) predates the code that receives control (the application). This is the opposite of the
situation that function calls were made for, thus requiring events or data-flow.

Locality of state. In interactive systems the complexity is in behaviours, that is in the change
of state of objects, and not in computations. Solutions that focus on making computations as
local as possible in the code tend to be counter-productive, hence the use of state machines.

Concurrency. More and more, interactive systems involve concurrent processes such as ani-
mation. Even when there is no such concurrency, applying software engineering techniques
to interactive systems and splitting their code into components turns programmers into as-
semblers of concurrent processes: interactive components run concurrently. User interface
frameworks provide this concurrency in a more or less disguised way.

Different reuse patterns. Very diverse stakeholders are involved in producing interactive ap-
plications, from programmers to graphic designers and even to end users. Many reuse sce-
narios for interaction are not well-supported by encapsulation mechanisms proposed by pro-
gramming languages. For instance, an end user may want to modify the size of a font in a
button; however, this might be considered an implementation detail to be hidden from the
programmer.

3 Requirements for interaction-oriented development

The previous section provided a top-down review of the nature of interaction-oriented program-
ming along with the large-grain commonalities and discrepancies between it and computation-
oriented programming. Our ultimate intent is to achieve a fine-grained understanding of the same
material. The approach we have chosen is to analyse of the requirements for each more finely,
in order to understand where computation-oriented programming languages and interaction-
oriented tools address similar or compatible requirements and where they address incompatible
ones. For this, we enrich Weinberg’s analysis framework [95] in two ways. First, we base our
analysis on the following sets of activities:

– intellectual activities, where programming resides with mathematics and others;
– various sets of concept manipulation activities, because to build objects you first need to

understand the nature of your building blocks and of the objects you want to build;
– construction activities, which include manipulation and evaluation; and
– collaboration activities and more generally production processes.

Second, in the following sections we consider more than fifty tools or research works and use
them to refine and populate the resulting framework.

In the future, we plan to add programming language research to this analysis, in the hope
that this will bring insight as to how solutions from traditional programming language design
can be combined with techniques from interactive software to build better tools and languages
for both.

Letondal, et al. 14

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

3.1 A human intellectual activity

As an intellectual activity, building interactive systems is similar to other activities where con-
ceptualizing, abstracting, reasoning, inducing and understanding are involved. In this sense,
mathematics, logic, physics and engineering are disciplines that share common aspects with
programming. Because human intellectual capacity is inherently limited, intellectual usability
normally requires minimising complexity. In the case of interactive systems, targets for mini-
mization include information complexity, access complexity and unpredictability.

Minimising information complexity. Some HCI toolkit designers advocate reducing the
diversity of manipulated objects (graphical objects, input devices, behaviours, etc.) to the fewest
general “atoms” that can be used to describe a whole system.

Few constructs. Occam’s razor – entities should not be multiplied beyond necessity – is often
cited as general rule for design. Smalltalk, which is arguably an interaction-oriented program-
ming language, has only a few constructs such as classes, instances, and messages (Kay claims
inspiration from mathematics and biology [48]). In interaction toolkits, Ubit builds a “molecular
architecture” [52] from small-size components called brickgets enable to definition of any kind
of user interface element.

Homogeneity. Homogeneity, sometimes referred to as “consistency” or “uniformity,” is another
source of simplicity. According to Weinberg [95], non-homogeneous environments discourage
exploration.

Homogeneity is found in at least two dimensions, which we call horizontal and vertical.
Horizontal homogeneity occurs where the same construct applies across a range of situations. For
example in Sassafras the same construct is used for input/output, inter-process communication,
and function calls [42]. In Flapjax, user input events and network events are described by a
single abstraction, the event stream [57].

In vertical homogeneity (also known as “fractality” or “layering”) the same structure recur-
sively applies at different levels of composition. For example, Kay describes objects in Smalltalk
as recursively incorporating the structure of the entire computer [48]. Brickgets in Ubit can
be composed to form more complex brickgets in a hierarchical scene-graph [52]. In DIWA, the
recursive decomposition of “user interface objects” provides a frame for locality and isolation [85].

Minimising access complexity. Because software is multi-dimensional, the representation of
certain concerns can sometimes be spread across the system description, making them difficult
to understand. This can be addressed by using structures that gather and bundle together re-
lated representations (increasing locality) or by removing extraneous representations (increasing
legibility and conciseness).

Increasing locality. Locality means that the user can find elements of interest in a single place
and the need for locality explains certain design choices in HCI toolkits. For instance, according
to Myers

OOP [object-oriented programming] is especially natural for user interface programming since the com-
ponents of user interfaces (buttons, sliders, etc) are manifested as visible objects with their own state
(which corresponds to instance variables) and their own operations (which correspond to methods). [60]

This observation forms part of the original design rationale for Smalltalk [48]. It also helps
explain why object-oriented approaches seem more popular for interaction toolkits than func-
tional approaches, in which single behaviours are typically spread across many functions. With
non-local code, the user must replace visualization with interaction and memory: switching be-
tween files, searching for the related code, and mentally assembling multiple chunk of codes in
order to understand it.

Letondal, et al. 15

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Other programming approaches popular in interaction toolkits also provide support for lo-
cality. Finite State Machines (e.g., SwingStates [2]) allow control aspects of interactive systems
to be localized, contrasting with the “spaghetti-code” [62] inherent in the function-oriented pro-
gramming paradigm [18]. Reactive programming (Esterel [20]), process-based user interfaces
languages (Pike’s window system [79]), data-flow (Ituikit [16] and Icon [31]), and functional
reactive programming (Arrowized FRP [69]) not only avoid the need to cope with a main loop,
but also enable the user to better visualize and understand the sequence of transforms from
input to display.

Other examples of strong locality support include MDPC [21] in which picking (identification
of the graphical object pointed to in the interface) is insulated in a single place, and Boxer [28],
where each interactive feature is isolated in its own “box”.

Increasing legibility and conciseness. In our context, legibility refers to the degree to which a
developer is able to read and understand code in a reasonable time. Lecolinet suggests that

GUI source code tends to be verbose and hard to read. Informative data is often hidden in a large amount
of “syntactic sugar” that conveys little information but is necessary for proper compilation. This lack of
conciseness tends to make programs harder to understand and to maintain. [52]

As used by Lecolinet, “conciseness” is a property that refers to the length and number of
constructs needed to express the semantics implemented by a chunk of code. It is (inversely)
related to the property of diffuseness in the Cognitive Dimensions Framework [37]. Cordy ar-
gues that conciseness is an important feature for interaction languages based on his experience
designing Turing [22] and Kay makes a similar case in the context of Smalltalk [48].

The legibility of semantically-necessary code can be hindered by the presence of other code
required for syntactic compliance. Removing this code makes the result more concise and im-
proves legibility. This is the approach taken in Ubit, whose syntax resembles a formal specifica-
tion more than a classic programming language [52]. Similarly, the Event Response Language in
Sassafras was designed specifically to be more compact than an equivalent recursive transition
network-based language [42].

Minimising unpredictability. Unpredictability sometimes arises when automatic algorithms
are used to implement system decisions, and where either the rules by which these algorithms
operate are complex or opaque, or the number of interdependent entities managed by the algo-
rithms become large.

Many authors, including Winograd, argue that programming languages and toolkits should
be primarily declarative [97]. In interaction-oriented systems an argument in favour of such
algorithms is that they allow for concise declaration and automatic management of dependencies,
which reduces the information and access complexity [52]. Toolkits that provide constructs for
defining behaviours, graphical objects, or transformations without any control construct are
sometimes described as declarative, at last in part. Many interaction-oriented systems are more
or less declarative in this sense, including Garnet [58], Amulet [65], PAC-Amodeus [68], Ubit [52],
and MDPC [21].

Myers notes that constraint-based systems, various flavours of model-based systems, and even
simple layout algorithms are examples where the declarative aspect of the program should relieve
the programmer from implementation details. However, in practice programmers have difficulty
understanding declarative mechanisms well enough to to align their needs to the features that
are provided [60]. Kay makes a similar observation regarding difficulties observed in skilled
programmers attempting to declaratively specify an algorithm for sorting numbers into odd and
even sets [48].

Letondal, et al. 16

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

3.2 A concept manipulation activity

Like many activities, programming involves the use of concepts for understanding situations and
possible actions as well as for defining desired results. A classical usability requirement is that
tools present a consistent view of these concepts. Each domain has its own concepts, and this is
one place where it appears that computing-oriented and interaction-oriented programming show
interesting differences.

Graphics. Graphics has always been a major area within user interface programming, and
many requirements for tools stem from the graphical nature of most user interfaces.

Historically, managing graphics has been focused on hardware and rendering processes. This
started for instance with tracers: picking a pen, moving it, putting it on paper, and so on.
These concepts were ubiquitous in early standards such as GKS [10]. The importance of the
algorithmic approach was enforced by the direct rendering mode used in early raster displays,
then by the picking algorithms used to determine which graphical objects are designated. Even
today, graphics algorithms play an important role in interaction-oriented programming because
developers are still required to deal with hardware limitations and to optimize their code.

A different point of view holds that managing graphics is mainly the manipulation of graph-
ical entities: shapes, layers, visual attributes, etc. The approach was probably first taken in
graphics editors and 3D programming tools with the introduction of retained rendering; later,
the same concept came to user interface tools. This is an appealing perspective for interaction-
based systems since it accords well with the fact that graphical designers, and not just pro-
grammers, are involved in the production of user interfaces. Tool designers have then come up
with various solutions for structuring and manipulating graphical scenes, which are intended to
simplify the development of structured graphics. These range from tree data structures (e.g.,
Piccolo [7]), to directed acyclic graphs (SVG [9, 17]), to tag-based structures (Tk [2, 74]) Other
toolkits are specialized for a particular type of interactive software such as Prefuse [41], or the
InfoVis toolkit [46]. In these tools simplicity is balanced with efficiency, since graphical scenes
can contain large numbers of elements.

While most toolkits propose a graphics API on top of a programming language, there are
some languages developed specifically to describe graphics. Baudel proposes a language that
is able to describe a large class of linear visualizations such as scatterplots and treemaps [5].
The language is said to be “compact” and “canonical”, in the sense that all text in a program
is dedicated to graphics description and the textual description cannot be reduced further. The
language uses a data-flow programming style, similar to Processing [33]. Wilkinson designed
a grammar and a textual language to describe graphics, together with nVizn, a toolkit based
on this language [96]. Protovis is another language dedicated to graphics description which,
according to the authors, lowers the entry barriers to creating new visualizations [12].

Runtime adaptation. The execution environment of interactive programs can vary in terms of
input and output devices available: mouse, keyboard, trackball, touchscreen, speech input, small
or large display, etc. Programmers therefore need ways of describing what devices they wish to
use and how. This was first recognized for input devices [42, 60, 84], probably because they have
varied more in the past and because their structure cannot always be abstracted: a mouse has
buttons, for instance. This need for describing devices includes numerous low-level pragmatic
aspects, so the programmer of an interactive system must sometimes turn into a device driver
programmer [18].

With these considerations comes the question of allowing programmers to choose between
device-dependent and device-independent architectures. The Seeheim architecture of the mid-
1980s aims to separate interaction from program logic, which at the time allowed the adaptation
from text to graphical interfaces [77]. PAC-Amodeus also offers concepts to adapt to various
interaction devices [68].

Letondal, et al. 17

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

However, while these systems enable the programmer to abstract input and address the
moving target issue as described by Myers [60], some tools may deprive programmers from
the benefits of new technologies [42]. Nonetheless, the need to separate the description of the
application from the description of the environment led to a series of works on adaptability
or plasticity. This converged with the introduction of model-driven user interface development,
where the user task and the environment are described with different language [90, 91].

Interaction modalities. Programmers of interactive software need to produce code that al-
lows humans to interact with the machine. This potentially covers a huge range of interaction
modalities and languages, from low-level perception-action loops to natural spoken language. In
the absence of a grand unified theory of interaction this means many different and potentially
mutually incompatible sets of concepts, from high level logic to physical models. This explains
why various proposals, more or less distant from the concepts of the Turing machine, have been
made for describing different modalities or concerns.

State representation. Various interaction modalities resemble network protocols in that the
state of each party and its variations capture the nature of the interaction. This is true of
command line dialogue, for which finite state machines were proposed early [67]. This also
holds for individual widgets (buttons, menus, etc) for which state machines were reused,
then improved with Statecharts [39]. State machines have also been proposed for direct
manipulation and multimodal interfaces [17, 58]. More recently, they became so ubiquitous
that they became a central part of UML diagrams, and adapted for mainstream languages [2].

Connections between properties. Some parts of direct manipulation, and more generally
low level perception-action coupling, are best described as connections between properties
of objects. This has led researchers to propose data-flow as a control mechanism [16, 19, 31,
58]. Some also saw a link with data iteration and proposed to combine this with functional
programming.

Time. Animation and some types of time-sensitive input, including multimodal interaction [68],
often happen in parallel and require a good representation of time [84, 61]. Specific solutions
have been proposed for this, including the use of temporal logic.

Algorithms. Some specific interaction modalities, singularly gesture recognition, rely on com-
putation and algorithms. These fit well in the functional paradigm, less in the more reactive
ones. Some have proposed that incertitude in recognition be treated with mechanisms similar
to errors and exceptions in imperative languages.

Things become more complex with modern user interfaces that combine all of the above
modalities: the requirements add up but none of the proposed solutions satisfy all requirements.
Programmers have to choose one solution and deal with the resulting complexity. Several ap-
proaches have been proposed to address this issue. One is the introduction of formalisms meant
to cover the whole range of possible interactions. See Harrison and Duke [40] and Brun and
Beaudouin-Lafon [14] for reviews of this approach.

Generally, there is a growing understanding that reactive programming [42, 47] and more
generally parallel programming are more suited to interaction-oriented programming than the
traditional sequential programming used for computations. This realization started with the
debate on internal and external control [23] and reached the state where a growing number of
researchers agree with Wegner that “interaction is more powerful than algorithms” [93], which
means that computing is a special case of interaction and not the opposite.

Distribution. Modern interactive systems frequently include distributed users [3] and external
and potentially non-anticipated interaction devices [4]. This normally necessitates a distributed
system implementation, which places additional burdens on developers and the effects of which
cannot be completely hidden from end users.

Letondal, et al. 18

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Important requirements for interaction-oriented distribution include entity naming [56] and
concurrency control and consistency maintenance for shared and replicated artifacts [78]. Entity
and device discovery and subscription features to allow dynamic adaptation to changing external
environments and user needs are also required [4].

3.3 A constructive activity

The activity of constructing an interactive system can be described using Norman’s model of
action [71]. This provides us with a frame for addressing gulfs and discontinuities in programming
tasks: how do the tools make it easier for the programmer to tell what actions are possible,
to determine mappings between intention and action, to perform the action (e.g., write the
code), to interactively specify the graphical user interface, and to determine the mapping from
system state to interpretation? The usability requirements follow two main lines: supporting
code production, thus reducing the gulf of execution, and how to helping programmers match
code and execution, in order to minimize the gulf of evaluation. In this section we focus on
programming as an individual activity; we address collaborative development in section 3.4.

Supporting code production. Code production can be supported by allowing easy imitation
of prior systems, by supporting exploration of the potential solution space, and by automating
the generation of code where appropriate.

Imitation. Programmers seldom start new programs from an empty page and without prior
domain knowledge. Rather, they will often take some code they have already programmed for
a similar task and modify it for the new one, or they will search for similar programs or useful
program fragments on the Internet and imitate them [70]. Brandt describes this as “opportunistic
programming” where programmers perform web searches for “just-in-time learning by doing” or
“web auto-completions” when they do not recall the name of an API function [13]. A study
of professional developers working with Alice concluded that interaction-oriented programmers
need graphical copy-and-paste and histories for each graphical object to enable this type of
imitation [50].

Programmers also use prior knowledge at the level of architectures, rules, design patterns
and programming plans, based on existing documentation, their own experience as a program-
mer [26], and on discussions with colleagues [33]. High-level user interface patterns such as those
documented by Schummer [83] and Borchers [11] can be used, as can the more technical pat-
terns from the famous “Gang of Four” book [34], which contains numerous examples drawn from
graphical toolkits like ET++ [94]: composite for scene graphs, abstract factory for supporting
various graphical standards, command for undo facilities, etc. Imitation is not precisely reuse
(see section 3.4): software reuse means referencing other elements, not copying them.

Exploration. Translating intentions into actions also requires support for exploratory manip-
ulation of possible solutions. Weinberg argues that exploration of both problem and solution
often occur at the same time [95]. This applies fully to interactive systems, where the solution
is normally difficult to define without several iterations [59]. Exploration is fostered by homoge-
neous environments (see section 3.1) and by being able to combine elements, which is the case
in Ubit [52] where “brickgets” and behaviors can be combined to construct new interaction tech-
niques (multiple pointers, multiple remote displays, semantic zooming, multi-scale, transparency,
and control-menus). The possibility of exploring also assumes progressiveness: for example, Sty-
los et al. the authors demonstrate that API providing constructors without parameters are easier
to explore [89].

Prototype-based languages are often advocated for a more exploratory development of the
user interface since changes in slots (such as a graphical aspect) can be dynamically propagated
to the whole instances at run-times [63]. Noble compares using prototype-based languages to

Letondal, et al. 19

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

using a document editor, where copying an existing document is more direct and easy to grasp
than using a template [70]. The developers of Apple’s Newton also advocate for using prototype-
based languages:

The needs of the user-interface side of the program are different. In contrast to the model, the user
interface usually consists of relatively few objects, most of which appear only once in a given context,
and most of which are unique in small but significant ways. [. . .] It is easier to reason about and control
the interactions of individual objects—the usual requirement for UI programming—when the objects
themselves are being programmed directly. [86]

Exploration also benefits from introspection mechanisms that help the programmer under-
stand or access the underlying structure or manipulate the source code. ET++ provide meta-
classes for building inspectors [94], InfoVis enables a deep access in the toolkit [46], and HGraph
provides mechanisms for the programmer to make sense of the running system [35]. Hudson
advocates for method interposition and representation of the code suited for manipulation by
programs (e.g., as a tree), so the syntax is only an environmental matter [44].

Automatic programming. Some tools relieve the programmer from coding parts of the interactive
system. These include interface builders like Garnet [58], or more recently tools such as Apple’s
Interface Builder, Qt Designer, Eclipse, Tk Komodo, and Expression Blend from Microsoft; as
well as model-based interface generators such as Mickey [72] and HUMANOID [90]. In the same
vein, programming-by-demonstration techniques enable the user as a programmer, to program
by showing the sequence of actions to the system [24, 54]. This of course raises the issue of
how to integrate automatic code generation and more conventional textual coding into the same
environment.

Matching code and execution. Once code has been developed, it must be verified against
the developers’ original intent, validated against the users’ needs, and modified as necessary.

Evaluation. Myers notes the low testability of interaction-oriented software; classical regression
testing is adapted to computation-oriented programs [59]. In interactive software, it is not clear
whether the evaluation steps (perception, interpretation, and comparison to the goal) should
be performed on the program as a specification, by verification tools, or on the program as a
dynamic artifact. Another difficulty is that the “result” of an interactive systems is not clear-cut.
Interaction can lead to several potential solutions that need to be compared, but Myers also
observes, while studying how designers specify interactive systems, that it is difficult to compare
explored solutions, particularly for descriptions of behaviour [61]. One school of thought considers
Model Driven Engineering as a means of avoiding such concerns by performing tests on models
and relying on model refinement to working code [76]; however, the effectiveness of this approach
is not yet proven.

Debugging. Authors observe how difficult it is to debug interactive software. In some cases, the
tools that enable the perception of the program disturb its flow of control and thus its correct
behaviour [45]. In others, the perceptible result of the program is exceptionally difficult to relate
to the code that produces it [55].

Tools for visualizing program execution have been proposed to address some aspects of this
issue. Debugging lenses provide access to the state of the system by enabling the programmer to
see information about the attributes of interface elements using movable floating windows [45].
ZStep offers mechanisms for understanding the behaviour of the program by stepping through
graphical changes in the user interface, as opposed to stepping through lines of code [92]. The
Whyline allows developers to perceive and interpret the state of the system in terms of the actions
that produced it: which statement has set which attribute, why does this window encounter this
change, and so on [45]. SwingStates provides a visual depiction of its finite state machines’
dynamics, allowing them to be related to interface changes [2].

Letondal, et al. 20

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Interactive coding. Of course, constructing a program does not involve sequential execution and
evaluation steps, as might be implied by the previous two sections [71]. During the problem-
solving process, the programmer plays with potential solutions, conducting a “conversation with
the medium” as described by DiSessa [28, 29]. Progression of the work can be helped by giving
an appropriate continuous feedback [71]. The gap between the representation of actions and the
representations of results can be reduced by tools that enable a continuous flow through the
successive actions [33]. Ideally, programming and debugging should be tightly integrated, either
by designing development environments with the dual perspective in mind [8], or by having the
two occur within the same representation [92, 45]. Being able to perform execution and action
within the same medium enables a progressive evaluation of the program being constructed [37].
This is the general idea behind programming-in-the-user-interface (PITUI), in which the user
can switch to a programming mode by using affordances in the tool to modify its behaviour [27,
29, 30, 32, 35].

3.4 A process-based activity

The requirements described so far address aspects of the objective expressivity of tools and
languages with respect to to the concepts to be described, and the subjective expressivity of
the construction of software pieces. Building interactive software requires support for processes
where software is not only produced, but also managed over time, either individually or as
collective processes including sharing, reuse and communication.

Managing the life cycle. Specific requirements of interactive systems design led to the advent
of participative (user in-the-loop) iterative development processes [59]. A number of tools aim to
shorten the iteration cycle, particularly those dedicated to prototyping, beginning with SILK [51]
and culminating in Microsoft Expression Sketchflow.

Implementing an interactive system requires a choice of languages, toolkits, and design en-
vironment. This choice is guided by the needs discussed throughout this article, some of them
closely related to life cycle. For instance, developing on top of a portable language or platform
and extending it through a library is a means to reduce set-up cost of development tools. This can
be implicitly targeted by tool designers, as in SwingStates’ addition of state machines to Java [2].
It can also be addressed explicitly, for example in web browser-based tools like Balsamiq [88]
and the Processing IDE HasCanvas [73].

Managing reuse and knowledge capitalization. Reuse is a major concern in software
engineering. Its claimed benefits include improved productivity, correctness, efficiency and even
safety, since a widely reused solution is likely to benefit from broad testing and maintenance.
Reuse can be can be opportunistic or planned and can be seen as a concrete subset of knowledge
capitalization.

In interaction-oriented system design, knowledge capitalization can be applied at different
levels. At the code and architecture level, some pre-cut lines have been identified. The best known
are splitting interaction from application code [23] and abstracting from input devices. This
latter is a mainstay of interaction-oriented toolkits, which offer widgets to attach to application
code without the requirement to address low-level input device management. In addition, these
libraries contribute to the homogeneity of the final interface. However, as argued by Chatty,
offering pre-defined “Lego bricks” to interface developers is not enough [18]. As innovation plays
an important role in interactive system design, developers will want to build their own bricks or
bypass abstraction layers to allow for, e.g., working at the driver level to support a novel input
device. Tools can assist developers to address these requirements in two ways: elementary bricks
can be assembled into larger ones with the same properties; and homogeneous component APIs

Letondal, et al. 21

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

help designers to build their own. For reuse to be effective, it is also necessary that development
environments support and encourage the creation of reusable artifacts.

In addition to code and architecture concerns, the interactive system domain is rich in mod-
els and code design patterns that provide elements of solutions for designers [2, 9, 31, 39, 6]. For
example, MVC is a design pattern for code that aims to improve modularity by supporting
separation of concerns between input, output, and represented state [80]. MDPC improves mod-
ularity by distinguishing the display view from the picking view [21]. Vigo is a pattern that
helps implementing interactive systems based on instrumental interaction [49, 6]. Used this way,
models and code design patterns allow knowledge capitalization and support best practices. Ad-
ditionally, models provide formalism and semantics, and can be instrumented, or turned into a
libraries.

A higher level of reuse involves creating guidelines or interaction patterns by matching com-
mon problems to known solutions [11, 83]. Codification of patterns and architectures also answers
a need for shared knowledge to permit communication between team members.

Managing collective development The multiplication of roles in interaction design and
development brings new problems in managing and syncing teams working on different tools
and objects of interest.

Text-based revision control systems pioneered in early 1970s are widely used and have proven
efficient for synchronizing the work of large development teams [81]. Unfortunately, to the best of
our knowledge there are no tools of the same maturity for dealing with graphics. Some graphics,
particularly vector-based graphics with textual representations like SVG, can be handled by code
revision systems; however, interpreting change history for such files is error-prone and tedious.

Iterative processes also reinforce the need for tools such as sandboxes and branching, to free
creativity and safely extend the design space, along with a convenient way for combining such
heterogeneous artifacts as code, mock-up drawings and gestural grammars. Some propose a glue
in the form of a middleware [15]; others answer this need by providing a common framework
for multidisciplinary teams like IntuiKit [17] and Microsoft WPF/XAML. Ideally, each member
of the development team would be presented with a role-appropriate representation of each
development artifact [18].

4 Related work

There have been a number of studies of programming interfaces in areas where the difficulty
of programming enforces the need for a careful design. Approaches vary by the targeted users
(professional programmers, end-user programmers, novices), the types of tools studied (pro-
gramming languages or APIs, generic or interaction-oriented tools), and the viewpoint taken
(usability study, language or API design, survey).

Novice and End-User Programming. Some of the most prominent early studies of human aspects
of programming are by Weinberg [95], Hoc et al. [43] and Soloway and Spohrer [87]. These books
primarily address the psychology of novice programmers, focusing on the cognitive difficulties and
educational aspects. Weinberg also describes the psycho-sociological aspects of programming [95].
The field of end-user programming is very concerned with usability issues and the design of
tools and languages for unsophisticated users. Significant work in this area includes Cypher [24]
and Lieberman [53, 54]. Our study targets multi-disciplinary teams which may include both
professional programmers and end-user programmers such as designers.

Usability studies. Several studies have addressed the usability of languages and toolkits, in-
cluding those of Myers [64] and Agarwal [1], the latter reporting on the usability of object-
oriented representations. Myers’ group has an ongoing project, under the name Natural Pro-

Letondal, et al. 22

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

gramming (www.cs.cmu.edu/~NatProg/) which investigates how to design more usable pro-
gramming languages and systems [66, 75]. There is a SIGCHI group [25] and related web site
(apiusability.org) devoted to API usability.

Green’s cognitive dimensions framework [37] has influenced much research on the usability of
computing artifacts, including programming languages. Clarke has applied cognitive dimensions
to a class library [82] and Green has investigated the cognitive dimensions of visual languages [38].

Most usability studies we are aware of target general purpose languages or APIs rather than
tools for building interactive systems. Exceptions include Ko’s study of Alice programmers [50]
and Myers’ study of the programming practices of graphical designers [61].

Other surveys. This paper is conceptually related to several reviews that have been conducted in
to help state directions for future research. Brun and Beaudouin-Lafon’s taxonomy attempts to
compare formalisms for describing user interfaces according to their expressive power, their gen-
erative capabilities, and their extensibility and usability [14]. Our classification partly matches
this work, but the proposed taxonomy does not address programming tools.

In [59], Myers addresses the challenges of programming user interfaces: this approach, by
focusing on why interactive systems are difficult to build, is similar to ours, but we wanted to
identify all the needs, not only the ones related to failures. In a later study, Myers et al. describe
and evaluate software tools according to five themes: parts of the user interface addressed,
threshold and ceiling, path of least resistance, predictability, and moving targets. Their study
identifies successful and less successful approaches, with the aim to draw lessons for the design of
future tools [60]. Where Myers classifies the tools themselves, we attempt to capture and classify
the underlying requirements for tools.

In the book “Languages for developing user interfaces” several chapters address interaction-
oriented toolkits or languages. Hudson identifies how programming languages might better sup-
port user interface tools [44]: this approach highlights technical needs, but leaves cognitive and
collective aspects aside. Our approach is quite similar to that of Cordy, who looks at the de-
sign behind the Turing general-purpose programming language to discover ideas that might be
applied to tools for interactive systems [22]. Singh identifies three main requirements for a user
interface language: object-orientation, time as a first-class object and interactive programming,
but his aim is to identify a unique best language [84]. Finally, Graham provides a summary
of the book and related workshop, focussing his discussion on whether interactive system tools
development needs one language, several languages or an API [36].

5 Conclusion

In this article we began with an analysis of the differences between computing-oriented program-
ming and interaction-oriented programming in an attempt to understand why the latter appears
unreasonably difficult with current tools. We then proposed a requirement analysis framework,
the ultimate aim of which is to clarify where these two classes of programming have common
requirements and where they diverge, and populated this framework through a broad survey of
research in interaction-oriented programming.

In the future we plan to populate the framework with a survey of the requirements underlying
computation-oriented programming languages. The fully-populated framework will provide a ba-
sis for analysis of the commonalities and discrepancies between requirements for interaction- and
computation-oriented programming. Our ultimate aim is to identify mechanisms that will allow
us to seamlessly address the requirements of both approaches, in hopes that better development
tools can then be designed.

Letondal, et al. 23

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Acknowledgements

This work was supported by ANR (project Istar), Aerospace Valley and FUI (project ShareIT).
Comments from the anonymous reviewers provoked significant presentational improvements.

References

1. Ritu Agarwal, Prabuddha De, Atish P. Sinha, and Mohan Tanniru. On the usability of OO representations.
CACM, 43(10):83–89, October 2000.

2. Caroline Appert and Michel Beaudouin-Lafon. SwingStates: adding state machines to the Swing toolkit. In
Proceedings of ACM UIST’06, pages 319–322, Montreux, Switzerland, 2006. ACM.

3. R.M. Baecker. Readings in Groupware and Computer-Supported Cooperative Work: Assisting Human-Human
Collaboration. 1993.

4. Rafael Ballagas, Meredith Ringel, Maureen Stone, and Jan Borchers. istuff: a physical user interface toolkit
for ubiquitous computing environments. In CHI ’03: Proceedings of the SIGCHI conference on Human factors
in computing systems, pages 537–544, New York, NY, USA, 2003. ACM.

5. Thomas Baudel. Visualisations compactes: une approche déclarative pour la visualisation d’information. In
Actes de la conférence IHM’02, pages 161–168. ACM, 2002.

6. Michel Beaudouin-Lafon. Instrumental interaction: an interaction model for designing post-WIMP user
interfaces. In Proceedings of ACM CHI’00, pages 446–453. ACM, 2000.

7. Benjamin B. Bederson, Jesse Grosjean, and Jon Meyer. Toolkit design for interactive structured graphics.
IEEE Trans. Softw. Eng., 30(8):535–546, 2004.

8. O. W. Bertelsen and S. Bødker. Studying programming environments in use: between principles and praxis.
In Proceedings of NWPER’98, the Eighth Nordic Workshop on Programming Environment Research, 1998.

9. R. Blanch, M. Beaudouin-Lafon, S. Conversy, Y. Jestin, T. Baudel, and Y.P. Zhao. Concevoir des applications
graphiques interactives distribuées avec INDIGO. Revue d’Interaction Homme-Machine, 7(2):113–140, 2006.

10. P Bono, J. Encarnação, R. Hopgood, and P. ten Hagen. GKS – the first graphics standard. IEEE Computer
Graphics and Applications, 1982.

11. Jan Borchers. A Pattern Approach to Interaction Design. John Wiley & Sons, 2001.
12. Michael Bostock and Jeffrey Heer. Protovis: A graphical toolkit for visualization. IEEE Transactions on

Visualization and Computer Graphics, 15:1121–1128, 2009.
13. J. Brandt, P. Guo, J. Lewenstein, M. Dontcheva, and S. Klemmer. Two studies of opportunistic programming:

interleaving web foraging, learning, and writing code. In Proc. of CHI’09, pages 1589–1598. ACM, 2009.
14. Philippe Brun and Michel Beaudouin-Lafon. A taxonomy and evaluation of formalisms for the specification

of interactive systems. In Proceedings of HCI’95, pages 197–212. Cambridge University Press, aug 1995.
15. M. Buisson, A. Bustico, S. Chatty, F-R. Colin, Y. Jestin, S. Maury, C. Mertz, and P. Truillet. Ivy: un

bus logiciel au service du développement de prototypes de systèmes interactifs. In Proc. of IHM’02, pages
223–226, Poitiers, France, 2002. ACM.

16. S. Chatty. Extending a graphical toolkit for two-handed interaction. In Proc. of UIST’94, pages 195–204.
17. S. Chatty, S. Sire, J.L. Vinot, P. Lecoanet, A. Lemort, and C. Mertz. Revisiting visual interface programming:

creating GUI tools for designers and programmers. In Proceedings of UIST’04, pages 267–276. ACM, 2004.
18. Stéphane Chatty. Programs = data + algorithms + architecture, and consequences for interactive software.

In Proceedings of IFIP EIS 2007, 2007. LNCS, Springer Verlag.
19. Stéphane Chatty, Alexandre Lemort, and Stéphane Valès. Multiple input support in a model-based interaction

framework. In Tabletop, pages 179–186, 2007.
20. Dominique Clément and Janet Incerpi. Specifying the behavior of graphical objects using Esterel. In TAP-

SOFT, Vol.2, pages 111–125, 1989.
21. Stéphane Conversy, Eric Barboni, David Navarre, and Philippe Palanque. Improving modularity of interactive

software with the MDPC architecture. In Proceedings of EIS 2007, pages 321–338, 2008. LNCS, Springer.
22. James Cordy. Languages for developing user interfaces, chapter Hints on the design of user interface language

features: lessons from the design of Turing, pages 329–340. A. K. Peters, Ltd., 1992.
23. Joëlle Coutaz and L. Bass. Requirements on UIMS’s. In Proceedings of the Workshop on UIMS and Envi-

ronments, Lisbon, 1990.
24. Allen Cypher. Watch What I Do. Programming by Demonstration. MIT Press, 1993. 652 pages.
25. John M. Daughtry, Umer Farooq, Brad A. Myers, and Jeffrey Stylos. API usability: report on special interest

group at CHI. SIGSOFT Softw. Eng. Notes, 34(4):27–29, 2009.
26. S. Davies. The nature and development of programming plans. Int. J. of Man-Machine Studies, 32(4):461–

481, 1990.
27. Chris DiGiano and Michael Eisenberg. Self-disclosing design tools: a gentle introduction to end-user pro-

gramming. In G. Olson and S. Schuon, editors, In Proc. DIS’95, pages 189–197. ACM Press, 1995.
28. Andy DiSessa. Changing Minds: Computers, Learning, and Literacy. MIT Press, 1999.
29. Andy DiSessa and H. Abelson. Boxer: a reconstructible computational medium. In Studying the Novice

Programmer, pages 467–481. Lawrence Erlbaum Associates, 1989.

Letondal, et al. 24

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

30. Paul Dourish. Using metalevel techniques in a flexible toolkit for CSCW applications. ACM Transactions
on Computer-Human Interaction, 5(2):109–155, June 1998.

31. Pierre Dragicevic and Jean-Daniel Fekete. Support for input adaptability in the ICON toolkit. In Proceedings
of ICMI’04, pages 212–219. ACM, 2004.

32. Michael Eisenberg. Programmable applications: Interpreter meets interface. ACM SIGCHI Bulletin,
27(2):68–93, April 1995.

33. Benjamin Jotham Fry. Computational information design. PhD thesis, MIT, 2004.
34. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns, Elements of Reusable

Object-Oriented Software. Addison Wesley, 1995.
35. Tony Gjerlufsen, Mads Ingstrup, Jesper Wolff, and Olsen Olsen. Mirrors of meaning: Supporting inspectable

runtime models. Computer, 42:61–68, 2009.
36. T. C. Nicholas Graham. Languages for developing user interfaces, chapter Future research issues in languages

for developing user interfaces, pages 401–418. A. K. Peters, Ltd., 1992.
37. T. R. G. Green. Cognitive dimensions of notations. In Proceedings of HCI’89, pages 443–460. Cambridge

University Press, 1989.
38. T. R. G. Green and M. Petre. Usability analysis of visual programming environments: a ’cognitive dimensions’

framework. J. Visual Languages and Computing, 7, pages 131–174, 1997.
39. D. Harel. Statecharts: A visual formalism for complex systems. Sci. Comput. Program., 8(3):231–274, 1987.
40. Michael D. Harrison and David J. Duke. A review of formalisms for describing interactive behaviour. In

ICSE Workshop on SE-HCI, pages 49–75, 1994.
41. Jeffrey Heer, Stuart K. Card, and James A. Landay. Prefuse: a toolkit for interactive information visualiza-

tion. In Proceedings of ACM CHI’05, pages 421–430. ACM, 2005.
42. Ralph Hill. Supporting concurrency, communication, and synchronization in human-computer interaction—

the Sassafras UIMS. ACM Trans. Graph., 5(3):179–210, 1986.
43. J-M. Hoc, T. R. G. Green, D.J. Gilmore, and R. Samurçay, editors. The Psychology of Programming.

Academic Press, 1991.
44. Scott Hudson. Languages for developing user interfaces, chapter How programming languages might better

support user interface tools, pages 105–113. A. K. Peters, Ltd., 1992.
45. Scott E. Hudson, Roy Rodenstein, and Ian Smith. Debugging lenses: a new class of transparent tools for

user interface debugging. In Proceedings of ACM UIST ’97, pages 179–187. ACM, 1997.
46. Jean-Daniel Fekete. The InfoVis Toolkit. In Proceedings of the 10th IEEE Symposium on Information

Visualization (InfoVis 04), pages 167–174, Austin, TX, October 2004. IEEE Press.
47. Jean-Daniel Fekete and Martin Richard and Pierre Dragicevic. Specification and verification of interactors:

A tour of Esterel. In Proceedings of FAHCI’98, September 1998.
48. Alan C. Kay. The early history of Smalltalk. In HOPL Preprints, pages 69–95, 1993.
49. Clemens Nylandsted Klokmose and Michel Beaudouin-Lafon. Vigo: instrumental interaction in multi-surface

environments. In CHI ’09: Proceedings of the 27th international conference on Human factors in computing
systems, pages 869–878, New York, NY, USA, 2009. ACM.

50. Andrew Jensen Ko. A contextual inquiry of expert programmers in an event-based programming environment.
In CHI’03 extended abstracts, pages 1036–1037. ACM, 2003.

51. James A. Landay and Brad Myers. Interactive sketching for the early stages of user interface design. In
Proceedings of CHI’95, pages 43–50. ACM Press, 1995.

52. E. Lecolinet. A molecular architecture for creating advanced GUIs. In Proc. of UIST ’03, pages 135–144.
53. H. Lieberman, F. Paterno, and V. Wulf, editors. End-User Development. Kluwer/Springer, 2005.
54. Henry Lieberman, editor. Your Wish is My Command: Giving Users the Power to Instruct their Software.

Morgan-Kaufmann, 2000.
55. Henry Lieberman and Christopher Fry. Bridging the gulf between code and behavior in programming. In

ACM CHI’95 Summaries and demonstrations, pages 480–486. ACM Press, 1995.
56. Blair MacIntyre and Steven Feiner. A distributed 3d graphics library. In SIGGRAPH ’98: Proceedings of

the 25th annual conference on Computer graphics and interactive techniques, pages 361–370, New York, NY,
USA, 1998. ACM.

57. L. Meyerovich, A. Guha, J. Baskin, G. Cooper, M. Greenberg, A. Bromfield, and S. Krishnamurthi. Flapjax:
A programming language for Ajax applications. In Proceedings of OOPSLA ’09. ACM, 2009.

58. B. Myers, D. Giuse, A. Mickish, B. Vander Zanden, D. Kosbie, R. McDaniel, J. Landay, M. Golderg, and
R. Pathasarathy. The Garnet user interface development environment. In CHI’94 Conference companion,
pages 457–458. ACM, 1994.

59. Brad Myers. Challenges of HCI design and implementation. Interactions, 1(1):73–83, 1994.
60. Brad Myers, Scott E. Hudson, and Randy Pausch. Past, present, and future of user interface software tools.

ACM Trans. Comput.-Hum. Interact., 7(1):3–28, 2000.
61. Brad Myers, Sun Young Park, Yoko Nakano, Greg Mueller, and Andrew Ko. How designers design and

program interactive behaviors. In Proceedings of IEEE VL/HCC ’08), 2008.
62. Brad A. Myers. Separating application code from toolkits: eliminating the spaghetti of call-backs. In Pro-

ceedings of ACM UIST ’91, pages 211–220. ACM, 1991.

Letondal, et al. 25

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

63. Brad A. Myers. Languages for developing user interfaces, chapter Ideas from Garnet for Future User Interface
Programming Languages, pages 147–157. A. K. Peters, Ltd., 1992.

64. Brad A. Myers. Usability issues in programming languages. Technical report, School of Computer Science,
Carnegie Mellon University, 2000. Part of the Natural Programming Project.

65. Brad A. Myers, Richard G. McDaniel, Robert C. Miller, Alan S. Ferrency, Andrew Faulring, Bruce D. Kyle,
Andrew Mickish, Alex Klimovitski, and Patrick Doane. The amulet environment: New models for effective
user interface software development. IEEE Trans. Softw. Eng., 23(6):347–365, 1997.

66. Brad A. Myers, John F. Pane, and Andy Ko. Natural programming languages and environments. CACM,
47(9):47–52, September 2004.

67. William M. Newman. A system for interactive graphical programming. In Proceedings of the AFIPS ’68
Spring joint computer conference, pages 47–54, Atlantic City, New Jersey, 1968. ACM.

68. Laurence Nigay and Joëlle Coutaz. A generic platform for addressing the multimodal challenge. In Proceedings
of CHI’95, pages 98–105. ACM Press/Addison-Wesley Publishing Co., 1995.

69. Henrik Nilsson, Antony Courtney, and John Peterson. Functional reactive programming, continued. In
Proceedings of the ACM SIGPLAN Haskell’02 workshop, pages 51–64. ACM, 2002.

70. James Noble. Prototype based user interfaces. In Proceedings of the ECOOP’97 Workshop on Prototype
Based Object Oriented Programming, 1997.

71. Donald A. Norman. The Psychology of Everyday Things. Perseus Books, 1988.
72. D. Olsen. A programming language basis for user interface. In Proc. of CHI ’89, pages 171–176. ACM, 1989.
73. Robert O’Rourke. HasCanvas. http://www.hascanvas.com/, April 2009.
74. John K. Ousterhout. Tcl and the Tk Toolkit. Flatbrain Com, 1996.
75. J. Pane, C. Ratanamahatana, and B. Myers. Studying the language and structure in non-programmers’

solutions to programming problems. Int. J. of Human-Computer Studies, 54(2):237–264, February 2001.
76. J-L. Pérez-Medina, S. Dupuy-Chessa, and A. Front. A Survey of Model Driven Engineering tools for User

Interface design. In Task Models and Diagrams for UI Design, pages 84–97. Springer Berlin, 2007.
77. Günther E. Pfaff, editor. User Interface Management Systems. Eurographics Seminars. Springer, 1985.
78. W. Greg Phillips. Architectures for synchronous groupware. Technical Report 1999-425, Queen’s University,

Kingston, Ontario, Canada, May 1999. Available from www.cs.queensu.ca.
79. Rob Pike. A concurrent window system. Computing Systems, 2(2):133–153, 1989.
80. Trygve Reenskaug. Models - views - controllers. Technical report, Xerox PARC, December 1979.
81. M. Rochkind. The source code control system. IEEE Trans on Soft. Engineering, 1(4):364–370, Dec. 1975.
82. Clarke S. and Becker C. Using the cognitive dimensions framework to evaluate the usability of a class library.

In Proceedings of the First Joint Conference of EASE PPIG (PPIG 15), 2003.
83. T. Schummer and S. Lukosch. Patterns for Computer-Mediated Interaction. John Wiley & Sons, 2007.
84. Gurminder Singh. Languages for developing user interfaces, chapter Requirements for user interface pro-

gramming languages, pages 115–123. A. K. Peters, Ltd., 1992.
85. J. Six H.-W., Voss. A software engineering perspective to the design of a user interface framework. In

CompSAC’92: Proceedings of the Computer Software and Applications Conference, Chicago 1992, 1992.
86. Walter R. Smith. Using a prototype-based language for user interface: The Newton project’s experience. In

OOPSLA ’95, pages 61–72, 1995.
87. E. Soloway and J. Spohrer, editors. Studying the Novice Programmer. Lawrence Erlbaum Associates, 1989.
88. Balsamiq SRL. Balsamiq Mockups. http://www.balsamiq.com/products/mockups/.
89. Jeffrey Stylos, Steven Clarke, and Brad Myers. Comparing API design choices with usability studies: A case

study and future directions. In Proceedings of the 18th PPIG Workshop, 2006.
90. Pedro Szekely, Ping Luo, and Robert Neches. Facilitating the exploration of interface design alternatives:

the HUMANOID model of interface design. In Proceedings of CHI ’92, pages 507–515. ACM, 1992.
91. David Thevenin and Joëlle Coutaz. Plasticity of user interfaces: Framework and research agenda. In Proc.

of Interact’99, pages 110–117. IFIP IOS Press, 1999.
92. D. Ungar, H. Lieberman, and C. Fry. Debugging and the experience of immediacy. CACM, 40(4):38–43,

April 1997.
93. Peter Wegner. Why interaction is more powerful than algorithms. Commun. ACM, 40(5), May 1997.
94. Andre Weinand, Erich Gamma, and Rudolph Marty. Design and implementation of ET++, a seamless

object-oriented application framework. Structured Programming, 10(2):63–87, 1989.
95. Gerald M. Weinberg. The Psychology of computer programming. Dorset House Publishing, 1979.
96. Leland Wilkinson. The Grammar of Graphics (Statistics and Computing). Springer., 2005.
97. Terry Winograd. Beyond programming languages. Commun. ACM, 22(7):391–401, 1979.

Letondal, et al. 26

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

A Cognitive Neuroscience Perspective on Memory for
Programming Tasks

Chris Parnin1

College of Computing
Georgia Tech Institute of Technology

chris.parnin@gatech.edu

Abstract. When faced with frequent interruptions and task-switching, programmers have diffi-
culty keeping relevant task knowledge in their mind. An understanding of how programmers actively
manage this knowledge provides a foundation for evaluating cognitive theories and building better
tools. Recently, advances in cognitive neuroscience and brain imaging technology has provided new
insight into the inner workings of the mind; unfortunately, theories such as program understanding
have not been accordingly advanced. In this paper, we review recent findings in cognitive neu-
roscience and examine the impacts on our theories of how programmers work and the design of
programming environments.

1 Introduction

Researchers have long been perplexed in understanding how programmers can make sense of mil-
lions of lines of source code text, extract meaningful representations, and then perform complex
programming tasks, all within the limited means of human memory and cognition. To perform
a programming task, a programmer must have the ability to read code, investigate connections,
formulate goals and hypotheses, and finally distill relevant information into transient represen-
tations that are maintained long enough to execute the task. Amazingly, programmers routinely
perform these mental feats across several active programming projects and tasks in fragmented
work sessions fraught with interruptions and external workplace demands.

In coping with these demands and limitations, the programmer must have mental capac-
ity for dealing with large workloads for short periods of time and cognitive mechanisms for
maintaining and coordinating transient representations. As of yet, we have no cognitive model
that adequately explains how programmers perform difficult programming tasks in the face of
constant interruption. As a consequence, we have a limited basis for predicting the effects of
interruption or evaluating different tools that may support task-switching for programmers.

Perhaps, new perspectives on memory and programmers are needed. Early models of mem-
ory, which we review below, have identified several key processes and provided many fruitful
predictions. However, when pressed with more strenuous tasks, such as dealing with an inter-
ruption, these models have difficulty accounting for sustained performance [20]. Further, new
results continue to emerge from studies of patients with novel brain lesions (injuries to specific
brain regions after a stroke or accident) who display behaviors that undermine many of the as-
sumptions of early memory models [55]. Likewise, early perspectives on programmers now seem
dated. Shneiderman, who has published several influential articles on programmer memory and
comprehension, once likened the ability of musicians to memorize every note of thousands of
songs or long symphonies to that of programmers and suggested programmers would obtain the
same ability to commit entire programs to memory in exact detail [50]. Rather the opposite has
seemed to occur: Programs are not untouched sacred tomes, but organic and social documents
that are understood and navigated with the assistance of abstract memory cues such as search
keywords and spatial memory within a tree view of documents or scrollbars [27].

The methods available to researchers have expanded greatly. For example, it is now possible
to administer drugs that interfere with memory formation or genetically engineer rats, whose
basic brain structure for memory is remarkably similar, without the genes for neurotransmitters

Parnin 27

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

necessary for consolidating short-term memories into long-term memories. Additionally, fMRI
machines provide the ability to measure changes in blood oxygenation levels associated with
increased brain activity within 1-2 seconds to regions of brain with 1-3 mm3 precision [62].
These methods have not been previously available have lead to the founding of a new inter-
disciplinary field: Cognitive neuroscience, coined by George Miller and Michael Gazzaniga, is
“understanding how the functions of the physical brain can yield the thoughts and ideas of
an intangible mind” [24]. For researchers studying the cognitive aspects of programmers, never
have more opportunities been available to expand our understanding of the inner workings of
the programmer’s mind.

In this paper, we review perspectives on memory from the cognitive neuroscience literature
to gain insight into how a programmer maintains and remembers knowledge used during a
programming task. The perspectives on memory offered by classical psychology have difficulty
accounting for programmers in practice and have followed us in our formation of theories of
program comprehension. Following our review, we discuss implications for the design of pro-
gramming environments and comprehension theories as well as remaining issues.

2 Memory and Theories of Program Comprehension

2.1 Psychological Studies of Memory

Memory research has had a long and rich history in the psychology community. Here, we briefly
attempt to cover some of the key findings.

One of the earliest contributions to memory was Miller’s work in 1956 on limitations on
information processing. Regardless of what item a participant was being asked to memorize,
Miller observed that the capacity for short-term memory appeared to be 5-9 items [35]. Recent
research has suggested the actual limit is closer to 4 items [16].

In 1968, Atkinson and Shiffrin presented an influential model of memory called the modal
model of memory [7]. In the modal model, information is first stored in sensory memory. Atten-
tional processes select items from sensory memory and hold them in short-term storage. With
rehearsal, the items can then be moved into long-term storage. The model characterizes the pro-
cess of obtaining long-term memory as a serial and intentional process with many opportunities
to lose information along the way via decay or interference from newly formed memories.

Attempting to refine the modal model’s account of short-term memory, in 1974 Baddeley
and Hitch introduced the idea of working memory [8] to help explain how items could be
manipulated and processed in separate modalities (e.g., visual versus verbal). The original
model included separate storage of verbal (phonological loop) and visual-spatial memory with a
central executive process that guided attention and retrieval from the stores. In 2000, Baddeley
added an episodic buffer which allowed temporary binding of items.

Chase and Simon proposed that experts such as chess players can manage larger men-
tal workloads by learning how to effectively chunk information after extensive practice and
study [14]. The chunking theory proposes that it takes about 8 seconds to learn a new chunk,
and that only about seven chunks can be held in short-term memory. For example, a chess
master can outmaneuver an expert player because they can store and recall larger amounts of
plausible moves and better assess positions of the chess board.

Several researchers have raised concerns about limitations with the chunking theory. First,
information for tasks such as playing chess did not appear to be stored in short-term or working
memory (or at least was transfered to long-term memory faster than predicted by chunking
theory). Charness found when chess players interpolated playing chess with other tasks long
enough to eliminate short-term memory, no or minimal effect on recall was found [12]. Second,
chunking theory has a hard time explaining how people performing everyday tasks [19] or
experts [20] could handle unpacking and shifting between multiple chunks with such a limited
store.

Parnin 28

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

An important alternative to the chunking theory was articulated over a series of papers by
Chase, Ericsson and Staszewski [13, 21], who observed mental strategies used by mnemonists
and experts. The resulting skilled memory theory identifies two key strategies experts use to
achieve their remarkable memory and problem-solving ability: (a) Information is encoded with
numerous and elaborated cues related to prior knowledge (similar to Tulving’s encoding speci-
ficity principle [61]; and (b) experts develop a retrieval structure for indexing information in
long-term memory (for example, experts might associate locations within a room with mate-
rial to memorize – by mentally visiting locations within the room, the expert could retrieve
associated items from those locations).

Recently, the skilled memory theory has been extended into the long-term working memory
theory, which claims many of the problems with previous theories can be explained if working
memory actually involves immediate storage and activation of long-term memories [20].

2.2 Cognitive Theories in the Psychology of Programmers

In studying the psychology of programmers, many researchers devised theories based on no-
tions of memory that were available at the time. For example, many theories use the concept
of chunking to build cognitive models of programming. Despite the problems noted by other
psychologists, many of these notions still persist today. Here, we briefly review current theories
of programmer cognition and comprehension.

In top-down comprehension [11] the programmers formulate a hypothesis about the program
that is refined by expanding the code hierarchy. The programmers are guided by using cues called
beacons that are similar to information scent in information foraging theory [43]. In bottom-up
comprehension [49, 42], the programmer gradually understands code by chunking the source code
into syntactic and semantic knowledge units. In opportunistic and systematic strategies [28],
programmers either systematically examine the program behavior or seek boundaries to limit
their scope of comprehension on an as-needed basis. Von Mayrhauser and Vans offered an
integrated metamodel [63] to situate the different comprehension strategies in one model.

3 Memory in Cognitive Neuroscience

3.1 Building Blocks of Memory: Long-term Potentiation (LTP)

Like physicists who seek to understand the building blocks of atoms to understand the world,
we seek to understand the building blocks of the brain, especially those that contribute to
memory. Nearly a century after scientists recognized the atom as a fundamental unit of matter,
neuroscientists followed by recognizing that the neurons play a similar role. Certainly, when
examining the neuron in depth today, the picture has much changed from the simple view of
passive integration of incoming signals, into the view of a complex interplay of voltage-gated ion
channels with local synaptic regulation. Here, we focus on the fundamental aspects of a neuron
that explains how a brief stimulus from the world can have long-lasting effects on the brain.

The neurological basis for memory is widely believed to be the long-term potentiation (LTP)
of neuron synapses. After a synapse undergoes LTP, subsequent stimulus of the synapse will
display a stronger response than prior to undergoing LTP. In 1973, Bliss and Lomo [10] first
observed LTP after repeatedly stimulating rabbit brain cells and found responses to increase
2-3 times and persist for several hours. Some researchers consider LTP to be a neurobiological
codification of the Hebbian learning process: Neurons that fire together, wire together [26].

An interesting aspect of LTP is its various forms of persistence and its connection with mem-
ory consolidation. It is now understood that LTP occurs in at least two stages: early LTP and
late LTP. In early LTP, increased response is achieved for a few hours by temporarily increasing
the sensitivity and number of receptors at a given synapse occurring within 1-2 seconds [29].

Parnin 29

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

In late LTP, more long-lasting changes involve production of proteins to signal changes to the
synapse’s surface area and additional dendritic spines associated with stimulation [29].

But how long are these long-lasting changes? In general, synapses undergoing early LTP will
return to baseline within three hours. Late LTP, however, has a much longer duration: lasting
from several hours or days to months or over years (See Abraham’s review on LTP duration [2]
for a more in-depth coverage). LTP in the rat hippocampus lasting months and in one instance,
one year, has been observed in the laboratory simply after applying four instances of high
frequency stimulation spaced by five minutes [3]. In the human brain, newly formed memories
are only expected to persist in the hippocampus for a few months or years until system memory
consolidation into the neocortex is complete. This is consistent with amnesia patients who have
difficulty recalling long-term memories a few months or years prior to their accident [55].

Further neurological processes of memory are of interest such as long-term depression (LTD)
and neurogenesis. Whereas LTP increases the efficacy of synaptic transmission, LTD unravels
those improvements to make it more difficult for two neurons two fire. The interactions between
LTD and LTP are not yet entirely understood; however, it is known that during initial phases
of LTP, reversal is more easily accomplished but becomes less so as time passes. If LTP is
a mechanism for rapid memorization, are there other possible mechanisms for changes in the
brain to occur? In short, yes, with neurogenesis it is possible to grow new neurons and form
new growths of white matter. Brain cells were once considered to be like teeth, once lost we
could not regrow new brain cells. It has been demonstrated that brain cells routinely die and
new ones grow throughout our lives [51]. One of the most striking examples is a study of taxi
drivers in London (who need to know very detailed spatial and contextual representations such
as street intersections, routes, and traffic conditions of the city) that found when comparing
the size of the hippocampus (an area of the brain responsible for remembering associations and
spatial memory) of taxi drivers with that of the general population, a significant increase in size
was observed and was correlated with time on the job [30].

3.2 Role of Hippocampus in Rapid Memorization

Few medical cases both arrest the imagination and have made a profound impact on memory
research as has the story of H.M. [48]. H.M. was a man suffering from severe seizures who
elected to have most of his medial temporal lobe bilaterally removed in an attempt to reduce
the occurrence of the seizures. Although the surgery was successfully in reducing the seizures,
an unforeseen consequence was that H.M. now suffered from anterograde amnesia, a condition
where a patient cannot recall or form new memories but can otherwise recall past life events
and facts and operate normally. H.M., with very few exceptions, could not learn new semantic
facts such as new words or remember recent events such as meeting a person or having a meal.
For H.M., retention of new memories generally only lasted a few minutes. If H.M. was having a
conversation with a person for the first time, who then left the room and then reentered after a
few minutes, afterward H.M. would not have recollection of having met the person or even having
a conversation. A detailed analysis of the surgery performed on H.M. indicates that virtually all
of the entorhinal cortex and perhinal cortex were removed, about half of hippocampal cortex
remained although severely atrophied, and a largely intact parahippocampal cortex [15]. Since
H.M., numerous cases have emerged demonstrating how different lesions result in different loss
memory abilities; however, the case of H.M. illustrates the essential role of the hippocampus in
forming long-lasting memories.

Morris and Frey postulate that the hippocampus provides the ability for an “automatic
recording of attended experience” [38]. They argue that many important events cannot be
anticipated nor may not occur again, and therefore traces and features of experiences must
be recorded in real-time as they happen. Further, Morris makes the argument based on neu-
roanatomical studies that the hippocampus does not store sensory stimuli directly, but rather
associates indices into other cortical regions [39]. For example, the memory of eating a new

Parnin 30

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

food at a restaurant is associated with various stimuli (the visual appearance, aroma, taste),
contextual details such as the scuffle and movements of other patrons, and semantic details
such as the name of the restaurant. The hippocampus is perfectly situated and equipped for
this role of automatic association: with very plastic neurons able to undergo LTP and with con-
nections from numerous regions such as visual and auditory pathways having already performed
bottom-up processing, and connections with the prefrontal cortex for top-down processing.

Although studies of amnesia patients provide insight into loss of ability, they cannot ac-
count for how these systems operate for healthy people. Imaging studies of people performing
memorization tasks have provided even more understanding of the hippocampus. In one study,
subjects memorized a list of words, and then were asked to recall the studied words [18]. What
was unique about this study was that fMRI images were taken while the subjects where study-
ing and recalling the words. The researchers found that failure to recall a word was linked to
weaker activity in the hippocampus during memorization; in contrast, success of recalled words
was linked to stronger activity. From this study, one could conclude that if a stimulus failed to
induce LTP in hippocampal cells at the time of the event, then no conscious memory is likely
to remain. Another study has found a similar effect in the entorhinal cortex for items judged to
be familiar but not recalled [37].

Research has also found evidence suggesting that specific subareas (e.g., perirhinal or parahip-
pocampal cortices) and specific lateralization (left or right) appear to be associated with differ-
ent functions (e.g., familiarity recognition or encoding) and different modalities (e.g., spatial vs.
verbal). However, it is not still not entirely clear how well we can localize function. For example,
the parahippocampus was associated with encoding and recall of spatial memories [44], but ac-
tivity in the parahippocampus was also found to be highly associated with recognizing objects
with unique contextual associations: A hardhat invokes a specific context of dusty construction
yards and therefore is associated with higher parahippocampal response; whereas a book has a
less specific context and thus less activity [9]. One view put forward by Mayes, proposes that
rather than operating on specific modalities of a hard-coded domain, such as verbal specific pro-
cessing, the hippocampus supports different types of associations —inter-item, within-domain,
and between-domain associations —and requires different computations for these associations
types [31]. This domain dichotomy view explains why a process such as familiarity recognition
may be associated with different regions because recognizing a familiar object would require
different processing (and thus different regions) than recognizing a familiar object and location
association.

3.3 Memory Organization and Architectures

Memory Types As previously mentioned, researchers distinguish between sensory, short-
term, working memory, and long-term memory. For long-term memory, Squire proposed a tax-
omony [56] that divides types of long-term memory hierarchically starting with a distinction
between non-declarative (implicit) and declarative (explicit) memories. Non-declarative mem-
ory includes priming and muscle memory whereas declarative memory includes knowledge of
facts and events. Tulving, an influential memory researcher publishing for over 50 years, de-
scribes semantic memory as knowledge of facts and episodic memory as a recollection of past
events. Tulving’s experience with an amnesiac patient E.P., who could learn new facts but not
remember how he came to learn about them, lead Tulving to distinguish between our ability
to know (to recall that the sky is blue) and remember (to relieve a past experience via mental
time travel) [59].

Studies of patients with newly acquired amnesia have revealed further subtypes of memo-
ries. This includes familiarity, recency, and source memories. Familiarity memory involves the
“feeling of knowing” that an object in a particular context has been encountered before without
necessarily recalling the context (e.g., seeing a face in the crowd that seems familiar but does

Parnin 31

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

not trigger a name). Familiarity memory is not to be confused with priming. First, in prim-
ing, a person previously exposed to an item is more likely to recall that item in the future;
however, without a conscious recollection of having been primed. With familiarity, a person is
aware that something seems familiarity. Second, priming and familiarity have doubly dissociated
brain regions: Familiarity is supported in the entorhinal cortex; priming is believed to involve
modification of the object representations within perceptual memory (for example, H.M. could
be primed only for words he had learned prior to his accident) [45].

Some tasks involve recalling how long ago an event occurred, called recency memory. Milner
studied patients who underwent surgery affecting the frontal lobes and found certain patients
would have difficulty recalling how recently they have seen a word [36]. This suggests the
prefrontal cortex plays a role in maintaining and binding a temporal context to memories.
Further research has uncovered the importance of top-down involvement of the prefrontal cortex
in episodic memory. Although many associations can be remembered in a bottom-up fashion as
part of episodic memory, certain types of memories require top-down control and thus direct
involvement of the prefrontal cortex.

Often when we learn facts we can associate the initial experience where we learned that
fact; these types of memories are called source memory. Activation of the prefrontal cortex is
necessary for forming source memories [25].

Memory Systems Since the modal model of memory was proposed in 1968, numerous findings
have challenged many of basic premises of the model and, accordingly, several researchers have
sought to put forth their own account. Here, we review a few of these models.

In Tulving’s serial-parallel-independent (SPI) model [60], rather then providing a mechanis-
tic model of memory, Tulving provides a few guiding principles or generalizations of memory.
Simply, he believes the process of encoding a memory to be a serial process (output of one
system provides the input for another), the process of storage to be distributed and in parallel
(traces of a single stimulus exists in multiple regions of the brain with the potential for later
access), and the retrieval of memory to be independent (different systems do not depend on
others – once a memory is formed it is available within that system even if others are damaged).
This view highlights the importance of viewing memory as a network of coordinating systems
rather than an unified store.

In Fuster’s account of memory systems [22], he uses a two-stage model derived from anatom-
ical and neuropsychological studies of the brain. In general, raw senses are processed at progres-
sively higher and higher levels of analysis starting from the most posterior region of the brain
to the most anterior region of the brain. Fuster divides this journey into two major compo-
nents: perceptual memory and executive memory. Within the perceptual region, processes and
memory start from phyletic sensory memory, then integrating into polysensory, forming into
episodic memory, generalizing into semantic memory, and abstracting into conceptual memory.
After a brief hop over the motor system, the executive memory region involves concept, plan,
program, act and phyletic motor memories. Fuster’s account again highlights the specialization
and localization of memory, but highlights the importance of top-down and bottom-up processes
in memory, and how processing of an stimuli is collocated with its memory.

In Anderson (of ACT-R fame [6]) and colleagues’ account of memory [5], a cognitive ar-
chitecture is composed of several modules responsible for specialized processing of information.
Modules have access to buffers which include: goal buffer, a retrieval buffer, a visual buffer, and
a motor buffer. Interestingly, the model also includes a production system for learning based on
the basal ganglia. The basal ganglia is mainly responsible for motor control; however, it also has
been “recruited” by the prefrontal cortex for reward-based learning of rules [34]. As such, the
strength the ACT-R model is in simulating learning and problem solving; however, the model is
less effective in modeling memory retention (for an exception, see Altmann and Trafton’s work
on memory for goals [4]).

Parnin 32

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

3.4 PFC: Goal Memory and Executive Processes

Humans fluidly perform and seamlessly switch among different tasks in a day. Routine activities,
such as ordering a cup of coffee, can be performed without much cognitive effort. The rules
are readily apparent: selecting a cup size, specifying a brew, paying the cashier – yet routine
activities can be highly dynamic and even arbitrary. People have no problem adapting the rule
to buy a cup of tea instead, or, given a rule never before encountered, clap if you hear a phone
ring, most people would have no problem performing the task. However, if the rule was instead,
clap if you hear a phone ring in a coffee shop, then people may fail to remember to apply the
rule. Such forgetting would be a failure of prospective memory, remembering to remember. How
does the brain store and manage prospective memories and other supporting memories needed
for performing tasks?

The prefrontal cortex (PFC) is a region situated in the most anterior (toward forehead)
portion of the frontal lobe. The PFC, a recent evolutionary addition, extends from the motor
control regions of the frontal lobe to provide cognitive and executive control. E. Miller and
Cohen [33] provide a compelling and influential account of the PFC. They argue the PFC
provides the ability to bias a particular response from many possible choices. For example,
when crossing a street, a person may be accustomed to looking left to check for oncoming traffic.
However, if that person were an American tourist visiting London, then top-down control would
be required to override the typical response and bias it toward a response for looking right first.
In this theory, rules, plans, and representations for tasks are learned via highly plastic PFC
neurons (a view also shared by Fuster [22]), but may migrate over time. One apt metaphor
offered by Miller and Cohen is a railroad switch:

“The hippocampus is responsible for laying down new tracks and the PFC is responsible
for flexibly switching between them.”

The PFC also plays an important role in top-down attention: In early studies of monkey
brains, when a food reward was shown to a monkey and then subsequently hidden for a delay
period, persistent firing of neurons in the PFC was sustained during the delay period. Despite
distracting stimuli, the monkey could recall the location of the food reward. However, monkeys
with PFC lesions could not maintain attention and performed poorly at recalling the food [23].
More recent work has uncovered a possible mechanism for how the PFC can simultaneously
maintain several active items in mind. When examining the firing patterns of ensembles of
neurons, rhythmic oscillations can be observed. These oscillations are believed to encode at-
tributes of an attended item. Siegel and colleagues [52] observed when multiple items need to
be attended to, distinct items were maintained in distinct phase orientations of the oscillating
signal. Like our ability to wave a string tied to a door knob, our limit to attend multiple objects
may be simply bound to a limit of speed and space for separating items within a frequency
spectrum (a problem well known in telephone and ethernet communications). An interesting
benefit emerging from phase coding of items is “free” temporal order of those items. In the
same experiment, when the order of items were misremembered, there was a correlation with
inadequate phase separation of the encoded items: The signal still preserved enough information
to represent the items, but not enough information was available to determine order. This view
offers an interesting alternative to the concept of working memory. The prefrontal cortex can
maintain many representations for tasks (especially if the representations refer to associations
within the hippocampus), but can only attend to a few at a time.

Understanding how cognitive control occurs in the prefrontal cortex is still an ongoing re-
search question. However, researchers have been successful in understanding how the prefrontal
cortex supports one type of process that is important for suspension of tasks —prospective
memory. Prospective memory is remembering to remember to perform an action in the future
under a specific context (e.g., setting up a mental reminder to buy milk on the way home from
work) [64]. Often intentions appear to spontaneously pop into mind prior to an important event

Parnin 33

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

or sometimes unfortunately later than intended. Researchers have sought to understand the un-
derlying mechanisms for prospective memory. Essentially, some researchers believe prospective
memory requires some form of attentional resources [54]; whereas other researchers believe if re-
minder cues are readily available then the process could be automatic [32]. A recent fMRI study
has found that depending on the nature of the intention, prospective memory could involve
both strategic monitoring and automatic retrieval from cues [46].

4 Task Memory Model

Understanding both brain structures and the associated jargon (e.g., dorsolateral prefrontal
cortex) can be a daunting endeavor for anyone. Here, we present the task memory model in
part to summarize insights from cognitive neuroscience literature on memory but also to abstract
from the intricacies of the brain and nomenclature. Our model shares similar goals with the
stores model [17], where Douce argues multiple modalities, such as spatial memory, play a
crucial role in code cognition. Our model intends to go further, by first accounting for the
underlying constraints of different memory, and then reconnecting these constraints to memory
requirements in programming tasks and design of programming environments.

For the purpose of the forthcoming discussion, we introduce the term task memory, which
is the set of constructs (such as goals) and processes (such as suspension) needed to perform
tasks. Our goal is to explain how people such as programmers can maintain representations
for complex and long-running tasks (over the course of many hours or several days) despite
interruptions or task-switches. In defining task memory and its corresponding model, not only
do we want to avoid the ambiguity of a term such as working memory, we also want to go
further by specifying task related concepts such as suspension or goals and relate them to
specific processes and localized function within the brain.

4.1 Memory Pathways

As we perceive sensations from the world, those sensations flow along pathways that actively
process and interpret perceptions of our world. The impression of these perceptions is what we
understand as memory. Even purely internal events, such as our inner thoughts, will activate
the same motor speech areas and auditory comprehension pathways (i.e., subvocalization) as
listening to ourselves talking. Therefore, to speak strictly in terms of storage, would be to
misunderstand memory —the storage of memory is interleaved with the same pathways that
process and and later recognize past sensations.

We divide the storage pathways of task constructs into three regions: frontal region, asso-
ciative region, and perceptual region (see Figure 1).

Perceptual Region The perceptual region contains both primitive and salient representations
of stimuli. This region is segmented into visual, spatial, and semantic (including auditory)
areas. Each area is responsible for interpreting and storing representations of stimuli. These
representations are linked so that spreading activation is possible for learned concepts.

There are short-term effects of perceiving a stimulus. Short-term retention occurs locally,
allowing for example same/different comparisons to be made. In addition, a stimulus will prime
representations, but only at the level of which a person has previous experience (e.g., a person
can be not be primed for the semantic meaning of a word they have never learned, but under
the right conditions they can be primed for the visual perception of the word).

Associative Region The associative region receives inputs upstream from each area of the
perceptual region. The associative region has several interesting capabilities. The associative
region is capable of receiving several distinguishing features (such as visual and semantic feature)

Parnin 34

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

and can create a resulting association. The formation of the association is fast and automatic
—an autoassociative encoding of perceptual features —but the features are not stored, but
rather indices into representation sites in the perceptual region. Associations are not formed for
every stimuli but instead are selectively formed based on stimuli strength (attention and and
novelty detection play a large role).

These associations are formed in such a way that activation of any one of the features will
activate the indices of other associated features, which will in turn activate the representations
within the perceptual region. The duration of an association can last several hours, but if
strengthened can last days and in some cases years. However, associations can be overturned,
or may not form in the first place if similar associations already exist.

Finally, the associative region is capable of encoding familiarity. Encoding familiarity allows
stimuli to be identified more readily without requiring representations of the stimuli to be well
formed. This will allow a feature to be recognizable (e.g., a face) but not associated with other
features (e.g., a name).

Frontal Region The frontal region contains important pathways for interpreting perceptions,
selecting responses, forming and attending to representations and goals, and directing learning
and memory. Pathways in the frontal region are well connected the perceptual and associative
regions, allowing multiple pathways to accessing representations and imposing top-down influ-
ence. Within the frontal region, important pathways exist for managing tasks such as monitoring
and switching tasks.

Memory supported by the frontal region includes prospective, source, recency memory. The
frontal region provides the primary infrastructure for holding a task’s plans, goals, and task-
relevant bindings. The duration of these task elements do not fade like short-term memory,
but persist for hours or days. Task-relevant bindings do not store items directly, but rather
refer to long-term memory or stores within the associative and perceptual regions. Finally, the
frontal region provides infrastructure for reminders to “pop into the mind” in the presence of
appropriate cues.

Indices

Spatial

Goals

Attention

Bindings

Perceptual

Fig. 1. Task memory model.
5 Considerations

We have presented several possible mechanisms underlying memory and associated cognitive
control processes. In this section, we consider possible ramifications and speculate on impact
on programming environments and theories of program comprehension. Design elements for
programming environments has been discussed before [57]; here, we describe elements not pre-
viously covered in light of new findings in memory and considerations such as interruptions and
multitasking. Remember, these ideas are not claims but a line of inquiry.

Parnin 35

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

5.1 Programming Environment Support

Development tasks typically require coordinating software changes across multiple locations in a
programs source code. Programming environments have provided limited support for managing
the active artifacts relevant to the programming task. How a programmer represents these items
in memory can inform how to better design programming environments.

Names and Notes Programs are comprised almost entirely of names. People forget or have
difficulty recalling names on a daily basis. Some names in programs are for common operations
such as iteration or familiar concepts such as sorting. But for many program elements, we may
know the face, but not the name.

To find or write code, programming environments require either knowing the name precisely
or partially, in the case of name completion system or class names. But unlike everyday objects,
we do not have other aspects to assist in recall. We cannot call upon temporal or contextual
clues, “what was that object I saw yesterday when I was debugging?”. We cannot easily ask
spatially “what was the object near the parsing code”, nor semantically “what object was for
checking security”. Programmers still try asking these questions, they just have to find creative
(but costly) ways of answering them.

For written notes, we often invent our own names to represent a current thought. We might
write down, “labels” or “security”. Presumingly, we want to record a prospective reminder to
perform some action for a programming task. Amazingly, when looking at an old note, we can
often recall the purpose of the note and the circumstance in which we wrote it. However, other
times we do not even remember writing down the note or the note only triggers a vague recol-
lection. For programmers, although notes have benefits in low overhead and conciseness, they
are deficient when capturing detailed and delocalized knowledge. When notes fail to capture
appropriate detail, programmers have to resort to costly information-seeking activities such as
navigating source code or viewing source code history to rebuild their working context. Ulti-
mately, neither notes nor environmental cues fully utilize program structure or state within
programming environments, and more importantly, neither notes nor environmental cues digi-
tally link together. Support for easily attaching notes to cues could create quick and powerful
reminders: For example, pinning down a virtual sticky note on a code document or on a file
within the document treeview.

Levels of Support: Memory and Time In Table 1, we consider different levels of support
for interruption recovery based on decay of task memory. When suspending a task for a few
minutes, what is at most risk is the loss of an ensemble of well-crafted thought. Humans are
limited by the ability to simultaneously maintain attention to mental thoughts. Thus, a short-
term interruption may not necessarily erase the memory of those thoughts, but we may never
again find that insightful combination of those thoughts attended simultaneously with the same
active top-down representations.

When suspending a task for a few hours, many newly formed associations and representations
may still be intact. Upon return to the task, the programmer may need a brief reminder to
reactivate suspended task goals and representations; it is not likely they would have forgotten
these yet. In support of this process, programmers may need a quick refresh of the artifacts to
help restore the details of the representations. During the task suspension, weak associations
may have faded. Programmers may forget a relationship they discovered between code items or
not recall where items are located.

Programmers returning to a task after several days require a different level of support. After
such a delay, details such as new names of identifiers may have faded, and many representations
used for the task may no longer be active. Traces of memories will guide the programmer
in returning to work: Some code sections will feel more familiar than others. Further, external

Parnin 36

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

cues, such as jotted down goals, will help guide navigation and jump-start work. Finally, episodic
recall of activity will help restore plans and potentially identify what actions to perform next.

Interval Support

minutes Support for managing attention.
hours Brief reminder to restore top-level goals. Support for restoring artifacts. Simple as-

sociative cues such as words from familiar code symbols effective.
days Support for restoring representations. Semantic-based interfaces less effective, use

episodic-based interfaces.
weeks Most representations have faded. Focus on restoring goals and plans.

Table 1. Different length intervals of task suspension require different types of support from the programming
environment when resuming.

Environmental Cues and Beyond Observations of developers suggest they frequently rely
on cues for maintaining context during programming. For example, Ko et. al [27] observed
programmers using open document tabs and scrollbars as aids for maintaining context during
their programming tasks. However environmental cues often do not provide sufficient context to
trigger memories: In studies of developer navigation histories, a common finding is that devel-
opers frequently visit many locations in rapid succession in a phenomenon known as navigation
jitter [53]. Navigation jitter has been commonly attributed to developers flipping through open
tabs and file lists when trying to recall a location [53, 41]. Environmental cues such as open
tabs may be insufficient because what a developer remembers may be spatial and textual cues
within the code document and not the semantic or structural location of the code element when
automatically encoding working state [58].

By enriching environmental cues to take more advantage of the temporal, spatial, and con-
textual aspects we have previously discussed we would expect improvements to programmer
productively. Research comparing development interfaces using names or content that a name
refers to has shown that names are slower and less accurate than content [47], and content is
strongly preferred over names when presented temporally [40]. Cues should enhance both an
item’s recency and familiarity. Temporal order of visiting an item should be easily discoverable.
The context of visiting an element should also be clear: Tabs or files can be more understand-
able if it was made clear how a programmer visited the item (e.g., indicate if a file was edited,
visited from stepping through a debugging session, or found from a search result [with search
keyword used to find it]). Other artifacts can be important cues for a programming task: events
on calendars, meeting notes, checkins from source control, and emails from colleagues. Exploring
how to collect, integrate and present these various cues offers an exciting research challenge.

5.2 Theories

Here, we consider some implications to current programming theories of comprehension and
provide some concepts for developing richer theories of program comprehension.

Visual Chunks In Shneiderman and Mayer’s syntax/semantic model [49], programmers do
not retain memories of syntax, but only their meanings. This conclusion was reached based on
the programmer’s ability to exactly recreate a program statement: i.e., even changing a symbol
from i to x would invalidate that statement. By these measures, programmers tended to perform
poorly when exactly reproducing the syntax of statements recently read, but instead retained
their meanings.

When the syntax/semantic model was conceived, it was based on a variation of the modal
model of memory (items move from sensory memory, short-term memory, and then long-term
memory through active rehearsal). For anyone that has read paragraphs of text or lines of code,

Parnin 37

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

such a model may seem counter-intuitive. Unlike attempting to rehearse a phone number, when
we read text, we do not frequently stop to remember the words or meaning, neither do we pause
when engaged in casual conversations.

We propose that semantic meanings of read program statements are retained without in-
tentional rehearsal, but instead with autoassociative support from the hippocampal formation.
In contrast to the syntax/semantic model, we suggest memory of syntax is retained —not in
an exact memorization of characters of text —but via abstracted perceptual patterns or visual
sketches. For example, a certain region of code containing many distinct patterns of for loops
and operations with character strings produces an unique signature of text indention and syn-
tax highlighting that would be recognizable when quickly scanning source code. Such an ability
would be advantageous to programmers who need to quickly and frequently switch documents
and skim through code without having to deeply process the text in order to recognize relevant
bits.

We introduce the concept of visual chunks, regions of code which may not yet have any strong
semantic association, but which have perceptual features that are familiar and recognizable by
a programmer. Visual chunks can be associated with temporal and contextual details such as a
search term or hypothesis used in finding the visual chunk. Visual chunks can also be associated
spatially within each other (e.g., above or below another visual chunk). Finally, visual chunks
can associated with subvocalized inner thought, giving it an internal nickname.

Iterative Comprehension The syntax/semantic model suggests that programmers use previ-
ously learned schemas (programming plans) to interpret text into semantic chunks in a hierarchal
process. Alternatively, top-down theories explain that programmers parse code based on their
current level of understanding and goals. Neither theory details the structures or mechanisms
necessary for partial understanding of code or explain how a programmer can maintain these
intermediate representations of unfamiliar code when switching between multiple tasks as ob-
served in our recent experiment [40]. Opportunistic theories do not fare better: As programmers
do not necessarily – upon reaching a new understanding – revisit every previously encountered
item to update its understanding, but rather a programmer must have some form of intermedi-
ate representation in mind. Finally, a failing of all of these theories is their inability to identify
exactly when learning occurs.

We also introduce the concept of iterative comprehension. With iterative comprehension, a
programmer uses autoassociative memory of processed perceptual events to rapidly record many
traces and facts about a program, even without having seen the code before. The programmer
can draw upon numerous resources —familiarity, spatial, visual, auditory, autoassociative, and
prospective memory, each involving distinct parts of the brain —that collectively allow the
programmer to maintain partial representations when solving a problem.

For a new program, a programmer initially gathers numerous visual chunks when explor-
ing the program. As the programmer learns more about the program, she iteratively updates
previous visual chunks with knowledge of new events or relates with top down concepts and
goals. The programmer can take advantage of previously learned schemas to provide strong
associations with events and rapidly consolidate new facts. This explains how a programmer
can retain memory of semantic properties of code while also associating other visual and spatial
properties.

Here, we have only provided a sketch of what iterative comprehension entails. However, we
believe iterative comprehension may provide a more compelling account of how programmers
manage programming knowledge and can explain how programmers are able to explore and
keep track of many items beyond traditional accounts of memory while only having partial
knowledge of the code.

Parnin 38

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

6 Remaining Issues and Future Questions

Several directions can be taken to move ideas presented in this paper forward. For the most part
in our discussions on structures within the brain we have omitted detail on how structures differ
based on location within the left or right hemispheres of the brain, also called lateralization of the
brain. Extending models to include lateralization is both necessary for brain imaging studies
and understanding the dual but separate roles that a structure plays (such as differences in
encoding and retrieval in the left and right hippocampus).

Computational architectures for cognitive models such as ACT-R [6] or SOAR [1] are steadily
improving. Still, these models are dealing with relatively simple tasks. Recently, Altmann and
Trafton’s work on memory for goals [4] have made modifications of the ACT-R architecture
to include the ability to model the effect of interruptions on goal memory. Situating our work
within these models would provide a mutual benefit of validating these ideas while suggesting
modifications to the computational architectures.

Finally, despite new advances in memory research, there remains numerous unresolved issues.
The biological mechanisms for forming memory are still not fully understood: One striking
observation has been that spatial memory appears to use distinct processes when compared to
those used in the normal associative processing occurring in the hippocampus. We do not yet
understand the impact this has on encoding and consolidation of spatial memories. A strength
of memory research has been the various lines of evidence used to investigate memory. But this
is also a weakness: Some findings have only been established in animal studies, which may not
hold in the same manner for humans. Further, these approaches have been effective at finding
dissociations between brain regions and memory types but not in understanding how these
regions coordinate and what information they carry. Finally, much care must be taken when
using the results of fMRI studies; if not carefully guarded, poor statistical designs can allow
over broad interpretations.

7 Conclusion

Nearly 40 years have passed since some of the earliest cognitive models of programmers have been
proposed. Both the programming landscape and our understanding of the human brain have
dramatically changed. Unfortunately, in the time since, the impact on practicing programmers
has been negligible; the predictive power nearly non-existent; and, our understanding of the
mind furthered little beyond common sense.

In this paper, we have outlined the background, tools, concepts and vocabulary for a chal-
lenging but hopefully rewarding trek forward. By understanding how a programmer manages
task memory, especially in the context of multi-tasking and interruptions, we can begin to
unravel this mystery.

References

1. Newell A. Unified Theories of Cognition. Harvard University Press, Cambridge, MA, 1990.
2. Wickliffe C. Abraham. How long will long-term potentiation last? Philosophical transactions of the Royal

Society of London. Series B, Biological sciences, 358(1432):735–744, April 2003.
3. Wickliffe C. Abraham, Barbara Logan, Jeffrey M. Greenwood, and Michael Dragunow. Induction and

Experience-Dependent Consolidation of Stable Long-Term Potentiation Lasting Months in the Hippocampus.
J. Neurosci., 22(21):9626–9634, 2002.

4. E. M. Altmann and J. G. Trafton. Memory for goals: An activation-based model. Cognitive Science, 26:39–83,
2002.

5. J. R. Anderson, Michael D. Byrne, Scott Douglass, Christian Lebiere, and Yulin Qin. An integrated theory
of the mind. Psychological Review, 111(4):1036–1050, 2004.

6. John R. Anderson and Christian Lebiere. The Atomic Components of Thought. Erlbaum, Mahwah, NJ, June
1998.

Parnin 39

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

7. R. C. Atkinson and R. M. Shiffrin. The psychology of learning and motivation (Volume 2), chapter Human
memory: A proposed system and its control processes, pages 89–195. Academic Press, 1968.

8. A.D. Baddeley and G. Hitch. The psychology of learning and motivation: Advances in research and theory,
chapter Working memory, pages 47–89. Academic Press, New York, 1974.

9. Moshe Bar and Elissa Aminoff. Cortical analysis of visual context. Neuron, 38(2):347–358, April 2003.
10. T. V. Bliss and T. Lomo. Long-lasting potentiation of synaptic transmission in the dentate area of the

anaesthetized rabbit following stimulation of the perforant path. The Journal of physiology, 232(2):331–356,
July 1973.

11. Ruven Brooks. Towards a theory of the comprehension of computer programs. International Journal of
Man-Machine Studies, 18:543–554, 1983.

12. N. Charness. Memory for chess positions: resistance to interference. Journal of Experimental Psychology:
Human Learning and Memory, 2:641–653, 1976.

13. W. G. Chase and K. A. Ericsson. The psychology of learning and motivation, volume 16, chapter Skill and
working memory, pages 1–58. Academic Press, New York, 1982.

14. W.G. Chase and H.A. Simon. Perception in chess. Cognitive Psychology, 4:55–81, 1973.
15. S. Corkin, D. G. Amaral, R. G. González, K. A. Johnson, and B. T. Hyman. H. m.’s medial temporal lobe

lesion: findings from magnetic resonance imaging. The Journal of neuroscience : the official journal of the
Society for Neuroscience, 17(10):3964–3979, May 1997.

16. N. Cowan. The magical number 4 in short-term memory: a reconsideration of mental storage capacity. The
Behavioral and brain sciences, 24(1), February 2001.

17. Christopher Douce. The stores model of code cognition. In Programmer Psychology Interest Group, 2008.
18. L. L. Eldridge, B. J. Knowlton, C. S. Furmanski, S. Y. Bookheimer, and S. A. Engel. Remembering episodes:

a selective role for the hippocampus during retrieval. Nature neuroscience, 3(11):1149–1152, November 2000.
19. K. A. Ericsson and P. F. Delaney. Models of Working Memory: Mechanisms of Active Maintenance and

Executive Control, chapter Long-term working memory as an alternative to capacity models of working
memory in everyday skilled performance, pages 257–297. Cambridge University Press, Cambridge, UK,
1999.

20. K. A. Ericsson and W. Kintsch. Long-term working memory. Psychological Review, 102(2):211–245, 1995.
21. K. A. Ericsson and J. J. Staszewski. Complex information processing: The impact of Herbert A. Simon,

chapter Skilled memory and expertise: Mechanisms of exceptional performance, pages 235–267. Lawrence
Erlbaum, Hillsdale, NJ, 1989.

22. J. M. Fuster. The prefrontal cortex–an update: time is of the essence. Neuron, 30(2):319–333, May 2001.
23. J. M. Fuster and G. E. Alexander. Neuron activity related to short-term memory. Science (New York, N.Y.),

173(997):652–654, August 1971.
24. Michael S. Gazzaniga, Richard B. Ivry, and George R. Mangun. Cognitive neuroscience: the biology of the

mind. Norton, 3rd edition, 2009.
25. E. L. Glisky, M. R. Polster, and B. C. Routhieaux. Double dissociation between item and source memory.

Neuropsychology, 9:229–235, 1995.
26. D.O. Hebb. The organization of behavior. Wiley, New York, 1949.
27. Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. An exploratory study of how

developers seek, relate, and collect relevant information during software maintenance tasks. IEEE Trans.
Softw. Eng., 32(12):971–987, 2006.

28. David C. Littman, Jeannine Pinto, Stanley Letovsky, and Elliot Soloway. Mental models and software
maintenance. In Papers presented at the first workshop on empirical studies of programmers on Empirical
studies of programmers, pages 80–98, Norwood, NJ, USA, 1986. Ablex Publishing Corp.

29. M. A. Lynch. Long-term potentiation and memory. Physiological reviews, 84(1):87–136, January 2004.
30. E. A. Maguire, D. G. Gadian, I. S. Johnsrude, C. D. Good, J. Ashburner, R. S. Frackowiak, and C. D. Frith.

Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy
of Sciences of the United States of America, 97(8):4398–4403, April 2000.

31. Andrew Mayes, Daniela Montaldi, and Ellen Migo. Associative memory and the medial temporal lobes.
Trends in cognitive sciences, 11(3):126–135, March 2007.

32. M. A. McDaniel and G. O. Einstein. Strategic and automatic processes in prospective memory retrieval: A
multiprocess framework. Applied Cognitive Psychology, 14:127–144, 2000.

33. E. K. Miller and J. D. Cohen. An integrative theory of prefrontal cortex function. Annual review of neuro-
science, 24(1):167–202, 2001.

34. E.K. Miller and T.J. Buschman. The Neuroscience of Rule-Guided Behavior, chapter Rules through recursion:
How interactions between the frontal cortex and basal ganglia may build abstract, complex, rules from
concrete, simple, ones, page (in press). Oxford University Press., 2007.

35. G. A. Miller. The magical number seven, plus or minus two: some limits on our capacity for processing
information. 1956. Psychological review, 101(2):343–352, April 1994.

36. B. Milner, P. Corsi, and G. Leonard. Frontal-lobe contribution to recency judgements. Neuropsychologia,
29(6):601–618, 1991.

37. Daniela Montaldi, Tom J. Spencer, Neil Roberts, and Andrew R. Mayes. The neural system that mediates
familiarity memory. Hippocampus, 16(5):504–520, 2006.

Parnin 40

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

38. R. G. Morris and U. Frey. Hippocampal synaptic plasticity: role in spatial learning or the automatic recording
of attended experience? Philosophical transactions of the Royal Society of London. Series B, Biological
sciences, 352(1360):1489–1503, 1997.

39. R. G. M. Morris. Elements of a neurobiological theory of hippocampal function: the role of synaptic plasticity,
synaptic tagging and schemas. European Journal of Neuroscience, 23(11):2829–2846, 2006.

40. Chris Parnin and Robert DeLine. Evaluating cues for resuming interrupted programming tasks. In CHI ’10:
Proceedings of the 28th international conference on Human factors in computing systems, pages 93–102, New
York, NY, USA, 2010. ACM.

41. Chris Parnin and Carsten Görg. Building usage contexts during program comprehension. In ICPC ’06:
Proceedings of the 14th IEEE International Conference on Program Comprehension, pages 13–22, 2006.

42. Nancy Pennington. Stimulus structures and mental representation in expert comprehension of computer
programs. Cognitive Psychology, 19:295–341, 1987.

43. Peter Pirolli and Stuart K. Card. Information foraging. Psychological Review, 106:643–675, 1999.
44. C. J. Ploner, B. M. Gaymard, S. Rivaud-Péchoux, M. Baulac, S. Clémenceau, S. Samson, and C. Pierrot-

Deseilligny. Lesions affecting the parahippocampal cortex yield spatial memory deficits in humans. Cerebral
cortex (New York, N.Y. : 1991), 10(12):1211–1216, December 2000.

45. B. R. Postle and S. Corkin. Impaired word-stem completion priming but intact perceptual identification
priming with novel words: evidence from the amnesic patient h.m. Neuropsychologia, 36(5):421–440, May
1998.

46. Jeremy R. Reynolds, Robert West, and Todd Braver. Distinct neural circuits support transient and sustained
processes in prospective memory and working memory. Cerebral cortex (New York, N.Y. : 1991), 19(5):1208–
1221, May 2009.

47. Izzet Safer and Gail C. Murphy. Comparing episodic and semantic interfaces for task boundary identification.
In CASCON ’07: Proceedings of the 2007 conference of the center for advanced studies on Collaborative
research, pages 229–243, New York, NY, USA, 2007. ACM.

48. W. B. Scoville and B. Milner. Loss of recent memory after bilateral hippocampal lesions. 1957. The Journal
of neuropsychiatry and clinical neurosciences, 12(1):103–113, 2000.

49. B. Shneiderman and R. Mayer. Syntactic semantic interactions in programmer behavior: a model and
experimental results. International Journal of Computer and Information Sciences, 8(3):219–238, June 1979.

50. Ben Shneiderman. Software psychology: Human factors in computer and information systems (Winthrop
computer systems series). Winthrop Publishers, 1980.

51. T. J. Shors, G. Miesegaes, A. Beylin, M. Zhao, T. Rydel, and E. Gould. Neurogenesis in the adult is involved
in the formation of trace memories. Nature, 410(6826):372–376, March 2001.

52. Markus Siegel, Melissa R. Warden, and Earl K. Miller. Phase-dependent neuronal coding of objects in
short-term memory. Proceedings of the National Academy of Sciences of the United States of America,
106(50):21341–21346, December 2009.

53. Janice Singer, Robert Elves, and Margaret-Anne Storey. Navtracks: Supporting navigation in software main-
tenance. In Proceedings of the 21st IEEE International Conference on Software Maintenance, pages 325–334,
2005.

54. Rebekah E. Smith. The cost of remembering to remember in event-based prospective memory: investigat-
ing the capacity demands of delayed intention performance. Journal of experimental psychology. Learning,
memory, and cognition, 29(3):347–361, May 2003.

55. H.J. Spiers, E.A. Macguire, and N. Burgess. Hippocampal amnesia. Neurocase, 7:352–382, 2001.
56. Larry R. Squire. Memory systems of the brain: a brief history and current perspective. Neurobiology of

learning and memory, 82(3):171–177, November 2004.
57. M.-A. D. Storey, F. D. Fracchia, and H. A. Müller. Cognitive design elements to support the construction

of a mental model during software exploration. J. Syst. Softw., 44(3):171–185, 1999.
58. J. Gregory Trafton, Erik M. Altmann, Derek P. Brock, and Farilee E. Mintz. Preparing to resume an

interrupted task: effects of prospective goal encoding and retrospective rehearsal. International Journal of
Human-Computer Studies, 58:583–603, 2003.

59. E. Tulving. Organization of memory, chapter Episodic and semantic memory, pages 381–403. Academic
Press, New York, 1972.

60. E. Tulving. The Cognitive Neurosciences, chapter Organization of memory: Quo vadis?, pages 839–847. MIT
Press, Cambridge, MA, 1995.

61. E. Tulving and D. M. Thomson. Encoding specificity and retrieval processes in episodic memory. Psychological
Review, 80:352–373, 1973.

62. A. Villringer. Functional MRI, chapter Physiological Changes During Brain Activation, pages 3–13. Springer,
2000.

63. A. von Mayrhauser and A. M. Vans. From code understanding needs to reverse engineering tools capabilities.
In CASE ’93: The Sixth International Conference on Computer-Aided Software Engineering, (Institute of
Systems Science, National University of Singapore, Singapore; July 19-23, 1993), pages 230–239, July 1993.

64. E. Winograd. Practical Aspects of Memory: Current Research and Issues, volume 2, chapter Some observa-
tions on prospective remembering, pages 348–353. Wiley, Chichester, 1988.

Parnin 41

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Perceived Self-Efficacy and APIs

John M. Daughtry III

Applied Research Laboratory
The Pennsylvania State University

daughtry@psu.edu

John M. Carroll

College of Information Sciences and Tech.
The Pennsylvania State University

jcarroll@ist.psu.edu

Keywords: POP-II. B. Program Comprehension, Scenario-Based Design; POP-IV. A. Object-Oriented Design;
POP-I.A. Group Dynamics; POP-V.B. Research Methodology

Abstract
Application program interface (API) use and design is critical, non-optional, and cross-cutting in the
construction of modern software systems. However, only recently has the explicit study of API design
process and API designs been initiated from the perspective of usability, and little is known with
respect to how various forms of information about an API aids programmers in the use of an API. In
this paper, we present findings from our exploration of perceived self-efficacy (PSE) for API use.
First, we describe the development of a novel PSE instrument that focuses on the task of using an
API. Second, we evaluate the validity and sensitivity of the instrument with respect to changes in the
information given professional programmers about an API. To accomplish this goal, we articulate and
utilize two complementary forms of API documentation grounded in scenario-based design. Through
this work, we demonstrate the validity of the evaluation tool and raise questions about the perceived
value developers place on information about an API and its intended use.

1. Introduction
Modular programming is ubiquitous in modern software application construction. The benefits we
seek of modularity are technical, psychological, and organizational in nature (Parnas 1972). Using
modules affords reuse, which in turn reduces duplication. Thus, there is less code to maintain.
Modularity also reduces code into small pieces that can be more easily understood by a developer
given humanity’s constrained capabilities for cognition. One can imagine the difficulties in trying to
read and edit the source code of any modern software system were it contained in a single structure.
Finally, modularity affords the breakdown of work in teams by allowing groups and individuals to
focus on discrete pieces of a system.

Because of the prominence of modularity, the use of any popular modern programming language
necessitates the use of APIs (Stylos and Myers 2007). The centrality of APIs within the context of
programming is of growing importance (Stylos 2009). For example, at a minimum, Java programmers
make use of the Java platform SDK (JDK), and C# programmers make use of the .NET Framework.
Even to output “hello world” requires utilization of the APIs provided with the language. Note that we
use the term API broadly, reflecting the programming vernacular (e.g., de Souza, Redmiles, Cheng,
Millen, and Patterson 2004; Bloch 2005). This definition implies that every module has an API (the
interface through which the module is invoked), which is in contrast to stricter definitions that define
APIs in terms of interchanges between applications (e.g., Software Engineering Institute 2008).
However, it more closely aligns with practice, as reflected in Bloch’s argument that “… if you
program, you are an API designer, whether you know it or not, because good code is modular, and
those inter-modular boundaries are effectively APIs" (2005).

In the wild, API design perfection is unattainable (Bloch 2005). Indeed, interface design is about
navigating a design space of trade-offs as opposed to finding the optimal design (Carroll 2000). For
example, as de Souza and colleagues describe, information hiding has significant organizational
communication drawbacks, despite the technical benefits (2004).

Daughtry and Carroll 42

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Given the centrality and rising importance of APIs in professional programming, our research agenda
is to expose the psychological aspects of API design and use as a leverage point for impacting the
practice of programming via empirical data that supports interaction design for APIs themselves and
the tools used by API consumers.

1.1. API Usability
Extant work in API usability analysis focuses on traditional usability laboratory studies (e.g., Clarke
2004). In essence, the researcher sets out to analyze the use of a particular API to uncover flaws in
that API. Another approach is to seek out general guidelines that can be applied to APIs. Stylos and
Clarke (2007) used this approach to study the usability implications of constructor parameters versus
setters in the general case. Most recently, researchers have sought out more effective methods for API
usability analysis, since the lab study approach is extremely time consuming and resource intensive
(Farooq and Zirkler 2010).

Each of these approaches holds value and has provided unique empirical understanding of API design
and use. Yet, in large part, these approaches fail to deliver a richer theoretical understanding of the
psychology of programming. Rather than explaining the rich social, improvisational, and
psychological aspects of API use, they explain API designs, decisions, and their trade-offs.

Rather than focussing wholly on the artefact itself, the scientific exploration of API design and
usability needs to reach beyond the artefact and explain the relationship between the social
psychology of programming and the API, as well as the relationship between the computational
sciences and the API. How does the API and information about the API shape, constrain, limit,
enable, or undermine the psychological aspects of programming? How does the underlying
technology (e.g., programming languages, paradigms, algorithms) shape, constrain, limit, enable, or
undermine the API?

When thinking about API evaluation, one must be careful not to lose sight of the larger picture of
reuse within the design process. We are not only designing an API that is easy to use, but also
supporting the reuse of existing code in the larger design of a system. This is particularly challenging
for a usability lab study, where programmers are studied working on small- to medium-sized singular
tasks for which many API issues are set a priori. Of course, real programmers do not work alone and
can often choose to reformulate their problem space, for example, rejecting one API for another.
These decisions are not purely technical in nature. Cockburn argues that software development is in
part an economic endeavour (2004). Indeed, one may choose to use the Google Web Toolkit (GWT)
instead of the Dojo Framework not because it is better, but because it is perceived as being a more
marketable experience to have on one’s résumé. While we must not overly focus on such aspects of
API design at the expense of usability, the social nature of software engineering is extremely salient.

1.2. Perceived Self-Efficacy
Perceived Self-Efficacy (PSE) is a construct from Social Cognitive Theory (Bandura 1997). It “is the
belief in one's capabilities to organize and execute the courses of action required to manage
prospective situations” (Zimmerman, 1995, p. 203). Examples of self-efficacy would be one's
perceived ability to lift weights or one’s perceived ability to pass a math test. PSE has value because it
is found to correlate highly with actual task performance across a wide range of domains (Bandura,
1997).

The basic premise of PSE is that it is based on stable and grounded beliefs about one’s capabilities.
Over time, people develop and refine PSE with respect to the tasks in which they engage. For
example, one may over time develop a PSE with respect to writing academic research papers. PSE is
the stable and grounded construct that represents the overarching belief about one’s ability to write
such papers.

Bandura described a technique for developing psychological instruments exposing this underlying
construct that has been utilized in many fields such as education and computer use (1997). Because
PSE is highly correlated with performance, we believe that it may have value in the study of API

Daughtry and Carroll 43

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

design and usability. Unlike lab studies and peer reviews, PSE places small time requirements on the
participants. In an API lab study, participants have to use the API. In a peer review, participants have
to take the time to discuss an API with peers. PSE, however, is a psychological instrument that only
requires the participant to reflect on an API and fill out a questionnaire containing Likert scale items.
Further, PSE exposes a deep-rooted belief as opposed to focussing solely on the pragmatic outcomes.
Thus, in addition to providing guidance, it also describes the impact of interventions at a
psychological level.

Given that PSE is based on stable and grounded beliefs, after one is able to expose PSE for a given
activity, the degree to which the construct is impacted becomes an important research question. For
example, do you believe you can survive a bear attack in the woods? If you have a gun, do you
believe you can survive the attack? What about if you have a bazooka, a gun, and some time to read a
book on killing bears? Our perceived self-efficacy for accomplishing specific goals is moderated by
the tools we have at our disposal. Certainly, in cases such as this toy example, our PSE is heavily
impacted by the tools and environment. However, cases of PSE grounded in everyday activities are
less clear. Does having a calculator impact PSE for passing a math test? Does having access to an IDE
(vs. command-line) impact a programmer’s PSE for debugging a problem in a large system? In these
real-world cases, the degree to which PSE is impacted by tools is less clear. If we can expose
programmers’ PSE for API use, to what extent is the construct impacted by the tools and information
at their disposal?

1.3. API Documentation
Given that no API can be perfect (or at least most), API documentation is critical to the success of
projects (Bloch 2005, pg. 18). Indeed, more research into code documentation has been explicitly
called for from within the software engineering community (e.g., Parnas 1994; 1998).

Existing work in API documentation focuses on documentation tools as opposed to information
needs. Apatite and Jadeite are two recent examples of such tools. Apatite refocuses the structure of
information around the notions of importance (i.e. – which parts of the API are most often used) and
the relationship between API elements in the context of use (Eisenberg, Stylos, and Myers 2010). The
interaction design in Apatite contributes to API documentation tools on two fronts. First, it shows the
efficacy of using font size to indicate importance of API elements based on usage data. If you open
the java.io package in Java, for example, File will be shown as an important class within that
package. This helps programmers focus their attention on the most often used elements of the API. It
also shows the utility of navigating by association. For example, if you open the java.io package,
you find that read is an important method. By selecting that method, you find that
FileInputStream is an important class with respect to that method.

Jadeite incorporates elements of Apatite, such as basing font size on usage, but adds in placeholder
and object instantiation capabilities (Stylos, Faulring, Yang, and Myers 2009). Placeholders provide
Java developers with a mechanism for communicating about API elements they expect to see as
opposed to just what is there. It also scours existing source code to extract how classes are instantiated
as objects. Thus, when a user uses Jadeite documentation for any given class, it tries to give you an
example of how that class it created. The researchers found that developers performed three times
faster with Jadeite than with traditional Java documentation. Calcite (Mooty, Faulring, Stylos, and
Myers 2010) is an integrated development environment (IDE) plug-in related to Jadeite that pulls the
object instantiation code directly into your code when you start to use an object (while Jadeite only
puts that information in the documentation).

The approach used to evaluate the utility of Jadeite to show a significant performance improvement
when using the tool is limited because it imposes significant artificial scaffolding for the programmer.
Specifically, many API users have to begin with the selection of which API to use. For example, if
you want to implement logging in Java, you can utilize Java logging, Log4J, or Commons Logging.
One can also utilize Simple Logging Façade for Java (SLF4J) for dependency injection to separate the
logging calls from the specific implementation. These are complex decisions that cannot simply be

Daughtry and Carroll 44

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

navigated away via documentation structure. However, these aspects of the problem-space are
important notions when it comes to the formulation and development of a programmer’s PSE.

1.4. Research Questions
To explore the role of PSE in API use, we focus on the following research questions. If we cannot
operationalize the notion of a programmer’s PSE for using an API, then the idea has little (if any)
pragmatic value. Further, before we can make use of the construct, we need to develop a firm
understanding of how the construct is impacted by the tools and information at hand. Note that in this
paper we focus on the information at hand as opposed to the tools at hand.

RQ1: Can we identify, extract, and elucidate a professional programmer’s PSE for using an
API?

RQ2: To what extent does the information provided to professional programmers about an
API impact their PSE for using that API?

2. Scale Development
Developing a perceived self-efficacy scale requires three steps (Bandura 1997). First, one must define
the task, in particular the various aspects of the task. Having an analysis of the activity helps you
identify the critical capabilities one would need in order to be able to do the activity. Second, one
must construct statements about the task in the form of “you can do X”. Third, one must incorporate
obstacles to the task such as “even when you are tired”. When presented with obstacles, questions
become more salient, resulting in an accurate assessment of one’s own capability. For example, if you
ask someone if he can stick to a diet, even when he is tired, he will give a more accurate response than
if you only ask him about his ability to stick to a diet.

To construct our scale, we iteratively built and refined an analysis of the core activities of API use,
drawing upon Daughtry’s work experience as a professional software engineer as well as extant
literature on software design. We began with Schneiderman’s programming task breakdown (1980).
The tasks articulated by Schneiderman relevant to API use are learning, designing, composing
(writing the code), comprehending, testing, and debugging. In order to use an API, programmers must
learn how to use the API, design the system to use the API, write the code that calls the API,
comprehend the code that uses the API, test the usage of the API, and debug the code that uses the
API. Similarly, Fischer, Henninger, and Redmiles described reuse as being a cyclical process of
location, comprehension, and creation (1991, p. 319). However, these task breakdowns fail to take
into account the social side of programming activities.

The field of design rationale offers a particularly useful glimpse into the social process of design.
From this perspective, design is a cyclical process of task analysis and artefact envisionment (Carroll
and Rosson 2003). Namely, designers make claims about a design, reason around those claims, and
then build the system. These claims may be implicit or explicit. The field of design rationale has
sought to leverage explicit rationale; but with respect to our purpose, both forms of rationale are
relevant. When designers go through the process of task analysis (whether it is grounded in formal
task analysis methods or simply the thought process of what might work best), they are chiefly
concerned with what Alexander, Ishikawa, Silverstein, Jacobson, Fiksdahl-King, and Angel refer to as
“goodness of fit” (1977). Specifically, does this design fit our problem, and how does it compare to
other alternatives?

However, design is embedded in a socio-political process (Cockburn 2004). Thus, rationale must be
defensible not only to rational team members, but also to irrational team members and time-
constrained, budget-conscious managers. Further, one may make decisions based on self-interest as
opposed to what is best for the system, other team members, or the customer.

Using these conceptualizations of design, along with reviews from professional programmers and
other researchers, we developed the PSE instrument given in Error! Reference source not found..

Daughtry and Carroll 45

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

This instrument takes into account the design, implementation, testing, and debugging of API uses. At
the same time, it also

Table 1 - Perceived Self-Efficacy Scale for API Use

No. Scale Item
1 I can determine if this component is a good fit for use in a system design, even if the system

requirements are not completely clear.
2 I can identify 5 or more well-suited applications for this component even if I were only given 1

minute to identify them.
3 I can recognize when this component has been wrongly chosen for use in a system design, even

without knowledge of the entire system architecture.
4 I can identify an application where this component would fit (but be a poor fit) even if I had to

identify such an application immediately.
5 I can defend my choice to use this component in my solution to other software developers, even

if they are sceptical.
6 I can defend my choice to use this component in my solution to higher-level management, even

if there is pressure to go with another component that already exists in the company product
line.

7 I can make a strong case to a development team that the component should not be used, even if
the team wants to use it because it is a hot technology (i.e., a buzzword that looks good on a
résumé).

8 I can defend someone else's choice not to use this component in a solution to a technologically
oriented customer, even if I had not discussed the decision with that developer.

9 I can use this component in building a system without having access to anyone who has used it
before.

10 I can use this component in building a system without having access to any documentation
other than the API (e.g., using no examples posted on the internet).

11 I can build a prototype system to demonstrate the power of the component to management in
fewer than 30 minutes.

12 I can successfully augment an existing system I wrote to use this component instead of another
mechanism even if it requires architectural refactoring in the system.

13 I can write coded tests against uses of this component that ensure the implementation will
exceed performance needs of the entire system, even if I was extremely tired.

14 I can write coded tests against uses of this component that ensure that a system installation is
configured correctly, even if the configuration is slightly different for each installation.

15 I can write system thread-level test procedures for a system that uses this component that
validates every functional behavior of this component, even if a unit test procedure is not
available.

16 I can write test plans for negatively testing behaviors of this component, even if the source code
is not available.

17 Given a bug in the use of this component in a system I wrote, and knowing the effects of the
bug, I could isolate the root cause of the problem even if the only things available were the
source code and a running system. A debugger is not available, and there is no way to add new
logging calls such as System.out.println("test line 1: did it make it
here?");.

18 Given a known bug in the use of this component in a system, where the root cause has been
isolated, I could fix the problem, even if I didn't completely understand the context of the
component being used.

19 Having just used this component to build a larger system, I could identify most of the bugs
caused by incorrect usage of this component before releasing the code to a testing group, even
under extremely heavy scheduling constraints.

20 I could successfully fix a problem in the usage of this component within a larger system I didn't
write, even if I had to make the fix on-site without access to a test group.

Daughtry and Carroll 46

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

takes into account the social nature of programming. Because of space limitations, we do not include
the Likert scales associated with each item. Each item has an associated Likert scale ranging from 1 to
9. Item 1 was labelled “Cannot do at all”; item 5 was labelled “Moderately certain can do”; and item 9
was labelled “Certain can do”.

Questions 1-8 cover the design activity (determining goodness of fit), taking into account the social
aspects such as collaboration with team members, overcoming self-interest, and hierarchy. Items 9-12
deal with the use of the API within code. Item 9 takes into account the social component of
implementation (having access to others who already know how to use the API). Item 12 takes into
account the problem of real-world programming, whereby code is not always written from scratch.
Items 13-16 deal with testing an API. This portion takes into account low-level unit testing through
system-level testing, while at the same time taking into account the notion of propriety (source code
may not be available) and the real-world hardships of testing (systems can be configured in many
different ways). Items 17-20 address the debugging task, taking into account problems one is likely to
encounter on real-world systems such as a limited schedule.

Each of the 20 items in our PSE scale includes obstacles, as previously discussed. When creating a
PSE scale, it is important that the obstacles are realistic and challenging. Specifically, they should be
something that one might actually encounter on the job and indeed pose a challenge for the
programmer. After defining our scale, we conducted a sandbox pilot study where professional
developers completed the scale in a think-aloud manner. The scale presented in Error! Reference
source not found. is the final instrument, after revisions were made when issues surfaced during the
sandbox pilot.

3. Code Vignettes and Claims Analysis
Having designed a scale for measuring a programmer’s PSE for using an API, we needed a
mechanism for evaluating the validity of the scale (RQ1) and evaluating the impact information could
have on the exposed construct (RQ2). The validation of a PSE scale involves the use of internal
validity and factor analysis. We concluded that the same study could be used to address both research
questions. However, we needed varying forms of API information in order to do this evaluation.

Scenarios and claims are the two fundamental components of scenario-based design (Carroll 2000).
Scenarios are stories about people and their activities, while claims are an enumeration of the causal
factors and relations that are left implicit in scenario narratives. With respect to programming,
scenarios are reified as code examples with notes detailing the purpose of the example code. For the
balance of this paper, we refer to such examples as code vignettes.

Example code and statements about the design are a natural representation when talking about code
and software design. Indeed, one can find examples of this form in almost every practitioner-oriented
discussion on API design (e.g., Bloch 2001; Bloch 2005; Cwalina and Abrams 2008; Tulach 2008;
Pugh 2007) and other texts (e.g., Gamma, Helm, Johnson, and Vlissides 1994). Thus, we need to
clarify what we mean by code vignettes and claims and distinguish it from other forms of example
code and rationale. In each of the sources listed above, we find example code with lightweight design
rationale expressed in the form of claims. However, these uses often differ in significant ways from
what we mean by code vignettes and claims. With respect to the example code, they often show
example design code as opposed to uses of that design. And, with respect to claims, they often
describe the design intention of the design as opposed to describing the ramifications seen in a usage.

Figure 1 gives an example of design and intention information as opposed to what we mean by code
vignettes and claims. First, let us consider the design against the code vignette. While the design
conveys information about the interface, from which a programmer can derive the use, the code
vignette is explicit in describing a use of the interface. This is beneficial because it affords a quicker
translation to the activity of using the interface. Indeed, a programmer can copy-paste his way to
using the interface with the code vignette. We know that programmers are opportunistic, debugging
code into existence (e.g., Rosson and Carroll 1996; Brandt, Guo, Lewenstein, Dontcheva, and
Klemmer 2009). Rather than using an API directly, they seek out uses of the API and adapt it to their

Daughtry and Carroll 47

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

needs. Turning to the justification for the design, the design example does not provide the salience the
vignette example provides. Specifically, the analysis is loosely grounded on broad statements about
the design as opposed to being lightweight analytical evidence. The design example can only make
broad generalizations such as the interface being easy to code against while the vignette example has
the grounding to make specific statements about why the interface is easy to code against. Within the
publications mentioned above, and in other corpus (in print and online), code and rationale takes
many forms that reflect vignettes and claims to varying degrees.

Figure 1 - A design and its intent vs. vignettes and claims

(Design and rationale adapted from Sun 1997)

Returning to Carroll’s articulation of scenarios and claims, we find reasoning as to why object models
and scenarios are particularly compatible (2000, p. 232). Known tasks are defined (at times explicitly)
and translated to envisionments of use. For example, one may envision an API and its use via unit
tests (if utilizing test-driven development). Alternatively, one may envision an API and its use via the
Unified Modelling Language (if using model-driven development). This activity, and the associated
reasoning via use (i.e., claims) helps to evoke, identify, and refine the API design.

 We believe that code vignettes and claims are valuable information for programmers. As discussed
above, vignettes support the opportunistic behaviour many programmers exhibit. Specific vignettes
have been utilized in API documentation before. For example, some designers of API’s have
incorporated these into their API documentation. As discussed above, Jadeite and other tools have
supported specific vignettes for object instantiation. Thus, it seems that the inclusion of vignettes
should have significant value for programmers. We also believe that claims about an API use should
have value to an API user by clarifying the designer’s reasoning and thought process. For example,
the designers of the Collections API for Java were compelled to document the rationale behind many
decisions they made in the form of a design rationale document (Sun Microsystems 1997).
Presumably, they went to such effort in order to fend off change requests, the questioning of their
decisions by those who may not be able to infer the rationale from the design, and to aid other API
designers by providing explicit reasoning about a particular API. Since all programmers are API
designers and consumers, these are valid justifications for the documentation of rationale in all API
designs. We do not know why the Sun designers chose to write a separate document instead of
including the rationale in the API documentation itself. It makes it less accessible, locatable, and
maintainable. Indeed, it was Sun that popularized the use of API documentation within source code
via JavaDoc.

Design and Intention Information

public interface Collection {
 …
 public Iterable iterator();
 public boolean hasNext ();
 public Object next();
}

This design is violates the bean custom of get and
set. However, it makes for code that is easier to write
and easier to read.

Code Vignette and Claims Information

A programmer seeks to iterate over a collection.

for (Iterator i = c.iterator(); i.hasNext();)
 System.out.println(i.next());

+ The programmer can express a loop on one line,

even if the Collection name is a long expression.
- The programmer cannot rely on the bean getter and

setter convention when learning the API.

Daughtry and Carroll 48

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

4. Methodology
Having contrasting forms of API information, we derive the following three hypotheses from our
overarching research questions:

H1: Our new instrument effectively measures programmers’ PSE with respect to API use.

H2: Inclusion of scenarios of use in an object-oriented API specification increases the user's
PSE for using the API.

H3: Inclusion of claims in an object-oriented API specification can increase the user's PSE
for using the API.

To test our hypotheses, we used the experimental design given in Table 2. To test H1, we needed a
number of professional programmers to evaluate an API with our scale. To test H2, we needed a
control group to evaluate an API with basic documentation (no vignettes or claims). We also needed a
test group to evaluate an API with documentation that included vignettes. To test H3, we needed an
additional test group to evaluate an API with documentation that included claims.

 Initial Data Assignment Treatment Observation

Group 1 Presented API with basic
documentation

Group 2 Presented API with basic
documentation and the scenario

Group 3

Reported
number of
years
experience
designing and
developing
software

Quasi-
randomly
assigned to
groups
based on
experience Presented API with basic

documentation, the scenario, and
claims

Completed
questionnaire
(perceived self-
efficacy)

Table 2 - Experimental Design

For subjects, we needed people who would know how to develop software and read an API.
Therefore, we had two options for subjects: undergraduates or experienced professionals. While using
undergraduates would allow us to obtain subjects more easily, we chose to use experienced
professionals because we preferred ecological validity over power. Therefore, we chose a target of 20
subjects per group. To obtain experienced professional software developers as subjects, we leveraged
existing professional contacts. In addition, we sought to keep the study as short as possible. With a
limited and distributed sample pool from which to draw, we needed a very high participation and
completion rate. The need for a short study was limiting in that we could not use multiple APIs.

Given that the potential subject pool would consist of primarily Java developers, we utilized JavaDoc
as the documentation format. Figure 2 gives the top-level API documentation as given to group 3. We
stripped the claims for group 2. We stripped the claims and scenario for group 1. One may assume
from the depicted documentation that there was a substantial difference between the amount of
documentation given to each group. Certainly, some groups were given more information than other
groups. However, there was other basic information included in the API specification that is not
included in the figure because of space limitations. The complete specification for each group (were it
printed out from online) is 5.5 pages for the control group, 6 pages for the first test group, and 6.25
pages for the second test group.

Subjects were recruited via email and sessions were conducted over the web. They reported their
experience and were assigned to a group using an algorithm that controlled for experience. Once
assigned to a group, they were all given the same instructions. Specifically, they were told to imagine
that they had just been placed on a development team tasked with building a large system. Their first
task was to evaluate potential software components and frameworks for use within the system. They

Daughtry and Carroll 49

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

were then given the API and asked to complete the questions at the bottom of the page with respect to
that API. There was no time limit imposed by the study. These questions were the PSE scale.

5. Results
We achieved our target of 20 subjects per group with a mean experience level of 8.6 years and a
standard deviation of 5.8. We were able to control for experience successfully, with each group
having participants ranging from 3 to 20 years experience as programmers and nearly identical means.

Every item on the scale had a variance greater than 1, indicating that there was some variance in the
results. Factor analysis was performed on the 20 items. A scree plot (Figure 3) showed that the
eigenvalues decreased more gradually after the first factor. Therefore, we ran a factor analysis for one
factor. We found that one factor accounted for 37.4% of the variance. Adding more factors did not
significantly change the explained variance; adding a second and third factor changed the explained
total variance to 48.6% and 55.8%, respectively. In addition, removing any one item from the scale
did not significantly change the variation explained by one factor, with the highest result being 38.8%

The Map class:

Understands a map as a collection of layers containing items. Layers can be deactivated to remove
them from standard operations. However, those deactivated layers will still be used when adding
two maps together. This map also understands the zenith and area of interest.

Scenario:

To create a map of the eastern United States, centered on Raleigh, NC.
Map map = new Map("Raleigh, NC");
map.setZenith(GeoLocater.getRaleighGeo());
map.setAreaOfInterest(GeoRegionLocater.getEasternUSRegion());
String EasternUSLayer = "Eastern US Layer";
map.add(EasternUSLayer);
map.add(JMapData.getEasternUSMapData(), EasternUSLayer);
map.activateLayer(EasternUSLayer);

Claims:
+ Provides a single point-of-entry to handle maps.
+ Uses JGeolocation classes to simplify integration efforts.
+ Uses JMap classes to simplify integration efforts.
+ Uses map metaphors such as "layer" and "Zenith" because they have been extensibly used

in other map software, both in API's and at the user interface level, so they should be
familiar.

+ Allows for any persistence mechanism desired; does not specify persistence interface or
implementation.

+ Allows for notification of changes to which layers are included and which are active,
allowing clients to take action when the model changes (e.g., repainting GUI).

+ Allows client to combine Map objects easily without losing the previous Map.
+ Allows for multiple threads to work with an instance.
+ Provides lightweight mechanisms for communicating data over a network.
- Limited to using map data as defined in JMapData package.
- Requires that all Items be placed in a layer.
- Requires inclusion of JGeolocation and JMapDatapackages.
- Confounds layer runtime operations with the concept of Map: e.g, activateLayer(Layer).
- Does not provide persistence out-of-the-box.
- Combining maps is slowed down because of cloning operations.
- Cannot be serialized.
- Most operations marginally slowed down because of synchronization.

Figure 2 - API Documentation

Daughtry and Carroll 50

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

and the lowest being 36.5%. The Cronbach’s alpha for the results was 0.91, which is high, and shows
that the scale was internally consistent. Excluding items resulted in an alpha within the range of 0.90 –
0.91, so we kept all of the scale items.

Figure 3 - Scree plot for the self-efficacy scale

We examined the probability plot of each item on the scale, and they all showed normal or nearly
normal distribution. This also held for each group and there were no outliers.

We checked for equal variance and used a one-way ANOVA to compare the means of the three
groups. Our F was 1.78 (which is a safe value for 3 treatments and 20 subjects). With a p-value of
0.320, there is not a statistically significant difference between the groups.

The results did not show significance, but we chose our sample size because of limitations in available
subjects. Although student programmers are relatively easy to recruit, we would rather have
participants that more accurately reflect the profession. This limited our sample size, so we did a
power analysis. With three groups, an alpha of 0.95, a maximum difference between group means of
0.605 (between the basic documentation group and the scenario with claims group), and an overall
standard deviation of 1.269, 113 subjects would be needed. This means that if the distributions we
obtained in this study hold true, 113 subjects per group would be needed for the results to be
statistically significant.

Finally, as data exploration, we examined the relationship between experience and self-efficacy. We
computed Pearson's product-moment correlation coefficient for the entire data set and within each
group. We found no evidence of a significant correlation between experience and PSE. In each group,
either the correlation was too weak to be significant (e.g., -0.026 for the control group) or the
correlation was not statistically significant (e.g., 0.128 for the vignettes group).

6. Discussion
In this work we had two research questions. First, we sought to develop an instrument for exposing
programmers’ PSE for using an API. Notably, in exposing this construct, we incorporated the social
dynamics of API use within real-world systems. Second, we sought to evaluate the extent to which
information (we used code vignettes and claims) impacts the exposed construct.

We found that the PSE scale we developed was able to capture programmers’ PSE effectively for
using an API. The very significant Cronbach’s alpha (0.91) shows that the scale is internally
consistent. One factor accounts for 37.4% of the variance between participants, and no other factor is
significant. Thus, the construct being measured is a simple and unitary construct.

Intuitively, one might expect that over time, programmers have a higher PSE for API use. However,
we saw that there was not a statistically significant correlation between self-efficacy and experience.

Daughtry and Carroll 51

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

In the strongest case, we are only 87.2% sure there is a correlation coefficient of -0.352 between years
experience and self-efficacy when scenarios are in the documentation. However, this is a weak case
for a marginally weak correlation. If the scale was more dependent on experience than the API design
itself, then we would have to conclude that the scale measured a programmer’s general PSE for API
use as opposed to measuring the programmer’s PSE for a particular API. However, if we make the
assumption that a programmer’s PSE for API use in general goes up over time, then we must
conclude that our scale is indeed measuring PSE for the API in question.

Looking only at the means of the groups, the results suggest (though insignificantly) that code
vignettes may actually decrease the self-efficacy of the subjects and that claims did so to an even
greater degree. Our initial presumption was that vignettes and claims would increase the usability of
the API. However, upon reflection, the real target outcome of vignettes and claims is that the
programmers can make more accurate judgements about the API. Thus, it is possible that our API had
poor design elements, and the programmers were able to assess the API more accurately based on the
additional information.

We found that we could not significantly alter the PSE results with significant documentation
changes. Thus, we also know that the PSE being measured is fairly robust. Unfortunately, this
robustness also means that we cannot use PSE as a way to evaluate small design decisions such as the
inclusion of vignettes and claims in documentation.

Given that the exposed construct is robust, it may hold value with respect to endeavours that require a
more robust construct. First, API usage performance in general may be related to our construct.
Evaluating programmer performance is a long-sought goal in the study of programming.
Unfortunately, a PSE instrument is easily manipulated if programmers are aware that they are being
evaluated against their responses. However, if a relationship does exist, it would still provide a
significant contribution to the psychology of programming. Further, its utility with respect to
evaluating the development of novice over time may hold value. Although experience was not
correlated with PSE in our study, we focussed on professional programmers.

Second, since it is not impacted by small design decisions, the PSE construct might be useful at a
higher granularity with respect to technology. For example, could it have shown the Java platform
design team that their Calendar API needed significantly more work, while the Collections API
satisficed? At present, the only mechanism we have for making such decisions is a subjective analysis
of importance with respect to how often the API will be used (Stylos and Myers 2007).

We only examined the relationship between PSE and the information given a programmer about an
API. We did not examine the relationship between changes in an API itself and PSE or changes in the
tools leveraged in API use (e.g.. Integrated Development Environments). It is possible that these may
still significantly impact PSE.

We studied professional programmers who, over time, have developed expectations of API
documentation. Some or all may have developed distrust for documentation, thus ignoring everything
except the structure of the API (e.g.. class name, method names, and method return types). This would
have led to scenarios and claims having no impact. Even if they did trust the documentation, the
inclusion of the scenarios and claims may have thrown them off. This is information they are not used
to seeing in documentation. Second, engineers are presumably extremely analytic. They may have
over-analyzed the questions presented in the self-efficacy scale in ways that did not surface in the
sandbox pilot. It is also possible that some APIs would benefit from scenarios and claims, while
others do not. This study only examined one API due to constraints in study length. The API selected
may have not been an API that benefits from scenarios or claims. Finally, the scenarios and claims
included in the API could have been different. Perhaps we did not construct scenarios and claims that
significantly contributed to the use of the artefact. Again, we were constrained due to study length.

Daughtry and Carroll 52

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

7. Conclusion
Our analysis supported H1. Interestingly, we had no support for H2 and H3. But, our results do
translate to the following significant results:

Result 1: Our perceived self-efficacy scale appears to measure a single construct, which we
presume to be the perceived self-efficacy of a developer in using an API.

Result 2: Programmer’s PSE for using an API is robust, seemingly unaffected by changes to
documentation.

Result 3: Experience does not play a significant role in developers’ perceived self-efficacy
for using APIs.

Given the robustness of the scale developed, several research opportunities arise from this work. First,
the scale needs to be applied against other APIs so that we can assess whether it has utility in
answering other important questions about programming. For example, one could compare the results
for a notoriously poor API design (e.g., something like the Java Calendar API) and a good API design
(e.g., something like the Java Collections API) to evaluate the effect that different APIs have on a
programmer’s PSE. Second, given the robustness of the scale, similar scales could be developed that
are at a lower level. Indeed, Bandura warns that the granularity of PSE scales can heavily impact their
utility. Specifically, an API use debugging PSE scale would be much more sensitive to small design
changes than the broad API usability PSE scale we developed.

Finally, and perhaps most importantly, we need to develop a more thorough understanding of the role
documentation plays in programming. We did not include such a test in our experiment, but it is safe
to assume that had we included an API with no documentation (to include meaningful package,
module, and member names), it would have received a very low score by programmers. How can one
even begin to use such an API, much less ascertain things like its goodness of fit and testability?
Although we have all been told (and we tell our students) that documentation is important and names
should have meaning, we don’t have an understanding of how these API elements support the
information needs of API users.

Currently, we are seeking to develop a better understanding of the API design decision space
described by Stylos and Myers (2007). In order to explore the relationship between psychological
constructs and API design decisions effectively, we must be able to understand the dimensions of API
design and use with respect to particular API features.

8. Acknowledgements
We would like to thank Mary Beth Rosson, Steve Haynes, Umer Farooq, Matt Peters, and Josh Gross
for their advice and support in the design and execution of this work. John Carroll would also like to
thank Edward M. Frymoyer for his financial support. We would also like to thank Dwight Berry for
his comments on a prior draft.

9. References
Alexander C., Ishikawa S., Silverstein M., Jacobson M., Fiksdahl-King I., and Angel S. (1977). A

Pattern Language. New York, NY: Oxford University Press.

Bandura, A. (1997). Self-efficacy: The exercise of control. W.H. Freeman and Company.

Bloch, J. (2001). Effective Java. Second Edition. Upper Saddle River, NJ: Addison-Wesley.

Bloch, J. (2005). How to Design a Good API and Why it Matters. keynote in Library-Centric
Software Design. Retrieved July 1, 2006 from Library-Centric Software Design Web Site:
http://lcsd05.cs.tamu.edu/slides/keynote.pdf.

Daughtry and Carroll 53

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Brandt, J., Guo, P.J., Lewenstein, J., Dontcheva, M., and Klemmer, S.R. (2009). Opportunistic
Programming: Writing Code to Prototype, Ideate, and Discover. IEEE Software, 26(5), pp. 18-24.

Carroll, J. M. (2000). Making Use: Scenario-Based Design of Human-Computer Interaction.
Cambridge, MA: MIT Press.

Carroll, J. M. and Rosson, M. B. (2003). Design Rationale as Theory, in J. M. Carroll (Ed.) HCI
Models, Theories, and Frameworks (pp. 431-461), San Fransisco, CA: Morgan Kaufmann.

Clarke 2004. Measuring API Usability. Dr. Dobb’s Journal. May 2004. pp.

Cockburn, A. (2004). The End of Software Engineering and The Start of Economic-Cooperative
Gaming. Retrieved January 28, 2006, from Alistair Cockburn Web Site:
http://alaistair.cockburn.us/crystal/articles/teoseatsoecg/theendofsoftwareengineering.htm.

Cwalina, K. and Abrams, B. (2005). Framework Design Guidelines: Conventions, Idioms, and
Patterns for Reusable .NET Libraries. Upper Saddle River, NJ: Addison-Wesley.

de Souza, C.R.B., Redmiles, D., Cheng, L., Millen, D., and Patterson, J. (2004). Sometimes You Need
to See Through Walls – A Field Study of Application Programming Interfaces. Proceedings of the
2004 ACM Conference on Computer Supported Collaborative Work (CSCW 2004). Chicago, IL:
ACM Press, pp. 63-71.

Eisenberg, D.S., Stylos, J., Myers, B.A. (2010). Apatite: A New Interface for Exploring APIs.
Proceedings of the International Conference of Human Factors in Computing Systems (CHI
2010). Atlanta, GA: ACM Press. To appear.

Farooq, U. and Zirkler, D. (2010). API Peer Reviews: A method for evaluating usability of
Application Programming Interfaces. Proceedings of the 2010 ACM Conference on Computer
Supported Collaborative Work (CSCW 2010). Savannah, GA: ACM Press, pp. 207-210.

Gamma, E., Helm, R., Johnson, R., Vlissides, J.M. (1994). Design Patterns: Elements of Reusable
Object-Oriented Software. Upper Saddle River, NJ: Addison-Wesley.

Fischer, G., Henninger, S. and Redmiles, D. (1991). Cognitive Tools for Locating and
Comprehending Software Objects for Reuse. Proceedings of 13th International Conference on
Software Engineering (ICSE’91). Austin, TX: IEEE Computer Society, pp. 318–328.

Mooty, M., Faulring, A., Stylos, J. and Myers, B.A. (2010). Calcite: Completing Code Completion for
Constructors using Crowds. Proceedings of the IEEE Symposium on Visual Languages and
Human-Centric Computing (VLHCC 2010). Madrid, Spain: IEEE Computer Society, to appear.

Parnas, D.L. (1972). On the Criteria To Be Used in Decomposing Systems into Modules.
Communications of the ACM. 15(12), 1972, pp. 1053 – 1058.

Parnas, D.L. (1994). Software Aging. Proceedings of the 16th International Conference on Software
Engineering, 1994, pp. 279-287.

Parnas, D.L. (1998). Successful Software Engineering Research. ACM SIGSOFT Software
Engineering Notes, 23(3), pp. 64-68.

Rosson, M.B. and Carroll, J.M. (1996). The Reuse of Uses in Smalltalk Programming. ACM
Transactions on Computer-Human Interaction, 3(3), 219-253.

Scheiderman, B. (1980). Software Psychology: Human Factors in Computer and Information
Systems. Cambridge, MA: Winthrop Publishers.

Software Engineering Institute (2008). Carnegie Mellon Software Engineering Institute Software
Technology Roadmap: Application Programming Interface. Retrieved December 15, 2008 from:
http://www.sei.cmu.edu/str/str.pdf. SEI 2008.

Stylos, J. (2009). Making APIs More Usable with Improved API Designs, Documentation, and Tools.
Doctoral Dissertation. Pittsburgh, PA: Carnegie Mellon University.

Daughtry and Carroll 54

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Stylos, J. and Clarke, S. (2007). Usability Implications of Requiring Parameters in Objects'
Constructors. Proceedings of the 29th International Conference on Software Engineering (ICSE
2007). ACM Press, pp. 529-539.

Stylos, J., Faulring, A., Yang, Z., Myers, B.A. (2009). Improving API Documentation Using API
Usage Information. Proceedings of the IEEE Symposium on Visual Languages and Human-
Centric Computing (VLHCC 2009). Corvallis, OR: IEEE Computer Society, pp. 119-126.

Stylos, J. and Myers, B.A. (2007). Mapping the Space of API Design Decisions. Proceedings of the
IEEE Symposium on Visual Languages and Human-Centric Computing (VLHCC 2007). Coeur
d'Alène, ID: IEEE Press, pp. 50-57.

Sun Microsystems (1997). Java Collections API Design FAQ. Retrieved March 2, 2010 from the Java
1.4 documentation: http://java.sun.com/j2se/1.4.2/docs/guide/collections/designfaq.html.

Zimmerman, B. J. (1995). Self-Efficacy and Educational Development, in A. Bandura (Ed.) Self-
Efficacy in Changing Societies (pp. 202-231). Cambridge, MA: Cambridge University Press.

Daughtry and Carroll 55

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Enhancing Comprehension by Using Random Access Memory (RAM)
Diagrams in Teaching Programming: Class Experiment

Leonard J. Mselle

School of Informatics
The University of Dodoma

mselel@yahoo.com

Keywords: RAM diagrams, teaching programming, novice programmers, close tracking of code, programming
comprehension, programming skills.

Abstract
This paper presents results of an experiment in which Random Access Memory (RAM) diagrams
were used to teach novice students C programming. Students were divided into two groups that were
differently instructed. The control group was instructed in the traditional way while the experiment
group was instructed with the aid of RAM diagrams employed throughout the course. Examination
results from the two groups were compared. Statistical analysis was done and the Z value was
calculated. The results suggest that the use of RAM diagrams improves programming comprehension
and programming skills.

1. Introduction
A substantial number of researchers conclude that mastering programming is difficult for majority of
students. Dehnadi and Bornat (2006) report that a substantial majority of students fail in every
introductory programming course in every UK university. They argue that despite a great deal of
research into teaching methods and student responses, the cause are not yet established.

Yousoof et al. (2007) contend that the source of difficult in programming can be attributed to
cognitive overload. Cognitive overload happens in programming due to the nature of the subject
which is intrinsically over-bearing on the working memory. It happens due to the complexity of the
subject itself. They conclude that the problem is made worse by the poor instructional design
methodology used in teaching and learning programming. Regarding cognitive load, Ala-Mutka
(2003) points out that in programming, students are required to contend simultaneously with a number
of issues. These include syntax, semantics, algorithm design, problem solving and paradigm specifics.
Marcia (1992), Tudoreanu (2003), Du Bolay et al. (1986), Vainio (2007) are among those who assert
that mastering programming is not easy.

1.1 Research on different approaches in teaching programming

Research works on alternative approaches to teaching programming include studies on the use of
different methods to conduct lessons. In this direction, alternatives such as improving effectiveness of
lectures combined with discussion groups, problem solving approaches, watching examples of
running codes, predicting what happens next and learning by doing have been tried. Other alternatives
are the use of graphics and graphical metaphors in program visualization. Another focus has been on
new concepts such as roles of variables (Kuittinen and Sajaniemi 2003). So far, none of these studies
have claimed to have entirely solved the problem.

This research is aimed at introducing and testing the effectiveness of a new tool which combines in
one single object; the computer memory (RAM), together with the syntax, semantics, and the
variables. This tool is a modification of trace tables which were used to teach programming in early
days. Hoc (1989) observes that the lack of “Representation and Processing System” (RPS) closely

Mselle 56

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

related to the computer operations constitutes an obstacle for novice programmers in learning. RAM
diagrams are designed to function as RPS.

There is evidence to support the notion that carefully designed tools can aid programming students to
develop accurate mental models and hence facilitate their comprehension of programming (Scott et
al. 2007). RAM diagrams as a pedagogical tool are designed to address these issues.

To demonstrate and test the effectiveness of RAM diagrams, this paper discusses program
visualization in section 2. The concept of trace tables is revisited in section 2.1. RAM diagrams are
introduced in section 2.2. They are demonstrated in section 2.3. Advantages of RAM diagrams are
discussed in section 2.4. Their ability to foster problem-solving skills is discussed in section 2.5.
Experiment about effectiveness of RAM diagrams is discussed in section 3. Results are discussed in
section 4 and conclusions are presented in section 5.

2. Program visualization
Program visualization is an approach to teach programming by showing (animating) the code, line by
line while vividly reflecting results of its execution. Use of visual representations is not new in
programming. Flowcharts have traditionally been used to visualize program structures (Scott, et al.
2005). Napes et al. predict that visualizing the execution of programs and showing a full life cycle of
objects would probably help students (Kuittinen et al. 2008).

Research on development, use and effectiveness of animation tools have been covered extensively by
Ben-Ari et al. (2001), and Sajaniemi et al. (2003) among others. Online visualization tools such as
Jeliot 2000, PlanAni and BlueJ are among the current program animators. Research on program
visualization is currently an area of great interest (Ben Bassat 2001), (Scott et al. 2005), (Stutzle and
Sajaniemi 2005).

2.1. Trace tables

Trace tables are among the first tools that were employed to teach programming. As far back as 1960s
they were regarded as useful tools in teaching programming to beginners. Trace tables were being
used for debugging and teaching programming when Pascal and Fortran were the teaching languages
(Tailor 1977). Their mechanism is as shown in figure 1.

int x = 0;

 int i;
 while (i<5{
 x = x + i;
 i++;
 }

I X
1 1
2 3
3 6
4 10

Figure 1- Example of Trace Table

For reasons not yet clear, trace tables do not feature in modern programming books, teaching notes or
syllabuses. No apparent reason is given for this abandonment. In this research, a survey carried out on
56 programming books at four universities in Tanzania and Rwanda found that there was no single
title that had made reference to trace tables. Trace tables are simple paper and pencil variable-tracing
tools. However, they do not explicitly include RAM in their mechanism.

Mselle 57

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

2.2. RAM Diagrams

RAM diagrams, as a tool for teaching programming, are a modification of trace tables. Like trace
tables they focus intensely on variables and their values. In addition, RAM diagrams display the code
while mimicking RAM in relationship with the change in the behaviour of variables along with the
algorithm. RAM diagrams can be used by the instructor to simultaneously reflect the syntax,
semantics and the algorithm. This simplifies the task to describe the internal and logical aspects of
programming such as variable declaration, data feeding, sequence, bifurcation, iteration, parameter
passing and file handling. The first part of a RAM diagram is the header/footer, stating the aspect of
programming that is being demonstrated i.e. variable declaration, data feeding, selection, iteration,
etc. The second part is the RAM-image, which is represented by an array of cells (rectangles). This
gives them ability to mimic the computer RAM in association with variables and their behaviour
when the code executes. The third part is the piece of code that is being discussed. This gives them
ability to represent the syntax and the algorithm of the problem being solved or described.

Du Boulay et al. (1989) argue that there are two approaches in teaching programming. The first
approach is called black box approach. Under black box approach, the mechanisms by which the
computer operates are hidden from the user. The second approach is called glass box approach. In
this approach, the user attempts to understand what is going on inside the computer. Each command
results in some change in the computer and these changes can be described and understood. Users do
not need to become electronic experts. There is an appropriate level that Mayer (1986) refers to as the
“transaction level”. As a pedagogical tool, RAM diagrams are designed to enable the instructor and
the learner to pursue the glass box approach in teaching and learning programming. They provide
possibility for close tracking with absolute precision.

2.3. Demonstration of RAM diagrams

Consider the following code:
 /*Program 1*/

main()
{

 int x;
 int y;
 x=4;
 y=7;
 x=x+y;
 }

Using RAM diagrams, program 1 can be close-tracked as shown in figure 2.

Mselle 58

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

2.4. Advantages of RAM diagrams

Du Boulay et al. (1989) offer two important properties for making hidden operations of a language
clearer to novice: (1) simplicity- there should be “a small number of parts that interact in ways that
can be easily understood”; (2) visibility- novices should be able to view selected parts and processes”
of the model “in action”. RAM diagrams have been designed in consideration of the following
properties:

1. In order to employ or understand RAM diagrams, students are not required to learn any new

concept. For example, to use flow charts, novices are required to understand symbols, their
connectivity, and their correspondence with the logic of the code.

2. RAM diagrams portray a direct relationship between code-statement and its effect on the
memory (RAM) and the variables. Flow charts and trace tables are devoid of code-RAM
relationship.

3. Roles of variables as discussed by Sajaniemi et al. (2003) can explicitly be expressed by
RAM diagrams. With RAM diagrams a novice is able to see a gatherer gathering, a stepper
stepping, a fixed-value fixed, a follower will be seen following, etc.

4. RAM diagrams are not machine dependent. They are applicable to any programming
language. They can be employed within or outside computer environment. This gives them
advantage of portability, flexibility and scalability. A programmer does not need to be tied to
a specific computer environment (as may be necessary for simulators) to check the precision
of the code. With pencil and paper the novice is able to verify the precision of the code
segment.

RA
M FRE
E FRE
E FRE
E RAM status BEFORE code

execution
Cod
e Cod

e
int
x; int

x; int
y; int

y;
RA
M RA

M RA
M x RESERVE

D x RESERVE
D x RESERVE

D FRE
E y RESERVE

D y RESERVE
D FRE

E FRE
E FRE

E Step 2: RAM status
ON Variable

Declaration int
y;

Step 1: RAM status
ON Variable

Declaration int
x; Variable

Declaration int x,
y;

RAM status
AFTER

Cod
e Cod

e
x=4
; x=4

; y=7
; y=7

; x=x+y
; x=x+y

; RA
M RA

M RA
M x 4 x 4 x 4

y RESERVE
D y 7 y 7

FRE
E FRE

E FRE
E

Feeding inside
Variables x an

d
y

Step 3: RAM status ON
Data Feeding into variabe x.
x =4

;
Step 4: RAM status ON
Data Feeding into variable y.
y=7;

RAM status AFTER
Data

Cod
e

x=4
; y=7
; x=x+y

; RA
M RA

M x 4+
7 x 11

y 7 y 7
FRE
E FRE

E FRE
E FRE

E Step 5: RAM status ON
Data Operation

(ADDITION) x=x+y
;

Figure	
 2	
 -­‐	
 	
 Example	
 of	
 RAM	

Diagrams

RAM status
AFTER SAVING RESULT in

x. x=x+y
;

Mselle 59

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

5. RAM diagrams can serve as a code designing and code testing tool. They can be used as code
studying tool and debugger. Novice programmers can use RAM diagrams to study other
people’s programs or their own programs to figure out why an instruction appears, where it
appears.

6. By explicitly linking code-writing to variables, RAM diagrams can facilitate schema
formation due to their ability to associate machine-memory and code development. According
to Ala-Mutka (2003), schema formation is one of the most challenging objectives of training
novice programmers. Associating programming practice to computer memory at an early
stage can help the novice to fathom the reality that the machine is just a passive recipient of
programmers’ brain-work. This in turn can enhance ability to design algorithm and schema
formation.

7. RAM diagrams can provide an alternative in the way teaching materials are presented.
Programming books and notes can incorporate RAM diagrams to provide students with a tool
to study and design codes.

2.3. Problem solving and use of RAM diagrams

Johnson-Laird (1959) defined mental models as a way of describing the process which humans go
through to solve deductive reasoning problems. His theory included the use of a set of diagrams to
describe the various combinations of premises and possible conclusions (Haden and Mann 2003).
Numerous studies have concluded that most programming students are overwhelmed by the hurdle to
build problem solving skills and proper mental models that will enable them to design and write
programs. Scott et al. (2005) contend that for many novice programmers a key weakness lies in their
problem solving skills. Many novices engage in program development without possessing an
appropriate model of an algorithmic solution. The same views are expressed by Garner and Howell
(Stutzle 2005).

Using diagrams to explain and describe phenomena, has been employed in different disciplines to
enhance comprehension and building mental models. RAM diagrams, have the ability to reflect the
image of variables in the computer memory. Like a map for a navigator, they guide the novice
towards the solution in an incremental manner. Using RAM diagrams to visualize the effect of code
statements on computer RAM, will enable the programmer to achieve the following:

• Organize ideas in a common theme

• Capture what is going right or wrong in the code

• Understand how the process works

• Understand the way factors (statements and variables) affect one another.

These, in turn, happen to be problem solving steps which, if mastered by novice programmers at the
early stage, their abilities to devise algorithms and develop mental models could be largely enhanced.

Pekins et al. (1986) categorize novices programmers into movers, stoppers and tinkerers. Using RAM
diagrams, movers can rectify their codes as they move on. Stoppers can use RAM diagrams to chart
out new direction. Tinkerers can use them to verify their bearing. For all categories, RAM diagrams
constitute an ideal tool for close tracking code (Soloway and Spohrer 1989).

3. Experiment
To test hypothesis that, consistent use of RAM diagrams in teaching programming will increase
student’s ability to devise algorithms and write codes, a class experiment that included two groups of
students, (n=100) was carried out. The groups consisted of first year students who were pursuing
introductory programming course at Kigali Institute of Science and Technology (KIST). Both groups

Mselle 60

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

comprised novice students who were being taught Programming in C. The syllabus and teaching
hours were equal for both groups.

3.1. Method

The control group, comprising 39 students, was instructed by a lecturer who followed the traditional
approach. Lectures were allocated 30 hours while laboratory and tutorials were allocated 45 hours.
The experiment group, consisting of 61 students was instructed by a lecturer who employed RAM
diagrams. During lectures and tutorials the instructor of experiment group, consistently employed
RAM diagrams to explain the code. Equally, during laboratory sessions, students were encouraged to
close track their codes using RAM diagrams. At the end of the course both groups attended the same
final university examination.

3.2. Subjects

The subjects were undergraduate first-year students studying Introduction to Computer Programming:
C Language. The experiment group consisted of students taking food science major. The control
group comprised students studying computer science. None of the students had prior exposure to
programming. Participants were not made aware of the experiment.

3.3. Materials

The examination consisted of eight questions. Each question carried a total of twenty marks. All
questions involved parts of coding and problem solving. The examination was designed to ensure that
aspects of sequence, selection, iteration, functions and file handling are well covered among the eight
questions from which students were required to select five. The examination and marking scheme
were jointly written by a panel of examiners. For the purpose of this experiment, the lecturer for the
experiment group decided to exclude himself from setting the examination. However he was present
in setting the marking scheme. Scores were distributed to provide the measure of ability to devise
algorithms and convert such algorithms in syntactically correct codes. Among questions that featured
were: (a) Given the equation; y=x2, write a code to solve it (4 Marks). (b) Write a code that will solve
y=8+2x2 (6 Marks). (c) Given the following scores, {60, 45, 34.5, 67, 45, 60}, write a code that will
store them in an array and calculate their total. (5 Marks) (d) Using a while loop, write a program to
store names and addresses of five students in a file (5 Marks). Questions were broken down into at
least 4 parts. The total score for any of 5 questions was 100 marks.

3.4. Procedure

The examination duration was three hours. Answer scripts were handed to the invigilator who latter
handed them to examinations department. From there, they were collected for grading by the lecturer
of control group who was not aware of the experiment. Grading for each question was carried out
using a common marking scheme which, for each question was framed based on the following
criteria:

(1) Ability to understand the question and evolve a correct algorithm (50% of the marks)

(2) Ability to write a syntactically correct code corresponding to the algorithm (50% of the
marks)

After marking, results were handed to the examination department for recording. The researcher
collected the results from examinations department for analysis. Assuming that the scores would
reflect comprehension of programming and better programming ability, statistical analysis of scores
of all, (n=100) students was carried out.

The null hypothesis is therefore stated as Ho: There is no difference in performance between the
groups.

The alternative hypothesis is stated as Ha: Performance of the experiment group will be better than
that of the control group.
4. Results and discussion

Mselle 61

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Results of the experiment are summarized in Table 1.

Experiment Group
N = 61

Control Group
N = 39

Mean SD Mean SD
64.67 9.58 60.02 11.98

Table 1 - Results obtained from the experiment

The average score for students in the experiment group was 64.67% while that of control group was
60.02%. The standard deviation was 9.58 for the experiment group while that of control group was
11.98.

A two-tailed statistic test at 95% level of confidence was worked out thus |Z|>1.96 yielding the value
of 2.01. This is a substantial statistical difference which, allows the null hypothesis to be rejected at
0.05 level of significance.

Samurcay (1986) asserts that programming is not only about producing a solution, but also to make
explicit the procedure producing the solution. Teaching programming while consistently using RAM
diagrams to understand codes, enables the teacher to make explicit the procedure while pursuing the
solution (Soloway and Spohrer 19890).

Pekins et al. (1986) posit that close tracking of program is an essential skill in programming. It helps
novice to find out bugs. RAM diagrams qualify to be an easy tool for close tracking. RAM diagrams
provide the novice with a handy tool to understand programming primitives. Understanding of
primitives is the foundation for mastery of more complex issues. As demonstrated, RAM diagrams
provide a means for stoppers to reason why the machine is behaving as it is behaving. Tinkerers may
use it as a clear guide to proceed (Soloway and Spohrer 1989).

5. Conclusion

As demonstrated in section 2.2 and 2.3, the strength of RAM diagrams as a visual tool, emanates from
their simplicity and ability to bundle in one unit the memory (RAM), variables, the code (syntax) and
the flow of control of a program. Used effectively, they strengthen the sense of programmer being at
the centre of programming as opposed to the feeling that the computer is responsible for anything
going wrong about the code. They provide an off-line verification tool.
However, there are questionable issues associated with this experiment. While there is a significant
difference in the examination scores of the two groups, this could be explained by at least two other
reasons: one, it could be that students in the experimental group were smarter or better able to learn
programming. Second, it could be that the teacher of the experimental group was just a better teacher
irrespective of the RAM diagrams. To address these issues, more class experiments are being carried
out in different settings, to determine the effectiveness of the tool.

6. References
Ala-Mutka, K. (2003) Codewitz, Needs Analysis. [On line]. Available:

http://www.cs.tut.fi/~edge/literature_study.pdf.
Ben-Ari, M. and Sajaniemi, J. (2003) Roles of variables from the perspective of computer science

educators. [Online]. Available : http://cs.joensuu.fi/pub/Reports/A-2003-6.pdf
Ben Bassat, L. R. et al. (2001) An extended experiment with Jeliot 2000. Proc. First International

Program Visualization Workshop, University of Joensuu Press, Pavoo Finland, 131-140.

Mselle 62

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Kann, C. et al. (1997) Integrating Algorithm Animation into a Learning environment. Computers and
Education, 28(4), Elsevier Science Ltd. Oxford, 223-228.

Dehnadi, S. (2006) Testing Programming Aptitude. P. Romero, J. Good, E. Acosta Chaparro & S.
Bryant (Eds). Proc. PPIG 18.

Dehnadi, S. and Bornat, R. (2006) The camel has two humps (working title). School of Computing,
Middlesex University, UK.

Haden, P. and Mann, S. (2003) The Trouble with Teaching programming. Proc. of the 16th. Annual
NACCQ, Palmeston North, New Zealand.

Kuittinen, M. et al. (2008) A study of the development of students' visualizations of program state
during an elementary object-oriented programming course. ACM Journal of Educational
Resources in Computing, 7(4).

Kuittinen, M. and Sajaniemi, J. (2003) First Results of An Experiment on Using Roles of Variables in
Teaching. M. Petre & D. Budgen (Eds) in Proc. Joint Conf. EASE & PPIG, 347-357.

Leslie, J. And Waguespack, Jr., (1989) Visual metaphors for teaching programming concepts. ACM
SIGCSE Bulletin, 21(1), 141-145.

Lim, M. and Michael, C. (1992) The case for case studies for programming problems.
Communication of the ACM, 35 (3), 120-122.

Sajaniemi, J. and Hu, C. (2005) Teaching programming: Going beyond “objects first”. [On line].
Available: http://www.ppig.org/papers/18th-sajaniemi.pdf

Scott, A. et al. (2005) A Step back from Coding – An Online Environment and Pedagogy for Novice
Programmers. [On line]. Available: http://www.ics.heacademy.ac.uk/events/jicc11/scott.pdf.

Soloway, J. and Spohrer, C. Studying the Novice Programmer. Laurence Erlbaum Associates:
Hillsdale, New Jersey, 1989.

Stutzle, T. and Sajaniemi, J. (2005) An empirical evaluation of visual metaphors in the animation of
roles of variables. [On line]. Available: http://inform.nu/Articles/Vol8/v8p087-100stut.pdf.

Tailor, R.T. (1977) Teaching Programming to Beginners. ACM SGCSE Bulletin, 9(1), 1977.
Tudoreanu, M. (2003) Designing Effective Program visualization tools for reducing users cognitive

effort. Proceeding of 2003 ACM Symposium on software Visualization, ACM Press, San Diego,
California.

Vainio,V. and Sajaniemi, J. (2007) Factors in novice programmers' poor tracing skills. ITiCSE 2007,
236-244.

Yousoof, M. et al. (2007) Measuring Cognitive Load - A Solution to Ease Learning of Programming.
Proc. Of World Academy of Science Engineering and Technology, 20.

Mselle 63

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Evaluating Scratch to introduce younger schoolchildren to
programming

Amanda Wilson and David C. Moffat

School of Engineering and Computing,
Glasgow Caledonian University,

Glasgow, Scotland, UK
D.C.Moffat@gcu.ac.uk

Abstract. The Scratch system was designed to enable computing novices, without much programming expe-
rience, to develop their creativity, make multimedia products, and share them with their friends and on a social
media website.
It can also be used to introduce programming to novices. In this initial study, we used Scratch to teach some
elementary programming to young children (eight years old) in their ICT class, for eight lessons in all. Data
were recorded to measure any cognitive progress of the pupils, and any affective impact that the lessons had on
them.
The children were soon able to write elementary programs, and moreover evidently had a lot of fun doing so.
An interview with their teacher showed that some of the pupils did surprisingly well, beyond all expectations.
While the cognitive progress is moderate, the main advantage to Scratch in this study seems to be that its
enjoyability makes learning how to program a positive experience, contrary to the frustration and anxiety that
so often seems to characterise the usual learning experience.

Keywords: POP-I.A. learning to program; POP-I.B. choice of methodology; POP-II.A.
novices, schoolchildren; POP-III.B. smalltalk; POP-III.C. visual languages; POP-III.D. vi-
sualisation; POP-IV.A. exploratory; POP-V.B. case study; POP-VI.E.

1 Introduction

Computing technology is increasingly important in the modern world, which could not function
without it. One might expect greater numbers of students to want to learn about computing; but
numbers of students at school and university are falling in the industrialised world.

The situation in the UK, for instance, is approaching crisis point, as recently documented
by the UK’s Computing Research Committee. According to their report (UKCRC, 2010), the
numbers of school pupils taking Computing or ICT (Information and Communication Tech-
nologies) courses has “collapsed” by about a third in less than five years; and the consequences
for university intake have been severe.

One of the major problems identified is that Computing in schools is typically confused
with ICT, and pupils are taught basic skills in office applications like word-processing and
spreadsheets. Their teachers themselves often have no formal education in computing, and
cannot communicate enthusiasm or understanding about what happens inside a computer to
make it work. In particular, there is little introduction to programming in some schools, and
what there is can easily lead to intimidation of the pupils rather than enlightenment. As a result,
they may leave school feeling that programming is mysterious and difficult, or frustrating and
boring. It is no wonder then, if they choose not to pursue computing at university and in the
workplace.

The problem may be tackled by making introductory programming both easier and more
fun, and there are several attempts to achieve this. The Scratch1 system from MIT (Resnick et

1 Home website: http://www.scratch.mit.edu/

Wilson and Moffat 64

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

http://www.scratch.mit.edu/

al., 2009) is a simplified visual programming system in which it is relatively easy to manipu-
late multimedia objects, without much preparation. It is a leading candidate to help introduce
children to programming, and the subject of the present study.

Scratch has been used by some enthusiastic teachers in schools in the USA and the UK
for extra-curricula activities (like after-school clubs), and anecdotally they are pleased with the
experience. It has been used for introductory programming at some universities, which have
gone so far as to publish evaluations of it; but there is little evaluation to date of its use with the
intended age group of middle school pupils.

In the present study, we made an initial evaluation of Scratch for school pupils, where we
deployed it in their IT lessons for eight weeks.

1.1 What is Scratch?

Originally inspired by Papert’s work (Papert, 1980), Scratch was intended by Resnick to sup-
port creative work with multimedia (Maloney, Peppler, Kafai, Resnick, & Rusk, 2008) in “com-
puter clubhouses” or after-school learning centres for children from deprived communities, and
was first deployed in 2005. Those children enjoyed multimedia “mash-ups,” like the sampling
techniques used in the pop music they liked, which is why the new system came to be called
“Scratch.”

The focus of Scratch is on making multimedia products, and sharing them in the large and
active online community hosted by the project website. This is intended to enable and develop
children’s creativity, but also to introduce them to programming, in a fun way.

Visual programming The way programs are written in Scratch is by fitting “blocks,” together
rather like toy Lego bricks; or pieces of a jigsaw puzzle. In this respect, the programming
language in Scratch is a “visual language”, (Green & Petre, 1996).

The blocks can only fit in ways that make sense, because of their shapes, so it is not possible
to get error messages from the compiler. This is a great relief for introductory programming,
and saves the learner from much of the heartache traditionally forced on them by textual lan-
guages. Learners in Scratch are not bullied by the compiler when they forget a semicolon or
have mismatched brackets, because such errors are not possible. To the extent that novices get
frustrated or daunted by floods of compiler errors, the visual language in Scratch gives it strong
appeal for educational purposes.

Fig. 1. Screenshot of a classic "Hello World!" program in Scratch

Wilson and Moffat 65

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

A traditional first program is shown in Fig. 1, where the default character (on the right, in
the canvas window) responds when you click on the sprite, with a thought-bubble that appears
for two seconds, and then says “Hello World!” in a speech bubble. The script that does this is
shown in the bottom middle window, which was made by drag-and-drop from the palette of
blocks in the left window.

Other palettes are available in the upper left window, which include blocks for program
control logic (selected), blocks to move sprites around the canvas, blocks to draw on the canvas,
blocks to sense events like collision detection, blocks for playing sounds, and so on. There are
blocks for arithmetic, boolean and string operations, and for variables too.

1.2 Related work — evaluation of Scratch for novice programmers

The Scratch system has been a big hit with its intended users, in computer clubhouse envi-
ronments, as reported by the developers (Maloney et al., 2008). The children spent more time
working on Scratch than with any other package they had available to them. It seems clear
that Scratch succeeds very well in fostering creativity and in social sharing of the multimedia
products.

It was envisaged from the outset that while this project was to introduce computers to de-
prived areas, the educational benefits would be researched at a later date (Resnick, Kafai, &
Maeda, 2003). Because Scratch is a new system, there have only been a few studies of its use
in teaching programming, so far.

In one study, Scratch was used at Harvard university (Malan & Leitner, 2007) , where it was
used to introduce novices to programming before their transition to Java. There was an almost
total approval of Scratch amongst the learners who were true novices; and the only learners
who disagreed that it was useful to them were the few people who had already some experience
of programming.

Another pilot study was in the USA with 8th grade girls at middle school, where the aim
was to see whether the pupils would learn to appreciate the basics of programming in the span
of a three-hour workshop (Sivilotti & Laugel, 2008). The girls were not complete novices, all
having used either Scratch or Lego Mindstorms or Logo before. They reported feeling that
they had learned something worthwhile and how much fun they had had (average 3 and 3.4
respectively, on a 4-point scale).

2 Method: to try Scratch out in a real classroom at primary school

The existing studies above have evaluated Scratch either informally, in after-school activities, or
more formally with older or more experienced students. It was generally observed that Scratch
was fun to use, and there were some observations about learning ocurring.

The purpose of the present study is to evaluate the use of Scratch in school lessons as an
introduction to programming for total novices, in a younger age-group at primary school. It
focuses on two possible kinds of benefit: cognitive and affective; we are interested to know
whether Scratch teaches concepts well, and whether it is fun to use for the younger age-group
in a school context.

2.1 The school and pupils

The primary school chosen for this study is in a relatively deprived area of Glasgow, in Scot-
land. The class has twenty-one pupils, who are all eight or nine years old. One of us (AW)

Wilson and Moffat 66

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

approached the school teacher to offer taking her IT lessons for the whole term of eight weeks.
The teacher agreed, being interested to see how well the lessons would go with Scratch, as
compared to the normal ICT lessons that she gave the pupils, in which they would typically use
office applications or surf the web.

2.2 The lesson plans

Scotland is currently renewing the schools curriculum, and so the lesson plans were drawn
up with the new Curriculum for Excellence (LTS, 2010) in mind. That way, the teacher can
continue to use the lesson plans later on, if she so chooses, because the lessons satisfy the
desiderata of the new curriculum.

For each of the eight weeks, there was a one-hour lesson. At the start of each lesson, we
showed all the pupils what they would do next, on a whiteboard at the front of the class. Then
they went to work in pairs at the computers, to try and achieve the task using Scratch.

The tasks were to make a sprite move around the canvas, either to make patterns, or to visit
certain locations in turn and end up at a target location. Each week’s lesson was a little more
complicated than the previous one.

In order to illustrate to the children what task to achieve for each lesson, the demonstration
was given either on the whiteboard, or using a small remote-control toy, which was a toy robot.
Some children would call out instructions to the one with the remote control, who would then
control the toy robot. By this kind of concrete programming (Demo, Marciano, & Siega, 2008)
the children can think through what sequence of actions is required to get the robot to its
destination, and they are then ready to try the task with Scratch.

First visit – set baseline of understanding Find out what the children might already know
about programming.

Illustrate the concept of algorithm with an example of making breakfast: (1) Get cereal box,
(2) get bowl, (3) get milk, (4) pour cereal into bowl, (5) pour milk into bowl, etc. Emphasize
the importance of getting the order right (to help understand sequencing later on).

Lesson one – introduction to Scratch Introduce the children to Scratch, with a worksheet that
shows a couple of program “blocks”: (a) to “move 10 steps” and (b) to “turn right 90 degrees”.
The children can experiment with the effects of these blocks on the cat character, and they can
try different numbers of steps to move or degrees to turn. Then they can look at the other blocks
available in the palette and come up with their own ideas to try out for the rest of the lesson.

Lesson two – introduce "sequence" Hold a class discussion about how a program can make
shapes on the canvas, by using the pen (as with turtle graphics). Then demonstrate the program
with a remote control toy, and let the children go to the computers to put the programs into
Scratch and try them out.

Lesson three – first class test The exercise is to write a program to move the sprite (cartoon
character) across the canvas, while on the way passing over each of the coloured shapes that
have previously been drawn on it by the tutor. This cannot be done with a single straight line, so
the children have to make a route out of straight segments joined by 90 degree turns (see Fig. 2).
Before trying to do this in Scratch, they first work out the path they want and the instructions
required to draw it, and they write their little program on the paper worksheet.

Wilson and Moffat 67

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Their worksheets are collected for later marking to monitor the pupils’ progress. Marks for
this test (out of eleven) are awarded according to how much of the path the child manages to
produce:

– did he or she draw the line from start to finish?
– did he write down correct instructions, that get the sprite to the end?
– did he put in the correct turns, in direction and in degrees?

Fig. 2. Lesson-3 exercise, showing a route that visits all the shapes

Lesson four – iteration Introduce the children to the “repeat” block, as a way to make repet-
itive scripts shorter. Show an example script of a line segment followed by a quarter turn, and
then enclose it inside a repeat block (see Fig. 3), that runs it four times. . . to make a square.

Fig. 3. Lesson-4, showing a repeat-block for iteration

Lesson five – selection Introduce the class to conditionals, by using if - else-statements to
make their sprite rebound when it collides with the endge of the canvas, or another sprite.

Lesson six – coordination and synchronisation Using the “broadcast” block, which sends
messages to any other blocks that care to listen, the children can make a short animated se-
quence in which two sprites talk to each other (see Fig. 4).

Wilson and Moffat 68

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Fig. 4. Lesson-6, showing an animation with sprites conversing

Lesson seven – the Scratch cards A set of twelve cards is available to download and from the
Scratch website, each of which helps the learner to explore another feature of Scratch. One card
shows how to play sounds, for example, and another one shows how to make a sprite follow
the mouse cursor.

Show the children how the cards suggest things to try in Scratch, and let them work their
way through the set.

Lesson eight – second class test The exercise in this lesson is to be marked afterwards, and
includes several tasks, of which one is comparable to the first class test from Lesson-3. The
latter task is similar to the one from the first class test, except that it has a set of shapes in
different locations, necessitating a different path to negotiate them.

Unfortunately, because the exercises in this lesson were longer, the children did not all finish
them, and some rushed their answers. For this reason, we did not use the results to compare
with Lesson-3.

Week nine – after the lessons, a final class test We set the class another test (Test-3), similar
to the first class test in Lesson-3, and this time without extra time-pressure. The results from
this test were used for further analysis (see below).

2.3 The measurements taken

We wanted to know how the lessons compared with the class’s other, normal lessons in ICT. The
two major factors were cognitive (how effectively they learned) and affective (how enjoyable
the experience was, and how motivated by it the pupils were).

As well as some simple questionnaires for the pupils, their behaviour was observed during
the lessons, and the teacher was interviewed for her reactions and opinions, as she knows the
pupils well.

Cognitive measures In order to measure learning progress, the pupils were set some questions
at two points during the term: the middle and the end (lessons 3 and 8). The questions were
inspired by the Cambridge “ICT starters” syllabus for assessment of early progress in ICT skills
(University of Cambridge International Examinations (CIE), 2010).

Wilson and Moffat 69

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

While the “ICT Starters” curriculum covers ICT skills from word processing and spread-
sheets to email and web-browsing and authoring, it also includes control, which is more closely
related to programming concepts. Children are to demonstrate control by giving simple com-
mands to a device; and by using a sequence of commands to control a device, including inputs
and outputs. The programming language to use for these activities is Logo.

Our tests and scoring schemes were based on their assessment ideas, which allowed the
childrens’ work to be judged and quantified as to the level of skill demonstrated. In order
to show that children have developed some facility for control of a device, the curriculum
requires that they produce a sequence of instructions that involve at least a certain number of
line segments, and a certain number of 90-degree turns. The class tests were devised to embed
these requirements into the tasks set for the children, in making a sprite navigate around the
canvas, visiting various locations on the way.

Affective measures In order to measure how enjoyable the children found their lessons with
Scratch, or whether they were growing at all frustrated, they filled in a brief log-sheet after each
lesson, to say what they did in the lesson and how they felt about it. Rather than ask such young
children to describe their feelings, the log-sheet had three cartoon faces (sad / neutral / smiling)
which they could mark with a cross (see Fig. 5).

Fig. 5. Affect measure: a log-sheet that young children can easily understand

3 Results

There were twenty-one children in the class (5 girls and 16 boys), but some did not attend all
the lessons. All were eight years old, except for the four nine-year-olds.

Nineteen pupils had a computer at home, but none of them knew what a computer program
was before the lessons. They had never done any form of programming before, neither at school

Wilson and Moffat 70

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

with a teacher, nor at home. The pupils mostly thought that a program was something to do with
the internet, or with computer games.

3.1 Cognition and learning

The tasks that we used as tests, and marked, were given in weeks three, eight and nine. Unfor-
tunately the scores for the second test were low, because the children ran short of time in that
class, so we use the scores from Test-3 instead. There was a problem with that test as well, in
that it took place near the holidays, and several children were absent that day for that reason,
and because of an infection that was going through the school at the time.

Leaving out the missing values, there were only N = 12 pupils that had scores for both
Test-1 and Test-3. The mean score for the tests were 52% and 64%, respectively. Although this
shows an improvement in the pupils’ performance, the difference is not statistically significant
at the 95% level (paired t-test, t = -1.741, df = 21.202, p = 0.09617).

3.2 Affective experience of pupils

At the end of each lesson, the children marked on their log-sheets how they felt about the lesson
with Scratch. Answers were on a 3-point scale, shown by three cartoon faces which were either
sad or neutral or smiling. The result averages are shown in Table 1, where the missing values
for the lesson in week-2 are shown as blanks: there was no time to fill in the log-sheets that
week.

Table 1. How the pupils felt about their lessons (sad, neutral or happy)

lesson : 1 2 3 4 5 6 7 8
happy 19 - 20 20 18 18 18 15

neutral 0 - 0 0 2 1 2 3
sad 0 - 0 0 0 0 0 0

absent 2 - 1 1 1 2 1 3

It is clear from these results that all the pupils enjoyed the lessons hugely. Nobody was ever
sad, a few were neutral for at most two of the weeks, and all other marks were for smiley faces.
In fact only five of the twenty-one pupils ever marked a lesson down to neutral.

3.3 Teacher’s views

All the lessons were lead by one of us (AW), while the teacher watched and helped, because
this was new to her as well as to the class. At the end of the term, she was interviewed for her
personal assessment of her pupils’ progress, because she knew them well and could compare
their performance and enjoyment in our lessons with the way they were in other classes. Except
for people’s names, her answers are transcribed here verbatim, as follows:

Question: What expectations did you have at the beginning, and have they been met?
Answer: Without a doubt – they have been exceeded!

Question: How do you feel your class performed in the Scratch lessons compared to how they
would perform in normal ICT lessons?

Wilson and Moffat 71

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Answer: Far more enthusiastically. They picked it up very quickly and easily; I don’t know
why. Maybe it was the Scratch system, or maybe it was your tutoring. But they were more
enthusiastic than in their other subjects. They were very keen, kept at the task, and didn’t
have to be told to keep quiet.

Question: How were they compared to how they would perform in maths lessons?
Answer: Much better.

Question: From at the test results, did any children do better or worse than you’d expected?
Answer: Yes:

– one did much better, as he seems to be really good on the PC. He is good at maths too,
but finds language difficult.

– Another one made a great improvement.
– But I was surprised that two others did much worse than average in this class, while they

are in the top group.
– It’s obvious to me the less able pupils are doing better with Scratch. I’m surprised at

those not doing well academically doing really well with Scratch. Some of them have
language barriers as well.

Question: Did you enjoy the lessons?
Answer: Yes I did.

Question: Would you recommend Scratch to your colleagues as a tool to teach computing?
Will you use Scratch yourself in future?

Answer:: Yes, without a doubt — it’s a great tool for teaching. We’d like you to come again
and show us teachers more about it.

4 Discussion and conclusion

It is clearer from the teacher’s answers than from the other data just how much better the
progress and behaviour was in these Scratch lessons, compared to other classes. Consider in
turn the affective and cognitive factors at play.

4.1 Was affect important?

The level of enjoyment was consistently high, for all pupils and for every week. It was notice-
able that the pupils were laughing quite a lot, and showing their work to each other, and to
the teacher. Some might think this emotional side to be unimportant, or much less important
that the cognitive effects such as evidence of learning; but we do not. Affect is important for
learning, and not just as an accompaniment. Learning will hardly progress without motivation,
and that is stirred and maintained by positive affect. The teacher of these children also seems
to prize the fun that she sees in the class when they learn to use Scratch.

The teacher’s remarks about some of the less able pupils doing very well were not entirely
suprising to us – we had suspected that might happen for one or two children who were oth-
erwise difficult to reach. But it certainly was a surprise to us that a couple of the academically
strongest children did conversely: rather poorly. While they were normally in the top group,
in our lessons their performance was amongst the lowest in the class. We hope to discuss this
matter again with the teacher, and until then we cannot explain it.

Wilson and Moffat 72

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

There is little doubt that Scratch, in combination with the lesson plans we used, was a big
hit with the whole class; all the pupils, and the teacher too. Our formal measure of affective
reactions clearly showed that the lessons were enjoyable for all the pupils.

Was it merely about novelty? It is of course possible that this effect is entirely due to nov-
elty, as the pupils had never seen Scratch before, nor their new tutor. That issue can only be
entirely settled with a longer study. However, we note that eight weeks is quite a long time for
a pure novelty effect to sustain, without the slightest fall. Note also that the “new tutor” had the
pupils’ attention for the first 5-10 minutes of each class, and after that they went to work on the
computers in pairs, as usual. Perhaps it might be argued that the lesson plans introduced more
novelty each week, with new facets of Scratch programming to explore, and that it was the
continual recycling of novelty that sustained the novelty effect. By that argument, however, all
forms of learning would be self-reinforcing by means of novelty cycling alone. The argument
is thus a facile one, and we reject it in favour of concluding that Scratch has shown itself to be
beneficial (and fun) for learning programming, and for more reasons than mere novelty.

4.2 Is there good news on the cognitive front?

Our formal measure of cognitive progress did show some improvement, but not enough to be
statistically significant. The results were hampered by missing values; and perhaps it was too
much to expect in only eight hours of lessons, albeit spread over eight weeks.

It may not have been the best idea to use our Test-1 and Test-3 in order to measure progress,
because both tests were about the same subset of skills. That makes for a convenient compari-
son, but on the other hand it also misses any other learning that may take place. For example,
in Lessons four and five the children learned about iteration and selection statements; but there
is no need for them in the class tests, so any learning there would be missed by them. The only
way that the tests would show learning is if the children improve their performance on the basic
skills by practicing with Scratch while learning the more adanced ones.

In future work it would be an idea to plan out a more open-ended set of challenges, that
would allow pupils to use things like iteration and selection, if they knew them; but would let
them achieve success in a simpler, more tedious way, if they didn’t know them yet. For example,
a program with an iterative loop may be equivalent to a longer one where the loop has been
unfolded. A sensitive marking scheme would be needed, to reward any flashes of inspiration and
novel attempts that don’t happen to work, but are still evidence of insight. Until then, we must
conclude that the advantage of the Scratch system, now applied to teaching programming, has
not been formally demonstrated in this study. Quantitative results did not significantly support
it.

In order to prove that Scratch is better than any usual alternative, a controlled study where
the alternatives are played off against each other would be required. Without doing that, how-
ever, we can still make a case in favour of Scratch. First: note that in only eight weeks the
young children tackled the key elements of programming (sequence, iteration and selection);
and more, besides. They were also introduced to synchronisation between scripts, and elemen-
tary multimedia effects. Second: imagine trying to achieve the same progress in the same time
with a standard alternative – say with Java and Swing. Give the eight-year olds a nice IDE as
well if you like, to help them along. Third: no, there is no third step, since the second step is
already incredible, isn’t it? The present authors certainly cannot imagine it happening, unless
perhaps with child geniuses.

Wilson and Moffat 73

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Other curious observations It was good to see that the Scratch lessons were able to reach
some of the pupils who are known to have difficulty with other classes; with “language” in
particular.

However, it is puzzling that some of the ordinarily stronger pupils did uncharacteristically
poorly in the Scratch lessons. This issue is a matter for further investigation.

For the time being, it seems safe to conclude that Scratch looks like a rather successful
way to introduce programming concepts to children as young as eight years old; even including
some who suffer from a degree of learning difficulty.

It remains to be seen whether the pupils will maintain their enthusiasm about programming
when they later encounter more conventional languages, with fussy syntax; but at this point we
are encouraged at the prospect. We are thinking of ways to use Scratch in future as part of our
outreach programmes, for example to help schools learn how to deploy it in the classroom.

4.3 Ideas that may help explain success

Future work could look at the features of Scratch, and attempt to break down which ones are
the most crucial in achieving the generally happy results. The two major features of Scratch
are the visual language, and the multimedia environment. Each one may well have a double
benefit, as we shall now speculate.

Benefits of visual language Because the programming language is visual, it benefits both
the cognitive and affective sides of learning. The essence of programming includes the key
concepts of sequence, iteration and so on; matters of syntax in a textual language are relatively
superficial, and so are less important. In order to learn the key concepts, however, the pupil
has to first master enough syntax to support them. Therefore, the material has to be learned
in the wrong order, with the lower priority syntax taking precedence. Using a visual language
does not solve the problem of syntax, since the student will have to tackle that later when
learning a second, more traditional language; but it does postpone the problem until the student
has grasped the fundamentals. In this way, the memory load is kept manageable at all times,
instead of overloading the mind all at once with barely sensible detail. This is a big cognitive
benefit.

The affective benefit of learning a visual language is simply that a lot of heartache is
avoided, which is to say that the potential for negative affect is neutralised. It may well be
more important to prevent negative emotions from intruding into learning, than to encourage
positive ones. Therefore, this benefit is particularly strong.

Benefits of multimedia platform The affective benefit of the multimedia environment is fairly
obvious: it’s fun to play with. Consequences of that are that the pupil will happily spend more
time with the system, including leisure time, and will also tend to explore the system more, and
try out new program blocks and other things that a more sober system would not encourage.
Such exploration, naturally, should accelerate learning.

The chief cognitive benefit of the multimedia elements, that are fairly easy to manipulate,
may be the instant and vivid feedback that makes the internal workings of the programmed
system so much more apparent to the learner. This is because the program statements can be
so closely related to the multimedia elements that the sprites and sounds and events in the 2D
virtual world are (virtually) the program itself in motion.

A more traditional program for a novice task would involve manipulation of data structures,
some calculations, and eventual printouts of results; but to make the internal workings of the

Wilson and Moffat 74

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

algorithms more visible, suitable print statements would need to be set in the program, which
can be a tedious process that also requires some astute thinking on the part of the poor novice
to place them optimally. Yet again, the learner could become overwhelmed; either that or could
become less ambitious, and rather reconciled instead to slower, more tedious progress, soon to
be followed by boredom.

It is noteworthy that these affective and cognitive benefits are not independent; rather, they
tend to feed back into each other. This reinforces our view that the affective side of program-
ming is in its own way at least as important as the cognitive side. If that is so, then an ideal
educational system to help learn how to program should be designed with as much attention
paid to the learner’s emotional state as to the cognitive dimension.

How many such systems or approaches are out there? We know of at least one.

5 Acknowledgements

Thank you to the teachers at the school and their pupils who took part in this study; and many
thanks also to the kind and careful reviewers.

References

Demo, G. B., Marciano, G., & Siega, S. (2008). Concrete programming: Using small robots
in primary schools. In Proceedings of 8th IEEE international conference on advanced
learning technologies (p. 301-302). IEEE computer soc.

Green, T. R. G., & Petre, M.(1996). Usability Analysis of Visual Programming Environments:
A ’Cognitive Dimensions’ Framework. Journal of Visual Languages & Computing, 7(2),
131–174.

LTS. (2010). Curriculum for Excellence. Technologies: experiences and outcomes
(Govt. Rep.). Learning and Teaching Scotland (LTS). (Available at website:
http://www.ltscotland.org.uk/curriculumforexcellence/technologies/)

Malan, D., & Leitner, H. (2007). Scratch for budding computer scientists. In 38th sigcse
technical symposium on computer science education (Vol. 391, pp. 223–227).

Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., & Rusk, N.(2008). Programming by choice:
Urban youth learning programming with Scratch. Proceedings of the 39th SIGCSE tech-
nical symposium on Computer science education – SIGCSE ’08, 367.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas (2 ed.). Basic Books.
Resnick, M., Kafai, Y., & Maeda, J.(2003). A networked, media-rich programming environment

to enhance technological fluency at after-school centers in economically-disadvantaged
communities. (Proposal to the National Science Foundation, USA; project funded 2003-
2007)

Resnick, M., Silverman, B., Kafai, Y., Maloney, J., Monroy-Hernández, A., Rusk, N., et al.
(2009, November). Scratch: Programming for all. Communications of the ACM, 52(11),
60–68.

Sivilotti, P. a. G., & Laugel, S. a. (2008, February). Scratching the surface of advanced topics
in software engineering. ACM SIGCSE Bulletin, 40(1), 291.

UKCRC. (2010, January). Computing at School : the state of the nation. Available at website:
http://www.ukcrc.org.uk/.

University of Cambridge International Examinations (CIE). (2010).

Wilson and Moffat 75

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Students’ early attitudes and possible misconceptions about
programming

David C. Moffat

School of Engineering and Computing,
Glasgow Caledonian University,

Glasgow, Scotland, UK
D.C.Moffat@gcal.ac.uk

Abstract. Programming can be unpopular with some university students of computing, who may then go on
to graduate without good programming skills. This unpopularity threatens student recruitment into the core
computing courses and professions, and may weaken the economy. It may be that negative attitudes harm the
student’s interest and confidence in programming, making for an unsatisfying learning experience.
In this pilot study, student attitudes towards programming, and possible changes in attitude, were investigated
by means of a survey on a university’s introductory programming course.
Results indicate that some students have negative attitudes toward programming, and programmers; and this
applies to school pupils as well. A minority of the students questioned retained their frustration and dislike of
programming throughout the course, but others came to love it in the end. Interpretation of the results leads to
speculation regarding the quality of the teaching of programming, both at school and at university.

1 Introduction

In the UK and some other industrialised countries, student recruitment onto computing courses
is falling. There may be various reasons for this, including demographic changes, curriculum
changes at secondary school level, inadequate resources devoted to computing subjects, possi-
ble “dumbing down” and so on. But attitudes and possible misconceptions about programming
might also have something to do with it.

When at university, following a computing degree, some students display an aversion to
programming; when given the choice, they opt for project work that does not involve software
development. Reasons given include being “uncomfortable with” programming, or not being
able to program competently. This has been my own experience, in supervising student projects,
or leading other kinds of student coursework in which programming is optional in some sense.

It may seem paradoxical, to suggest that some computing students dislike programming,
because then it would be strange for them to choose to study computing at university in the
first place. However, we should remember that students do not know the subject very well,
and initially they do not share the more educated views of their teachers. Moreover, there are
differing views amongst the teachers themselves. (At my institution, for example, I fall in the
“hard-core” camp, because I consider that programming is the heart of computing; but there
are colleagues who disagree with that.) Finally, the situation at schools (in the UK at least) is
still worse, for there it is quite common for teachers to confuse computing with information
technology. Being unclear about the difference, it would be no wonder that their students are
confused, too.

Anecdotally, from talking with colleagues in staff room conversations, whether they see
programming as essential to computing or not, it is generally accepted that some students show
a distinct aversion to programming. However, there is little literature concerned with this issue.
The present study is an initial attempt to explore student attitudes toward programming, and
whether they have an impact on their learning.

Moffat 76

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

While there is much attention devoted to the cognitive aspects of learning how to program,
the affective aspects are relatively unexplored. Bennedsen and Caspersen (2008) sought corre-
lations between some affective variables, including perfectionism, self-esteem and optimism,
and performance in computer science courses. They found some interesting results, such as
that self-esteem was correlated with success, as measured by good course grades. However,
in present study is directed at a different set of affective variables, or attitudes: namely, self-
efficacy, and social stigmas.

1.1 Confidence and self-efficacy in learning
It is known that self-efficacy (Bandura, 1994) is important in learning. The concept of self-
efficacy relates to how people perceive their own capacity to achieve their goals, or goals that
have been set for them. In an educational context, for instance, students have to learn things
that may be quite difficult, and have to undergo examination to see whether they have learned
successfully, and to what standard. While students are learning, they do not know whether they
will succeed, in general, both because they are not yet familiar with the material to be learned,
and because it is set at a fairly difficult level which should stretch the average student.

Self-efficacy is important in determining whether a person will succeed at a difficult task,
because the strength of the belief can encourage the person to persevere, and so be more likely
to overcome obstacles that appear along the way. It is related to confidence, but Bandura did not
like to use the word “confidence” in his writings, because it can be used in a vague and general
way, which is why he introduced “self-efficacy” as a new technical term. However, in ordinary
language the concept may be rendered as a person’s self confidence in being able to achieve a
certain level of performance at some specified task, including both the strength or certainty of
that belief, and the degree to which the level of attainment might be exceeded. In the context
of learning how to program in a university course, for instance, a student may strongly believe
that he will pass the course, but with only a low mark; or may initially believe that he could
pass with a high mark, but believe that only weakly, so that he could be easily discouraged by
an early setback.

The strength and degree of self-efficacy that a student has can clearly have a large impact on
learning, therefore. There is also an interaction with affect or emotion, as minor successes and
failures may confirm or defeat expectations. The emotion in turn can change self-efficacy as
perceived by the student, and so regulate further learning performance. Bandura sees emotion
as an important aspect of self-efficacy.

Programming is a challenging new skill to learn, for novices who have no experience of
doing anything similar as far as they know, and so they can be extremely uncertain in their
self-efficacy. Therefore one aim of this study is to question the nature of students’ self-efficacy
as regards learning how to program.

1.2 Negative attitudes about programmers may play a part
There are other reasons to be interested in the affective attitudes of students toward program-
ming, such as any stereotypical views of programming and programmers. If students at a
younger age, when still pupils at school, adopt society’s prevailing attitudes toward program-
ming, some of which may be seen as negative, then clearly there could be a large impact on
study and career choices. Furthermore, if any students at university still retain such unfortunate
attitudes when they have joined a computing course, then their learning could be retarded as a
consequence, unless and until their attitudes can be corrected by experience. Any social stigma
that may attach to a profession could undermine student motivation to choose that career, and
study that subject.

Moffat 77

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

1.3 Related research
Although there is not much literature about the affective attitudes of students toward program-
ming, an interesting and related line of research is in the differences between boys and girls in
scientific and technical subjects, and specifically in computing.

Beckwith and Burnett (2004) surveyed the literature on gender and learning, and drew sev-
eral inferences about how best to design software development systems to benefit the strengths
of both sexes. Beckwith et al. (2006) investigated a sex difference in tendency to “tinker” with,
or playfully explore the features available in software products. Males tend to tinker more,
which may account for their sometimes faster progress in learning to program; whereas fe-
males seem to be more reluctant to tinker with features they don’t know about. This could be
seen as a difference in learning style; or it might be interpreted as a form of risk-aversion in
females, which would be a difference in affective attitudes of the sexes.

Differences between the sexes in self-efficacy in computing were found by Busch (1995),
which may be attributable to the different personal histories, in that males had more experience
of computing, and had benefited also from more encouragement from family and friends. In that
case, gender stereotyping may be amplifying any difference in ability, via an affective route.

In a study of the personal histories of fifteen women who excel in their chosen careers
of mathematics, science and technology, Zeldin and Pajares (2000) found that familiar role-
models (male or female) and social encouragement were both factors in determining the career
choices of the successful women. Each factor contributed to higher self-efficacy, which in turn
led to greater resolution and higher performance.

The present study is not focused on women in computing, or on gender in any way; but the
above literature is nevertheless relevant to our concerns, because it indicates that self-efficacy
is a common thread in determining a person’s success. Noting that apparent gender differences
might not always be actually gender-specific, we can hypothesise that the above noted gender
differences in self-efficacy and its causes may also be reflected within each of the sexes. Just
as encouragement may help a girl to choose to study computing, and social stigma may put
her off, the same factors may play a role with some boys more than others. For example, a boy
who thinks that programming is difficult, and that programmers are unpopular or “nerdy,” can
be put off computing just as a girl might be.

This study is to investigate all students’ attitudes to programming, therefore, and how they
may change from school through to university. Do they have misconceptions, or experience
misapprehensions about programming to the point that their morale and confidence suffer?
By querying the students at key points during the semester, changes in their opinions may be
tracked as they learn to program.

2 Method: to survey students about their current and previous attitudes
A questionnaire was given out to all students on an introductory programming module, which
is to teach the object-oriented language C#. The questions are about experiences and opinions
of programming at different times, as far as they can be recalled. In chronological order, these
times were (a) from high school, (b) then just before the beginning of the module, (c) and then
towards the end of the module (three quarters of the way through it).

2.1 The students
Glasgow Caledonian University is a “wide access” institution of higher education, which takes
all sorts of students, including many from families that have never been to university. Conse-
quently, they may be unusually prone to low self-efficacy because of the lack of role models in

Moffat 78

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

their families. Students can also enter the university at second year directly, coming from local
colleges of further education. Some of the latter students had good exposure to programming
in languages like Java, and fair programming skills. They needed more practice, exposure to
the C# language, and some deeper grounding in the principles of programming.

The introductory module that all the students were now following is a second-year module
in object-oriented software development, in which the chosen language is C#. The students who
started in the first year had a brief introduction to programming in that year, but it was slight in
many cases, and some students can therefore be considered to be new to programming.

The module was taught in a way that would probably be considered unusual, compared
with similar introductory modules (or courses) at other universities in the UK or elsewhere.
There were some lectures, but the emphasis was on practical work, in which the students were
expected to work in teams of four, and each team was to make a different, small, 2D video
game. To do this they used a basic game engine written in C# and made publicly available by
DigiPen,1 which is a higher education institute for computer gaming, based near Seattle, USA.
The DigiPen codebase uses DirectX technology, which was also new to the students, who were
told the minimum they needed to know about it in order to be able to use the DigiPen libraries.

This all provided for a more authentic experience than is usual in student programming
modules, and allowed them to take on a task that would show them what programming can
really empower them to do. The coursework was therefore a relatively exciting assignment,
giving the students wide scope for creativity and challenge, but also may have been daunting
for some students. It will be useful to bear these details in mind when interpreting the results
later on in the paper.

2.2 The questionnaire

The questionnaire was delivered on-line within the virtual learning environment that was being
used to support the course. Questions were mainly of two formats. There were some Likert-style
questions about skill or competence, and about attitudes and emotional reactions, like anxiety.
There were also open-text questions, for less predictable responses. Some of them asked stu-
dents to write in their own words what surprised them about programming, for example, or
what their high and low experiences were.

The first few questions were about the student’s background and previous programming ex-
perience. This was to see how many of the students were novices, and how many had significant
programming skill.

Then, most questions were intended to detect changes in attitude from one time to the next,
by asking students to recall their opinions about programming and programmers at earlier times
in their lives. The three times of inquiry, and how they were expressed in the questions, were:

school “This question is about when you were starting your final year at school.”
begin “This question is about your opinions in about August 2009, just before this module

began.”
now “This question is about now.”

The questionnaire was answered by students about three-quarters of the way through the
semester, after eight weeks of the intoductory module on (object-oriented) programming. This
was the time referred to by “now” in the above.

1 http://www.digipen.edu/gamers/tutorials/introduction-to-2d-video-game-development/ (accessed 07/May/2010)

Moffat 79

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

http://www.digipen.edu/gamers/tutorials/introduction-to-2d-video-game-development/

3 Results

The survey was made optional to the students, and so not all of them took it. A total of 53
students started the module, and they were invited to answer the questionnaire on-line, in their
own time. One student withdrew during the module, twelve did not attempt the survey at all,
and two did open the survey online to look at it, but answered no questions. The response rate
was therefore 38 out of 52, which is 73%.

Of those 38 students, eight answered only the first few questions, but then did not continue
to finish the survey. Therefore only 30 of the 38 students answered the survey fully.

Because not all the students answered the survey, and some of them only answered some
of the questions, the following results have been aggregated over all 38, in order to use all the
data that was available.

3.1 Questions about programming competence

In order to find out about the background of the students, and their earlier self confidence, the
following question was asked about their time at school, and the same question about the other
two, later time points. It queries the student’s self-efficacy regarding ability to perform a fairly
straightforward programming task.

– This question is about when you were starting your final year at school. It is also about
writing a small command-line, console program to implement a simple telephone directory,
with name and number for each person. Back then, did you have the ability to write such a
program?

Answers were given in the form of a Likert-scale, selected from: (s-ag) meaning “strongly
agree”; (ag) meaning agree; (neut) for neutral, or neither agree nor disagree; (disag) for dis-
agree; (s-disag) for strongly disagree; (na) for not applicable; and finally (un) for unanswered.

The time points (t) in the table are represented by s for school, b for beginning of the
module, and n for “now” (which was towards the end of the module).

t un na s-disag disag neut agree s-ag median
s 0 2 6 10 6 12 2 neut
b 5 2 1 2 15 10 3 neut
n 8 0 0 0 2 20 8 agree

The figures in the table show how many Ss (students) answered the questions at each point
on the Likert-scale: for example, six Ss strongly disagreed that they could write a small console
program when they were at school. The total number of Ss who answered the survey was 38,
but for each question some might not have answered, and so any missing values are shown in
the un column. In the following calculations, the “not applicable” responses are also left out.
For clarity, the resulting N values are shown below. The median point for each question is given
in the last column.

From this table it appears that the students now are more confident than they were at school,
or even at the beginning of the module, in their ability to write a small program. To confirm
this a standard nonparametric test was run to compare each pair of rows. According to the
Wilcoxon-Mann-Whitney test, the scores for now were (significantly) higher than for begin-
ning (W = 275, Nb = 31, Nn = 30, p = 0.001133 two-tailed); and yet more significantly higher
than for school (W = 274, Ns = 36, Nn = 30, p = 0.000084). The same trend is evident from
school to beginning, but not significantly so (W = 421, Ns = 36, Nn = 30, p = 0.07458).

Moffat 80

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Most students have clearly increased their confidence in their ability to program — some-
what, from school to beginning; and a good deal more so, from beginning to now. We cannot
say why their abilities improved in the first case; but the module has obviously been the reason
for their most dramatic improvement (thankfully).

Note that the key phrase “confidence in their ability to program” deliberately obscures our
assessment of their ability, by including the word “confidence”. Because the students are an-
swering the question themselves, and we are not independently assessing their programming
skill at the earlier time-points, we cannot conclude anything directly about their skills, strictly
speaking. This question is therefore interpreted as querying the students’ confidence alone.

However, we may choose to infer that students have a fair idea of their own abilities in such
cases, in which case we would indeed conclude that their increased confidence is justified by
genuine learning. Then it is clear that, of those students that could not program before, most
successfully learned how to, during the module.

One thing to note, on the other hand, is the small, hard core of students who still have low
programming confidence (or skill) even towards the end of their first full programming module.
There are two Ss who are still neutral on the question, even now.

We also note the wide range of abilities before the module began. At the beginning of the
module, after their first year of higher education (or equivalent), already half the students were
able to program. Some of them had learned quite recently, but most of them already knew some
time beforehand, towards the end of their school education.

Therefore, quite a large spread of aptitudes is revealed, highlighting another problem that
we have in teaching introductory programming at university. When there is a very wide range
of abilities in a class, the teacher finds it very difficult to pitch the lessons at a good level –
there can be no optimum level. This generally means that the weakest students will be daunted,
while the strongest students could become bored and grow disdainful. The effect might be to
put the students off programming even more.

3.2 Questions about general opinions of programmers

The following questions were about the students’ former attitudes towards programmers and
programming, to see if there was a perceived stigma attached to computing subjects, which
might put students off choosing them.

First there were two Likert-scale questions regarding their opinions when they were at
school, and now.

– Did you think of programmers (software developers of any kind) as cool?

t un na s-disag disag neut agree s-ag median
s 5 2 1 2 15 10 3 neut
n 8 1 0 3 8 10 8 agree

It appears that there has been an improvement in attitude, with a shift in median from
“neutral” to “agree”, suggesting that more Ss now think that programmers are “cool”.

This appearance was checked with the Wilcoxon-Mann-Whitney test, but not found to be
significant at the 95% level (W = 343, Ns = 31, Nn = 29, p = 0.09839).

.
In order to let the students express their opinions in their own words, the following question
was asked about each of the three time-points, to which responses could be typed in as free
text.

Moffat 81

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

– This question is about when you were starting your final year at school. What were your
opinions about programmers and programming? (E.g. clever, boring, difficult, easy, nerdy,
lucrative, important, misunderstood . . . ?) But in your own words or phrases, just off the
top of your head.

There were too many answers to repeat, but here is a representative sample of what the
students said, regarding each of the time-points. The responses were grouped into positive
/ neutral / negative categories, according to my judgement about the mood expressed in the
attitudes. The selected responses reflect the sizes of the categories, and are shown in order from
most positive to most negative.

– School [13 positive, 7 neutral, and 5 negative]
1. Very easy and fun
2. Intelligent, Difficult, Fun, Enjoyable, Creative
3. Misunderstood, intelligent, problem-solvers
4. Intelligent, i never thought i would be able to do the things they could
5. “Taught what we needed to pass the exam, not what you need to program.”
6. I thought programming was boring, hard and the thing that someone else should do.

Only the real nerds could understand it at all
– Beginning (before the module) [10 to positive, 13 no change or other, 1 negative]

1. Programming is not as hard as i initaly thought
2. not so difficult as my last year of school but i feel like i gotten rusty not programming

as much i should have
3. My orignal opinion that programming would be difficult to learn. I realised after some

time that most programming languages are the same. It’s just a case of learning the
sytax. Just like having to learn grammer, when learning a new language.

4. “The realisation of what a programmer actually does and how they have evolved”
5. We only got visual basic and it was poorly taught as you didnt understand what it was

really doing. So I was still anxious about starting programming. No change. {Note: this
student seems to have been to college before entering the university directly into second
year.}

6. It gets far more complicated and complex than I thought, I no longer enjoyed it.
– Now (near end of module) [12 positive, 7 no change, 2 negative]

1. The biggest change is that I am no longer afraid of it
2. Programming isn’t as difficult as i thought, it just requires a step back and some thought
3. Using C# has shown me a different side of programming. I’m more used to the the web

side of it - design, program and play, where as C# is design, program, compile, wait,
re-build . . . I like it, but still prefer web development.

4. My views have not changed
5. No change.
6. None really. Im still very confused with the whole thing

It was not possible to divide the responses into clear categories, because a matter like “dif-
ficulty” can be interpreted as positive or negative. When at school, the students had positive
views of programmers in that they thought that they must be intelligent; but this could mean
that some were discouraged from choosing the subject due to lack of confidence in their own
ability.

Moffat 82

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Another issue is that the students did in fact choose to pursue computing at university, and
so their views are not representative of those of typical students at school. It is notable however,
that several students said that programmers were “misunderstood” by school pupils.

The question purposely prompted the students with some words that might be considered
to be leading questions. For example, the words “boring” and “difficult” did recur in free-text
answers as descriptions of programmers and programming. However, some other words did
not (like “lucrative” and “important”). The word “clever” is in the question, and did occur in
some students’ answers; but so did the word “intelligent”, which is a synonym, and a lot more
often. There were also several new words that did not appear in the question in the form of
synonyms or even antonyms, such as “fun”, “enjoyable”, “creative”, and “problem-solvers”.
These observations taken together, while nothing like a formal analysis, nevertheless suggest
that there was not a great overlap between the words in the the question and in the answers, and
that the students were not being led to a great extent, but rather felt able to use their own words
to express their views.

It is not shown which of the responses were from students who were familiar with pro-
gramming or not, because the data is aggregated over the whole class. However, judging by
their content, the more negative comments seem to be from pupils with some experience of
learning how to program at school. There is a suggestion that they were not well taught.

Comments regarding the later time-points indicate that most students realised that program-
ming was not so difficult to understand, but that the complexities can make it tedious, and slow
to learn.

Coming up to date, the changes in opinion are mostly positive, with some that did not
change, and sadly two that stayed negative, including the one student who remains entirely
confused.

Some students have gained true insights about the nature of programming, suggesting that
they might have previously suffered from significant misconceptions.

3.3 Questions about students’ feelings toward programming

Turning to the students’ own, personal attitudes toward programming, the following Likert-
scale questions were about their possible anxieties at previous time-points, and about whether
they like it now.

– Back then, would the thought of having to learn how to program make you anxious?

t un na s-disag disag neut agree s-ag median
s 7 1 1 9 4 12 4 agree
b 8 0 4 11 2 9 4 disag / neut

The median for beginning is exactly between the categories for “Neither agree nor dis-
agree” and “Disagree”, suggesting that students are not as anxious right at the beginning of the
module than they were at school. This difference is not significant, however (Wilcoxon-Mann-
Whitney, two-tailed: W = 521, Ns = Nn = 30, p = 0.2728).

Significant anxiety is clearly evident before the module began. Now that the students have
learned much programming, the same question again would not be meaningful: however, they
do appear to have changed their attitudes to the good:

– Do you like programming?

t un na s-disag disag neut agree s-ag median
n 8 0 2 1 4 8 15 s / agree

Moffat 83

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Nevertheless, there are still two who, whether they can now program or not, emphatically
do not like or enjoy it. In fact, on checking the raw data, those two students are the same ones
who, above, did not agree that they could write a simple console program.

3.4 Other questions

Some other questions included the students’ experiences of learning programming, and more
detail of their feelings about it, in their own words.

There is no space to detail the results from these questions here, commenting on all the
answers individually. In summary, there was more talk of the difficulty of programming, but
that on the other hand that it could be fun to make programs that work; also that it does not suit
all personalities equally.

There was also a range of responses showing that some students came to find programming
easy; and others find it still more difficult. Whether this is due to differences in personality or
in aptitude is not clear.

4 Interpretation and further work

The purpose of this exploratory study was to see whether the programming students had neg-
ative attitudes towards programming, including whether it is difficult, or boring; and whether
programmers themselves suffer from social stigma such as being boring, or nerds, or uncool. It
was also a question whether the research method employed would be valid or useful, because
asking people about their earlier attitudes are different times in the past, and comparing to their
attitudes today, may be prone to confusion.

On the latter point first, we can conclude that the survey method has not failed, because
trustworthy differences were indeed found between the various time-points. However, it may
still be that there is some confusion about time-points, or memories may be faded, and if so
then the results could only be weakened by that. Thus, we would not expect any false positives
to result, but we should be aware that true differences may be harder to see, through the veil
of memory. If anything, therefore, the results found by this method are an underestimate of the
true effects that have occurred.

If the students on the introductory module are typical, then it will be a general problem
that programming students have a wide variety of prior experiences. Contrary to its image
of being difficult, programming is a skill that can be self-taught, and so there will always be
a wide range of abilities in a programming module, which presents extra challenges to the
teacher. In teaching to the stronger students, to keep them progressing, the weaker ones may be
intimidated. Other subjects within computing do not suffer from this problem, which may help
to account for why programming, in particular, is apparently difficult to teach.

Students certainly appear to have improved in their programming skills, both before they
began their first serious programming module, and of course during it. We may infer this from
their assessments of their own skills, which is a form of confidence in their abilities rather than
direct evidence of them. The increase in (self-efficacy regarding) their skill was very significant,
statistically speaking. To that extent at least, the module was a definite success; but there were
also two students who still lack self-confidence. It turned out that they were the same two
students who declared at the end of the module that they definitely do not like programming.
At this stage it is too soon to be able to correlate their answers with their performance in the
module, because those results are not ready yet. In future work, however, it would be valuable
to examine the relations between affective attitudes and performance.

Moffat 84

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

The affective attitudes that were probed in this study, by Likert-scale, included whether
programmers were “cool” or not, and whether the prospect of learning how to program made
the students anxious or not. A minority of students agreed that programmers were cool, with
many taking no view; but there was also a significant minority that disagreed that they were
cool. It appears that their views have changed to the good, so that now none of them strongly
disagree, and more of them agree than did before, when at school. However, the difference was
not statistically significant.

The questions about anxiety also appear to show an improvement between school and be-
ginning the programming module at university, but this difference was not statistically signif-
icant either. The evident anxiety about learning to program is still a concern: it consumes the
majority of the class, and it does not go away until the module is underway (if then). By the end
of the module, however, nearly all the students seem to like programming, and most of them
strongly agree with that statement. That is very encouraging, and may show that the students’
fears were ungrounded: but this now begs the question as to where those fears sprang from.

In the free-text answers, students expressed their attitudes towards programmers and pro-
gramming, showing a range of opinion from positive to negative. Again, it is a concern that
computing students should harbour any such negative attitudes. However, it may be a normal
state of affairs amongst students to be anxious about their learning goals. In further work it
would be useful to scan the literature for research that could throw light on that issue, and then
look to see if the situation is worse in computer programming than in other subjects.

Evidence from the free-text questions fleshed out the Likert-scale type questions a great
deal. The range of responses from novice programmers showed some good depth of learning,
and some impressive insights for young people with little experience. The affective content of
their answers may have been cued by the affectively laden words in the question, in some cases,
but in general the answers showed an independent turn of thought, and of word choices. The
students can probably be trusted when they claim to find programming to be difficult but fun; or
programmers to be misunderstood, or intelligent (or nerds). Some found programming boring,
overly complex, or confusing. Even at the end of the module there were still some students with
significantly negative attitudes, who dislike programming. They were only two out of the full
38, but one could say that is two too many.

One possible conclusion could be that the teaching on the module was just not good enough,
and two or more students were not reached. On the other hand, it may be that there always are
a few students on every course who do not like the subject, and programming might not be
exceptional in this. Also, just because a student dislikes a subject does not mean that he is
bad at it in general or that he would let it stop him from mastering the discipline. Further
work could explore this issue, too. However, in this study at least, the two students who dislike
programming at the end are the same ones who have weak self-confidence in their programming
ability, and so we may hypothesise that negative affect correlates with lower ability. Whether
this correlation holds up would be another matter for further work; along with which factor is
a cause and which the effect.

Another possible conclusion could be that some students are simply bad programmers, and
always will be, because they don’t have the necessary mentality. For example, they might not be
able to deal with abstractions well. Such a hypothesis is tempting for those teachers who may
be reluctant to examine their own teaching, but there is no evidence in this study to support it.

.
In conclusion, this small study shows that negative affect is indeed a common and worrying
factor in the psychology of student programmers.

Moffat 85

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

The effects are not clear, but there may be impacts on performance when at university;
and on career choice at or before university. A general stigma that programmers are “nerds”
could discourage students from choosing computing subjects, but it appears that certain types
of personality will tend to be attracted to programming even so. It may well be that some people
have not only a preference but also a definite aptitude or talent for programming, and these are
the ones who will really enjoy it.

However, even amongst students who have chosen computing for a career, it is deeply con-
cerning that a proportion of them do not lose their fear of programming. They may seek refuge
in other areas of computing, but will in that case always suffer a considerable disadvantage in
their careers.

The causes of the negative affect that has been observed in this study are as mysterious as
its effects, though one can speculate. Students may have acquired their attitudes from society
at large, from Hollywood films, from friends and family, or even from their own computing
teachers. Sometimes students complain of poor teaching at school, and in this study too there
were a few comments suggesting that. It is credible, too, given that schools may easily con-
fuse computing (where programming is a core skill) with information technology (where it is
nothing of the kind).

However, there is no hard evidence in this study to suggest that the way school teachers
teach how to program is any worse than, say, the way university lecturers (such as I am) do it.
On the contrary, there was evidence in the class of this study that that a few students were not
helped by their teacher (me) at all; in fact their state might have been made worse by him, if
they have been turned away from programming as a result.

Whether at school or university, then, it is suggested by this study that poor teaching may
be a significant factor in making pupils and students feel bad about programming. It is not an
easy conclusion to accept, but it will be harder still to find out how it is failing. It is not likely to
be the fault of programming teachers specifically, for they teach other subjects as well or better.
Rather, we might blame the subject itself, and conclude that programming is simply difficult to
teach. In that case, further research may help us to diagnose why that should be, and then we
could do something about it at last.

5 Acknowledgements

Thank you to the students who answered questions about their attitudes, and to Thomas Green,
John Richards, and the other participants at the PPIG-wip in Dundee for their comments. Warm
thanks also to the reviewers of this paper, who took pains to make more suggestions than I could
respond to in time for publication.

References

Bandura, A. (1994). Self-efficacy. In V. S. Ramachaudran (Ed.), Encyclopedia of human
behavior (Vol. 4, p. 71-81). Academic Press.

Beckwith, L., & Burnett, M. (2004). Gender: An important factor in end-user programming
environments? In Ieee symp. visual languages and human-centric computing (vl/hcc’04)
(pp. 107–114).

Beckwith, L., Kissinger, C., Burnett, M., Wiedenbeck, S., Lawrance, J., Blackwell, A., et al.
(2006). Tinkering and gender in end-user programmers’ debugging. In CHI 2006.

Moffat 86

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Bennedsen, J., & Caspersen, M.(2008). Optimists have more fun, but do they learn better? On
the influence of emotional and social factors on learning introductory computer science.
Computer Science Education, 18(1), 1–19.

Busch, T. (1995). Gender differences in self-efficacy and attitudes toward computers. J. Edu-
cational Computing Research, 12, 147–158.

Zeldin, A., & Pajares, F. (2000). Against the odds: Self-efficacy beliefs of women in mathe-
matical, scientific, and technological careers. American Educational Research Journal,
37(1), 215–246.

Moffat 87

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Characterizing Comprehension of Concurrency Concepts

Zhen Li Zhe Zhao Eileen Kraemer

Computer Science Department
University of Georgia

{zhen, zhe, eileen}@cs.uga.edu

Keywords: Concurrency, Software Visualization, Empirical study, Misconceptions

Abstract
A comprehensive understanding of students' common difficulties in understanding synchronization
and concurrency is a prerequisite for developing tools and educational materials to alleviate these
difficulties. In this paper we briefly present a study through which we identified students’
misconceptions about concurrency and synchronization, categorized their misunderstandings into a
misconception pyramid, and built subject profiles through which we were able to discover the nature
and frequency of the misconceptions exhibited by the students in this study. Based on these findings,
we developed metrics to capture the breadth and severity of individual subject's misconceptions. We
describe these metrics and show how they correlate with other measurements of understanding of
concurrency and synchronization.

1. Introduction
As early as 1986, researchers worried that "the complexity of (concurrent) programming--all those
processes active at once, all those bits zinging around in every direction--is simply too great for the
average programmer to bear" [Gelertner1986]. Today, it is generally agreed that multi-threaded
programs are difficult to design and comprehend, and that concurrency and synchronization concepts
are difficult for students to master [1, 2, 3]. We believe that the development and use of appropriate
external representations has the potential to help students better comprehend the dynamic and non-
deterministic nature of these programs. However, to properly design and evaluate such
representations, we must develop a detailed understanding of what aspects of these concepts students
find difficult and what misconceptions they harbor. Prior work by our group [4, 9] and by others [3, 7,
10, 11] provides some insight.

We conducted a new study that sought to obtain detailed information about the reasoning processes
that students engage in when dealing with concurrent software. We analyzed student responses,
identified misconceptions, and then categorized these into a “misconception pyramid.” We then
constructed per-subject profiles that captured the nature and frequency of misconceptions exhibited by
each student, and developed metrics that we believe capture the breadth and severity of
misconceptions held by a particular subject. In this paper, we briefly describe our study, our analysis,
and the misconception pyramid and define the metrics for breadth and severity of misconceptions.
We present the most common misconceptions in the sample group and explore the correlation of our
proposed metrics with other measures of comprehension of concurrency and synchronization
concepts. Finally, we propose new diagrams to aid in the comprehension of concurrent program
executions, and future studies to further evaluate and refine this work.

2. Related Work
In the early 1990s, Resnick[7] recognized that realizing the potential benefit of concurrent
programming would depend on the ability of people to effectively learn, use and understand
concurrent programming constructs and languages. He developed a concurrent extension to Logo
(MultiLogo) and conducted an experiment with a group of elementary school students who used
MultiLogo to control simple robots built from LEGO bricks. He then evaluated their work and found
three types of bugs: problem-decomposition bugs, synchronization bugs, and object-oriented bugs.

Li, et al. 88

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

While he believed that object-oriented bugs might have been due to aspects of Multi-Logo, he
suggested that difficulties inherent to thinking about concurrency were at the root of the problem-
decomposition and synchronization bugs.

Kolikant performed empirical studies of students learning about concurrency [3]. Her results show
that students develop pattern-based techniques to solve synchronization problems and then have
trouble in solving non-familiar synchronization problems, perhaps as a result of their reliance on those
pattern-based approaches. She found that student misconceptions were often the source of their
difficulties, writing “we were able to uncover reasonable, yet faulty connections that many students
had made ... these connections were the source of their difficulties.”

Fleming, et al. [9] performed a think-aloud study of students in a graduate-level computer science
class to study the strategies that students apply in corrective maintenance of concurrent software. He
collected think-aloud and action protocols, and annotated the protocols for certain behaviors and
maintenance strategies. He looked at whether study participants performed diagnostic executions of
the program and whether they engaged in failure trace modeling (modeling how the system transits
among various internal states, at least one of which is a clear error state, up to the point of failure).
He found two key attributes of the most successful participants: they detected a violation of a
concurrent-programming idiom and they constructed detailed behavioral models of execution
scenarios.

Xie, et al. [4] performed an instructor survey and observational study and identified a core set of
difficulties that students encounter in learning about concurrency. Common problems he identified
included: 1) Thread inter-leavings are difficult for students to comprehend.; 2) Students often forget
that context switches can happen when the thread is in a monitor or critical section and have trouble
correctly applying that knowledge when they do remember; and 3) Students have trouble reasoning
about why the implementations of synchronization primitives lead to correct synchronization
behavior.

Recently, Armoni and Ben-Ari [11] performed an in-depth survey of the concurrency-related concept
of non-determinism, how it is defined and used, and how it has been taught. They present a taxonomy
of the ways that non-determinism can be defined and used, the categories of which are domain,
nature, implementation, consistency, execution and semantics. Their survey of educational materials
and practices on this topic leads them to the conclusion that “the treatment of non-determinism is
generally fragmentary and unsystematic,” and they go on to suggest various strategies for teaching
non-determinism in the CS curriculum.

Lu, et al. [10] studied real-world concurrency bugs rather than student behavior or reasoning. They
looked at four open-source applications and randomly selected 105 real world concurrency bugs.
They found that one-third of the non-deadlock bugs involved violations of the programmer’s intended
order of operation, and that another one-third of the non-deadlock concurrency bugs involved multiple
variables. In examining the bug-tracking records, they also found that many of the fixes to the bugs
they studied were not correct at the first try, providing further support for the idea that reasoning
about concurrent executions is difficult.

Each of the above studies attempts to gain insight into the question of what students and programmers
find difficult in learning about and in managing concurrency and synchronization. Our study is most
similar to that of Kolikant, in that we attempt to identify both the difficulties that students encounter
and the reason for those difficulties. We get at this information by not only asking study participants
to answer questions that evaluate their comprehension of the potential behaviors of a concurrent
program execution, but by also asking them to explain their reasoning. It is in these explanations that
we gain insight into their understanding of the meanings of concurrency-related terms, their mental
models of the relationships among the objects and constructs by which concurrency and
synchronization are achieved, and their comprehension of the consequences of thread activities and
interactions.

Li, et al. 89

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Another element of our work is the evaluation of diagrams designed to support comprehension of
multi-threaded program executions. Related work describes concurrency-related aspects of UML
diagrams, proposes variations on UML diagrams to better support concurrency, or evaluates UML
diagrams or their variations. For example, Schader and Korthaus described features of UML that
support the representation of concurrency [12]. Mehner and Wagner [13, 14] added shading
conventions on activations to indicate when, and within which activation, threads are ready or
running. Xie, et al. [4, 15] developed an extension to sequence diagrams that uses colored activations
to indicate the state of each thread (i.e., running, blocking, or ready), among other features. Most
recently, Fleming [16] proposes a variation on UML sequence diagrams in which hatching of the
activation bar denotes thread state and object states denote the effects of operations on mutexes and
condition variables.

3. Experiment
The overall goal of our experiment was to compare the use of different types of UML diagrams (UML
2.0 sequence diagrams and UML 2.0 state diagrams) for different tasks related to the comprehension,
implementation, and debugging of concurrent software. The participants were fifteen Computer
Science students drawn from upper-level undergraduate classes and from graduate classes during the
spring semester of 2010. Students were volunteers and were paid $50 for their time. The study
materials included a demographic survey, six computer-based training modules, five pre-tests (one
quiz for each of the first five training modules), and a post-test. Part I of the post-test comprised 24
comprehension questions that involved reasoning about what could happen next in a particular
execution scenario. Part II questions involved identifying errors, evaluating and creating models and
diagrams, and writing code.

In this paper we provide a detailed analysis of participant explanations of their answers to Part I
questions, in which they were asked to supply both a yes/no answer to whether a particular set of
program events could occur next and in the stated order, and also to explain their reasoning. These
explanations of student reasoning provided the basis for our identification of misconceptions.
Questions in this part of the post-test were based on the “Single-lane Bridge” problem. The problem
states that a bridge over a river is wide enough to permit only a single lane of traffic. That is, the
bridge permits only one-way traffic at any one time. To simplify this problem, we define the cars that
move from left to right as red cars and those that move from right to left as blue cars. To avoid a
safety violation, only one kind of car is allowed to be on the bridge at a time. Cars exit the bridge in
the order in which they entered and the leading car may exit the bridge at any time. We structure this
system so that each colour of car is implemented as a thread, and the shared bridge object is
implemented as a monitor with two associated condition variables okToEnter and okToExit. The
basic functions for entering and exiting the bridge are redEnter(), redExit(), blueEnter() and
blueExit(). We assume a C++ implementation using the pthreads library, in which explicit calls to
lock() and unlock() are invoked on mutex locks. Then for each of the given scenarios, we asked
whether a particular event sequence could happen next.

4. Analysis
Although Part I of the post-test consisted of objective questions, we initially found it difficult to
evaluate the responses in a way that accurately reflected the students’ understanding of the system.
Consider question 1.b, shown in Figure 1 and describing a scenario in which two threads, redCar1
and redCar2, exist in the system. Thread redCar1 invokes the redEnter() method and has already
returned when a context switch occurs and the redCar2 thread begins to run. One of the sub-
questions asks whether it is now possible for the redCar2 thread to invoke the redEnter() method and
block on the monitor lock. The answer to this question should be NO. Only two threads exist in the
system and redCar1 should have released the monitor lock before it returned from the redEnter()
method. Thus, it is not possible for redCar2 to block on the monitor lock.

Li, et al. 90

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

1. Suppose that only two threads exist in the system: redCar1 and redCar2. Suppose further
that redCar1 has invoked the redEnter() method, and has returned. A context switch occurs
and the redCar2 thread starts to run.

Could the following event sequence happen next? Circle YES if the sequence is possible;
otherwise, circle NO. Then please provide a brief explanation of your reasoning.

(b) redCar2 invokes redEnter(), then blocks on the monitor lock.

YES NO

Figure 1 -- Question 1.b

In answering this question, 9 out of 15 subjects chose the correct answer (NO). However, in looking
closely at their explanations, we found that 7 of them thought that the monitor lock would only block
blue car threads and regarded the monitor lock in the question as an okToEnter condition variable.
One of them misunderstood the meaning of the term “block” as “own” or “has” and thought that
redCar1 already owned the monitor lock since it was on the bridge and that redCar2 could thus not
own the same lock. Another student, however, did not understand the question and thought that
redCar2 should not “block” on the monitor lock but lock the monitor lock. Thus, by reading the
explanations given by the students we found that actually none of the 9 students who gave the correct
answer really understood the monitor lock and its mechanism.

We also found that although each question was designed to test some specific misconceptions, a
failure in one particular question might not actually stem from the misconception the question
intended to examine. Instead, the failure might be rooted in some other misconceptions. We found
further that some misconceptions could cause general failures in reasoning about many different
scenarios. Consider questions 4.d and 4.e as an example (Figure 2).

4. Suppose that only three threads exist in the system: redCar1, redCar2 and blueCar1.

Suppose further that redCar1 is running and has just invoked the redEnter() method and the
redEnter() method has returned. A context switch occurs and the redCar2 thread begins
running and invokes the redEnter() method. redCar2’s invocation of the redEnter() method
has not returned.

Which of the following event sequences could happen next? Circle YES if the sequence is
possible; otherwise, circle NO. Then please provide a brief explanation of your reasoning.

(d) A context switch occurs, and the redCar1 thread begins to run. redCar1 then invokes

redExit() and this invocation returns.
YES NO

(e) A context switch occurs, the redCar1 thread begins to run. redCar1 then invokes the
redExit() method and blocks on the monitor lock.
YES NO

Figure 2 -- Question 4.d and 4.e

These two questions are aimed at testing the subjects’ ability to consider multiple possible inter-
leavings in an execution. The answer to both of the questions should be YES since the question only
describes that redCar2’s invocation of the redEnter() method is interrupted by a context switch but
does not mention whether redCar2 holds the monitor lock or not when interrupted. Three possible
interleavings exist here. One is that redCar2 has invoked the method but has not yet obtained the
monitor lock. The second is that redCar2 invoked the method, holds the monitor lock and has not yet
released it. Another possibility is that redCar2 has already released the monitor but not yet returned
from the redEnter() method. The first and the third situations could lead to event sequences described
in 4.d and the second situation could lead to event sequences described in 4.e.

Organizing students’ answers to these two questions, we have the following table (Table 1).

 4.d 4.e Subjects
1 YES YES 102, 139, 132
2 YES NO 108, 109, 113, 122, 126,138, 141, 142, 145
3 NO NO 110, 119
4 YES No answer 128

Table 1 – Subjects’ Answers to Questions 4.d and 4.e

Li, et al. 91

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Apparently, most of the students were not able to answer both of these questions correctly and the
majority failed on question 4.e. However, by looking closely at their explanations, we found the
reason for the failure does not truly stem from students’ inability to consider the possible interleaving,
as expected. Actually, all 9 subjects failed in 4.e because of misconceptions about the monitor lock.
Some of them confused it with the okToExit or okToEnter condition variables. Others were ignorant
of the mechanism of the monitor lock so they succeeded in question 4.d, which does not deal with the
monitor lock concept but failed in 4.e. Also worth noting is that most students reasoning about these
two questions was based on “story-level” understandings, as seen in explanations such as “redCar1 is
free to exit” or “nothing blocks redCar1 to exit”, etc. Actually, none of them considered the event
sequence at the implementation level, which again highlights their misconceptions of the context
switch and its properties.

Thus, we found students’ misconceptions about concurrency and synchronization cannot be captured
in a simple list of confusions or misunderstandings of concepts, terminologies and mechanisms.
Rather, they are correlated with one another, interacting in a seemingly hierarchical architecture so
that it is not possible to examine higher level misconceptions without first teasing out the impact of
lower-level misconceptions, or ensuring that participants first have a firm grasp of lower level
concepts. In other words, to understand higher level concepts, students must first rid themselves of
lower level misunderstandings.

4.1 Misconception Pyramid
We introduce a misconception pyramid (Figure 3), which captures common misunderstandings that
students exhibited when reasoning about a concurrent system, and the hierarchical structure of the
misconceptions according to the difficulty and dependency relations of understanding the concepts in
that level. Understanding concepts at higher levels of the pyramid requires an understanding of the
concepts at lower levels first. Descriptions of the types of misconceptions one might find at each level
are presented in Table 2, which was constructed based on misconceptions identified in the literature
and also those that we encountered in our analysis of subjects’ explanations of their reasoning in this
study.

The bottom level of the pyramid is the description level and includes misconceptions such as
misunderstanding of the requirements, constraints and other details of a concurrent system at the level
of the “story” about the red cars and blue cars. For example, some subjects wrote explanations such as
“redCar2 should wait for redCar1 to invoke redEnter() method first” or “redCar1 should block the
bridge first” demonstrate one common misconception at this level: that the thread labels redCar1 and
redCar2 were the actual running order of the threads.

The next level of the pyramid includes misconceptions related to terminology we used in describing
concurrent scenarios. A typical example is the misunderstanding of the meaning of “block on” a
conditional variable/monitor lock as “hold/own” a conditional variable/monitor lock. This kind of
misconception can be seen throughout the explanations given by subjects in our study. Most students
who held this kind of misconception did so consistently, causing them to fail on a particular group of
questions. Typical students’ explanations that illustrate this level of misconception include but are not
limited to “okToEnter is already blocked” or “monitor is already blocked by redCar2”.

Description

Terminology

Concurrency

Implementation

Uncertainty

Figure 3 -- Pyramid of Misconceptions

Li, et al. 92

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

The third level of the pyramid is the concurrency level, which includes misconceptions about
basic thread behaviors such as context switching and the thread life cycle. For example, some
students seemed to think that a context switch could not happen while a thread was executing
in a critical section and many students thought that a context switch is not allowed during the
execution of a method and regarded the whole method body as uninterruptible. Some typical
students’ explanations are “redCar2 should receive return call then switch out” or “because
redCar2 has not done its activity (so it cannot be context switched out)”.

Description Level
D1 Misconceptions of system and/or problem descriptions
Terminology Level
T1 Misconceptions of the meaning of “invoke/call” a method
T2 Misconceptions of the meaning of “return” from a method/invocation

T3 Misconceptions of “block” on a monitor lock as “hold/has” a monitor
lock

T4 Misconceptions of “block” on a conditional variable as “hold/has” a
conditional variable

Concurrency Level (thread behavior)
C1 Misconceptions about context switching
C2 Misconceptions about the thread life cycle
Implementation Level

I1 Misconceptions about conditional variables and the wait/signal
mechanism

I2 Misconceptions about monitor lock
I3 Misconceptions about block and unblock mechanism
Uncertainty Level
U1 Confused about space of executions and thread interleavings

Table 2: Misconception Pyramid Table

Invoke
……
Lock the monitor lock
 Check conditional variables
 Access and modify shared variable
 ……
Release monitor lock
 Signal on conditional variables
……
Return

Figure 4 – Basic Monitor Programming Function Structure

The fourth level of the pyramid is the implementation level, which is related to detailed
implementation mechanisms such as the monitor lock and condition variables and their
functionalities. By investigating the subjects’ answers and explanations in our study, we found that
few subjects were clear on the basic monitor programming structure shown in figure 4. We believe
that this is greatly related to students’ misunderstandings in the three previous levels. If students do
not understand the context switch, they are not able to appreciate the actual purpose and
corresponding mechanism of the monitor lock. Misunderstandings of different terminologies also lead
to confusion about the workings of monitor programming structures and functions.

The top level of the pyramid is concerned with failures in dealing with uncertainty; that is, the
inability to envision or manage all the possible threads interleavings and execution scenarios. While

Li, et al. 93

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

this problem is often cited as the main source of difficulty in the comprehension of concurrent
program executions, we found that this level of difficulty was not seen in our study, as students tended
to fail much earlier in the pyramid, and thus were not even exposed to these higher-level issues.
Whether a detailed investigation of participant reasoning processes would find the same to be true in
other studies of comprehension of concurrent program executions is an open question.

An alternative representation of the pyramid might combine the two lower levels them into a
single level, in which Description and Terminology sit side-by-side, supporting the
Concurrency level. Further, another approach to layering might think of the top layer of the
pyramid, which we term “Uncertainty” as dealing with dynamic analysis issues, and the
second layer of the pyramid as dealing with static analysis issues, with both layers together
dealing with implementation-related issues.

4.2 Subject Profile

Next, we introduce the subject profiles shown in Table 3. These subject profiles reflect the types and
frequency of occurrence of each subject’s misconceptions. The first column of the table indicates the
subjects’ ID number. The other columns correspond to items in the misconception pyramid table.
Each cell of (subject, item) is the number of (answer, explanation) pairs of that subject that
demonstrate the corresponding type of misconception.

Subject D1 T1 T2 T3 T4 C1 C2 I1 I2 I3 U1 Total
102 2 1 2 1 2 1 1 5 9 0 0 24
108 3 2 1 0 0 3 1 3 10 0 0 23
109 3 0 0 0 0 8 1 0 11 0 0 23
110 7 3 4 4 2 2 1 8 9 0 0 40
113 2 2 1 1 1 6 1 12 11 0 0 37
119 1 0 4 0 2 4 1 8 11 0 0 31
122 0 0 4 0 0 1 0 0 9 0 0 14
126 0 7 0 0 0 2 1 4 14 0 0 28
128
132 NA

138 1 4 0 0 1 8 1 2 9 0 0 26
139 1 4 7 1 2 9 1 7 9 0 0 41
141 2 4 5 2 6 4 1 7 9 0 0 40
142 0 0 1 2 0 1 0 3 10 0 0 17
145 0 0 0 0 0 1 1 1 14 0 0 17
Avg 3 3 4 2 2 7 2 9 19 0 0

Table 3: Subject Profile Table

While 13 of the 15 subjects provided sufficient explanations for us to build profiles, 2 out of 15
(subjects 128 and 132) provided almost no explanations for their answers, which made it impossible
to evaluate their misconceptions. Perhaps the most noticeable characteristic of the subject profile is
that no misconceptions of items I3 or U1 are found, but that subjects show a very high frequency in
demonstrating misconceptions in I1 and I2. This reinforces the idea that students’ misconceptions
form a hierarchical structure in which lower level failures not only cause higher level misconceptions
but also isolate students from higher level concepts.

Another interesting characteristic of the subject profile is that the most common misconceptions are
I2, I1 and C1, which are misconceptions about monitor locks, condition variables and context
switching. Causality relations exist among these misconceptions; for example, a subject’s incomplete
understanding of when and how a context switch could occur causes their misunderstanding of the
functionality and mechanism of monitor lock, which thereafter causes them to confuse monitor lock
with condition variable. We plan to conduct additional studies to further explore the validity of this
idea.

Based on the collected data, we can make some statements about particular subject’s comprehension
of concurrency. For example, we could generalize that subject 139 is almost ignorant of concurrency

Li, et al. 94

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

concepts and synchronization mechanisms since he demonstrated all kinds of misconceptions at
different levels, while subject 122, who just showed consistent misconceptions in a limited range of
items, apparently has a much better comprehension of concurrency. This is also validated by the Part I
scores of these two subjects, as seen in Table 5 and illustrated in figure 8.

4.3 Subject Evaluation

Although a subject profile allows us to characterize both a single subject’s understanding of
concurrent systems and the whole subject sample, we introduce two metrics to better quantify the
evaluation. One is the breadth of range of misconceptions (denoted as Metric B) and the other is the
weighted severity of misconceptions (denoted as Metric S).

Figure 5 – Evaluation Metrics

Metric B for a single subject is the percentage of misconceptions the subject has regarding the whole
pyramid of misconceptions, as illustrated in figure 5. For example, subject 122 exhibited
misconceptions in 3 of 11 categories, so B122 = 3/11 or 0.27, while subject 139 exhibited
misconceptions in 9 of 11 categories for B139 = 9/11 or 0.82. With metric B we are able to evaluate
how many different misconceptions a particular subject has. A larger B illustrates more widely spread
misconceptions of a particular subject.

Level 0: Description Level
D1 0.3
Level 1: Terminology Level
T1 0.067
T2 0.067
T3 0.067
T4

0.268

0.067
Level 2: Concurrency Level
C1 0.1
C2

0.2
0.1

Level 3: Implementation Level
I1 0.045
I2 0.045
I3

0.135

0.045
Level 4: Uncertainty Level
U1 0.097

Table 4: Misconception Item Weight Table

Subject Part1 Metric B Metric S
102 18 0.82 1.832
108 24 0.64 2.086
109 25 0.36 2.295
110 15 0.82 4.036
113 24 0.82 2.67
119 19 0.64 2.057
122 29 0.27 0.773
126 21 0.45 1.579
128 19 N/A N/A
132 23 N/A N/A
138 29 0.64 2.03
139 11 0.82 2.958
141 24 0.82 2.959
142 27 0.45 0.886
145 24 0.36 0.875

Table 5: Subject Performance Table

The S metric, however, evaluates misconceptions on another dimension. It is designed to characterize
the severity of single subject’s misconceptions. Thus, to compute the S metric, we must first assign a
weight to each misconception item. As we pointed out before, lower level misconceptions are likely to
cause higher level misconceptions. Also, lower level misconceptions impede a subject’s
understanding of a system more than higher level misconceptions do. Therefore, we simply use an
inverse ratio of the level to assign weights. Table 4 illustrates how the weights are assigned.

Therefore, the metric S can be calculated as the expected value of severity of different misconception
items according to formula illustrated in figure 5, in which Witem is the weight of the corresponding
misconception item. Applying these two metrics to subjects in our study, we get the subject
performance table (Table 5). For example, subject 122 exhibited 4 misconceptions of type T2
(w=0.067), 1 misconception of type C1 (w = 0.1), and 9 misconceptions of type I2 (w = 0.045). S122
is thus 4 * 0.067 + 1 * 0.1 + 9 * 0.045 = 0.773.

Li, et al. 95

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

To illustrate the validity of these two metrics, Metric B and Metric S, we explore the correlation
between these values and students’ total score of Part I in the post-test.

Figure 6 illustrates the correlation between metric B and the score of part I. As we see, although the
high scores are not strictly determined by metric B, the metric characterizes how poorly a student may
perform in reasoning about concurrency and synchronization scenarios, and overall shows the
expected negative correlation (the greater the breadth of misconceptions, the lower the score).

Figure 6 – Correlation between Metric B and Part I Score, Pearson correlation = -0.527

Figure 7 illustrates the correlation between metric S and the score of part I. Unlike metric B, the
metrics S seems to have a better (negative) correlation with score when metric S is small. As metric S
becomes large, the correlation becomes random. This is reasonable, since when a subject has no idea
of a concept in concurrency, they tend to reason about the corresponding scenario based on
understanding of one possible sequential execution, which randomly coincides with the actual
execution sequence under concurrency.

By regarding metric B and metric S as two orthogonal vectors that characterize an individual subject’s
misconceptions in concurrency and viewing the origin point in a coordinate system as an ideal expert
who does not demonstrate any misconceptions in understanding a concurrent system, we are able to
calculate the Euclidian distance of a particular subject from the ideal expert. This Euclidian distance
may be regarded as a combination of metric B and metric S. In figure 8, we plot this new evaluation
with the total score of part I for every subject. Regardless of the two subjects, number 132 and
number 128, who did not given enough clues for us to conclude their misconceptions, other subjects
tend to form a reverse correlation of their Part I score and the Euclidian distance from an ideal expert.

Li, et al. 96

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Figure 7 – Correlation between Metric S and Part I Score, Pearson correlation = -0.386

Figure 8 – Correlation between sqrt(B2+S2) and Part I Score, with Subject Number

.

Li, et al. 97

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Figure 9 – Correlation between sqrt(B2+S2) and Part I Score with Linear Prediction, Pearson’s correlation = -0.476

In figure 9, we plot the linear prediction of data in figure 8, which illustrates an expected inverse
correlation between the evaluation of subjects’ misconception and the actual performance of a subject.

Overall, we believe that metric B and metric S do a reasonable job of capturing the breadth and
severity of misconceptions exhibited by individuals or by a group of individuals. The calculation of
such metrics and the use of the misconception pyramid have the ability to guide instructors in
assessing whether a concept or group of concepts has been sufficiently mastered by a student or class
of students. The structure of the pyramid provides some insight into the order in which these concepts
might be taught and suggests that intermediate evaluations be performed before moving on to higher-
level concepts.

6. Conclusions and Future Work
We have presented here an initial analysis of a relatively small study of students engaged in reasoning
about the execution of multi-threaded programs. We have identified a number of misconceptions
exhibited by study participants, and based on these findings, have proposed a hierarchical structure of
misconceptions, and metrics for evaluating the breadth and severity of these misconceptions. We
present arguments to support the validity of the hierarchy and of the metrics. We propose to conduct
additional studies with larger groups, to further evaluate both the pyramid and the metrics, and to
further flesh out the ways that students think and learn about concurrency and synchronization.

7. References
[1] S. Carr, J. Mayo, and C.K. Shene, “ThreadMentor: A pedagogical tool for multithreaded
programming”, Journal of Educational Resources in Computing, 3(1), 2003.

Li, et al. 98

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

[2] Cunha, J. C. and Lourenço, J., “An integrated course on parallel and distributed processing” In
Proceedings of the Twenty-Ninth SIGCSE Technical Symposium on Computer Science Education,
Atlanta, GA, 1998.

[3] Kolikant, Y. B.-D., “Learning concurrency: evolution of students’ understanding of
synchronization,” International Journal of Human-Computer Studies, 60(2), 243–268, 2004.

[4] S. Xie, E. Kraemer, and R. E. K. Stirewalt. Design and evaluation of a diagrammatic notation to
aid in the understanding of concurrency concepts. In Proc. ICSE, pages 727–731, 2007.

[5] T.R.G.Green, M. Petre. “Usability Analysis of Visual Programming Environments: a ‘cognitive
dimensions’ framework,” Journal of Visual Languages and Computing, 7(2), 131-174, 1996.

[6] Maria Kutar, Carol Britton and Trevor Barker. “A Comparison of Empirical Study and Cognitive
Dimensions Analysis in the Evaluation of UML Diagrams.” In J.Kuljis, L. Baldwin & R. Scoble
(Eds). Proc. PPIG 14, June 2002.

[7] Mitchel Resnick, “MultiLogo: A Study of Children and Concurrent Programming,” Interactive
Learning Environments, 1(3), 153-170, 1990.

[8] Gelertner, D. “Domesticating Parallelism, “ Computer, 19(8), 1986.

[9] S. D. Fleming, E. Kraemer, R. E. K. Stirewalt, S. Xie, and L. K. Dillon. A study of student
strategies for the corrective maintenance of concurrent software. In Proc. 30th Int. Conf.Software
Eng. (ICSE 2008), pages 759–768, 2008

[10] Lu, S., Park, S., Seo, E., and Zhou, Y. 2008. Learning from mistakes: a comprehensive study on
real world concurrency bug characteristics. SIGARCH Comput. Archit. News 36, 1 (Mar. 2008), 329-
339. DOI= http://doi.acm.org/10.1145/1353534.1346323

[11] Armoni, M. and Ben-Ari, M. 2009. The concept of nondeterminism: its development and
implications for teaching. SIGCSE Bull. 41, 2 (Jun. 2009), 141-160. DOI=
http://doi.acm.org/10.1145/1595453.1595495

[12] M. Schader and A. Korthaus. Modeling Java Threads in UML. In The Unified Modeling
Language: Technical Aspects and Applications, pages 122–143. Physica, 1998.

[13] K. Mehner. JaVis: A UML-based visualization and debugging environment for concurrent Java
programs. In Software Visualization, pages 163–175. 2002.

[14] K. Mehner and A. Wagner. Visualizing the synchronization of Java-Threads with UML. In Proc.
VL, pages 199–206, 2000.

[15] S. Xie, E. Kraemer, and R. E. K. Stirewalt. Empirical evaluation of a UML sequence diagram
with adornments to support understanding of thread interactions. In Proc. ICPC, pages 123–134,
2007.

[16] Scott D. Fleming, Eileen Kraemer, R.E.K. Stirewalt, and Laura K. Dillon. Debugging Concurrent
Software: The Importance of External Representations. To appear, VLHCC10.

Li, et al. 99

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

The Construction of the Concept of Binary Search Algorithm

Sylvia da Rosa

Instituto de Computación - Facultad de Ingenieŕıa
Universidad de la República

Montevideo, Uruguay
darosa@fing.edu.uy

Abstract. The general goal of this paper is to describe how Piaget’s theory-Genetic Epistemology-
can contribute to computer science education research. Using, as an example, students’ understand-
ing of the binary search algorithm, this paper illustrates how theoretical principles are applied to
identify some obstacles that students face while solving an instance of that algorithm and to help
students to surmount these obstacles. The methodology of research consists in conducting students
interviews in which they are encouraged to express their solutions in natural language. The specific
goal of the paper is to show how Piaget’s ideas are used as guidelines in the design of the interviews
and in the analysis of the gathered information. Selected excerpts from students’ interviews are
included.

1 Introduction

The study presented in this paper is based on Jean Piaget’s theory genetic epistemology, espe-
cially on Piaget’s and collaborators’ works regarding the psychological evolution of mathematical
concepts and theories[12, 13]. Their investigations are supported by an extensive amount of em-
pirical work. The importance of Piaget’s work for computer science education lies in the fact
that the methods that the subject employs to solve instances of problems play a central role in
the explanations about the construction of knowledge. In this sense, the theory gives satisfac-
tory support to the study of the psychogenetic evolution of algorithms, from which invaluable
lessons can be taken when it comes to preparing instructional proposals.

The main theoretical principle in which our research is based is: the source of the instrumen-
tal knowledge is the interaction between the subject and the structure over which the algorithm
is applied. This interaction is governed by the general law of cognition, that explains how in-
strumental knowledge can be transformed into conceptual knowledge. In Piaget’s theory, the
principal instrument of the whole process is called reflective abstraction[8, 11, 13].

In this paper we present an example of application of the above principle to the construction
of knowledge about the binary search algorithm. The goal of the study is to gather information
about the process of transforming the instrumental knowledge constructed by the students while
solving an instance of the problem of searching an element in an ordered list into conceptual
knowledge about the employed algorithm. The aim of the paper is to show how Piaget’s expla-
nations about the instruments and mechanisms involved in the construction of knowledge are
used as guidelines of the study.

In this sense our work intends to contribute to computer science education research, accord-
ingly to [2]. There, the authors give the following definition of the expression ”computer science
education”:

The academic discipline computer science education consists in focusing research on the ap-
plication of principles from educational-related disciplines -pedagogy, epistemology, curriculum
studies and psychology- to the teaching and learning of the scientific discipline computer science
as a school subject.

They add that the strong connection with educational-related disciplines constitutes the
theoretical argumentation of the research as a means of providing evidence of its effectiveness.

da Rosa 100

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

The methodology of research consists in conducting students interviews, in the manner of
Piaget and collaborators[5]. In the interviews the students are asked to search a word in a
dictionary and are encouraged to explain in natural language how they did it and why they
succeeded, as a first stage in the conceptualization. All the interviews were audio-taped and
transcribed and in this case they have also been translated to English. The methodology of
research has been inspired by APOS theory, a theory of learning mathematics elaborated by
mathematics education researchers, based on Piaget’s genetic epistemology[7, 1].

The paper is organized as follows: in the second section, the main ideas from Piaget theory
are briefly described. The section also includes a summary of the identification of stages in the
construction of the concept of the algorithm of binary search as a school subject. In the third
section, the study is described including the design of the questions to the interviews, in the
fourth section, the guidelines of the analysis of the responses of the students, selected excerpts
from the interviews and the introduction of the formalization of the algorithm are included, and
in the fifth section some conclusions and further work are presented. The sixth section includes
acknowledgements.

2 Related works

The main ideas presented by Piaget and collaborators in works published in the sixties/seventies
by the Series of ”Etudes d’Epistemologie Genetique” (Presses Universitaires de France)[8–10]
and in [11–13] constitute one of the sources of our investigation. Many of these works contain
complete descriptions and analysis of several experiments, including selected parts of conducted
interviews. In the experiments several types of problems are posed to determine the psycho-
genetic evolution of concepts, such as modus ponens, modus tollens and the transitivity of the
implication.

The construction of these mathematical concepts follows the general law stated in ”The
Grasp of Consciousness”[8], according to which the process of construction of consciousness
that accompanies the interaction between the subject and the object, always goes from the
periphery (the result of the actions) towards the center (the intern mechanism of the actions).
This general law explains why, at all levels, the conceptualization of the operations of the subject
always occurs later than nonreflective use of the same operations.

On the other hand, in [13], the authors describe the instruments common to all acquisitions
of knowledge and the processes that result from applying these instruments. The general source
of the instruments are the processes of assimilation of representations of objects or events
to the mental schemata of the individual, and the accommodation of the mental schemata in
accordance with the representation to be assimilated. The instruments of knowledge generated
by assimilation and accommodation are abstractions and generalizations in their diverse forms.
The authors distinguish between the empirical abstraction, that draws information from the
objects themselves, and the reflective abstraction that draws information from the actions and
operations of the subject. As a result of abstraction, a reorganization into a new conceptual
structure takes place, which is assimilated into the earlier one, allowing its generalization. The
authors recall that constructive generalization is not only assimilation of new contents to already
constituted forms, but generation of new forms and new contents [10].

And this is where the factor that plays a fundamental role as motor of the process comes
into the scene: the search for reasons and the inherent necessity. The authors point out that a
construction of the subject is not satisfactory, in the final analysis, unless it acquires intrinsic
necessity, through explicit reasons [13].

The works of Piaget and collaborators have important pedagogical implications for the
learning of mathematics and computer science concepts. The example presented in this paper
illustrates the identification of three main stages in the construction of the concept of the
algorithm of binary search as a school subject:

da Rosa 101

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

– An instrumental stage in which the students construct knowledge interacting with an in-
stance of the problem without consciousness about how the solution is achieved and why
it works. This knowledge constitutes the source of conceptual knowledge. For instance, the
individuals solve the problem of searching a word in a dictionary (an instance of searching
an element in an ordered list) but have difficulties in describing the steps and are unaware
of the reasons of the success.

– A stage of conceptualization in which the evolution from the instrumental knowledge to con-
ceptual knowledge starts by the grasp of consciousness and the reflection about the actions
involved in the developed method and about the reasons of the success (or failure). This
reflection leads to an understanding of the relationship between the structure of the elements
over which the method is applied (the smaller parts of the dictionary) and the components
of the method (choose, compare, search). This process ends in the comprehension of the
algorithm and prepares the mind for the next stage.

– A stage of formalization which consists of constructing a correspondence between students’
concept and a universal system of symbols. This is the stage that transforms a concept into
a school subject. Students become aware of ambiguities and/or errors in their specifications
and correct them gradually approaching a formal definition of the solution of the problem.

These stages act in a pro and retro-active manner, influencing the development of each other.
For instance, the interaction between defining the method (formalization stage) and applying it
to particular cases (instrumental-conceptualization stages) allows both to refine the definition
and to improve the understanding of the algorithm.

3 The study

The study consists in conducting interviews to ten entering students of an introductory course
of programming. The students are required to look up a word in a dictionary and to explain
in natural language how they did it and why they succeeded. The problem is an instance of
the general problem of searching an element in an ordered list and the solution is an instance
of the algorithm of binary search. It is well known and automatically solved by the students.
In the interviews they are encouraged to think about both the coordination of their actions
(the method) and the modifications that these impose to the object (the structure). Accord-
ingly to theoretical tenets, in this interaction the successfully done actions are transformed into
operations leading to the conceptualization of the algorithm[8].

This task is adequate for the investigation because of the following characteristics:

– the algorithm of binary search is commonly applied in solving this task, that is to say, all
students know very well the application of this algorithm to this particular case, and all of
them success in searching a word,

– the task is (almost) automatically done, what gives us the opportunity of analyzing its grasp
of consciousness and conceptualization in detail from the origin of the process,

– no numeric domain is involved and the role of school is minimal which diminishes the
influence of preconceived ideas,

– this algorithm is one of the most important methods of searching and it is taught in all
courses of programming, traditionally introducing some formalism to implement it, in the
form of explanations given by the teacher to the students.

It is expected that the students solve the problem using the algorithm of binary search,
without being aware of what that means. It is expected that the interviews help the students
in understanding the algorithm with respect to:

– the structure of the dictionary as an ordered list of words,

da Rosa 102

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

– the actions that compose the algorithm: choosing a word, comparing words and a new
instance of the search itself,

– the reasons of success: each new instance of the search is applied on ”smaller” parts of the
dictionary (do the same), all the smaller parts hold the property of containing the searched
word (invariant), the search ends when a special case is achieved (termination).

Accordingly, the series of questions of the interviews is divided into the following segments
(Q1 means question 1, etc):

– Q1 to Q4: Structure
– Q5 to Q6: Method (at the beginning of the interview)
– Q7 to Q8: Reasons
– Q9: Method (at the end of the interview)

3.1 Designing the interviews

The enumerated questions listed below were used as a basis for the interviews. In some cases,
other questions were added at the moment or the same question was formulated in another
way, depending on the development of each interview. The whole content of the interviews can
be found in [3]. The Spanish word for ”cat”, that is, gato is maintained as a remainder of the
original language of the interviews.

Questions 1 to 4: The first four questions are aimed, on one hand, to establish a fluid
contact between the student and the interviewer and on the other hand, to induce the student
to reflect about the structure of the dictionary as a list of words alphabetically ordered. It is the
existence of this order relationship that determines the method of searching and consequently,
we think that it is a relevant concept that has to be assimilated by the minds of the students
as a requisite for understanding the method and the reasons of success.

Q1: What is a dictionary?
Q2: Knowing that a word, for example gato, is in the dictionary and also in this novel,

where do you think that will it be simpler (easily and quickly) to find it?
Q3: Why?
Q4: What makes the difference then between a dictionary and any other book?

Questions 5 and 6: The goal of the following questions is to apply Piaget’s ideas about
the conceptualization of automatically done actions. Interrupting the action and introducing
the need for thinking forces the student to direct his/her thought from the result of the action
towards the intern mechanism of the coordination of the actions that has given rise to that
result. This movement ”from the periphery to the center”, that Piaget calls The general law
of cognition [8], allows the subject to construct better representations, on the one hand, of the
objects and on the other hand, of his/her own actions which are transformed into operations
(methods). In this case, the conceptualization of the method demands to interrupt the auto-
matic application and to mentally identify the sequence of other involved methods: to choose a
word, to compare it with the searched word, to make a decision according to the result of the
comparison, to do the same (another instances of application of the same method).

Q5: Look up the word gato in the dictionary.
Q6: Describe, step by step, how you achieved it.

(Eventually, ask them to do it again).

da Rosa 103

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Questions 7 and 8: The goal of the following questions is to apply Piaget’s ideas about the
role of the process of ”searching the reasons of success” in the conceptualization. The constant
motor impulsing the subject to complete or to replace the observables of facts by deductive or
operative inferences is the search of reasons for the obtained result [10, 11]. That means that
”the search of reasons” impulses students’ thought towards the interaction between the coordi-
nation of his/her actions and the modifications imposed to the object, reaching an equilibrium
generating a mental representation of the algorithm. That means, for the case of this algorithm,
make the students aware of the relationship between the arguments to which different instances
of the method are applied: each new instance of the search is done on ”smaller” parts of the
dictionary (all holding the searched word), until a special case is achieved (termination).

Q7: Knowing that a word is in the dictionary, is it always possible to find it?
Q8: Why?

Question 9: This question is essentially the same as Q6 but is posed at the end of the inter-
view. By comparing the responses to both questions (Q6 and Q9), the impact of the interview
on the levels of conceptualization of the algorithm of binary search can be appreciated. The goal
of the question is to determine whether the interview has helped the students to improve their
levels of conceptualizations with respect to, on one hand, the decomposition of the algorithm
in its components and on the other hand, the description of a general algorithm. The epistemo-
logical motivation arises from the fact that the ability of detaching the thought from particular
cases and comprehending the intern mechanism of the actions is considered an advance in the
conceptualization by Piaget.

Q9: If you had to explain to a little child -who knows how to read and knows
the alphabet- how to look up any word in a dictionary, what would you say?

4 Analysis of the information gathered in the interviews

As expected the students solve the problem using the algorithm of binary search, without being
aware of what that means. Through the interviews, the students transform this ”know how to”
into knowledge about ”what is done” and ”why it works”, by the process of reflective abstraction
[12].

The analysis of the information gathered in the interviews is organized in the following
segments:

– Responses to questions on structure and method (Q1 to Q6).
– Responses to questions on reasons of success (Q7 and Q8), including excerpts from the

interviews.
– Responses to the question on the method posed at the end of the interview (Q9), including

responses to Q6, to facilitate the observation.

The analysis of every segment is based on descriptions and explanations contained in the
respective references. Selected excerpts from the interviews are included, in which relevant
comments relating theoretical concepts to the responses of the students are indicated in italics.
A short description of introducing the formalization of the algorithm using as start point the
conceptual knowledge constructed by the students is included following the analysis.

da Rosa 104

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

4.1 Responses to questions on structure and method (Q1 to Q6)

The responses to questions Q1 to Q4, constitute examples of how the thought advances from the
periphery (inferences focused on the characteristic of the dictionary related to its use) towards
the center of the object (inferences focused on the structure of the dictionary), induced by the
corresponding questions. This movement is governed by tenets called by Piaget the general law
of cognition and is the start of the process of conceptualization [8].

Only one student characterizes the dictionary by its alphabetic order relation. The other
students refer to what one can do with the dictionary or what it is for, in other words, their
responses are adequate to questions like ”what can you do with the dictionary?” or ”what is the
dictionary for?”. Because of the obvious character of the property of being an ordered list, it is
more difficult to conceptualize. Faced to questions Q3 and Q4 (why is it easier to find a word in
a dictionary than in a novel, inducing to think about the difference between both structures), all
students recognize the alphabetical order, which reveals that they become aware of the relevant
property of the object.

The answers to question Q6 reveal that the students have a very weak conceptualization
about their method of searching a word. The students apply binary search as expected, but
they are not aware of the different actions they do to achieve the result. The questions following
Q6 (Q7 and Q8) play an essential role in the conceptualization of the method, inducing the
students to reflect about the reasons of success. The goal is that they achieve on the one
hand, the decomposition of the method in its components: choose a word, compare words and
do the same, and on the other hand, the transformation of the dictionary in smaller parts,
which are the central questions of the algorithm. To facilitate the observation of advances in
the conceptualization, some responses to question Q6 are included together with responses to
question Q9.

4.2 Responses to questions on reasons of success (Q7 and Q8)

The analysis of the responses of the students to questions Q7 and Q8 revealed that it is hard
for the students to understand the reasons by which the binary search works. New questions
(no numbered in the excerpts below) were added in order to help the students to surmount this
difficulty: they were asked to use another method (called ”the second method” in the following)
which consists in asking the students to open the dictionary and to look if the searched word is
there. If it is not, (which will happen in essentially), they are asked to close the dictionary and to
begin to search for the word again, that is, in the whole dictionary. This strategy was effective:
after using the second method, all the students immediately became aware of the changes that
their actions impose to the object: the sequence of parts of the dictionary, each time smaller all
of them holding the searched word, and the termination case.

Below, selected excerpts from the interviews illustrate about:

– the difficulties of the students in finding the reasons of success before using the second
method (student 1),

– the effectiveness of the strategy of using the second method (students 2, 3 and 4),
– advances in the conceptualization of the algorithm with respect to: the decomposition of

the method in its components (choose, compare, search) (student 2), the invariant property
(students 3 and 4), the termination case (students 1 and 3).

The responses of the students to questions Q7 and Q8 are classified on the following types,
accordingly to the factor that they point out in searching the reasons of success:

– type 1: both the method and the dictionary,
– type 2: the method,
– type 3: the dictionary.

da Rosa 105

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

The goal of the questions is to induce the movement of the students’ thought between types
2 and 3 above, accordingly to the general law of cognition [8].

Selected excerpts from the interviews

Student 1
Q7: Knowing that a word is in the dictionary, is it always possible to find it?
R: Yes.
Q8: Why?
R: Because it will always be in that order. Because looking for in this way and due to the order
the dictionary has, I will find it.
(He refers to the method and the dictionary: type 1)
Q: Good, we look for the word gato. Here, we are searching here, in this piece as you said and,
what is it like regarding the whole dictionary?
R: The rest.
Q: And what is this rest according to the whole dictionary?
R: More useful for me.
Q: Yes, and with respect to the number of words that has?
R: Greater.
Q: ... !! This part is with respect to the whole dictionary?
R: Smaller than the complete dictionary.
Q: And now, how do you go on searching?
R: (He does it)
Q: And now what happens with all this part?
R: I do not need it.
Q: And where will you search?
R: Only on this page.
Q: And what is this page like according to the previous section you had?
R: Much smaller.
Q: Then what happens with the dictionary when you are still searching?
R: Some parts are being discarded.
Q: And it becomes ...?
R: Smaller.
Q: When you find the word, what happened to the dictionary?
R: It is useless, it only helps me for that word only.
Q: So, what was the dictionary transformed into?
R: Into only one word. (Termination case.)
Q: That is why you find it, because you search in sections that become smaller and smaller
within the dictionary.
R: Oh, of course.

The first type of response (illustrated in this excerpt) reveals at first sight a better concep-
tualization of the reasons of success because both the method and the object are mentioned.
However, observe the difficulty of the student, in constructing a mental representation of the
relationship between the parts of the dictionary. This can be explained by the fact that this
student was interviewed before the strategy of using the second method was implemented.

Student 2
Q7: Knowing that a word is in the dictionary, is it always possible to find it?
R: Yes.
Q8: Why?
R: Because I always get the same method to look it up, I always apply the same method by
which ... everybody uses it for the dictionary.

da Rosa 106

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

(He refers just to the method: type 2)
Q: And that method you apply and that everybody uses, why does it guarantee you that you
will find it?
R: If it is in the dictionary?
Q: Yes.
R: ...
Q: What does this method have that guarantees you find it?
R: It never fails.
Q: Why?
R: ... because ... because it holds all letters in the dictionary, I mean I always ... never will get
lost ... as long as I search one ... then I will always follow the same order until I find the word,
by each letter I go on searching.
Q: I propose another method. (He does it using the second method).
R: Yes, of course, we never finish.
Q: Which is then the difference between this method and the other?
R: I based myself on the principles (He is thinking of his own action now, trying to decompose
it), that is, I open the dictionary and I based myself on what I find at first sight, (choose) then
I start checking if I have to go forwards or backwards (compare).
Q: Suppose you go forwards, what happens to the rest?
R: I discard it.
(Observe that he is still thinking of his own action. However, to advance in conceptualizing his
thought has to move to the transformation imposed to the object because of his action. That is
what next question induces.)
Q: Then, what happens with the dictionary while you are looking up?
R: I start discarding until I find the word I am looking for.
Q: Then, what happens to the dictionary while you are searching?
R: They are being eliminated, it becomes reduced (”smaller” arguments).

Student 3
Q7: Knowing that a word is in the dictionary, is it always possible to find it?
R: Yes.
Q8: Why?
R: Because I trust myself, because yes, (she laughs).
Q: You’ll find it rather quickly or you will take the whole day.
R: Quick.
Q: Why?
R: Because I have practice. (Observe that she is thinking of her own actions, response of type
2.)
Q: Now we are going to use another method (the second method). Open the dictionary (she
opens it).
Q:Is gato there?
R: No. (We do it again many times).
Q: What do you think of this method with respect to the other?
R: It’s much more difficult.
Q: And what is the difference between them?
R: That in the first one I start marking between which and which and I can shorten the limits
(”smaller” arguments) and in the other it is at random.
Q: Why are you sure that with your method you will find it and quickly?
R: I have fewer bounds, fewer limits. (She begins to think of the dictionary).
Q: What happens with the group of words in which you search?
R: They start shortening.
Q: Until?

da Rosa 107

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

R: There is one word, the searched one (Termination case).
Q: If it is not?
R: It is not possible, I choose the parts in which the word is ... (The selected part contains the
searched word).

Student 4
Q7: Knowing that a word is in the dictionary, is it always possible to find it?
R: Knowing that it is in the dictionary, yes.
Q8: Why?
R: Due to the order it has.
(Response of type 3 above, he attributes the success to the dictionary.)
Q9: Good, let’s use now another method to find the word gato with the same dictionary having
the same order. We close the dictionary and I ask you to look up the word gato.
R: (He does it).
Q: Is the word gato there? (Where he opened).
R: No.
Q: Close it and look up gato again.
R: (He does it).
Q: Is it there?
R: No. (It is repeated some times).
Q: With this method the dictionary keeps its order and however, do you think that in this way
we’ll find the word gato easily?
R: No.
Q: Instead, with your method?
R: I find it fast.
Q: What is the difference between the two methods?
R: One is safe and the other isn’t.
Q: Why?
R: Because there is an order.
Q: No, in the second method the order remains in the dictionary.
R: But I didn’t follow it.
(Observe that now his thought has moved to his actions.)
Q: What does ”following the order” mean? Let’s use your method again.
R: (He does it.)
Q: Why are you browsing in that direction?
R: Because there is letter ”e” and I know that letter ”g” is after.
Q: What happens then with all this part of the dictionary?
R: I discard it. I know that here ”g” is not and I discard it.
Q: Let’s go on.
R: (Goes on searching and he passes by).
Q: What do you do with all this part of the dictionary?
R: Also, I know that it is not in this part.
Q: What happens with the dictionary?
R: There are parts which I know that it is not there and I discard them. (The selected part
contains the searched word.)
Q: So what happens to the dictionary?
R: It becomes smaller (”smaller” arguments).

4.3 Responses to question Q6 and Q9

The responses to questions Q6 and Q9 allow to some extent to measure the impact of the in-
terview in students’ conceptualization of the algorithm, because they are essentially the same

da Rosa 108

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

question, posed at the beginning and at the end of the interview respectively. Evidence of the
advances are the references to a general algorithm and better descriptions with respect to the
decomposition of the method in its components actions: choose a word, compare words and do
the same. Selected responses to the questions Q6 and Q9 follow.

Student 1:

Q6: I check the beginning letter, with ”g”, there is an alphabetical order then, more or less I
know that it is in the middle upwards, then I check which letter I am, for example: If I open
to the ”e”, I know that ”g” is after, that is the order, I go forwards, I go on checking and if I
advance too much, I come backwards and so on, until I find ”g” and after that I search.

Q9: First that he opens the dictionary, that he reads one word (choose) and he defines the
relation, that is what he tells me if the letter with which he started is before or after than the
one he wants to find and he tells me that if it is after (he passes by) I ask him to choose another
that is before (compare) and in this way successively (do the same).

Student 2:

Q6: First I opened the dictionary in a section that seemed near to ”g” and went in order always
visualizing the alphabet in my mind. I went up to ”g” and then with the 2nd letter, which is
the ”a”, and then the ”t” until finding the word.

Q9: That the word that he wants to find will be in order according to the alphabet that he
knows. Then, what he has to search first is the beginning letter of the word. After having found
the first letter, he can start with the 2nd. Proceeding also in the same way.
Q: The kid is learning to search ... Then, when he opens the dictionary, what does he have to
do to find the 1st letter?
R: A relation between what he is seeing (choose) and what he wants to find and according to
this relation (compare) he ”operates” forwards or backwards.
Q: And when he finds the first letter?
R: He operates again using the same order (do the same).

Student 3:

Q6: I was checking on the letter according to the order that I have in my mind, first, the first
letter, secondly the second and so on.
Q: Doing what?
R: Discarding the ones didn’t help, and looking up the words with the letters I was searching
for.

Q9: Take the dictionary and choose one word (choose) and then with respect to that one, start
looking if it is greater or less (compare) until finding the 1st letter and after you found the 1st
letter, you have to look for the 2nd , in order as well, and go on until you find the whole word
(do the same, termination).

In the answers to question Q6 the actions involved in the method, are implicitly mentioned
for the case of the letters of the word, while in the answers to question Q9 most of students
explicitly talk about ”a relation between words” (choose, compare), ”proceeding in the same
way” (do the same), and in some cases also about the termination condition. On the other hand,
responding to question Q9 most of students describe a general algorithm of binary search. The
next subsection shows the introduction of a formalization of the algorithm derived from a
synthesis of students’ responses to the question Q9.

da Rosa 109

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

4.4 The stage of the formalization

A week after the end of the individual interviews, a collective class was taught to all students
to represent students’ descriptions in a formalism similar to mathematics. The meaning of
formalizing is to put into correspondence mental constructions (concepts) with some universal
system of symbols [9]. Traditionally, in computer science teaching algorithms are described
using different formalisms (pseudo-codes, diagrams, flow-charts). But these formalisms are not
universal systems of symbols, while mathematics is. The following notation is used to describe
students descriptions in a language similar to mathematics: the dictionary is represented by a
list of pairs (word, meaning). A definition of the method of searching a word in a dictionary is
written as:

search(word,[(Wfirst,meaning)...(Wlast,meaning)]) =
let word’ = choose-word([(Wfirst,meaning)...(Wlast,meaning)])
if word = word’ then select-the-meaning
else if word’<word then search(word,[(word’,meaning)...(Wlast,meaning)])

else search(word,[(Wfirst,meaning) ... (word’,meaning)])

Each student was provided with a sheet containing his/her responses and once the students
have worked this definition out, other questions are discussed, for instance, ”How can we define
a more efficient method ’choose-word’ in the searching algorithm?” The term efficient is not
specified to see what the students think about it. All the students have answered that they
should take the word from the middle, and that this is more efficient because there is more
possibilities of discarding a greater number of words.

At the end of the class, some exercises were handed out to the students to be solved in-
dividually or in groups. The exercises asked about problems presenting both similarities and
variations with respect to the solved problem, for instance,”What happens if the word is not in
the dictionary?” and ”How would you do to insert it in the dictionary?” Such questions give the
opportunity of comparing different solutions/problems and reasoning about efficiency issues in
a context that the students can easily understand.

The analysis of students’ responses to those questions allows to investigate how the con-
structed knowledge is used in solving new problems[10] (not included in this paper).

5 Conclusions and Further Work

The study described in this paper is an example of the contribution of Piaget’s theory-Genetic
Epistemology-to computer science education research. The paper shows how principles from the
theory can be applied to learn about students’ understanding, using as an example the binary
search algorithm. The design of the interviews (section 3) and the analysis of students’ responses
(section 4) follow the main ideas briefly described in section 2.

The selected excerpts from the interviews reveal the impact on the construction of the
concept of binary search algorithm of

– the process of interaction of students’ thought between the applied method and the modifi-
cations on the object, and

– students’ reflection about the reasons of success of their solutions to the problem.

Advances on the conceptualization are illustrated by students’ descriptions at the end of the
interviews. A synthesis of these descriptions is used to introduce a formalization of the algorithm
in a language similar to mathematics, as described at the end of section 4.

The future work focuses on describing parts of the research not included in this paper,
for instance, the implementation of the algorithm in the functional programming language

da Rosa 110

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Haskell1 and the investigation of applying the constructed knowledge to solve other problems,
as mentioned at the end of section 4.

To discuss ideas related with the study described in this paper, a series of workshops were
conducted during the second semester of 2007 with the participation of computer science educa-
tors at Instituto Universitario Autónomo del Sur2. In the last years, some innovative methodolo-
gies taking into account the activities developed in the workshops have been put in practice[6].
The analysis of these experiences is also one of the points of the further work.

The elaboration of instructional proposals about the learning of algorithms, aimed at pro-
viding computer science educators with teaching strategies, is a matter of the further work as
well. Many algorithms used in real life to solve problems or perform tasks are instances of gen-
eral algorithms, taught in programming courses, for instance, searching (binary and sequential),
inserting/deleting elements in lists, ordering lists. On the other hand, the students learn how
to use algorithms in mathematics courses that can serve the same purpose[4].

6 Acknowledgements

I thank Federico Gómez Frois for correcting the English. The comments of the anonymous
referees are gratefully acknowledged.

References

1. Mark Asiala, Anne Brown, David DeVries, Ed Dubinsky, David Mathews, and Karen Thomas. A Framework
for Research and Curriculum Development in Undergraduate Mathematics Education. Research in Collegiate
Mathematics Education II, CBMS Issues in Mathematics Education, 6, 1-32, 1996.

2. Linda McIver Christian Holmboe and Carlisle E.George. Research Agenda for Computer Science Education.
In G.Kadoda (Ed). Proc. PPIG 13, pp 207-223, 2001.

3. Sylvia da Rosa. The learning of recursive algorithms and their functional formalization, 2005. Website.
http://www.fing.edu.uy/∼darosa.

4. Sylvia da Rosa. Designing Algorithms in High School Mathematics. Lecture Notes in Computer Science, vol.
3294, Springer-Verlag, 2004.

5. Sylvia da Rosa. The Learning of Recursive Algorithms from a Psychogenetic Perspective. Proceedings of
the 19th Annual Psychology of Programming Interest Group Workshop, Joensuu, Finland, 2007.

6. Sylvia da Rosa and Federico Gómez Frois. Una metodologia educativa basada en el trabajo del estudiante.
Proceedings of CIESC 2009, (Congreso Iberoamericano de Educacion Superior en Computacion, Pelotas,
Brasil), to appear in a special edition of the CLEI Electronic Journal (see http://www.clei.cl/cleiej/), 2009.

7. Ed Dubinsky and Michael McDonald. APOS: A Constructivist Theory of Learning in Undergraduate Math-
ematics Education Research. Springer Netherlands, 2006.

8. Jean Piaget. La Prise de Conscience. Presses Universitaires de France, 1964.
9. Jean Piaget. L’équilibration des Structures Cognitives, Problème Central du Développement. Presses Univer-

sitaires de France, 1975.
10. Jean Piaget. Recherches sur la Généralisation. Presses Universitaires de France, 1978.
11. Jean Piaget. Success and Understanding. Harvard University Press, 1978.
12. Jean Piaget and Evert Beth. Mathematical Epistemology and Psychology. D.Reidel Publishing Company,

Dordrecht-Holland, 1966.
13. Jean Piaget and Rolando Garcia. Psychogenesis and the History of Sciences. Columbia University Press,

New York, 1980.

1 www.haskell.org
2 A private educational institution of computer science in Montevideo, Uruguay

da Rosa 111

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Teaching Novice Programmers Programming Wisdom

Dr. Randy M. Kaplan

Kutztown University of Pennsylvania
Kutztown, PA 19530

kaplan@kutztown.edu

Keywords: POP-I.A. learning to program; POP-II.A. novices

Abstract
Teaching students how to write computer programs has remained a challenge. Whether a student is new
to programming or has some experience they often have not had enough to develop strategies for solving
problems in a computer programming setting. It is akin to being in a rowboat without any oars. Yes, you
can get there; it will just take a long time.

There has been a great deal of research over the years into the psychological and cognitive aspects of
programming. The reality is that much of this research has not informed our teaching and we are still
teaching programming as we did many years ago. Although the academic community may take offense at
this statement looking at the way programming is taught today and applying the relevant research to the
process can justify it. Without going through that process, it remains easy to see. Programming is largely
taught today the way it was taught 60 years ago.

Although this paper is entitled “Teaching Novice Programmers Programming Wisdom,” the wisdom
referred to are encapsulations of some of the meta-skills that are needed to successfully write computer
programs. The list is not meant to be in anyway comprehensive, complete, or all encompassing. It is a list
used with some success in entry level programming courses. The purpose of writing and presenting the
idea of wisdom for programming is to allow the computer science/education/psychology communities to
comment on this wisdom and possibly offer other “nuggets” and approaches that might be employed
during novice programming instruction.

1. Introduction: The Need for Wisdom
There are two main issues that are key to successfully teaching students to write computer programs. The
first is how do you convey the information needed by the student actually write programs. This is akin to
learning how to speak a new language; learning the words of the language and how to construct sentences
in the language. The other issue concerns the strategies that students can use while they are learning and
using the new language. These so-called meta-strategies go a long way to make learning and using a new
language an easier process.

There have been many studies of programming (Blackwell 2002), how people learn to program
(Buckingham, Hynd et al. 2004), how novices learn to program (Mayer 1981), and the psychological and
cognitive aspects of programming (Sheil 1987). There have also been studies of programming languages
that attempt to identify characteristics that may make them easier to learn (McIver and Conway 1996).

Those of us that teach programming have a tremendous challenge. We are required to teach a skill that
requires us to impose rules for problem solving in a foreign language (a programming language). We
teach programming much in the way we taught it from when programming was first taught. We tell the
student about the tools and then we explain how to use the tools to solve specific problems. We do not
address the necessary overarching or meta-skills that are required in the programming process. David
Gries (1974) states that we do not explicitly teach problem solving when we teach people how to

Kaplan 112

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

program. Gries observations and the context in which he gives them are important. The comments were
given some 36 years ago without supporting evidence or research.He goes on to say “the bright students
somehow catch on …” Polya’s work (1988) about problem solving stands by itself as a concise model of
the kinds of heuristics that are extremely useful to students learning to solve mathematical problems.
There is nothing special about the heuristics that Polya provides. The uniqueness of his book is that he
sets down on paper certain principles for the teacher and for the student that are extremely useful for both.
When reading Polya’s book one is continually reminded of their familiarity, yet somehow having them
documented in this way makes them more tangible and useful.

In this paper, following in the footsteps of Gries and Polya, statements will be made based on our
experience with programming and teaching novice students to program.

When teaching a CS1 course it becomes apparent that most students do not have or are not aware of the
meta-cognitive skills that are needed for programming. It became clear that an additional “pre-CS1”
course would help make the CS1 course more accessible to students taking it. The purpose for CS0 was to
level the playing field for all students. This course afforded an opportunity to cover some of the aspects of
programming that are missed in the typical CS1 course. Specifically we would have an opportunity to
incorporate teaching of the meta-skills necessary to carry out the programming task. The dilemma was
how to present these meta-skills in such a way that they can be remembered and used by the students for
the programming process. This paper describes the formulation used for presenting these meta-skills.

2. Introduction: Codifying Wisdom
It would be convenient if we could simply impart wisdom by codifying it in some way that (a) everyone
remembers, and (b) everyone uses. In this sound byte, 10 second news story, limited attention span world,
it would in fact be excellent because then, when we teach programming, we could impart this wisdom so
our students would not find programming as frustrating as they do. Unfortunately codifying the
experience of programming is not an easy thing to do.

There are many attempts at codifying programming wisdom. Through the years there are some notable
artifacts of programmer wisdom. Examples include Frederick Brooks classic, “The Mythical Man-Month
(Brooks 1995),” “201 Principles of Software Development (Davis 1995),” and “Joel on Software
(Spolsky 2004)” are all examples of attempts to encapsulate some lessons learned (wisdom) for the
purpose of improving the software development process.

Each of these venerable works contains important wisdom for programmers and system developers. On
average each has 300 pages and would require a course to cover their contents. For the novice, much of
their contents would probably be irrelevant to their task. Another work, “Code Complete” (McConnell
1993) is an excellent text about how to make sure that the code that a programmer writes works. This
work (and subsequent editions) are also must reads for the programmer although not very appropriate for
the novice programmer.

Statements of wisdom, also known as heuristics, can be gleaned from experience and if properly
expressed can be immensely useful to the student. It is often said that the problem with novice students is
not that they need meta-strategies; it is more that they need basic domain knowledge. We would claim
that this is not an either/or situation but actually an “and” situation in that novices need both kinds of
knowledge – especially when it comes to computer programming.

The heuristics or wisdom described in this paper bears some relationship to the work on meta-cognition in
programming. Meta-cognitive skills are those that are used as strategies for solving problems or carrying
out tasks. These may seem to be intuitively useful in the case where the situation is unfamiliar to the
student or practitioner but this is not a confirmed fact. Research carried out by Shaft (1995) shows that
when experienced programmers used meta-cognitive skills when attempting to carry out programming
understanding, the use of these strategies did not improve the understanding of the programs.

Kaplan 113

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

There has also been research investigating what meta-skills may be used when programming. Uncovering
what these skills might be has been somewhat allusive. One step in this process would be to classify the
level or kind of skill needed to perform a specific programming task. Shuhidian (Shuhidan, Hamilton et
al. 2009) attempted to do this but found that classification was more difficult than expected.

3. This Paper’s Contribution
How can we codify the meta-skills of programming in a form that can be easily remembered and used by
novice students? This was the challenge for a CS0 course. This paper defines a codification of
programmer’s wisdom suitable for the student beginning their computer science or information
technology programs. In fact, this codification is one that can be continuously used by the student.
Students who have graduated from our programs have commented that they continue to use these meta-
skills. The contribution of this paper is the definition of the codification of a programmer’s heuristics.

4. Programmer’s Wisdom

4.1 Precedents for Experiential Wisdom (Heuristics)

One of the most notable examples of a presentation of experiential wisdom is the work of Polya
mentioned earlier. Early in his work Polya specifies four phases for finding a solution to a problem.
Comparable to some aspects of the programming wisdom to follow, Polya identifies the phases as
understanding the problem, planning for solving the problem, execution of the plan for solving the
problem, and lastly a “looking back” at the process used to solve the problem (Polya 1988), What justifies
these phases? Who are they attributed to? Surely they existed before Polya. Polya next explains each of
the phases in greater detail. For example, one of the statements made, “The students should consider the
principle parts of the problem attentively, repeatedly, and from various sides(Polya 1988).” Again the
question arises, where did this come from?

When reading Polya it is clear that the source of these heuristics was his own experience over. The
present work has similarities to Polya’s. It is an attempt to codify heuristics and wisdom that can be used
by novice programmers to solve programming problems much as students solving mathematics problems
can use Polya’s work.

4.2 Wisdom Explained

In this section the “nuggets” of wisdom (heuristics) will be introduced and explained. Before introducing
them, some comments are in order about the kinds of skills that these statements address. We can identify
two kinds of statements. The first type of statement is one that is relevant to the programming process.
The second type of statement is of a more general type that would apply to both writing computer
programs and problem solving. Rather than consider this distinction a strict dichotomy between domain-
relevant statements and more general problem-solving statements (or meta-cognitive statements) we can
consider a continuum between these two classifications. A particular statement is to a lesser or greater
extent of one or the other classification. We assume that statements having more to do with the
programming domain will be on the one side of the continuum while those having more to do with meta-
cognitive skills on the other side of the scale. Figure 1 shows a classification of the statements of
programming wisdom on the continuum.

Kaplan 114

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Figure 1 – Continuum of Programming Strategies vs. General Problem Solving Strategies

The codification of the programmer’s wisdom is divided into 11 statements. There is nothing significant
about this number except that it had to be a small enough number of statements to remember. Students
readily memorize the 11 statements without difficulty. The 11 statements are as follows.

1. BREAK IT DOWN
2. LEARN THE BASICS WELL, LOOKUP THE REST
3. FIND AND USE EXAMPLES
4. TEST TEST TEST (and test some more)
5. FOLLOW DIRECTIONS
6. SOLVE THE PROBLEM IN ENGLISH FIRST
7. REPRESENT WHAT?
8. WHAT DOES IT DO?
9. MAKE SURE YOU UNDERSTAND THE PROBLEM

10. IF YOU CAN’T SOLVE THE BIG PROBLEM SOLVE A SMALLER ONE.
11. HAVE A PLAN B

5. Wisdom Defined
The 11 statements listed above are explained below. When the students are introduced to the 11
statements, they are given an explanation of each statement. The descriptions below are in lieu of the
actual classroom explanations.

Break It Down

When you are faced with a problem that is too complex, one way to approach it is to break the problem
down into smaller parts. By breaking the problem into smaller parts you may be able to more readily
solve the original problem by solving its pieces.

Learn the Basics Well, Lookup the Rest

Beginning programmers often get hung up on how to do certain things. Because programs have to be very
precise it is easy to make mistakes when you first start out. The point is that it is okay to look up what is
needed when a student becomes stuck.

Domain
Specific
Strategies

General
Problem
Solving
Strategies

#1#2
#3

#4#7
#5

#11
#10

#6

#9
#8

Kaplan 115

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Find and use examples

There are thousands upon thousands of coding samples that can be examined to better understand how a
specific task is accomplished. Using examples to create programs does two things; first you get to see
how something is done, and if you pay attention by seeing how it is done you will learn how to do it.
Second, you’ll spend less time, at least at the start, writing your programs. Students complain about how
long it takes to write a program. If you can find and use examples and you can learn from the examples
you might be able to learn faster then if you tried to write a program from scratch.

TEST TEST TEST (and test some more)

Testing is part of programming. You test to get a program to work and you test to make sure the program
works correctly. The better you test, the better your program will be.

Follow Directions

Make sure that you are doing what the directions say. The directions tell you what you can and cannot do.
Don’t overcomplicate or oversimplify what you have to do. Sometimes the directions will even give you
part of the solution – so read carefully.

Solve the problem in English (or your native language) first

Learning a new programming language is similar to learning a new foreign language. You just don’t jump
right into writing the steps in the new language. That is a sure fire recipe for failure. Solve the problem in
your native language. Write each of the steps in English or the language that you are most comfortable
with. Translate this version into the programming language you are using. That way you will have the
problem solved and you can focus on how to express your solution in the programming language.

Represent What?

An important part of solving any programming problem is to figure out how the problem will be
represented in data. The variables that are needed and other structures like arrays need to be defined. This
is a key aspect of creating a program to solve any programming problem.

What does it do?

Every computer program that was ever written does something. That is the nature of programs. They
make computers do things that are desired by the programmer. Now sometimes the author of a program
will get it wrong. The computer will do something that was not wanted. There can be lots of reasons for
this and one of them is that the programmer really didn’t understand what the computer was supposed to
do for solving the problem. Make sure you understand what it is that you want the computer to do.

Make sure you understand the problem

If you don’t understand what the problem is, how can you come up with a solution? You can’t. Besides
following directions, understanding what it is you must do is extremely important. If you don’t
understand what to do, don’t even think about starting to work on the solution to the problem. Do
whatever it takes to understand the problem you must solve.

If you can’t solve the big problem, solve a smaller problem.

This may seem like the first statement (Break It Down) but it isn’t. This has to do with complexity of the
problem you are to solve. A problem might be so complex that you have no idea how to approach it let
alone solve it. So, instead of bashing one’s head against a wall (a tried and true method for solving
problems), formulate a simpler problem related to the original problem. The simpler problem will be

Kaplan 116

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

solvable (we hope). Use the learning that came from solving the simpler problem to solve the more
complex problem.

Have a Plan B

No matter how well we plan and no matter how completely we plan, there is always something that
happens to get in the way of our plan. Therefore if you have a way to solve the problem and you find you
have travelled down a path that doesn’t have a good or desired ending, you need to have an alternative.
Plan B is that alternative. It may be an alternate way of solving the problem. It may be a different
breakdown of the problem. It may be a simpler approach. Whatever it is, have a plan B just in case.

6. Why These 11 Statements?
These 11 statements represent a codification of the author’s experience in programming and teaching
programming. It is extremely easy for students to get lost and frustrated when they first learn about
programming. These statements are meant to give the student some strong foundations to stand upon.
They address important aspects of the programming process and can be referred to as needed when
students are solving programming problems.

The efficacy of these statements can only be measured over a long period of time. We want to know
whether knowing these heuristics have the following effects on novice programmers.

Do the statements result in lesser frustration when learning how to program or solving
programming problems?

Do the statements make the programming process clearer?

Do the statements simplify the programming process?

Do you find yourself referring to the statements with any frequency?

Are the statements easy to remember?

Can you apply the statements to all aspects of the programming process?

7. Preliminary Data
To begin the process of analyzing these statements and their relevance to the programming process we
asked upper class students in a computer science program to rate the various statements and their
relevance to the programming process. The students we asked have been programming for at least two
years. Each student had experience programming with at least one programming language. The
instrument used for this survey in shown in Figure 2.

Kaplan 117

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Figure 2 – Survey used to Preliminarily Evaluate Programmer’s Wisdom

Each of the statements is shown with a brief explanation. The statements are considered on a scale from 0
to 10 where 0 indicates a statement that has no relevance to the programming process, and where 10
indicates that the statement has significant relevance to the programming process. In addition a 12th
question asks the student to rate all 11 statements in terms of their relevance to the programming process.
A summary of the ratings given is shown in the next table.

Question Average S.D.
1 Break it down 7.9 3.0

2
Learn the basics well, lookup
the rest 8.7 3.2

3 Find and use examples 7.6 2.7

4
Test, test, test and test some
more 7.8 3.0

5 Follow directions 8.5 1.7

6
Solve the problems in English
first 7.1 1.9

7 Represent What? 7.2 1.8
8 What does it do? 8.7 2.0

9
Make sure you understand the
problem 8.8 1.1

10
If you can’t solve the big
problem solve a smaller one 8.1 2.1

11 Have a plan B 7.1 3.0
12 8.9 1.1

Table 1 – Student Wisdom Ratings (N=12)

Kaplan 118

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Looking at this table it is clear that students who have programmed for some time consider the statements
representative of the programming process. The lowest average score for a statement was 7.1. Two
statements (6 and 11) had this score. The highest score, 8.8, was for statement 9.

8. Conclusion
In order to address the instruction of the necessary meta-skills for the programming process in a concise,
memorable, understandable, and usable a series of 11 statements were created. These 11 statements
represent a sample of the necessary meta-skills writing computer programs. The 11 statements are not
meant to be comprehensive or even complete and one would suspect that over time the statements would
possibly evolve or be modified as they are used. This evolution can only be accomplished if they are
conveyed to novice students and then considered for their effectiveness.

My primary purpose in this paper is to present these statements as a starting point for others to utilize this
formulation of meta-skills. To the extent these statements resonate with other teachers and these teachers
use some form of them, the efficacy of these statements can be explored among a wider audience.

The compactness of these statements promotes their presentation in a short period of time – at most two
classes. In this time frame, students can learn the wisdom (heuristics), memorize them and apply them to
subsequent programming problems.

Kaplan 119

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

9. References

Blackwell, A. (2002). What is programming? PPIG 2002, MIT Press.

Brooks, F. P. (1995). The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition,
Addison-Wesley Professional.

Buckingham, B. C., L. Hynd, et al. (2004). "Ways of Experiencing the act of learning to program: A
phenomenographic study of introductory programming students at university." Journal of Information
Technology Education 3: 143-160.

Davis, A. M. (1995). 201 Principles of Software Development, McGraw-Hill.

Gries, D. (1974). What should we teach in an introductory programming course? Proceedings of the
fourth SIGCSE technical symposium on Computer science education, ACM: 81-89.

Mayer, R. E. (1981). "The Psychology of How Novices Learn Computer Programming." ACM Comput.
Surv. 13(1): 121-141.

McConnell, S. (1993). Code Complete, Microsoft Press.

McIver, L. and D. Conway (1996). Seven Deadly Sins of Introductory Programming Language Design.
Proceedings of the 1996 International Conference on Software Engineering: Education and Practice,
IEEE Computer Society: 309.

Polya, G. (1988). How to Solve It A new Aspect of Mathematical Method, Princeton Science Library.

Shaft, T. M. (1995). "Helping Programmers Understand Programs: The Use of Metacognition." Database
Advances 26(4): 25-46.

Sheil, B. A. (1987). The psychological study of programming. Human-computer interaction: a
multidisciplinary approach, Morgan Kaufmann Publishers Inc.: 165-174.

Shuhidan, S., M. Hamilton, et al. (2009). A Taxonomic Study of Novice Programming Summative
Assessment. Eleventh Australasian Computing Education Conference (ACE2009) . Wellington, New
Zealand.

Spolsky, J. (2004). Joel on Software, Apress.

Kaplan 120

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Project Kick-off with Distributed Pair Programming

Edna Rosen, Stephan Salinger, and Christopher Oezbek

Institut für Informatik, Freie Universität Berlin
edna.rosen, stephan.salinger, christopher.oezbek@fu-berlin.de

Abstract Background: More and more software development companies decide to share their workload be-
tween teams which are geographically distributed. One of the biggest challenges is to start up work when new
team members are introduced at a distant site of a global cooperation. Usually existing development processes
do not cover integrating distributed collaboration, hence there is a need to adjust them to make project starts
comfortable, easy and fast. A field study was conducted to introduce distributed pair programming (DPP), a
derivative of pair programming (PP) in a distributed context, as a new development method to support com-
munication and enhance knowledge transfer right from the beginning of the project. Objective: The objective
of the study was to uncover relevant procedures and problems of establishing DPP and to collect supporting
procedure steps for future project starts in distributed collaborations. Methods: A variation of canonical action
research (CAR) was used to both establish DPP, gather insights and allow feedback from the developers in-
volved. Results: This paper describes the establishment of DPP in a corporate project kick-off. It also reveals
some benefits and major problems about distributed collaboration like conflicts in role fulfillment, ambiguity
about session goals and missing awareness. Limitations: The validity of this study is threatened by the small
number of participants and their particular cultural backgrounds.

Keywords: POP-I.A. distributed collaboration, POP-I.B. transfer of competence, POP-II.A. novice/
expert, POP-II.B. coding, POP-V.B. field study

1 Introduction

Software development in the twenty-first century cannot avoid the effects of globalization on production.
One of the biggest challenges for distributed software development is to make knowledge available at
all necessary locations quickly and efficiently (Braithwaite & Joyce, 2005; Herbsleb & Mockus, 2003).
This becomes even more important if distributed collaboration separates the domain experts from newly
assigned developers.

To enhance communication and knowledge transfer between stakeholders, a development practice
like pair programming (PP) may be introduced for project kick-offs. Usually PP is part of other agile
software development practices which are combined to a whole development process called extreme
programming (XP) (Beck, 1999). Nevertheless it is also possible to introduce PP as a single new devel-
opment practice without changing existing development processes (Aveling, 2004). In PP, two program-
mers work jointly while only using one computer, mouse and keyboard. The developers regularly change
between two roles (Williams et al., 2000): One developer is taking the role of the ‘driver’, controlling
the equipment, while the other developer, the ‘observer’, follows what the former is doing. Although
engaging two developers with one task seems to be a lot of additional effort (e.g. Hannay et al., 2009;
Nosek, 1998), PP has shown to increase communication and knowledge transfer between team members
and to produce code of higher quality (e.g. Bipp et al., 2008; Hannay et al., 2009).

Due to newest technologies it is possible to perform PP in a distributed context, then called dis-
tributed pair programming (DPP) (Baheti et al., 2002; Stotts et al., 2003). DPP is similar to PP in that
developers are joined (albeit virtually) to collaborate on a given task, but different in that co-developers
each have their own computer, keyboard and mouse, which allows them to also work independently. With
this advantage though, new challenges arise: non-verbal communication is limited and most actions of
the co-developers are not instantly visible (Gutwin & Greenberg, 1999; Hanks, 2008). To bridge this, de-
veloper’s actions must be made noticeable by awareness functionalities, e.g. code highlighting (Salinger
et al., 2010).

Rosen, et al. 121

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

mailto:edna.rosen@fu-berlin.de
mailto:stephan.salinger@fu-berlin.de
mailto:christopher.oezbek@fu-berlin.de
http://www.fu-berlin.de

In cooperation with the German IT companies Teles AG and her holding SSBG a field study was
conducted to establish DPP as an additional development practice for a project kick-off between devel-
opers with little to no experience in DPP or PP (an expert in Vienna and two developers at a new office
in Bangalore). At each of their local offices the developers still worked integrated in their local teams
using a waterfall-based development process.

This paper delineates the establishment of DPP to support a corporate project kick-off. Section 2
highlights what is important about distributed software development and the establishment of a new
development practice. Section 3 discusses the research setting including research background, research
method and offers a short description of the technical infrastructure. Section 4 presents the results,
lessons learned, and an overview of the most significant problems which occurred. Finally, Section 5
contains a conclusion of the establishment process.

2 Related Work

Since the rise of the Internet the software development industry has shown interest in distributed col-
laboration (Olson & Olson, 2000). Several scientific studies and industrial experience reports have dealt
with the desire to optimize global cooperation (e.g. Damian & Lanubile, 2004), offering essential rea-
sons which outline the necessity of distributed collaboration. Poole (2004) and Bass et al. (2007) refer
to outsourcing, a desire to employ best available developers from any location, growing global open
source communities as well as economic necessity such as cost competitiveness or product strategy, i.e.
addressing specific market requirements. Yap (2005) additionally states sharing results and knowledge
between locations as a reason for distributed collaboration.

Most of the studies and experience reports agree that there are three primary aspects for successful
distributed collaboration (e.g. Poole, 2004):

First, the best applicable practices according to the needs of the development process have to be
chosen. Distributed development practices like DPP or loosely coupled development methods such as
distributed party programming (Salinger et al., 2010) allow the establishment of single practices in ad-
dition to existing development processes, while the establishment of distributed extreme programming
(DXP) changes the entire development process to XP in a distributed context. Choosing the best devel-
opment practices also depends on who will be involved in the distributed collaboration. Some companies
may want to change the development practices to create a whole new distributed team from different lo-
cations (Yap, 2005), whereas others only bring together experts and newbies temporarily when necessary
(Bass et al., 2007; Schümmer & Lukosch, 2008).

Second, the distributed process has to be adapted to integrate into an existing organization (Cohn
& Ford, 2003). To this end different perspectives have to be assumed, for instance from the developers,
management or other departments involved. Also cultural, psychological and social aspects need to be
considered (e.g. Bass et al., 2007; Canfora et al., 2003).

Third, a technical infrastructure must be established. Such infrastructure includes the developing
environment, collaboration tools, audio or video connection (Stotts et al., 2003). Individual tool prefer-
ences, platform restrictions as well as resource constraints, e.g. available bandwidth, should be consid-
ered (Schümmer & Lukosch, 2008).

In the field study conducted, DPP was temporarily established as an additional development practice
to transfer expertise from one company site to a new team at a different site. Using DPP as a temporary
practice enabled to focus on the developer’s needs and establish and improve the technical infrastructure.
Cultural, psychological and social aspects were only considered in case they could be attributed to
experiences from existing studies.

3 Research Setting

3.1 Project Background

The project emerged as a cooperation between the Institute of Computer Science at Freie Universität
Berlin and the German IT companies Teles AG and her holding SSBG. The IT company wanted to kick

Rosen, et al. 122

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

off a project between an office in Vienna and a new office in Bangalore and looked for a cost-effective
and fast alternative to bring together their domain and programming expert from Vienna with the two
newbies (experienced developers new to the company) from Bangalore. They wanted to transfer exper-
tise from Vienna to Bangalore without having to change local development processes. To support the IT
company in their distributed collaboration, the researchers provided a complete technical infrastructure
including voice communication and a tool for DPP (see Section 3.3). This way the developers could eas-
ily work jointly and concurrently on their project and otherwise remain integrated in their local teams
with individual tasks for each developer and a mostly sequential work flow. To support the developers
in adopting DPP as a distributed development process and support the project kick-off, one researcher
assumed the role of a process coach.

The main goal of the project kick-off was to develop a prototype based on a provisional specification
of a voice recording solution for a VoIP application. To this end, the expert was expected to transfer his
knowledge about the domain to his team colleagues at Bangalore and ensure a high level of understand-
ing of the produced software artifacts and its interaction with existing parts for all participants. After
the project kick-off, the new developers from Bangalore were supposed to be able to implement and
maintain the project on their own.

To achieve these goals, the domain expert in cooperation with the researchers devised the following
development process: First, tasks would be assigned by the expert mainly using the existing prescrip-
tion from the waterfall-based model the company used, i.e. the new developers would receive tasks to
implement independent components based on the provisional specification. Additionally critical parts
of the project were developed by the expert to show and explain existing coding regulations. Second,
it was decided to conduct regular DPP sessions of roughly two hours in length depending on the needs
of the development process (which the expert decided to be once a week). Two different session types
were envisioned by the expert: (1) The new developers would be asked to perform a code walkthrough
(Freedman & Weinberg, 2000) of the code they had written so the expert could assess their progress and
knowledge gains. Each developer was expected to present the code and mention critical and question-
able points, giving the expert opportunity to comment on his interpretation of the specification in case of
deviations. (2) The expert wanted to pair-develop (Williams & Kessler, 2000; Williams et al., 2000) the
software, i.e. jointly create or edit artifacts of the software. The goal of this second type was to explain
critical parts of the software to the new developers and provide opportunities for asking questions.

Starting in April 2009, sixteen weekly sessions using DPP were conducted over a period of four
months. The expert participated in all these sessions, one of the new developers participated in three, the
other in fifteen and both of them together in two sessions. The DPP setting was exploratively extended
to three participants to test further benefits of DPP compared to co-located PP (as described by Salinger
et al. (2010), the technical infrastructure deployed also allowed more than two participants). This was
dropped by the developers not seeing any further advantage compared to the additional effort of a third
developer involved. As one of the newbies was mainly involved in other tasks outside DPP sessions, he
only participated a few times and later on information about the common project was transferred to him
by the other newbie.

3.2 Research Method

The field study was conducted following principles from canonical action research (CAR) as described
by Davison et al. (2004). Most important about this approach is that the researcher (in this case the
process coach) and the participants are cooperating tightly and the direction of the collaboration can
be influenced by either of these parties. This rather explorative research process is structured through
several principles. It is based on an iterative process model (see Figure 1). With each iteration new
insights are collected and interventions are planned to optimize the ongoing process. Process steps and
iteration length can vary depending on individual demands of a particular research process.

One of the main goals of the researcher was to establish DPP according to the needs of the devel-
opers and overall goal of the project. This afforded to look at it from a researcher’s perspective, i.e. the
practicability of DPP in general as well as from the developer’s point of view, i.e. the success of the

Rosen, et al. 123

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

planned development project. For initial background information about the developers involved, these
completed a preliminary questionnaire about their experience with and expectations of DPP. Then the
process started with a researcher-developer agreement, which continuously provided a general direction
for the research process. In it the developers involved agreed upon project goals to be achieved, e.g.
to create a prototype, and on the overall structure of the research process, e.g. when to meet for DPP
sessions.

This initiated a cyclic process which contained three main steps (illustrated by the process model in
Figure 1). The first step in each cycle was to determine the actual state of DPP usage with a focus on
occurring problems, the project status regarding the overall project goals and the fulfillment of specific
session goals. Hence before each upcoming session the developers completed a questionnaire stating
their planned tasks, e.g. scope and duration, and what benefit or difficulties they expected. After each
session they completed another questionnaire to evaluate the success of the session, i.e. whether their
session goals were achieved and if expected benefits or difficulties emerged. Additionally, the process
coach participated in each session and gathered information through observation and by analyzing log-
files and videos recorded during the session post-hoc. Last, “reflection meetings” were held after each
session to let developers discuss their experiences with DPP and to support the analysis with first-hand
impressions.

In the second phase of each cycle (ideal state analysis) the previously identified problems or other
phenomena such as last minute changes to planned tasks were analyzed to improve the use of DPP. This
was done by the researchers using scientific literature and regular discussion. Afterwards the results were
discussed with the developers in one of the following reflection meetings or sometimes in individual
interviews, e.g. if only one developer was affected. Finally, new or adjusted process goals were evaluated
and set based on the insights of the actual state to approach a more ideal state.

The third and last phase of each cycle consisted of planning and performing interventions according
to the results of the ideal state analysis, e.g. changing audio settings for better quality.

At the end of the project kick-off the developers were asked to state their final impression of DPP,
their experience with it, the overall project success, as well as anything else about DPP they found
remarkable in a last individual interview.

Actual State

Analysis

Ideal State

Analysis
Interventions

Researcher-

Developer

Agreement

Figure 1. Cyclic research process model with three main phases based on a researcher-developer agree-
ment

In summary, the following data sources were used to collect information about the DPP process:

– Observation: One of the researchers participated as the process coach in every DPP session.
– Preliminary questionnaire: One questionnaire was administered to the developers before the cooper-

ation started to gather background information such as their level of experience with PP.
– Questionnaires before and after each DPP session: Each session was accompanied by a questionnaire

about the session.

Rosen, et al. 124

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

– Reflection meetings after each session or at least once a week: The developers and the process
coach reflected together about the most recent session and discussed possible interventions for future
sessions.

– Individual interviews: In total three individual interviews with the domain expert were conducted
over the course of the collaboration.

– Final individual interviews: At the end of the project an interview with open questions about the
overall success of establishing DPP was conducted.

3.3 Technical Infrastructure and Collaboration Tool

The different software packages necessary for conducting distributed pair programming were provided
by the researchers and installed on a company server and on the computers of all participants. The
packages consisted of the collaboration tool Saros1 (Salinger et al., 2010), which integrates in the de-
velopment environment Eclipse2, the VoIP application Mumble and its server component Murmur3, the
instant messaging server OpenFire4 and virtual private network client and server via OpenVPN5.

The most central component in this setup is the collaboration tool Saros, which lets multiple develop-
ers work collaboratively in the development environment. Saros has been developed at Freie Universität
Berlin by a team of students since 2006 (Salinger et al., 2010). To bring developers together for DPP,
the software defines the concept of a session to which one participant in the role of the host can invite
any number of participants as clients. The software then allows to share a software development project
between all participants or synchronize existing copies to match the version provided by the host. During
programming Saros closely models the roles of driver and observer known from PP by granting write
access only to the driver and allowing the observer to follow the movement in files and package of a
driver.

To increase awareness about the activities of the remote peers during a session, Saros also highlights
the cursor, text selection, written text, visible viewport in a file, and the opened files in the project
explorer. An annotated screenshot can be seen in Figure 2 presenting these options.

During the study all sessions were recorded on video both for scientific analysis and to improve
Saros in combination with input from the participants and log-files generated by Saros.

4 Results and Lessons Learned

4.1 Session Overview

The first two of 16 sessions were used by the coach to explain the research process, introduce basic
terms and processes of DPP and to show and explain the technical infrastructure to the developers. The
following sessions mainly involved code walkthrough (sessions 3,7 and 9) and pair-developing including
ad-hoc testing (sessions 4-6, 8 and 10-16).

In the first few research process cycles primarily a lot of adjustments in the technical infrastructure
were needed, such as adjustments to audio settings and equipment to improve audio quality. Since Saros
had never been deployed in an industrial scenario between continents before, it was necessary to find
workarounds and software updates had to overcome several problems such as improving the synchro-
nization of large projects.

After the fifth session a fixed starting time and duration of 90 minutes per session was set. Before,
the expert had chosen a starting time and duration according to his planned task, which did not take
into consideration any delays caused by developers not being on time, the synchronization of their large
project, or answering general questions. Figure 3 gives an overview of the time spent in each session

1 Available for download at http://dpp.sourceforge.net/.
2 http://www.eclipse.org
3 http://mumble.sourceforge.net/
4 http://www.igniterealtime.org/projects/openfire/
5 http://openvpn.net/

Rosen, et al. 125

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

http://dpp.sourceforge.net/
http://www.eclipse.org
http://mumble.sourceforge.net/
http://www.igniterealtime.org/projects/openfire/
http://openvpn.net/

6

2

1

3

4

5

Figure 2. Various awareness features used in Saros such as (1) selection, (2) text edits, and (3) viewports
highlighted in each users’ color, (4) opened and active files by current drivers, (5) button for following
the viewport of a driver, and (6) information about Eclipse being the foreground window.

and shows that preparation time declined as the developers became more experienced (with the notable
exception of session 14 in which technical problems prevented any development to be started, but still
allowed the developers to discuss changed requirements and to plan ongoing work).

During later research process cycles the focus then could be shifted to improving the use of DPP
(described in the following sections) and on optimizing the research method, e.g. finding an ideal time
for reflection meetings, and improving communication between developers. Planning reflection meetings
was demanding because it was necessary to get all participants together and not let too much time go by
after the sessions to be reflected. Sometimes only a few days after a session the developers would not
remember what had happened in their last session. Finally, performing one reflection meeting after the
last session of the week showed to be most effective.

4.2 Benefits of DPP

In twelve of the thirteen post-session questionnaires the developers declared the session a success and
stated that most of the times DPP had been helpful to achieve their session goals (the expert agreed for
85% of sessions, the newbies for 89%). In the final interview they confirmed that their project goals were
achieved.

Over the course of the study the following three benefits appeared to most prominently support the
use of DPP:

– First of all, communication between developers was enhanced noticeably throughout the collabo-
ration. Before the DPP sessions started, communication was limited to chat or e-mail. Due to DPP
sessions and reflection meetings the developers talked to each other at least once a week for more
than one hour. Moreover, communication was enhanced due to newly introduced walkthroughs and
pair-developing in DPP sessions which were supplementary to their local, usually rather loosely cou-
pled, development process. The developers used the session time to ask questions or discuss open

Rosen, et al. 126

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

17

15

19

10

15

10

17

34

68

12

15

30

10

7

10

1

1

3

59

9

8

36

0

44

75

45

54

37

75

65

61

53

0

83

64

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Length of Session in Minutes

S
es

si
o
n

Lateness Preparation Time Working Time

Figure 3. Length of DPP sessions as a breakdown of time lost due to developers coming late and having
to prepare for the session, and time spent on productive work.

issues with the respective artifacts in plain view. In reflection meetings the developers also talked
about the establishment of DPP in general, i.e. their experience and expectations, or discussed pro-
cedural strategies. In earlier sessions the driver, who was most of the times the expert, talked more
than the observer. Nevertheless, between tasks or during project synchronization the developers used
the pauses to reorder assignments or agree on general procedures. Later on in the collaboration the
new developers integrated themselves more actively in sessions by making suggestions or discussing
development issues.

– Second, the expert stated in eight of thirteen questionnaires after sessions that he transferred all
important information to his co-developer. This was either in sessions where he was pair-developing
or in walkthroughs of code previously created by one of the newbies outside the session giving
feedback on requirements of the provisional specification. In most sessions the expert continued to
write code simultaneously to explaining and teaching his partners, thereby showing a second benefit
of DPP as combining teaching with productive work.

– Third, one of the newbies who presented his code in one of the walkthrough sessions stated in the
questionnaire after the session that the task was accomplished faster than expected because there
was no delay in the feedback. In the reflection meeting that followed he stated that feedback without
DPP (through e-mail and chat) would have been much more complicated in comparison. Another
benefit of DPP was observed in the sessions when errors of the driver could be avoided. In at least
five of the pair-developing sessions the observer made the driver aware of errors and thereby avoid
them, e.g. when the driver was about to write code in the wrong artifact or when the declaration of a
variable he was about to add already existed.

4.3 Problems with Establishing DPP

Three of the problems that occurred in the establishment process could not be resolved even after in-
terventions. These were (1) conflicts with role fulfillment, (2) ambiguity about session goals, and (3)
missing awareness, which will be discussed in turn. The fact that development happened distributedly
possibly influenced all of these problems. Since the developers did not have common office hours or
did not have the possiblity to work co-locatedly might have had intensified these problems. Especially
since the expert stated that he usually waits until common lunch breaks to discuss issues with colleagues,
which did not happen in this project due to the distance.

Rosen, et al. 127

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Conflicts with Role Fulfillment A first problem arose in the context of assuming the roles of driver and
observer, which in DPP—as in PP—stipulate the responsibilities of each developer during a joint session.
For instance, XP recommends the driver to attend to details during programming and the observer to keep
the top-level concerns in mind (Beck, 1999). Nevertheless role assignment in DPP as well as PP is not
self-explanatory and hence can be challenging (Bryant et al., 2008).

The first indication of a problem with role assignment and fulfillment appeared in one of the first
pair-developing sessions when the expert stated in the questionnaire after the session that he had the
driver role for too long. As it is not unusual for an expert to assume the driver role and keep it over
longer times than usually recommended by XP (Schümmer & Lukosch, 2008), this point was brought
up in an interview with the expert to explore the reasons for his statement. The expert explained that he
considered more regular role switching important to achieve the benefits of DPP. In particular he noted
that he felt very exhausted from being driver most of the time and had had little opportunity to assess
the knowledge gains of the new developers.

In the next pair-developing session the expert tried to hand over the driver role to one of the newbies.
Yet, the newbies did not react to his request to assume the driver role and the expert continued being
driver. The developers made no attempt to talk about this in the next reflection meeting. Hence the coach
confronted the new developers with the issue. The newbies stated that from their point of view they
did not have enough knowledge about the artifacts and did not feel comfortable being observed when
taking over the driver role. Although the expert had expressed his wish for more role changes during
sessions, the developers did not want to set up more formal rules for role fulfillment. Instead they agreed
on finding spontaneous solutions on occasions in the session when necessary. In later pair-developing
sessions it was observable that the newbies could integrate themselves more actively in the sessions by
asking questions or making suggestions for code changes, although most of the times they still refused
to take the driver role. Additionally, the final interview with one of the newbies revealed that he still had
not understood how a second developer could integrate himself actively in a DPP session and that for
him the observer role was mainly boring.

In a qualitative analysis based on the data collected through observations in the sessions, question-
naires, personal interviews, reflection meetings, and a discussion with the developers in the final inter-
view it was attempted to build a conceptual model around the role behaviors following the paradigm
model of Strauss & Corbin (1990) to distinguish causal conditions, intervening conditions and conse-
quences.

Three primary causal conditions for the problems with role fulfillment could be identified from the
data (see Figure 4): (1) The developers had little experience with DPP and PP and thus did not know
what the distinct responsibilities of the roles were, when role changes would be best suitable and what
benefits would arise from following the prescriptions of a process model such as XP on role segmentation
or responsibilities. (2) The developers showed little role consciousness during the sessions, but often only
mentioned problems when explicitly queried after the session. Thus instead of resolving conflicts during
the sessions, the reflection meetings were necessary to raise the awareness of the developers on these
issues. (3) Diverging expectations between the expert and the new developers caused them to require
or reject different aspects of the roles. While the expert wanted to transfer the driver role to the new
developers so they would practice writing code under his support, the new developers rather felt under
observation and thus feared being caught making a mistake.

These causes are certainly dependent on each other—increased DPP experience in particular should
both align expectations and raise consciousness about role mismatches—but sufficiently different in the
way they could be addressed to be given separately here. Several other minor causes could be identified,
but none of them had sufficient explanatory value.

As an intervening condition, pair-pressure (Williams, 2000) was identified. Usually such pressure is
welcomed by the developers in a PP session because it increases concentration and helps developers push
each other to complete their task (Williams, 2000). Unfortunately the developers from Bangalore could
not benefit from this pressure, but rather their expectations diverged further and their consciousness

Rosen, et al. 128

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

about the development process gave way to feeling uncomfortable to be observed while coding in a
domain in which they were not experienced.

The consequence of suboptimal role usage is primarily to be seen (1) in less productive sessions, in
which less code was produced and less knowledge transferred, (2) boredom and (3) exhaustion on the
side of the new developers and the expert respectively.

C
au

se
s Little

Experience

with PP/DPP

Little Role

Consciousness

Diverging

Expectations

Intervening

Condition

Pair-

pressure

Conflicts with Role

Fulfillment

C
o
n
se

-

q
u
en

ce
s Less

Productive

Sessions

Boredom Exhaustion

Figure 4. Possible causes, consequences and intervening conditions of conflicts in role fulfillment.

Lesson learned: Although problems in role fulfillment were identified in an early stage of the es-
tablishment of DPP and discussed in several reflection meetings, they could not be resolved. It seems
as if it was not enough to know and talk about problems with role conflicts in reflection meetings, if
the developers involved are not conscious enough about their conduct during the sessions. Evidently it
happens that participants do not discover or experience the benefits of a new practice. Therefore it is
suggested to try to improve knowledge about PP and DPP topics in particular before and during the
process of establishing DPP. Moreover, it should not be ignored that the success of role fulfillment in
DPP also depends on the fears and attitudes of the participating developers.

Ambiguity about Session Goals A second problematic phenomenon associated with DPP could be
traced to the goals associated with individual sessions and is best explained with one particular session
early on in the project: For this session the expert had scheduled a “code review” with one developer
and his newly written code. In the questionnaire before the session the expert clarified his goal for
the session as “code review presented by [name of newbie] followed by a discussion”, while the new
developer stated as the goal “get the code reviewed by [name of expert] and discuss the open issues if
any”. Thus by using the unqualified term “code review” when scheduling the meeting, the expert had
inadvertently introduced ambiguity into the session goals, which led the new developer to believe that
the expert would be primarily responsible for conducting the review. When the expert at the beginning
of the session then asked the new developer to start presenting his code, the new developer silently
concurred with the request, but obviously was not prepared for this task: First, he stated that he found it
hard to find a good position in the code to start with. Then, a lot of times during the presentation he had
to jump back and forth between different artifacts, his explanations were sometimes halting and several
times he stated in the middle of an explanation that he forgot to mention some precondition.

Rosen, et al. 129

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

After the session the expert stated in his questionnaire that the task was completed slower than
expected. He attributed this to the large amount of code to be reviewed, ignoring the halting pace of the
presentation, maybe not even aware that the newbie had been surprised by the expert’s interpretation of
the session goal and unprepared for a code presentation.

The next session designated as a code review then revealed how much time had been wasted by
the ambiguous statement of performing a code review in the first session. Here the new developer had
adjusted to the expert’s interpretation of the goal and was excellently prepared to present the code.

Analyzing all DPP sessions which occurred during the project revealed that problems associated
with ambiguous goals were more prevalent than this single example. Conceptualizing these incidents
resulted in the following three causes to be identified for ambiguous session goals (see Figure 5):

The first cause of ambiguity in session goals, exemplified by the above example, was the lack of
precise communication. In the above case it would have been sufficient to either describe in a single
short sentence what a code review would entail or use the term walkthrough, which usually connotates
the author to present the code (Freedman & Weinberg, 2000).

The second cause identified was the existence of diverging project goals. While the expert wanted to
transfer much of his applicable domain expertise over the duration of the project, a goal to receive such
domain knowledge was never mentioned by the newbies. The newbies’ primary goal as stated both in the
initial questionnaire and the final interview was rather to create code that was executable. This caused
for instance a newbie to state after session 14, in which technical problems kept the developers from
coding, that the session was not successful, although the expert stated it was a partial success because
important questions were discussed and knowledge transfer had taken place.

The third reason why session goals often were ambiguous was session planning was conducted on
short notice. In most cases the expert contacted the newbies only about one hour before the session to
announce what the planned task would be. Since these announcements came in just before the newbies’
lunch break (due to different time zones), this shortened their possible preparation time to zero. In an
individual interview the expert stated that announcements were made on short notice after considering
the latest status of the development process. He stated that he would not change this, ignoring the hint
that this might allow the newbies more time for preparation. The newbies thus remained in a position in
which the session goals were unknown to them until the very last moment.

Two intervening conditions could be identified to affect ambiguity in session goals: (1) The use of
instant messaging chat aggravated the misunderstandings arising from the lack of precise communica-
tion, in particular because chat messages are more terse than voice or e-mail communication, are not
persistently stored, and lack sufficient detail. (2) The emphasize of flexibility over structure within a
session further amplified the ambiguity of session goals. For instance, the developers once performed
lengthy ad-hoc testing of newly written code in a pair-coding session and thereby introducing a newly
emergent goal of increasing quality to the existing goal of producing code for a certain feature.

The consequences of ambiguous goals ultimately were wasted time and resources—as the difference
between the unprepared and slow walkthrough and the improved second session shows— and inade-
quate session results. Yet, more practically the lack of clarity about session goals ahead of time caused
(1) incorrect and insufficient preparation for sessions by developers, and (2) led to an invalidation of
contributions (the expert’s lengthy explanations for instance seem a waste of time under the developers’
assumption that the goal is primarily to produce code as fast as possible).

Lessons learned: Misunderstandings leading to ambiguity in session goals cannot be completely
avoided. Nevertheless a short preparation sufficiently ahead of time to align the understanding of session
goals, in particular who is in charge of what, can economize session time. Better aligned session goals
are also more likely to increase satisfaction with a session as the contributions of all participants will
integrate better and can be more easily valued by all parties.

Missing Awareness It is well known that shared awareness is a crucial element of distributed collab-
oration (Gutwin & Greenberg, 1999; Olson & Olson, 2000), where awareness describes the conscious-
ness about one’s own and the other participants’ actions in the context of the collaborative environment

Rosen, et al. 130

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

C
au

se
s Lack of Precise

Communica-

tion

Diverging

Project Goals
Short Notice

Intervening

Conditions

Instant

Messaging

Chat
Ambiguity about Session

Goals

C
o
n
se

-

q
u
en

ce
s Incorrect and

Insufficient

Preparation

Invalidation of

Contributions

Flexibility

over

Structure

Figure 5. Possible causes, consequences and intervening conditions of ambiguity in session goals

(Dourish & Bellotti, 1992). Awareness can be challenging to attain at the beginning of a project when co-
developers have never worked together and there is no common understanding of development strategies
yet. Enhancing awareness may have a positive effect on distributed collaboration (Gutwin et al., 1996).

In DPP sessions awareness can be provided by the technical infrastructure as well as by the co-
developers. Gutwin et al. (1996) have made an attempt to divide awareness into different categories such
as technical awareness, workspace awareness, or social awareness (Gutwin et al., 1996). Workspace
awareness covers all types of awareness which help the developers to find the location and actions
of other co-developers in the developing environment. Awareness of the categories social or group-
structural awareness cover social interactions such as expectations and abilities, e.g. if developers are
aware of what other developers expect them to do next. Identifying the latter can be difficult, because
it depends on the motives of the developers involved which are not always known. In the analysis of
problems with role fulfillment mentioned above the motives of the newbies to not take over the driver
role were questionable in that matter. It was not verifiable whether the newbies did not know what
was expected of them or if they just pretended not to know. In the first case it would be a matter of
awareness, in the latter merely ignorance. Although other forms of awareness were an issue in the field
study conducted, this subsection will focus on missing awareness in terms of workspace awareness.

Three causes for missing workspace awareness could be identified by analyzing the collected data
(see Figure 6):

(1) Weaknesses in the technical infrastructure: The technical infrastructure deployed in the field
study and in particular Saros had never been analyzed in commercial software development before and
did not include a video connection showing the remote partner’s face, following advice from other
studies (e.g. Baheti et al., 2002) in which developers had stated that the video connection had not resulted
in additional benefit.

Analyzing the events of the DPP sessions showed that a video connection would have been favorable.
Missing non-verbal communication (in distributed collaboration made visible through a video connec-
tion) was one of the reasons why actions of the observer were not always detectable in sessions. In earlier
pair-developing sessions during the establishment of DPP in which the expert was the driver through-
out the whole session, long phases were observed in which the observer’s actions were not detectable.
Sometimes background noises in sessions suggested that the newbie was distracted, e.g. a mobile phone
rang or laughter could be heard over his microphone. On rare occasions one of the newbies noticeably
started talking to one of his co-located colleagues, even provoking the expert to comment on it.

Rosen, et al. 131

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

The problem of possible distraction of the observer was discussed in the following reflection meet-
ing. The newbie stated that he could not remember these episodes of the session. To get more information
about the newbie’s behavior during pair-developing sessions, without breaking the limits of bandwidth,
it was planned to install an additional desktop sharing application between him and the coach. For dif-
ferent reasons the desktop sharing application was never installed. Motivated by the problem, the Saros
developers then improved the collaboration tool to show whether the development environment was the
foreground window (in contrast to a browser for instance). The expert did not comment on any behavior
of the newbies concerning their distractions during sessions. However in later sessions he demanded
more frequently the observer’s attention. This was noticeable through the amount of questions he asked
the observer, e.g. about the location of the observer in the workspace or "what would you do in this
case?".

(2) The second cause identified for missing awareness was the plain non-use of awareness func-
tionalities provided by the collaboration tool. This was noticeable in sessions when the observer asked
the driver at what location the former was, instead of using one of the Saros options, e.g. activating
the “automatic follow mode” or double-clicking on the remote partner’s name in Saros. Even when the
developers used the follow mode, they used line numbers for orientation in the code, e.g. when asking
questions about the code: “here in line number 500 we have an event”, instead of marking the code with
their cursor and thus highlighting it for the co-developer. Neither regular updates about existing and new
Saros functionalities nor pointing out their advantages, e.g. preventing delays in the session by using the
automatic follow mode and hence not having to ask for positions of the co-developers, could convince
the developers of using the awareness functionalities provided by Saros.

(3) A third reason for missing awareness was identified as lack of talk-aloud, which was identified
in one of the rare occasion when one of the newbies became driver in a session: The code he was
typing in this situation was not being displayed in the observer’s view because of a technical problem.
Additionally the driver had not verbalized his actions and hence made it impossible for the observer
to be aware that the driver was about to start writing code at a particular position. Taken together, the
technical problem and the lack of talk-aloud led to the consequence that it took five minutes until the
technical problem was noticed. When the expert as the host of the session tried to remedy the technical
problem, he inadvertently overwrote the text written by the new developer, unaware of the work the new
developer had already invested.

One important intervening condition which increased the problem of missing awareness was the lack
of role changes during the sessions. Since the new developers rarely received the driver role (only in half
of the pair-developing sessions, but never for more than five minutes), they also had little experience
with managing awareness from both perspectives. More troubling, they in general did not expect role
changes, as one of them stated in the final interview, and therefore did pay less attention to the action of
the driver in the workspace, since they felt sure that only a passive role would be required from them. The
fact that there was some evidence of the observer being distracted from sessions and that the observer
had to ask for the position of the driver several times during sessions also led to this conclusion.

Figure 6 shows the discovered conceptual relationships and several consequences of missing aware-
ness in the DPP sessions.

Lessons learned: Any comment from driver as well as observer can enhance awareness in DPP
sessions. As stated by Stotts et al. (2003), constant exchange of information about what developers
can see and commenting on actions keeps attention higher and avoids missing awareness. As later ses-
sions showed, this can be achieved by the driver demanding frequent feedback through questions from
the observer and should be enhanced by frequent role changes. Additionally, desktop sharing and/or a
video connection should be integrated in the technical infrastructure to counteract missing awareness
and to achieve more detailed and faster feedback between co-developers (Schümmer & Lukosch, 2008).
Motivated by the requirements of additional awareness functionalities in the collaboration tool, the im-
plementation of a desktop sharing functionality for Saros was started shortly after the project kick-off
(Salinger et al., 2010).

Rosen, et al. 132

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

C
au

se
s Weaknesses in

the Technical

Infrastructure

Non-use of

Awareness

Functionalities

Lack of

Talk-aloud

Intervening

Condition

Few Role

Changes

Missing Workspace

Awareness

C
o
n
se

-

q
u
en

ce
s

Not Detectable

Actions

Delays in the

Session
Loss of Code

Figure 6. Possible causes, consequences and intervening conditions of missing workspace awareness

5 Conclusion

After sixteen DPP sessions the goal of the kick-off to develop a prototype was successfully accomplished
within the given deadline and the development responsibilities were given exclusively to the Indian
development team.

The field study conducted showed that DPP can be established and integrated into an existing devel-
opment processes to support distributed collaboration in a project kick-off. The research method made it
possible to constantly improve distributed collaboration and at the same time incorporate the developers’
requirements. Frequent questionnaires and reflection meetings in combination with observations were
essential sources of data collection and analysis. Constant improvement of the technical infrastructure
according to the requirements of the development process, e.g. adjusting audio quality or introducing
new awareness features of the collaboration tool, had a positive effect on the collaboration.

The analysis of the data collected confirmed already known insights, but also uncovered new prob-
lems about the establishment of DPP. Benefits such as a high level of communication, combining knowl-
edge transfer and productive work as well as reduced delay in feedback supported the distributed col-
laboration and hence the project kick-off. Some of the lessons learned were that solving problems such
as conflicts in role fulfillment, ambiguity in session goals and missing awareness can be challenging, if
solving them is against the developers priorities.

For future work we are looking to replicate the study in other companies and distributed development
settings to follow up first indications and other aspects such as inter-cultural influences about distributed
collaborations.

Rosen, et al. 133

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Bibliography

Aveling, B. (2004). XP Lite considered harmful? In Proceedings of the International Confer-
ence on Extreme programming and Agile Processes in Software Engineering (XP 2004), Garmisch-
Partenkirchen, volume 3092/2004 of Lecture Notes in Computer Science, (pp. 94–103)., Berlin / Hei-
delberg. Springer.

Baheti, P., Gehringer, E., & Stotts, D. (2002). Exploring the efficacy of Distributed Pair Programming. In
Extreme Programming and Agile Methods — XP/Agile Universe 2002, volume 2418/2002 of Lecture
Notes in Computer Science (pp. 387–410). Berlin / Heidelberg: Springer.

Baheti, P., Williams, D. L., Gehringer, E., & Stotts, D. (2002). Exploring pair programming in distributed
object-oriented team projects. In OOPSLA Educator’s Symposium, Seattle, WA.

Bass, M., Herbsleb, J. D., & Lescher, C. (2007). Collaboration in global software projects at siemens: An
experience report. In Proceedings of the International Conference on Global Software Engineering
(ICGSE 2007), (pp. 33–39)., Washington, DC, USA. IEEE Computer Society.

Beck, K. (1999). Extreme Programming Explained: Embrace Change. Addison-Wesley Professional.
Bipp, T., Lepper, A., & Schmedding, D. (2008). Pair programming in software development teams - an

empirical study of its benefits. Information and Software Technology, 50(3), 231–240.
Braithwaite, K. & Joyce, T. (2005). Xp expanded: Distributed extreme programming. In Proceedings

of the 6th International Conference on Extreme Programming and Agile Processes in Software Engi-
neering (XP 2005), (pp. 180–188)., Berlin / Heidelberg. Springer.

Bryant, S., Romero, P., & du Boulay, B. (2008). Pair programming and the mysterious role of the
navigator. International Journal of Human-Computer Studies, 66(7), 519–529.

Canfora, G., Cimitile, A., & Visaggio, C. A. (2003). Lessons learned about distributed pair program-
ming: what are the knowledge needs to address? In Twelfth International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, (pp. 314–319)., Los Alamitos, CA, USA.
IEEE Computer Society.

Cohn, M. & Ford, D. (2003). Introducing an agile process to an organization. Computer, 36(6), 74–78.
Damian, D. & Lanubile, F. (2004). The 3rd international workshop on global software development. In

Proceedings of the 26th International Conference on Software Engineering (ICSE 2004), (pp. 756–
757)., Washington, DC, USA. IEEE Computer Society.

Davison, R., Martinsons, M. G., & Kock, N. (2004). Principles of canonical action research. Information
Systems Journal, 14(1), 65–86.

Dourish, P. & Bellotti, V. (1992). Awareness and coordination in shared workspaces. In CSCW ’92:
Proceedings of the 1992 ACM conference on Computer-supported cooperative work, (pp. 107–114).,
New York, NY, USA. ACM.

Freedman, D. P. & Weinberg, G. M. (2000). Handbook of Walkthroughs, Inspections, and Technical Re-
views: Evaluating Programs, Projects, and Products. New York, NY, USA: Dorset House Publishing
Co., Inc.

Gutwin, C. & Greenberg, S. (1999). The effects of workspace awareness support on the usability of
real-time distributed groupware. ACM Trans. Comput.-Hum. Interact., 6(3), 243–281.

Gutwin, C., Greenberg, S., & Roseman, M. (1996). Workspace awareness in real-time distributed group-
ware: Framework, widgets, and evaluation. In People and Computers XI, (pp. 281–298)., Berlin /
Heidelberg. Springer-Verlag.

Hanks, B. (2008). Empirical evaluation of distributed pair programming. International Journal of
Human-Computer Studies, 66(7), 530–544.

Hannay, J., Dybå, T., Arisholm, E., & Sjøberg, D. (2009). The effectiveness of pair programming: A
meta-analysis. Information and Software Technology, 51(7), 1110–1122.

Herbsleb, J. D. & Mockus, A. (2003). An empirical study of speed and communication in globally
distributed software development. IEEE Transactions on Software Engineering, 29(6), 481–494.

Rosen, et al. 134

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Nosek, J. T. (1998). The case for collaborative programming. Communications of the ACM, 41(3),
105–108.

Olson, G. M. & Olson, J. S. (2000). Distance matters. Human-Computer Interaction, 15(2), 139–178.
Poole, C. (2004). Distributed product development using extreme programming. In Extreme Program-

ming and Agile Processes in Software Engineering, (pp. 60–67).
Salinger, S., Oezbek, C., Beecher, K., & Schenk, J. (2010). Saros: An Eclipse plug-in for distributed

party programming. In Proceedings of the 2010 ICSE Workshop on Cooperative and Human Aspects
on Software Engineering. ACM. To appear.

Schümmer, T. & Lukosch, S. (2008). Supporting the social practices of Distributed Pair Programming.
In Groupware: Design, Implementation, and Use, volume 5411/2008 of Lecture Notes in Computer
Science (pp. 83–98). Berlin / Heidelberg: Springer.

Stotts, D., Williams, L., Nagappan, N., Baheti, P., Jen, D., & Jackson, A. (2003). Virtual teaming:
Experiments and experiences with Distributed Pair Programming. In Extreme Programming and
Agile Methods — XP/Agile Universe 2003, volume 2753/2003 of Lecture Notes in Computer Science
(pp. 129–141). Berlin / Heidelberg: Springer.

Strauss, A. L. & Corbin, J. M. (1990). Basics of Qualitative Research: Grounded Theory Procedures
and Techniques. SAGE.

Williams, L., Kessler, R. R., Cunningham, W., & Jeffries, R. (2000). Strengthening the case for pair
programming. IEEE Software, 17(4), 19–25.

Williams, L. A. (2000). The collaborative software processSM. PhD thesis, The University of Utah.
Adviser-Kessler, Robert R.

Williams, L. A. & Kessler, R. R. (2000). All I really need to know about pair programming I learned in
kindergarten. Communications of the ACM, 43(5), 108–114.

Yap, M. (2005). Follow the sun: Distributed extreme programming development. Agile Development
Conference/Australasian Database Conference, 0, 218–224.

Rosen, et al. 135

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

The use of MBTI in Software Engineering

Rien Sach
Maths and Computing

Faculty
Open University

Milton Keynes, MK7 6AA
United Kingdom

r.j.sach@open.ac.uk

Marian Petre
Maths and Computing

Faculty
Open University

Milton Keynes, MK7 6AA
United Kingdom

m.petre@open.ac.uk

Helen Sharp
Maths and Computing

Faculty
Open University

Milton Keynes, MK7 6AA
United Kingdom

h.c.sharp@open.ac.uk

Keywords: POP-I.A. Group Dynamics, POP-II.A. Personality, POP-VI.F. Exploratory

Abstract
In this paper we evaluate the use of Carl Jung’s theories of Psychological Type assessed using the
Myer-Briggs Type Indicator in the Software Engineering field. The current level of implementation
and its quality is established and the results discussed to provide insight into what we currently know,
and suggestions on what could be important to investigate for the future.

Upon gathering MBTI data from a range of sources it is apparent that there is agreement on the types
of personalities often discovered inside software engineering. Thinking and judging personality
preferences are commonly found, while feeling and perceiving is far less common. This differs
substantially from results representative of the American population, and supports the belief that
software engineers are more commonly represented by specific types of people.

However, there is discrepancy between four of the 16 types identified in the MBTI, suggesting that
there is still some understanding to be gained about personality in software engineering, and we do
not by any means know the exact breakdown of types present within the industry.

1. INTRODUCTION
Software Development has been an expanding market for over 40 years, and it is estimated that the
global software market grew by 6.5% in 2008 and is now valued at $303.8 billion [1]. It is also
predicted that by 2013 the global software market will be valued at $457 billion [1].

Personality is a term used to describe the behaviour, traits and character of an individual, and can be
used to suggest how different individuals process situations and events [5]. Each individual’s different
personality relates to how they prefer to use their mind, and this can explain apparently random
behaviour and differences [3].

The Myers-Briggs Type Indicator has been used for over 50 years to identify the personality type of
an individual and their personality preference, making the theories of Jung useful and applicable to
everyday life.

In this paper we present the compiled results of 5 MBTI assessments on software engineering
practitioners, and what this tells us about the personality of a software engineer. We then proceed to
compare the compiled results with previously published results to draw conclusions and comparisons.

The purpose of this paper is to identify the current level of published data on MBTI assessments
administered specifically to software engineers, their quality, validity, and what they tell us and
suggest about the personalities of software engineering practitioners.

1.1 Background

The Myers-Briggs type indicator was developed by Katherine Briggs and her daughter Isabel Myers
from the theories first published in 1921 by Carl Jung [6]. The MBTI (Myers-Briggs Type Indicator)
was first published in 1962 [7], and has become a widely accessible and used tool in assessing a
person’s personality type.

Sach, et al. 136

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

The Myers-Briggs type indicator has become the most widely used personality inventory, with over
3.5 million assessments administered worldwide each year [7, 8].

Table 1. Possible MBTI Types

Carl Jung’s theory on psychological type states that there are two worlds in which we can focus our
minds (Extraversion, Introversion), when we are using our mind we are either taking in information
(Perceiving) or processing this information and drawing conclusions from it (Judging).

Additionally we can perceive in two ways, by living in the present and focusing on what is real and
actual (Sensing), or looking towards the future and the possibilities (iNtuition). And when we are
judging this can also be done in two ways, by looking at the logical consequences and being analytical
(Thinking), or by looking at what is important to ourselves and others and assessing the impact on
people (Feeling).

These four pairs of scales produce the 16 possible Myers-Briggs types indicated in Table 1, and
Figure 1 represents the four dichotomies and the two different preferences for each one.

According to the theory everyone has a preference to one of each of the paired scales [7], and this leads
to your type category. For example a personality of INFP is someone with preferences to Introversion,
Intuition, Feeling and Perceiving. Additionally, everybody has a favourite process which is used
primarily in their favourite world.

Figure 1. MBTI Dichotomies

Your favourite process is one of the two middle letters, and is most often used in your favourite
world. To balance this, your second favourite process is used most often in the other world. For
example, an INTJ would be described as favouring introverted intuition and extroverted thinking.

A lot of significance is put into your personality type as it suggests how you process and gather
information, how you may act in situations, and your preferences in career choice [3]. It has been

ISTJ ISFJ INFJ INTJ

ISTP ISFP INFP INTP

ESTP ESFP ENFP ENTP

ESTJ ESFJ ENFJ ENTJ

Sach, et al. 137

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

reported that the personality of a software engineer and the entire team is an important factor relating
to project success and team cohesion [4].

There has been some widely publicised criticism of the MBTI assessment, stating that:

There was no support for the view that the MBTI measures truly dichotomous preferences or
qualitatively distinct types, instead, the instrument measures four relatively independent
dimensions.
 (R. McCrae and P. Costa, 1989)

This claim and other claims regarding the MBTI assessment, such as a lack of independent evidence,
and no evidence that MBTI measures truly dichotomous preferences or qualitatively distinct types,
among other criticisms, were published in 1989 [22].

Additionally, reported MBTI results in software engineering have not been without their problems. S.
McDonald and H. M Edwards (2007) reported identifying an article which had claimed to be
reporting MBTI assessment results was not actually using a MBTI assessment [10], as later admitted by
the initial authors in the technical report [21].

1.2 Literature Review

The literature review consisted of searching through the major online databases of journals and papers
(including IEEE, ACM, PsycINFO) specifically searching for MBTI, Myers-Briggs personality, and
software engineering.

The results displayed a vast amount of papers discussing personality and its usage [10] and potential
effect [9, 11, 12] on a range of aspects of software engineering, such as educating engineers [13], and
practitioner preferences [14]. However there is a significant lack of published complete MBTI data
specific to software engineers, as many of the published works only print their conclusions and what
the data informs them of, and not the actual MBTI preference breakdowns.

Some of the papers focused on alternative approaches to identifying and describing personality, such
as the Five Factor Model [19, 15], as well as some other papers focusing on specific practices or roles in
software engineering such as pair programming [15, 16, 18], software testing [17], and software team
cohesion [19].

The literature review identified 12 papers reporting tables of Myers-Briggs Type Indicator data. The
following section discusses these papers.

1.3 Collected MBTI Data

Of the 12 identified published data collections, there were 10 useable collections. One collection of
data was removed as it was not possible to access enough details about how the data was collected
and when it was collected. Of the remaining 10 collections of data there is 5 that collect their data
primarily from practitioners, and 5 that collect their data primarily from students.

It was decided to focus on the papers that specifically collected their data from active working
practitioners and to exclude data collected from predominantly student samples. This was to ensure
that the data was representative of working software practitioners, and not people who were only
potential software engineers. The paper will now continue to discuss these 5 data samples.

The 5 pieces of data are predominantly published in a span of 5 years, with the first 4 all ranging from
1985 to 1990 and the 6th data being published in 2003. All of them were collected from western
companies, primarily from America. We’ll now look at the information provided by each source
separately in chronological order.

The first source is an article published in a computing magazine (Datamation) in 1985 by M.L. Lyons.
The data consisted of 1,229 computer professionals, of whom 213 of them were based in the UK and
Australia; the other 1,016 were based in America. The data consisted of 73% males and 27% females,
and the median age for males was 34 and for females it was 31.

Sach, et al. 138

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

The surveyed members had a median of seven years experience in computing, with 30% having
worked in computing for 5 years or less. Twenty percent of the surveyed members were in
management positions, with an additional 20% working as project managers and team leaders. No
clear information is given about the gathering of the data.

The second source was an article published in the Journal of Psychological Type in 1988 by E. A.
Buie. In this study the MBTI results of 47 scientific computer professionals were presented, with
57.6% of them being male. The MBTI method used to gather the data from this source is described as
being from a questionnaire “developed specifically for this study”.

The third source was published in the Journal of Psychological Type in 1988 by P. Westbrook. The
results presented were from a group of 153 professionals described as “Field Engineers”. The results
were said to be gathered from a “Fortune 400 computer company”, and describes the method of
gathering the information as a “self-scoring short form”.

The fourth source is an article published in the ACM SIGCPR journal in 1989 by D. C. Smith. The
data presented was gathered from 37 systems analysts working at a large insurance company. The
method described for gathering the results is the “shorter version of the MBTI” and also states the
questionnaire was administered by a psychologist.

The fifth source is an article published in the International Journal of Human-Computer Studies in
2003 by L. F. Capretz. This data collection contained 100 software engineers of which 80% were
male and 20% female, and states that they were either working for the government, working for
software companies, or were studying in public or private universities. The published paper also states
that MBTI assessment was administered using Form G, which is an older and less reliable form of
administering the MBTI assessment.

2. FINDINGS
This section discusses the 5 papers implementing a MBTI assessment on a group of software
engineering practitioners. The data will be presented in this section, and discussed in subsequent
sections.

Figure 2. Total MBTI Results

Sach, et al. 139

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

2.1 Compiled Results

The purpose of these studies was to identify the MBTI preferences of the participants, and these
combined results from the 5 collections of data are expressed as percentages of the 16 different types.

The results gathered from the 5 sources of MBTI data are displayed in figure 2. It is apparent that
widespread conformity can be noted on the majority of types, with the most variation in reported
levels being represented by ISTJ, INTJ, INTP, and ESTJ.

Table 2. MBTI Standard Deviation

Table 2 further supports the level of agreement in commonly reported results by presenting the
standard deviation value for each of the 16 MBTI types when all of the different data collection
results are combined.

Figure 3 compared the averages of all of the MBTI types based on the results gathered from the 5
sources to the average preferences of the US population as reported by CAPT (Centre for
Applications of Psychological Type) [2].

The comparison makes it clear that the common preferences of the US population are not reflected
inside software engineering. In different categories the preferences are over or under represented, but
there is an emerging pattern that the thinking preference is consistently over-represented in the
reported MBTI results.

ISTJ, INTJ, ISTP, INTP, ENTP, ESTJ, and ENTJ all display an average higher than the general US
population, with the only exception being the marginal difference on ESTP from 4.30 to 3.76.

Table 3 shows the representation of each pair in the results, as well as the level of standard deviation
and the mean. These figures were generated from the data represented in Figure 2. There is a higher
level of variation when the data is constructed like this and thus the means are less reliable.

ISTJ ISFJ INFJ INTJ

6.47 2.29 3.56 3.97

ISTP ISFP INFP INTP

2.33 2.28 2.56 4.41

ESTP ESFP ENFP ENTP

2.48 2.62 1.97 2.85

ESTJ ESFJ ENFJ ENTJ

10.55 1.57 0.95 2.69

Figure 3. MBTI Results and US Population Averages Comparison

Sach, et al. 140

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

As you can see from Table 3, five of the highlighted pairings are pairings including thinking, and four
of the pairings including judging. Sensing is also present four times, and extroversion and introversion
appear three times each. However, feeling does not appear once, neither does perceiving, showing a
clear lack of a common representation to either of these preferences.

Table 3. MBTI Paired Preferences

The level of representation of thinkers is very apparent here with multiple pairings including thinking
surpassing an average representation of 50%.

3. RESULTS SUMMARY
For the most part the MBTI results show agreement with each other. There are only two different
types with a standard deviation above 5.00 (ESTJ with 6.47 and ISTJ with 10.55).

Thinkers are present significantly more within the results than feelers. This can be seen within the
results where the types of feelers are commonly scoring lower than the types of thinkers.

4. DISCUSSION

4.1 Results Discussion

The results presented here, although from a range of sources and publications, present a common view
on the MBTI personalities present inside software engineering. Although four of the five collections

 Data 1 Data 2 Data 3 Data 4 Data 5 Standard Deviation Mean

TJ 55.8 42.7 62.1 75.6 50 12.52 57.24

ST 39.2 36.2 56.9 70.2 55 13.93 51.5

IT 55.4 55.4 36.6 51.3 47 7.82 49.14

SJ 36.8 29.9 53 75.6 45 17.67 48.06

IJ 44.7 44.8 29.4 51.3 34 8.91 40.84

IS 33.2 32 32.7 45.9 39 5.92 36.56

ET 25.4 12.8 45.8 37.8 34 12.62 31.16

NT 41.6 32 25.5 18.9 26 8.53 28.8

EJ 21.1 12.8 39.9 35.1 24 10.92 26.58

ES 13.1 14.9 34.7 35.1 28 10.59 25.16

IN 33.9 42.6 11.8 13.5 18 13.59 23.96

TP 25 25.5 20.3 13.5 31 6.55 23.06

IP 22.4 29.8 15.1 8.1 23 8.31 19.68

NJ 29 27.7 16.3 10.8 13 8.45 19.36

NP 24.7 25.6 16.4 8.1 20 7.12 18.96

EN 19.8 10.7 20.9 5.4 15 6.45 14.36

SP 9.5 17 14.4 5.4 22 6.46 13.66

EP 11.8 12.8 15.7 5.4 19 5.06 12.94

IF 11.7 19.2 7.9 8.1 10 4.64 11.38

SF 7.1 10.7 10.5 10.8 12 1.84 10.22

FJ 10 14.9 7.2 10.8 8 3.01 10.18

FP 9.2 17.1 10.5 0 11 6.15 9.56

NF 12.1 21.3 7.2 0 7 7.87 9.52

EF 7.5 12.8 9.8 2.7 9 3.71 8.36

Sach, et al. 141

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

of data were during 1985-1990, it is interesting that the one collection of data from 2003 does not
show much if any of a change in the reported types.

The data suggests a relationship between psychological type and software engineers, but this does not
imply that there is a singular fix for a software engineer nor that one type is more useful than any
other, it simply suggests that there are some types more prominently found inside software
engineering.

Specifically thinkers have been established by the data as being commonly represented as a
preference by the majority of the reported results, with preferential thinkers representing an average
(mean) of 80.3% of the reported results, compared to 19.7% being feelers.

There is also a 60/40 split in favour of introverted preference than the extroverted preference, which is
different to the near 50/50 split suggested to be present among the US population. There is also a 67%
representation of the judgement preference being present over the perceiving preference.

It is also worth noting that the pairing of thinking and judging is substantially higher than the US
population (24.20%) with an average of 57.24%, while the pairing of feeling and perceiving is much
lower than the US population (29.80%) with an average reported result of 9.56%.

All of this information leads to suggesting that thinkers and judgers are more attracted to software
engineering and feelers and perceivers are less attracted to software engineering jobs, based on the
data combined from 5 sources of MBTI assessment.

4.1 Limitations

The information presented here has inherent limitations on how the original collections of data have
been published. There is not enough information published in most of the papers detailing how the
assessments were administered, if a psychologist was present to administer the MBTI assessments, or
what form was used. This makes it impossible to ensure the data is comparable across studies.

The details of the respondents also vary, with some of the papers stating the exact breakdown of age,
gender and experience, with others offering either incomplete breakdowns or no information at all.
The physical number of respondents also ranges from over a thousand to under fifty, as well as the
type of people the results report about.

It would be acceptable to classify the 2nd through to the 5th source as valid as software engineering
personnel, but the first source is simply too generic to be classified as specifically about software
engineers. This means the type of data being compared cannot be described as being exclusively
focused on identical groups of software engineers in a range of studies.

5. CONCLUSIONS
The results gathered here represent a common picture on the majority of the MBTI preferences
present inside software engineering, and show a large preference towards thinkers and judgers.

On average there are 57.24% of the respondents with a thinking judging preference, 51.50% with a
sensing thinking preference, and 49.14% showing an introverted thinking preference, further
establishing the strong preference towards thinking in the results presented here.

The combined results of these 5 MBTI data collections compare well with other publications where
full MBTI data was not available but the conclusions were presented. Bush and Schkade (1985) [23]
also identified thinkers as being a significantly represented preference in their results of 40
programmer analysts with 73% of the respondents reported as being thinkers. They also identified that
70% of their respondents preferred judging as opposed to perceiving.

Thomsett (1990) [24] identified a high representation of thinkers (79%) in a group of 656 computer
professionals. It was identified that there was a far higher representation of judgers than there was
perceivers, with 92.3% of the respondents showing a preference towards judging.

Sach, et al. 142

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

However it is clear that there has been very little work done on the types of personalities in software
engineering practitioners recently using the MBTI assessment tool, with only one of the results being
published in the past 20 years (2003). This is important, as it’s very likely at the types of roles, and
software engineering has changed in those 20 years, along with the years since that study, with the
growth of agile development practices.

If we are to accept and believe what we are told about the implications of personality and MBTI, it is
extremely important that further work is done to understand the types inside software engineering. A
better understanding could lead to a better workplace and task fit to specific people, specifically a
greater understanding into the effects of personality on teams. It is not unreasonable to consider the
possibility that the dynamics of a team and the personalities present could drastically affect
performance and productivity.

The results presented here are old and generic, one collection of data is even too generic to really be
considered about software engineers. Future work on personality, and specifically MBTI, should
focus on establishing up-to-date classifications of what software engineering really means, and
specifically the different roles identifiable inside this area. It’s quite possible that the role of
somebody considered a software engineer could also affect the type of personality drawn to this role,
and potentially explain the variations reported in this paper. We do not yet have any data to suggest
that the skills and personality required to be a software designer are equal to that of the skills required
to be a software programmer, and Capretz (2010) [25] recently reports on the potential varying
personality types required under the umbrella of software engineering.

6. REFERENCES
1. Datamonitor (2006) Software: Global Industry Guide. Available from:

http://www.infoedge.com/product_type.asp?product=DO-4959, accessed 01/02/2010.

2. CAPT (Centre for Applications of Psychological Type) (2010). Estimated Frequencies of the
Types in the United States Population. Available from: http://www.capt.org/mbti-
assessment/estimated-frequencies.htm, accessed 25/01/2010.

3. Myers, I.B. 1998. Introduction to type : a guide to understanding your results on the Myers-
Briggs Type Indicator.5th Edition. Oxford : Oxford Psychologists Press, 1998.

4. J. Karn and T. Cowling, “A follow up study of the effect of personality on the performance of
software engineering teams,” in Proceedings of the 2006 ACM/IEEE international symposium
on Empirical software engineering, 2006, 241.

5. Sidney J. Blatt, “Where Have We Been and Where Are We Going? Reflections on 50 Years
of Personality Assessment,” Journal of Personality Assessment 50, no. 3 (1986): 343.

6. C.G. Jung, Psychological Types, 1st ed. (Routledge, 1992).

7. Isabel Briggs Myers, An Introduction to Type: A Guide to Understanding Your Results on the
Myers-Briggs Type Indicator: European English Version, 5th ed. (Oxford Psychologists
Press, 198).

8. Catherine Bishop-Clark and Daniel D. Wheeler, “The Myers-Briggs personality type and its
relationship to computer programming.,” Journal of Research on Computing in Education 26,
no. 3 (Spring94 1994): 358.

9. Alessandra Devito Da Cunha and David Greathead, “DOES PERSONALITY MATTER? AN
ANALYSIS OF CODE-REVIEW ABILITY.,” Communications of the ACM 50, no. 5 (May
2007): 109-112.

10. S. McDonald and H. M Edwards, “Who should test whom?,” Communications of the ACM
50, no. 1 (2007): 71.

11. Robert Feldt et al., “Links between the personalities, views and attitudes of software
engineers,” Information and Software Technology In Press, Accepted Manuscript.

Sach, et al. 143

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

12. J. S. Karn et al., “A study into the effects of personality type and methodology on cohesion in
software engineering teams.,” Behaviour & Information Technology 26, no. 2 (March 2007):
99-111.

13. Lucas Layman, Travis Cornwell, and Laurie Williams, “Personality types, learning styles, and
an agile approach to software engineering education,” ACM SIGCSE Bulletin 38, no. 1 (3,
2006): 428.

14. L Capretz, “Personality types in software engineering,” International Journal of Human-
Computer Studies 58, no. 2 (2, 2003): 207-214.

15. N. Salleh et al., “An empirical study of the effects of personality in pair programming using
the five-factor model,” in Proceedings of the 2009 3rd International Symposium on Empirical
Software Engineering and Measurement, 2009, 214–225.

16. J. E Hannay et al., “Effects of Personality on Pair Programming.”

17. Shoaib, L.; Nadeem, A.; Akbar, A.; , "An empirical evaluation of the influence of human
personality on exploratory software testing," Multitopic Conference, 2009. INMIC 2009.
IEEE 13th International , vol., no., pp.1-6, 14-15 Dec. 2009

18. T. Walle and J. E Hannay, “Personality and the nature of collaboration in pair programming,”
in Proceedings of the 2009 3rd International Symposium on Empirical Software Engineering
and Measurement, 2009, 203–213.

19. Rebecca H. Rutherfoord, “Using personality inventories to help form teams for software
engineering class projects,” ACM SIGCSE Bulletin 33, no. 3 (9, 2001): 73-76.

20. R. R McCrae and O. P John, “An introduction to the five-factor model and its applications,”
Personality: critical concepts in psychology 60 (1998): 295.

21. Karn, J.S. and Cowling, A.J. A study into the effect of disruptions on the performance of
software engineering teams. Research Memorandum CS-04-07, Department of Computer
Science, Sheffield University, 2004.

22. Robert R. McCrae and Paul T. Costa Jr., “Reinterpreting the Myers-Briggs Type Indicator
From the Perspective of the Five-Factor Model of Personality.,” Journal of Personality 57,
no. 1 (March 1989): 17-40.

23. Chandler M Bush and Lawrence L Schkade, “In search of the perfect programmer,”
Datamation 31, no. 6 (1985): 128-132.

24. R. Thomsett, "Building Effective Project Teams", American Programmer, Summer 1990

25. Luiz Fernando Capretz and Faheem Ahmed, “Making Sense of Software Development and
Personality Types,” IT Professional, 2010.

7. MBTI DATA SOURCES
1. Michael L. Lyons, “THE DP PSYCHE.,” Datamation 31, no. 16 (1985): 103-105, 108, 110.

2. Buie, E. A. (1988). Psychological type and job satisfaction in scientific computer
professionals. Journal of Psychological Type, 15, 50-53.

3. Westbrook, P. (1988) Frequencies of MBTI Types Among Computer Technicians. Journal of
Psychological Type, 15, 49.

4. D. C. Smith, “The personality of the systems analyst: an investigation,” SIGCPR Comput.
Pers. 12, no. 2 (1989): 12-14.

5. L Capretz, “Personality types in software engineering,” International Journal of Human-
Computer Studies 58, no. 2 (2, 2003): 207-214.

6. R. Thomsett, "Building Effective Project Teams", American Programmer, Summer 1990.

Sach, et al. 144

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

7. Jo Ann C. Carland and James W. Carland, “Cognitive styles and the education of computer
information systems students.,” Journal of Research on Computing in Education 23, no. 1
(Fall90 1990): 114.

8. Eugene Kaluzniacky, Managing psychological factors in information systems work (Idea
Group Inc (IGI), 2004).

9. L. F Capretz, “Clues on Software Engineers' Learning Styles,” International Journal of
Computing & Information Sciences 4, no. 1 (2006): 46-49.

10. J. S. Karn et al., “A study into the effects of personality type and methodology on cohesion in
software engineering teams,” Behaviour & Information Technology 26, no. 2 (3, 2007): 99-
111.

11. S. Holmes and P. L Kerr, (2007). The IT crowd. Australian Pyschological Type Review 9, no.
1 (4, 2007): 31-38.

Sach, et al. 145

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Confirmation Bias in Software Development and Testing:
An Analysis of the Effects of Company Size, Experience and Reasoning Skills

Gul Calikli

Department of Computer
Engineering, Software
Research Laboratory,

Bogazici University, Turkey
gul.calikli@boun.edu.tr

Berna Arslan

Department of Computer
Engineering, Software
Research Laboratory,

Bogazici University, Turkey
berna.arslan@boun.edu.tr

Ayse Bener

Department of Computer
Engineering, Software
Research Laboratory,

Bogazici University, Turkey
bener@boun.edu.tr

Keywords: POP-II.B. problem comprehension, testing; POP-V.A. confirmation bias, cognitive bias

Abstract
During all levels of software testing, the goal should be to fail the code to discover software defects
and hence to increase software quality. However, software developers and testers are more likely to
choose positive tests rather than negative ones. This is due to the phenomenon called confirmation
bias which is defined as the tendency to verify one’s own hypotheses rather than trying to refute them.
In this work, we aimed at identifying the factors that may affect confirmation bias levels of software
developers and testers. We have investigated the effects of company size, experience and reasoning
skills on bias levels. We prepared pen-and-paper and interactive tests based on two tasks from
cognitive psychology literature. During pen-and-paper test, subjects had to test given hypotheses,
whereas interactive test required both hypotheses generation and testing. These tests were conducted
on employees of one large scale telecommunications company, three small and medium scale
software companies and graduate computer engineering students resulting in a total of eighty-eight
subjects. Results showed regardless of experience and company size, abilities such as logical
reasoning and strategic hypotheses testing are differentiating factors in low confirmation bias levels.
Therefore, education and/or training programs that emphasize mathematical reasoning techniques are
useful towards production of high quality software. Moreover, in order to investigate the relationship
between code defect density and confirmation bias of software developers, we performed an analysis
among developers who are involved with a software project in a large scale telecommunications
company. We also analyzed the effect of confirmation bias during software testing phase. Our results
showed that there is a direct correlation between confirmation bias and defect proneness of the code.

1. Introduction
Human aspects are one of the basic components of software development and testing. Cognitive
biases belong to these aspects and they are defined as the deviation of the human mind from the laws
of logic and accuracy (Stacy & MacMillan, 1993). The notion of cognitive biases was first introduced
by Tversky and Kahneman (1971) and further elaborated to comprise various bias categories
(Kahneman, Slovic, & Tversky, 1982). Availability, anchoring and representativeness are examples
of cognitive biases.

As far as we know, Stacy and MacMillan (1993) are the two pioneers who recognized the possible
effects of cognitive biases on software engineering. In this study, we have investigated the
confirmation bias, which is defined as the tendency of people to seek for evidence that could verify
their hypotheses rather than refuting them. The term confirmation bias was first used by P.C. Wason
in his rule discovery experiment (Wason, 1960).

The importance of confirmation bias in software engineering comes from the fact that, most of the
defects are overlooked unless the goal is to fail the code during all levels of software testing. In other
words, high confirmation bias levels of software developers and testers lead to an increase in software

Calikli, et al. 146

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

defect density which in turn results in a decrease in software quality. Empirical evidence shows that
testers are more likely to choose positive tests rather than the negative ones (Teasley, Leventhal, &
Rohlman, 1993). However, during all levels of software testing the attempt should be to fail the code.
This study is concentrated on factors affecting confirmation bias, since circumvention of the effects of
confirmation bias requires that we know about these factors. In this study, we also perform a small
scale empirical analysis about the effects of confirmation bias on software development and testing.

We propose a method based on Wason’s work to quantify confirmation bias levels. Quantification of
confirmation bias helps us to analyze the effect of confirmation bias on software defect density as
well as analyzing potential factors that may affect confirmation bias. In the following section, we will
give more detailed information about confirmation bias. Then we will explain our methodology in
detail. Finally, results will be presented, discussed together with threats to validity and potential future
directions will be given.

2. Confirmation Bias
The term confirmation bias was first used by Peter C. Wason in his rule discovery experiment, where
the subject must try to refute his/her hypotheses to arrive at a correct solution (Wason, 1960). Wason
also explained the results of his selection task experiment using facts based on confirmation bias
(Wason, 1968). This section explains these two experiments.

2.1. Wason’s Rule Discovery Task

In this experiment, Wason asked his subjects to discover a simple rule about triples of numbers. The
experimental procedure can be explained as follows: Initially, subjects are given a record sheet on
which the triple "2 4 6" is written. The subject is told that "2 4 6" conforms to a simple rule which is
only known by the experimenter at the beginning of the experiment. In order to discover the rule, the
experimenter asks the subject to write down triples together with the reasons of his/her choice on the
record sheet. After each instance, the experimenter tells whether the instance conforms to the rule or
not. The subject can announce the rule only when he/she is highly confident. If the subject cannot
discover the rule, he/she can continue giving instances together with reasons for his/her choice. This
procedure continues iteratively until either the subject discovers the rule or he/she wishes to give up.
If the subject cannot discover the rule in 45 minutes, the experimenter aborts the test.

2.2. Wason’s Selection Task

In Wason’s original task, the subject is presented with four cards, which have a letter on one side and
a number on the other. These cards are placed on a table showing D, K, 3 and 7 respectively. The
subject is then given the hypothesis “If a card has a D on one side, then it has a 3 on the other side”
and he/she is asked which card(s) he/she should turn over to test whether the given hypothesis is
true or false regarding the four cards presented to him/her. The hypothesis can be considered as a “If
P, then Q” sentence. The correct way to test this hypothesis would be to select the P and not Q cards,
which corresponds to selecting D and 7 respectively.

3. Methodology
Our methodology aims to quantify confirmation bias levels in order to make empirical analyses to
investigate the factors affecting confirmation bias.

3.1. Preparation of the Tests

Pen-and-Paper Test. We prepared the pen-and-paper test based on Wason’s Selection Task (Wason,
1968). Our test consisted of two parts including twenty-two questions of three different types. There
were eight abstract, six thematic questions in the first part, whereas the second part contained eight
questions about software domain.

Abstract questions where subject is asked to check the validity of hypothesis of the form “If P then
Q”, can be answered correctly by pure logical reasoning. However, a subject might select the cards D

Calikli, et al. 147

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

and 3, when he/she is asked to check the validity of the hypothesis “If a card has a D on one side,
then it has a 3 on the other side.” Regarding the four cards presented to him/her. Such behavior of the
subject can be explained by one of the following reasons:

1. Verifying: Subject’s aim might be to verify the given hypothesis.

2. Matching: Subject might select the cards just by matching the letter D and number 3. In other
words, any reasoning strategy is not employed by the subject. This phenomenon, which was
first defined by Evans (1972), is called matching bias.

One of the abstract questions was the question proposed by Wason in his selection task. Table 1
shows all versions of the original question with their possible answers categorized as true/false
antecedent and true/false consequent. In order to analyze response strategies of subjects to these
questions, all three negated versions of this original question were included in the test. Three of the
remaining abstract questions had slight variations from the original Wason’s Selection Task question.

Table 1 – The four logical choices in Wason's selection task with negated components permuted,
TA: True Antecedent, FA: False Antecedent, TC: True Consequent, FC: False Consequent

Each thematic question in the test represented a probable real-life situation, so that they could be
answered correctly using the cues produced by memory. Finally, domain-specific questions required
participants to analyze a software problem which is independent of programming tools and
environment.

Interactive Test. This test was a replication of Wason’s Rule Discovery Experiment. Hence, similar
to the original experiment, the experimenter performs the test face-to-face with each subject one at a
time. Prior to the test, the experimenter explains to each subject the experimental procedure and the
subject is also told that there is no time constraint.

3.2. Evaluating Pen-and-Paper Test

Falsifier/Verifier/Matcher Classification. Given the conditional rule of the form if P, then Q, the
subject who selects P, Q as the answer can either be a verifier or matcher. Similarly, the same answer
for the rule if P, then not-Q, means that the subject can be a falsifier or a matcher. In order, to
overcome this fuzziness, we employed the method of Reich and Ruth (1982), which is explained
below as follows:

• choice of not-Q in the rule "If P, then Q" = falsifying

• choice of not-Q in the rule "If P, then not Q" = verifying

• choice of P in the rule "If not P, then Q" = matching

• choice of not-Q in the rule "If not-P, then Q" = falsifying

• choice of P in the rule "If not P, then not Q" = matching

Rule TA FA TC FC
(If P, then Q)

If there is a D on one side, then there is a 3 on the other side D K 3 7

(If P, then not Q)
If there is a D on one side, then there is not a 3 on the other side D K 7 3

(If not P, then Q)
If there is not a D on one side, then there is a 3 on the other side K D 3 7

(If not P, then not Q)
If there is not a D on one side, then there is not a 3 on the other

side
K D 7 3

Calikli, et al. 148

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

• choice of not-Q in the rule "If not P, then not Q" = verifying

According to the responses given to the four types of an abstract question, the subject was categorized
as a falsifier, verifier or a matcher. This categorization decision was given according to the majority
of the response tendencies, i.e. if a subject usually responded in a falsifying strategy, then he/she was
categorized as a falsifier. There was also the possibility that the subject could not be categorized. This
categorization neglects a large proportion of data provided by the subjects. On the other hand, it gives
a general view about the subjects’ responses. For these reasons, we used this method and labelled
subjects, whom we could not classify, as None.

Insights. As an additional measure of the test, we took insights of the subjects into account. Johnson-
Laird and Wason (as cited in Evans, Newstead & Bryne, 1993) proposed that subjects were in one of
three states of insight as follows:

 No insight. Subjects attempted to verify and chose p alone or the combination of p and q in
the original question.

 Partial insight. Subjects attempted to both verify and falsify the rule and hence chose p, q and
not-q cards in the original question.

 Complete insight. Subjects only attempted to falsify the rule and chose p and not-q cards in
the original question.

Since we had more than one question in the test, we devised a method to classify the subjects
according to this concept. Subjects who answered all of the abstract questions correctly were
classified to have complete insight. Those who chose true antecedent alone or the combination of true
antecedent and true consequent in more than or equal to half of the abstract questions were classified
as having no insight. Finally, subjects who chose the combination of true antecedent, true consequent
and false consequent in more than or equal to the half of the questions were classified as having
partial insight.

3.3 Evaluating Interactive Test

Eliminative/Enumerative Index. This index aims to give an idea about how a subject thinks while
he/she is going forward in the interactive test. A subject may think more eliminative and test more
hypotheses or may think more enumerative and test similar hypotheses with different instances. The
calculation of this index takes into account the nature of the instances in relation to their reasons for
choice. The index is calculated as a ratio of the number of subsequent instances incompatible with
each reason of choice to the number of compatible instances, summed over all proposed reasons. It is
desirable to have this index to be greater than 1. Wason indicates that when this value is greater than 1
(the higher the better), the less confirmation bias of the subject is.

Test Severity. Severe testing consists of testing observations that have a high probability of being true
in focal hypothesis and a low probability under all possible hypotheses (Poletiek, 2001). The severity
of a test can be thought of as the power to eliminate alternative hypotheses. Poletiek’s rule discovery
experiment (2001) presented the subjects with the triple “2 7 6” and asked them to discover the rule
that this triple conformed to. Test severity was calculated for each subject as follows:

 (1)

This formula was defined by Popper (Poletiek, 2001), and x represents the severity of a test, H
represents the hypothesis and b stands for the background knowledge. The severity of a test x is
interpreted as the supporting evidence of the theory H given the background knowledge b. A test is
more severe when the chance of the supporting observation occurring under the assumption of the
hypothesis H exceeds the chance of its occurring without the assumption of the H (i.e. with the
assumption of the background knowledge b only). The higher this ratio is (exceeds 1), the higher the
severity of the test is.

Calikli, et al. 149

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

To carry out a similar calculation, we have defined a set of possible alternative hypotheses of the
interactive test as shown in Table 2. Instances given by the subjects are categorized as positive or
negative tests according to their compliance with the experimenter’s rule. Then, a positive test is more
severe if it excludes more alternative hypotheses shown in Table 2 and a negative test is more severe
if it includes more alternative hypotheses. For each instance given by the subject, a severity score was
calculated. Finally, a mean severity score for each subject was calculated over all of his/her instances.
This mean score could be between 0 and 27, since there were twenty-seven alternatives defined.

Poletiek (2001) discussed that maximizing the severity of tests may be a successful strategy if the
subject has enough confidence in his/her hypothesis. Starting with a severe test may not result in more
knowledge, so that it may be a better strategy to start with a mild test, increasing its severity when
there is more evidence and then decreasing its severity again when one becomes quite sure about the

validity of the hypothesis.

Table 2 – The Set of Plausible Alternative Hypotheses

4. Experiment

4.1. Participants

Participants were employees of four companies and graduate computer engineering students. One of
the companies was a large scale telecommunications company C1 (11 females, 23 males, mean age =
29.06 years). There were three other small and medium scale software companies C2 (6 males, mean

1 Integers ascending with increments of 2 15 Sum of the first and second integer is the
third integer

2 Integers ascending with increments of k,
where k = 1,2, ... 16 The triples of the form (2n 4n 6n), where

n = 1,2,3, …

3
Three integers in ascending order such that

the average of the first and third integer is the
second integer.

17 The triples of the form (n 2n 3n), where
n = 1,2,3, …

4 The average of the first and third integer is the
second integer 18 Second integer is greater than the first

one

5 Even integers ascending with increments of 2 19 Third integer is greater than the first
integer

6 Integers ascending with increments of m = 2k,
where k = 1,2,3, … 20 Difference between the third and the first

integer is even

7 Integers ascending or descending with
increments of m = 2k, where k = 1,2,3, … 21 Greatest common divisor (GCD) of the

integers is 2

8 Even integers in ascending order 22 Ascending integers such that each
integer is 1 less than a prime number

9 Positive even integers in ascending order 23 Any three rational numbers

10 Three even integers in any order 24 Positive real numbers in increasing order

11 Three integers in any order, none of them are
identical 25 Positive integers in increasing order

12 Three integers in any order, two or three of
them are identical 26 Three integers whose sum is even

13
Three integers in ascending order such that
difference between third and first number is

even
27 Three even integers greater than zero

14 Integers ascending or descending with
increments of k, where k = 1, 2, 3, …

Calikli, et al. 150

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

age = 24 years), C3 (1 female, 7 males, mean age = 29.63 years), and C4 (1 female, 11 males, mean age
= 27.17 years). In addition, twenty-eight graduate computer engineering students participated in the
study (7 females, 21 males, mean age = 27.96 years).

Most of our subjects had a bachelor degree in computer science, mathematics or other engineering
fields.

4.2. Procedure

All participants from companies were tested in their work environment. Students were tested at the
university. First, it was explained that the tests do not aim at measuring IQ or similar capabilities. It
has been told that the goal of the tests was identifying how people think. Subjects were asked to fill in
the form about their personal information. Information about age, gender, B.S. field and university,
M.S./M.A. field and university (if they exist), software development experience (in years), software
testing experience (in years) was taken from each participant.

In each company, pen-and-paper test was applied to the employees as a group after the explanation of
the test. Later, subjects participated one by one in the interactive test. Durations of both tests were
recorded.

5. Results
In the following subsections, results of the analyses of the effects of company size, experience and
reasoning skills are presented.

5.1. Effects of Company Size, Experience and Reasoning Skills on Confirmation Bias

The Analysis of Company Size. In this part, results of the large scale telecommunication company are
compared with the results of three small/medium scale software companies in terms of both test
performances.

Figure 1 – The Distribution of Falsifiers, Verifiers and Matchers within Group 1(large scale
company) and Group 2(small and medium scale companies)

In Figure 1, the percentages of falsifiers, verifiers and matchers for both groups can be seen. The large
scale company, which is denoted as Group 1 in Figure 1, has a higher percentage of falsifiers,
verifiers and matchers. Since this distribution alone is not very explanatory due to the high percentage
of subjects not categorized, we examined another aspect, namely ‘insights’. The distribution of
insights is shown in the Figure 2. According to Figure 2, the large company had a higher percentage
of subjects with complete insight, slightly smaller percentage of subjects with partial insight and
smaller percentage of subjects with no insight. But this difference is not significant statistically. Also,
no significant difference was observed in the scores of the abstract questions indicating that no
difference in logical reasoning skills was observed among the two groups.

Calikli, et al. 151

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Figure 2 – The Distribution of Subjects according to their Insights within Group 1(large scale

company) and Group 2(small and medium scale companies)

However, analyzing the interactive tests yielded differences between two groups. After excluding
outliers from both groups, Mann-Whitney U-test was used to compare the ranks for
eliminative/enumerative index values. The results of the test were significant, z = -2.76, p < .01.
Group 1 (n=34) had an average rank of 35.47, while Group 2 (n=26) had an average rank of 23.06.
This indicated that employees of the large scale company performed better in terms of elimination of
their hypotheses.

Another Mann-Whitney U-test was used to compare the ranks for test severity values among Group 1
and Group 2. The results of the test were significant, z = -2.26, p < .05. Group 1 had an average rank
of 34.96, while Group 2 had an average rank of 24.67. This indicated that, Group 1 had higher test
severity values indicating a strategy that employed high severe testing. But, as mentioned before, it is
a successful strategy to start with a mild test, continue with a more severe test and then end with a
mild test again. In order to compare these severity strategies among two groups, we have made use of
Vincent curves (as cited in Hilgard, 1938). These curves can be used to visualize the change in test
severity of a group of subjects until the discovery of the correct rule. We have used the original
method proposed as follows:

A number N was taken to be the bin size and total number of instances given by each subject was
divided into fractions according to this number. Within each fraction, the average of the test severities
of instances in that fraction was calculated for each subject. Then, all severity values in each fraction
were averaged to give the mean severity value of all instances given by subjects in that fraction. As N,
we have used the smallest number of instances given within the group of subjects. For instance, the
division of 13 instances into N=4 fractions would be 4, 3, 3, 3. Additional instances that were left over
from the division were added to the beginning according to the original procedure. Then, in the first
fraction the average severity value of the four instances that fell in that fraction was calculated. This
procedure was repeated for all subjects until mean severity values for N bins were obtained. A
Vincent curve depicts these N data points, and it can be used to interpret the severity strategy
employed by the subject.

Figure 3 shows the Vincent curve for the test severities of the three groups of subjects. The bin size
was taken to be three, equal to the minimum number of instances given by a subject.

Calikli, et al. 152

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Figure 3 – Vincent Curve showing Test Severity Strategy of three groups, G1 being the group of small
and medium scale companies, G2 being the large scale company and

G3 being the group of graduate students

Examining the curve for the large scale company, denoted as G2 in the figure, shows that testing
started with a mild test and became more severe and then ended in a milder test. This strategy was
mentioned to be a successful strategy for hypothesis testing. The curve denoted with G1 in the figure
shows that the overall strategy of the small and medium scale companies was to begin with a mild test
and gradually enhance the severity. By comparing these two curves, we can say that the strategy of
the large scale company shows a more sensible hypothesis testing strategy.

However, Poletiek (2001) also mentioned that selecting severe rather than weak tests does not
necessarily reflect a motivation to falsify. In fact, the purpose of such a strategy might be to give a
strong proof for one’s theory. To investigate that, we have analyzed the percentages of subjects in
both groups, who have showed strong confirmation tendencies by repeating or reformulating their
reasons for choice or their rules and who have immediately announced new rules without giving an
instance, i.e. without testing their hypotheses. We have determined the percentages of these subjects
within all groups as shown in Table 3. A subject who may have repeated a reason may also have made
an immediate rule announcement, so that it is not the case that a subject can only be found in one cell
of Table 3.

In order to compare these statistics between groups, we have merged the columns of Table 3 and
compared the number of subjects who behaved in a confirmative way between groups, i.e. subjects
who engaged in at least one activity defined in the columns. We have found no significant difference
between the groups of companies according to company size, (χ²(1) = .09, p > .7). Hence, we can say
that large scale company engaged in a better hypothesis testing strategy by looking at
eliminative/enumerative index, test severity values and Vincent curves.

The Analysis of Experience. We have investigated whether there was a significant correlation between
software testing experience and test severity. All subjects who had software testing experience were
included in the test (n=27), and no significant result was obtained. Also, no significant correlation was
found between software testing experience and eliminative/enumerative index.

A similar analysis was conducted for software development experience. All subjects who had
software development experience were included in the test (n=50). No significant correlation was
found between software development experience and eliminative/enumerative index as well as test
severity.

Hence, results showed no effect of software testing or development experience on the ability of
hypothesis testing.

Another analysis was conducted to compare test results among subjects taken from graduate students
and employees of all companies, where the subject selection criterion was having the combination of
software development and testing experience greater than the average number of years of experience
found among graduate students. The average experience value was taken from the students’ group to
make sure that there will be enough subjects from this group in the analysis.

Calikli, et al. 153

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Mann-Whitney U-test was used to compare the ranks for test severity, eliminative/enumerative index
and test durations among employees (n=43) and students (n=13). The only significant result of the
tests showed that interactive test duration of the student group was lower, z = -1.39, p < .05. First
group had an average rank of 30.15, while second group had an average rank of 23.04. Hence, we
concluded that the group of students reached the end of the interactive test more quickly.

 Table 3 – The Percentages of Subjects within three Groups according to their Confirmation
Tendencies

Our hypothesis for these two groups was that they would differ in terms of logical reasoning, and
hence in their scores of the abstract questions found in pen-and-paper test. This difference was
confirmed significantly in favor of the graduate students, when the number of subjects below and
above median score were compared statistically (χ²(1) = 8.114, p < .005). Another interesting result
was that the student group also performed better in questions with a software theme (χ²(1) = 7.085, p
< .01).

Similar analyses were conducted among three more groups. All members who had software
development and testing experience equal to or more than the average experience were included in the
analyses. For the sake of simplicity, let us refer to the large scale company as C1, the group of small
and medium scaled companies as C2 and graduate students as S. We first analyzed whether test results
differed significantly among C1 and C2. Significant results were obtained with Mann-Whitney U-test
for test severity, z = -2.48, p < .05 and eliminative/enumerative index, z = -3.82, p < .001. For test
severity, the mean ranks were 23.36 for C1 and 19.18 for C2. For eliminative/enumerative index, the
mean ranks were 27.07 for C1 and 11.5 for C2. These results indicated that, employees of the large
scale company performed better in the interactive test compared to the employees of small and
medium scaled companies when only subjects with an experience level higher than the average was
taken into consideration.

Further analyses were conducted for the student group versus C1 and C2. It has been observed that the
student group differed significantly from C1 in terms of their scores in abstract questions (χ²(1) =
6.773, p < .01) and in software-domain questions (χ²(1) = 7.38, p < .01). A similar pattern of results
was observed for the student group and C2. Again, significant differences were found in the scores of
the abstract questions (χ²(1) = 6.677, p < .01) and software-domain questions (χ²(1) = 4.34, p < .05).
These results indicated that it was easier for the student group with the experience level equal to or
more than the average experience to employ logical reasoning and use it effectively than software
developers and testers of the companies.

 The Analysis of Reasoning Skills. When we compared the strategies employed by the subjects in the
pen-and-paper test, we observed that the percentage of falsifiers was higher in the group of students,
while the percentage of verifiers and matchers was lower compared to the other group of software
developers and testers of the four companies. This distribution is shown in Figure 4. The significant
difference among the falsifiers, verifiers and matchers in both groups was confirmed statistically
(χ²(2) = 6.922, p < .05).

 Reason Repetition /
Reformulation

Rule Repetition /
Reformulation

Immediate Rule
Announcement

Small and medium
scale companies 73% 7.6% 23%

Large scale company 64.7% 26.4% 32.3%

Graduate students 57.1% 10.7% 17.8%

Calikli, et al. 154

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Figure 4 – The distribution of subjects according to Reich and Ruth’s method
among two groups, Group 1 being students and Group 2 being all employees

Since a high percentage of subjects could not be categorized according to this method, as an
additional measure we have performed an analysis of ‘insights’. Outcomes are shown in Figure 5,
which seems to confirm the hypothesis that the percentage of people with complete insight is higher
among students, whereas people with partial or no insight are less frequent in this group. These results
were also confirmed statistically (χ²(2) = 9.620, p < .01). Hence, we can conclude that students
performed better in pen-and-paper test when compared to all other subjects.

Further analyses were conducted to compare interactive test results. This time, S, the group of
students, was compared to two groups, first being the large scale company C1 and the second being
the group of small and medium scaled companies C2.

Figure 5 – The distribution of subjects according to insights
among two groups, Group 1 being students and Group 2 being all employees

It has been observed that the time to finish the interactive test was significantly lower for S than C1, z
= -3.57, p < .001 and C2, z = -1.97, p < .05. No significant difference was observed for
eliminative/enumerative index.

When we compared test severities with Mann Whitney U-test, we have found a significant difference
between S and C1, z = -2.46, p < .05. S had an average rank of 24.72, while C1 had an average rank of
35.99. This could mean that C1 employed a better hypothesis testing strategy or exact the opposite,
that they had strong confirmations. Looking again at Figure 3, we observed that the group of graduate
students (G3 in the figure) also performed a desired hypothesis testing strategy starting with a mild
test, increasing the severity and then again decreasing it. In order to be able to compare these two
groups, we analyzed whether there was a significant difference between two groups in terms of
confirmative behavior. In order to accomplish this, we took into account the subjects within groups

Calikli, et al. 155

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

who engaged in an activity such as repeating or reformulating a reason or a rule; or immediately
announcing a rule. A significant difference was found between these groups in terms of the number of
people engaging in a confirmative behavior (χ²(2) = 5.939, p < .05). We concluded that the group of
graduate students was better at hypothesis testing. This was also supported by the fact that 27 out of
28 students found the correct rule at the end of the interactive test, whereas 29 out of 34 employees of
the large scale company was able to find the rule. No significant difference was observed for test
severity between S and C2.

In order to observe more possible differences between the group of students and the large scale
company, results of the pen-and-paper test are compared. Figure 6 shows the distribution of falsifiers,
verifiers and matchers in both groups. This figure shows that the percentage of falsifiers among
students is higher and the percentage of verifiers and matchers is lower.

Figure 6 – The distribution of subjects according to Reich and Ruth’s method
among two groups, S being students and C1 being employees of the large scale company

It has been found that both groups differed significantly in terms of the percentages of falsifiers and
verifiers, thus confirming the claim that there is a significant difference in both test performances
between these groups (χ²(1) = 4.835, p < .05). The high percentage of subjects of the large scale
company with no insight as shown in Figure 7 also confirms this fact.

 Figure 7 – The

distribution of subjects according to insights
among two groups, S being students and C1 being employees of the large scale company

5.2. Effects of Confirmation Bias on Software Defect Density

 Analysis of the Effect of Confirmation Bias on Software Developer Performance. As a result of the
lack of tendency to try to fail code during unit tests, a software developer is likely to introduce
defects to his/her code. In order to analyze this phenomenon empirically, we analyzed the last ten
releases of customer services and channel management software developed in the large scale

Calikli, et al. 156

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

telecommunications company C1. There were 12 developers and 16 testers assigned to this software
project. However, we could only perform our tests to five developers whose records appear in churn
data. The rest of the development team were new to the project due to sudden change in the
organizational structure.

During our analyses, we took into account only Java source codes, as churn data contained
information about only Java source files. The files that are created in a release before the release of
interest R, but just modified within release R are not taken into account. Our analyses include only
Java source files that are created within each release. The owner of each file is determined from churn
data and related defect information is obtained from the defect log of the corresponding release. As
shown in Table 4, developer who gave up the interactive test (Developer1) has the highest defect ratio
which is the ratio of the number of defected files to the total number of files implemented by that
developer. Moreover, it took much longer for Developer1 to solve both parts of the pen-and-pencil
test compared to the rest of the developers. On the other hand, no significant difference in
elimination/enumeration index of Developer1 from the indices of the remaining developers was
observed.

Defect
Ratio

Eliminative/
Enumerative

Index

Interactive
Test Duration

(minutes)

Abstract &
Thematic Test

Duration
(minutes)

Software Test
Duration
(minutes)

Developer1 0.86 0.83 ABORT 20 26

Developer2 0.38 1.83 12 12 10

Developer3 0.20 1.82 14 10 10

Developer4 0.00 0.75 22 9 13

Developer5 0.11 0.50 8 15 10

Table 4 – Defect Ratio versus Some Confirmation Bias Results of Developers of a Software Project of
the Large Scale Telecommunications company (C1).

Figure 8- Distribution of falsifiers, verifiers, and matchers among testers who report bugs above and

below average amount, according to Reich and Ruth’s method.

 Analysis of the Effect of Confirmation Bias on Software Tester Performance. In this part of our work,
to analyze the effect of confirmation bias on tester performance, we inherited two tester performance
metrics from tester competence reports of the large scale telecommunications company C1. In this
study we analyzed the testers of the same project group we performed the analyses about developer
performance. Out of 16 testers, performance related data of 12 testers were in the tester competence

Calikli, et al. 157

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

reports. The remaining 4 testers had recently joined the project group due to the sudden change in the
organizational structure. These metrics are the number of bugs reported (NBUG) and the number of
production defects caused (NPROD_DEF) by each tester respectively. We grouped members of C1 based
on the values of NBUG and NPROD_DEF. Figure 8 shows that there are no falsifiers among testers who
detect bugs above average NBUG value. This group of testers also contains more verifiers compared to
the tester group detecting bugs below average NBUG value .

Figure 9- High Correlation between production defect and total number of reported bugs (spearman
rank correlation: 0.8234)

Figure 10- Distribution of falsifiers, verifiers, and matchers among testers who cause production

defects above and below average amount, according to Reich and Ruth’s method.

As shown in Figure 9, high correlation between total number of reported bugs and production defect
count may indicate another phenomenon, namely, testers who report more bugs might be assigned
codes with very high defect density requiring immense testing effort. However, for each tester there is
also a time pressure to end the testing procedure and this may result in the deployment of the defected
codes. Another explanation for the outcome shown in Figure 9, is that bugs are not classified
according to their severities. Hence, large number of reported bugs does not necessarily mean that a
significant portion of severe bugs has been reported. As a result, testers with low confirmation bias
levels seem to detect more bugs. However they are more likely to overlook most of the defects which
leads to an increase in production defects. In Figure 10, among testers who introduce production
defects above average there are no falsifiers and this result is in line with our latter explanation.

7. Threats to Validity
In terms of internal validity, our quasi-independent variables are company size, experience and
reasoning skills. In order to obtain measures for these variables, we performed both interactive and

Calikli, et al. 158

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

pen-and-paper tests to development and testing team working on a software project in the large scale
telecommunication company (C1) within a week. Tests were completed among graduate computer
engineering students (S) also in less than a week; whereas the completion of the tests took 1 day for
each of the small scale companies (C2). Moreover, within any of the groups there was no event in
between the confirmation bias tests that can affect subjects’ performance.

However, problem may arise due to different experimental conditions. For instance, compared to
graduate computer engineering students, stress factor of company workers due to the fact that they
always have to rush the next release may have biased the results. In order to avoid mono-operation
bias as a construct validity threat, we used more than a single dependent variable. We used Wason’s
elimination/enumeration index (Wason 1960), test severity in addition to interactive and pen-and-
pencil test durations. As a result, we have avoided under-representing the construct and got rid of
irrelevancies.

We have used three datasets to externally validate our results. We will continue expanding the size
and variety of our dataset going forward. However, during our analysis to investigate the effect of
confirmation bias on software defect density, we used data belonging to only five developers. This
was partly because of the rapid and frequent changes in the development team. Out of 12 developers,
only 5 of them were actively working on the project; while the rest were the newcomers and hence
they have not started contributing to the project yet. We could not find the previous developers whose
code commitment records were on the churn data, as most of them had left the company. In general, it
is difficult to extract data that is informative about the defects introduced by a developer. Usually
small and medium sized companies do not keep file-level defect information. Moreover, most
companies do not classify defects according to their severity either. The data about the developers
who contributed to a specific file, the dates of this contribution and defects related to the file differ
from one company to another.

In order to statistically validate our results, we used Mann-Whitney U Test for continuous variables
(e.g. test severity, eliminative/enumerative index, test durations). We used Mann-Whitney U Test,
since we do not have any prior knowledge of the distribution of these values. For categorical variables
such as number of falsifiers, verifiers, matchers, we used Chi Square test . Chi Square test was also
used to evaluate the significance of the distribution of the subjects according to insights by Johnson-
Laird and Wason.

8. Conclusion and Future Work

We have shown that there is no significant relationship between software development or testing
experience and hypothesis testing skills. We concluded that experience did not play a role even in
familiar situations such as problems about software domain.

The most striking difference was found between the group of graduate students and software
developers and testers of the companies in terms of abstract reasoning skills. The fact that students
scored better in software-domain questions although most of them had less software development and
testing experience indicates that abstract reasoning plays an important role in solving everyday
problems. It is highly probable that theoretical computer science courses have strengthened their
reasoning skills and helped them to acquire an analytical and critical point of view. Hence, we can
conclude that confirmation bias is most probably affected by continuous usage of abstract reasoning
and critical thinking.

Company size was not a differentiating factor in abstract reasoning, but differences in hypotheses
testing behavior was observed between two groups of companies grouped according to their sizes.
The large scale company performed better in the interactive test, but it has been shown that the group
of students outperformed this group in terms of both tests. This has led us to perform additional
analyses and reach the conclusion that hypotheses testing skills were better in the group of students.
Thus, we conclude that there is a relationship between confirmation bias and continuous usage of and
training in logical reasoning and critical thinking.

Calikli, et al. 159

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

The analysis we made among developers and testers of the large scale telecommunications company,
showed that there is a direct correlation between confirmation bias and defect proneness of the code.
This is due to the fact that including unit testing in the development phase, all levels of software
testing should aim to fail the code, which implies that both testers and developers should have low
confirmation bias levels. However, in order to obtain Statistically significant results we need more
data.

As future work, we intend to increase the size of our data regarding total number of defects introduced
by each developer per lines of code changes made by that developer. Recently, we are collecting data
from a company developing software for baking services and this data shall belong to 100 software
developers and testers. All these data will help us to empirically analyze the effect of confirmation
bias on software defect density to obtain statistically significant results.

7. Acknowledgements
This research is supported in part by Turkish Scientific Research Council, TUBITAK, under grant
number EEEAG108E014.

8. References
Calikli, G., Bener, A., and Arslan, B. (2010) An analysis of the effects of company culture, education

and experience on confirmation bias levels of software developers and testers, to appear in the
Proceedings of 32nd International Conference on Software Engineering (ICSE 2010).

Evans, J. St. B. T. (1972) Interpretation and matching bias in a reasoning task, Quarterly Journal of
Experimental Psychology, 24, 193-199

Evans, J. St. B. T., Newstead, S.E., Byrne, R. M. J. (1993) Human Reasoning, The Psychology of
Deduction.

Hilgard, E. R. (1938) A summary of alternative procedures for the construction of Vincent curves,
Psychology Bulletin, 35, 282-297.

Kahneman, D., Slovic, P., and Tversky, A. (1982) Judgment Under Uncertainty: Heuristics and
Biases, New York: Cambridge University Press

Poletiek, F. (2001) Hypothesis Testing Behavior (Essays in Cognitive Psychology), Psychology Press
Ltd.

Reich, S.S. and Ruth, P. (1982) Wason's selection task: verification, falsification and matching.
British Journal of Psychology, 73:3, 395-404.

Stacy, W. and MacMillan, J. (1993) Cognitive bias in software engineering, Communication of the
ACM, 38, 6 (June 1995), 57-63.

Teasley, B., Leventhal, L. M., and Rohlman, S. (1993) Positive test bias in software engineering
professionals: What is right and what’s wrong, In Empirical Studies of Programmers: Fifth
Workshop

Wason, P. C. (1960) On the failure to eliminate hypotheses in a conceptual task, Quarterly Journal of
Experimental Psychology (Psychology Press), 12. 129–140.

Wason, P. C. (1968) Reasoning about a rule, Quarterly Journal of Experimental Psychology
(Psychology Press) 20: 273–28.

Calikli, et al. 160

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Enhancing user-centredness in agile teams: A study on programmer’s values
for a better understanding on how to position usability methods in XP

Michael Leitner1; Peter Wolkerstorfer1, Arjan Geven1, Manfred Tscheligi1,2

(1) CURE – Center for Usability Research &

Engineering
Modecenterstraße 17 / Objekt 2

1110 Vienna, Austria
{leitner | wolkerstorfer | geven |

tscheligi}@cure.at

(2) ICT&S Center – University of Salzburg
Sigmund-Haffner-Gasse 18

5020 Salzburg, Austria.
manfred.tscheligi@sbg.ac.at

Keywords: XP Programmers, programmer’ high-level goals, user centred methods in agile
teams

Abstract
We present a study on programmer’s high-level goals in eXtreme Programming settings (XP). We
talked to 10 programmers using so-called “laddering interviews”. The result presented is a
“Hierarchical Value Map (HVM)” indicating agile programmer’s high-level goals. This study was
done to better orchestrate usability methods and integrate them into agile development processes. The
study’s results were used to position and adapt usability methods in a way that they are better aligned
to the programmer’s goals and therefore are more likely to be accepted. We draw conclusions on the
basis of the study’s results and experiences using agile usability methods in practise.

1.Introduction
User-centeredness describes the fact that technology design and development are aligned and targeted
at the end-user needs, requirements and limitations. To achieve this, different methods are applied to
secure the usability and user experience of hard- and software. In classical development processes,
these methods (e.g. user requirement analysis, usability reviews, etc.) are included in the development
process iteratively and at certain stages of the process. There is plenty of know-how in reference to
the use of usability methods in classical soft and hardware development processes. In contrast, for
agile settings different authors have discussed the application of usability methods in agile settings,
but still little explicit know-how is available of how to adapt and position these methods in agile
development settings. With this work we define a further step towards the adaption and use of
usability methods in agile teams by proposing essential enhancement of these methods.

In order to identify these necessary adaptations of usability methods and to define a strategy to better
position these methods in the course of the agile work processes we need to consider that usability
methods - in most of the cases - are not the prime focus of XP programmers, not under their constant
attention nor necessarily fit for application in XP processes. Therefore, to achieve a higher user-
centeredness and an enhanced usage and acceptance of usability methods in agile teams the following
two pillars need to be fostered:

a) Adapt and position usability methods in a way that they fit the agile team structure and
process without disturbing the primary task: software development (=adoption towards the
organizational and process goals).

b) Align and position the usability methods towards the programmer’s goals and values1 in order
to achieve acceptance and use of these methods beyond indoctrination (=adoption towards
psychological and team member’s goals).

1 In this paper the term “(high-level) goals” equal the term “values”. To define and describe “values/high-level goals” we

refer to Rokeach’s Value List, which classifies terminal and instrumental values. Terminal values describe desirable end-
states of existence (= goals that a person would like to achieve during his or her lifetime). Instrumental values describe
preferable modes of behaviour to achieve a terminal value (Rokeach, M.).

Leitner, et al. 161

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

 2

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

With the study at hand we especially want to aim at pillar b) (programmer’s goals and values) trying
to align and adapt usability methods on the basis of programmer’s goals and valued circumstances of
agile development. Hence, the objectives of this study are:

1. Identifying programmer’s high-level goals: We conducted a study on programmer’s goals
(and values) in agile team settings to enhance the understanding of how to position and adapt
usability methods respectively. For this study we chose a semi-structured interview technique
called “laddering” that is used to identify people’s high-level goals in reference to a given
object (in our case: the agile team and development setting) and the interview data is
presented using a so-called Hierarchical Value Map (HVM). We discuss these findings in
reference to the current know-how in the area of “perception of agile teams” and highlight the
relevant findings for our study.

2. Adapt and position usability methods accordingly: On that basis we discuss how usability
methods need to be adapted and positioned in agile settings in order to be better accepted and
aligned to the programmer’s values. We are discussing the value study’s results and use these
as a basis for a deeper look into the need of methodological adaption. We propose a set of
particular improvements of selected usability methods for their use in agile settings. Finishing
up we discuss some practical experiences that underline our argumentation.

Overall our study extends the State of the Art in two areas. On the one hand we are able to show new
findings and aspects in the perception of agile methods by agile team members (programmers) and on
the other hand we extend the know-how in the area of usability engineering in and for agile teams.

In general this study was conducted in a project dedicated to orchestrating usability and agile
methods. In this project an agile developer team is working on a certain piece of technology. The
usability methods that are used in this project are “personas”, “usability evaluation and ad-hoc
usability (expert) evaluation/input” and to some extend as well “automated usability evaluation
tools2”. Hence, in this paper we focus on improving these specific methods.

Further, it is necessary to mention, that in the team setting of this project no usability experts are part
of the team, in contrast all team members are dedicated to programming. Therefore all usability input
is brought to the team from as external source (The external source in this case are the authors [“we”]
of this paper, which are supporting the agile team with usability input and methodological know-how.
Hence, all practical experiences reported in this paper describe the author’s observations as “external
members” of the agile team).

The exact setting of the project and methodological approaches are described in (Wolkerstorfer,
2008). We are currently using the above mentioned usability methods in our project together with the
agile development team, so far mainly without the suggested improvements in this paper. Our aim is
to adapt the methods accordingly (on the basis of the improvements in this paper) and evaluate these
in the field and together with the agile team we are working with.

We start with a discussion on current state of the art in related fields, discuss the study setting on
programmer’s goals and finish up with a discussion on enhancement of usability methods for a fruitful
integration in agile development settings.

2. State of the art
In this section we summarize related work that is relevant for the study. This is on one hand research
in the area of “perception of agile development and agile team settings” and on the other hand
research and studies towards the use of usability and user-centred methods in agile team settings.

2 In this context an “automated usability evaluation tool” describes software with the ability to assess the usability of a

graphical user interface (GUI) automatically - for instance through the means of image analysis. The tool’s feedback might
be an index describing the GUI’s visual complexity from 1 (bad) to 100 (good).

Leitner, et al. 162

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

 3

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Perception of agile development settings

Different authors have studied the perception of agile development methods in the last years. Several
positive effects and perceptions were reported in reference to this organisational structure and work
setting.

Dyba and Dingsøyr (2008) conducted a comprehensive state of the art analysis of research in the area
of XP Programming. Citing Mannaro et al. they state that 90 % of XP Programmers would like to
continue in the company they work, whereas only 40 % of Programmers in non-XP companies would
like to do so. According to Mannaro’s study XP Programmer’s job satisfaction is higher (in
comparison to non-XP Programmers). Further, XP programmers claim that their productivity is higher
in XP settings. Citing Mann and Maurer Dyba and Dingsøyr state that XP Programmers think that the
XP processes allows them to work more pinpointed towards the customer’s goals.

Tessem and Maurer (2007) conducted semi-structured interviews and concluded that agile
programmers feel “autonomy” (in daily work), “variety” (of type of work), “significance” (of each
agile programmer in the team), “feedback” (related to own work done), “ability to complete whole
tasks” (be responsible for the whole thing) and “motivation and job satisfaction”. Likewise Law and
Cheron reported the important factors “motivation” and “autonomy” in XP teams (2005). Whitworth
(2007) conducted interviews with agile teams and reports similar findings (beside others). According
to this work programmers reported that they “appreciate the knowledge share” and that the agile
environment “amplifies the effectiveness of team meetings” and furthermore that these are a “forum
for motivation”. The agile setting would “enhance the team awareness”, “foster the team-awareness”,
“the awareness of contribution of individuals”. According to Withworth’s study agile team setting
supports team members taking a more active role and overall a positive self-image and self-esteem is
emphasised/leveraged.

So far different studies and papers discussed programmer’s perception on XP team settings, however,
with our study we introduce a more “personal” view on these settings. Similar work was done by
Withworth who introduced a more psychological view on XP team settings. With our study we
enhance this and other studies by the following points:

a) Research the personal high-level goals (values) of programmers in XP work settings. So far
no studies were explicitly dedicated to this factor in agile teams.

b) By the use of the means-end theory we are able to display the results gathered in a visual way
(in a so-called “Hierarchical Value Map”). This visualization technique helps to understand
the correlation between developer’s high-level goals (values) and the attributes of the XP
work setting.

Usability methods and user-centredness in agile teams

When Kent Beck introduced XP (extreme programming) in 1999 (Beck, 1999) UCD (user centred
design processes) did not play a remarkable role in his considerations. These considerations followed
later, as agile development was adopted by companies with greater frequency every year which lead
to a special interest group on agile user experience (Miller & Sy, 2009). Some experts doubt that the
XP process leads to true user-centred design (Hudson, 2005). The issues arising from this problem
statement suggest that XP and UCD won’t fit. But this perception is simplistic and misguided which
has already been shown in practice where success is reported (McInerney & Maurer, 2005). We can
see succeeding practitioners combining UCD (user centric development) and XP/agile methods by
varying approaches (Constantine & Lockwood, 2003; Ferreira, Noble & Biddle, 2007; Göransson,
Gulliksen & Boivie, 2003; Holzinger, 2005; Holzinger, Errath, Searle, Thurnher & Slany, 2005;
Norman, 2006; Wolkerstorfer et al, 2008).

Various studies have been directed to usability in agile settings. However, so far no particular
improvement and necessary adaptations of methods have been discussed. Holzinger (2005) claimed

Leitner, et al. 163

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

 4

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

that it is very important to know which usability method to select. Ferreira et al (Ferreira et al, 2007)
give insight into the changes of the XP process to better integrate UCD work. They argue that 1.
iteration planning affects UI design, 2. the development iteration drive the UCD activities, 3. usability
testing results in changes in development and 4. that agile development changes the relationship
between software developers and HCI engineers. Finally Wolkerstorfer (2008) discussed the idea of
adopted personas (adopted to better fit XP), expert evaluation (the adoption to XP was that the expert
feedback given was presented in XP-story style cards), and automated usability evaluations included
in the unit-test system as a method-mix to provide flexibility for this selection.

Overall, the current state of the art especially shows a lack of adequate user-centred methods for agile
settings. Although work has been directed to usability methodology in agile settings so far no
particular improvement and necessary adaptations of particular methods have been presented. With
this work we extend the current state of the art by proposing particular improvements of usability and
user-centred methods in order to be more usable in agile teams and further more accepted by
programmers. We try to close this gap by postulating necessary adaptations to certain usability
methods.

In the next section we present the study setup of the conducted study on programmers high-level goals
(values) and discuss the results presented in as a Hierarchical Value Map (HVM). On the basis of
these results we then discuss the necessary adaption towards goal-oriented usability methods for agile
settings.

3. Study: Programmers high-level goals (values) in XP settings
This study was done to better understand programmers in agile teams in order to adapt and introduce
usability methods. We start with the definition of the study’s goals and proceed with a reflection on
the method that we used (“laddering interviews”) and its underlying theory: the means-end theory.

3.1 Study goals

This study was conducted to uncover the motivational aspects of agile settings. In particular the
studies goals are:

• Identify programmer’s high-level goals (values), corresponding attributes and consequences
as perceived by agile developers.

• Display the results in a visual way in order to show correlations between attributes,
consequences and high-level goals (values).

• Align our study’s results with existing knowledge and postulate new findings in reference to
agile team perception.

3.2. Hierarchical value maps and laddering interviews

Hierarchical Value Maps (HVM) are based on the means-end theory and represent users´ underlying
cognitive structures when using a product. HVMs are built to identify important meanings that
consumers associate with products (Reynolds, 2001). Overall, the means-end theory distinguishes
three abstraction levels of meanings: attributes, consequences and values. First, attributes are on equal
terms with characteristics of a product (e.g. a hard disk on a mobile multimedia product).
Consequences are more abstract and describe possibilities offered by the product’s characteristics;
hence, the product is enabling the user to execute particular actions and behaviours (e.g. the hard disk
of a mobile device may be used to store certain amounts of songs, which may then be shown to
friends). Lastly, values represent abstract meanings, motivational constructs and beliefs that are
directly tied to emotions (e.g. presenting a song-collection to a friend is entertaining and makes
someone happy). As a result the means-end theory creates links between the different levels of
abstraction and shows which attributes are important to users and to what consequences and values
these attributes relate. The link between attributes, consequences and values is referred to as a Means-
End Chain (MEC).

Leitner, et al. 164

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

 5

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

The methodology has its origin in marketing research and was used – as the description above
highlights – to link basic product features to high-level goals (values). However, we have used the
method for different purposes and concluded that under certain restrictions it is as well applicable for
the purpose of this study, which is not dedicated to particular product but to an organisational setting.

Different problems have been reported in reference to laddering and means-end theory depending on
the way HVMs are used3 (Grunert and Grunert 1995; Gutman, 1997). These problems mainly occur
when HVMs are used as a representation of cognitive structures that are used to explain or predict (for
instance) buying behaviour. In our study – in contrast to this “cognitive view” - we use a HVM that
represent a “motivational view” that gives a deeper insight to a specific area – in our case agile
development – without claiming any power to predict or explain behaviour. HVMs that are used as a
“motivational view” (which is how the authors interpret the results of this study) mainly avoid the
reported problems (Grunert and Grunert 1995; Gutman, 1997).

3.3. Study setup and participants

We conducted semi-structured, qualitative, “laddering” interviews with 10 participants. We chose this
method as it was designed to extract relevant means-end chains and values related to a product or
service. We had already used the method in the realm of mobile multimedia and experienced it as a
powerful tool for the extraction of particular behaviours and motives. Respondents were in the age of
25 to 40 (mean 33) and professional programmers. All participants were male and were at the time of
the interview an active member of an XP developer team. The programmers interviewed were not part
of the same agile development team; in contrast they were members of different agile teams (working
even in different companies). As mentioned in the introduction of this paper, this study is part of a
project in which the authors are collaborating with an agile developers team in order to orchestrate
usability methods with agile structures. It is important to mention that for the interview series no
programmers of this particular project were interviewed. Instead all participants were recruited from
project external sources.

To create a better understanding of the methodology that were used, the next chapter gives an
overview on the interview conduction as well as on the data analysis phase.

3.4. Interview conduction and data analysis

To indicate how Laddering interviews are conducted the following example taken from the study at
hand is provided:

Interviewer: How do you personally perceive the XP team setting, how would you describe the XP
setting?

Interviewee: I think it’s a pinpointed work setting. [Attribute: “pinpointed”]

Interviewer: Why is this important to you?

Interviewee: I like this as this gives me the impression to work on something qualitative, something
that is more likely to be used. [Consequence: “increase quality of the product”]

Interviewer: Why is this important to you?

Interviewee: It’s somehow that I feel my work is honoured.

Interviewer: Why is this important to you?

Interviewee: It’s a kind of award and appreciation to my work. [value: “appreciation / reward”]

The interviews talking to 10 participants provided us with 33 valid interview sequences - like the one
described above - starting from attributes (“how do you personally perceive the XP team setting?”)
over consequences to values (“why is this important to you?”). Note that an interview sequence was
considered as valid if it was started by an attribute, contains at minimum one consequence and

3 The authors do not consider any further discussion on methodological issues in relation to means-end theory as relevant for

the focus of this paper.

Leitner, et al. 165

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

 6

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

terminates in a high-level goal/value – the interview sequence was considered as invalid if it failed to
terminate in a high-level goal/value due to different reasons, e.g. the respondent was not able to
formulate a high-level goal. Overall, there were 4 invalid interview sequences that were not taken into
account in data analysis. One interview sequence is also called a “Ladder”, describing the
subsequently raised level of abstraction in the interview sequence.

From answers to Content Codes: The next step in the analysis procedure was to merge the 33 valid
interview sequences. In this step similar answers were grouped and summarized in certain categories,
so-called “Content Codes”. The challenge in this step was to identify answers with similar meanings
among respondents and to find meaningful names for these categories (“Content Codes”). For
instance, answers from respondents that refer semantically to the attribute “pinpointed” were
classified under one Content Code, even if each of the respondents had named it by different wordings
(e.g. “very accurate” and “exactly defined” would be classified under one category as they refer
semantically to the same quality of the object in question). The result of this step was an overview of
several groups of attributes, consequences and values that were mentioned by the participants and
clustered by the authors. The groups are summarized in Table 1. Overall we identified 5 groups of
attributes, 12 consequences and 4 groups of values. For each group we chose a meaningful name
representing similar types of answers.

 Attributes Nr.
1 challenging 6
2 flexible and adjustable 3
3 team-oriented and communicative 12
4 pinpointed and quality enhancing4 7
5 easy and relieving 5

 Consequences

6 create something new 2
7 like diversified work 3
8 like challenging work 4

9
work on a democratic basis (communication and
feedback) 8

10 define exact goals and pieces of work 2

11
work on something valuable/qualitative (enhancing
quality) 7

12
work within a simple / changeable process /
environment 6

13 work on interesting / personally preferred things 2
14 like felt progress of work (productivity) 8
15 avoid errors 2
16 learn new things/solutions at work 10
17 more motivated / engaged 6

 Values (taken from Rockeach’s Value List)

A ambition / professional and personal advancement 12
B appreciation / reward 3
C satisfaction 5
D happiness / relief / relaxation 13

Table 1: Content Codes are categories summarizing similar respondent’s answers. The last column
indicates the number of answers that were classified in this category.

4 The expression “quality enhancing” summarizes participant’s comments, which indicate that agile setups enhance the

ability to develop a software product with a higher quality (in comparison to non-agile settings).

Leitner, et al. 166

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

 7

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

From Content Codes to Ladders: In the subsequent task this classification and grouping of answers on
the basis of Content Codes allows the identification of the most relevant means-end chains. As
discussed above, a means-end chain describes the correlation between attributes, consequences and
high-level goals (values). In other words a means-end chain describes how a particular attribute, for
instance an organisational structure that is perceived as pinpointed and quality enhancing, is
supporting a particular consequence, for instance the ability to “increase the quality of a product” and
finally is terminating in a certain high-level goal (value), for instance in the feeling of “happiness and
relief”. Note that a means-end chain is a result of several Ladders (interview sequences).

Once Content Codes were defined, each participant’s interview sequences were translated into a
sequence of Content Codes. Table 2 indicates a respondent’s (respondent 2) interview sequence
already translated to Content Codes. The proper translation of the Ladder displayed in bold characters
indicates that respondent 2 stated that XP programming in his opinion is “team oriented and
communicative” (Content Code 3). This is important to him as he “likes diversified work” (Content
Code 7). Further, this is important to him as he “likes the felt progress and felt productivity” (Content
Code 14), which is enhanced by the team-oriented and communicative setting of XP. Finally the felt
progress is important to him as this increases his feeling of “satisfaction” (Content Code C). Note that
Ladders are not bound to any particular length, however, each Ladder starts with an attribute,
succeeds with one or more consequences and terminates with a high-level goal (value). In the given
example the attribute (“team oriented and communicative”), as well the two consequences (“like
diversified work” and “felt progress and productivity”) support the value “satisfaction”. This means
that every item of a means-end chain is important to support a specific value. However, some of these
items are directly “connected” to a value, some of them are indirectly related to a value (In the given
examples “satisfaction” has a direct relation to “felt progress and productivity” and two indirect
relations to “like diversified work” as well as to “team oriented and communicative”).

Attribute Consequences Value

4 6 8 C
3 15 16 A
3 7 14 C

Table 2: Respondent’s 2 interview sequence transformed to Ladders indicating the Content Codes in
which the answers where classified.

Implication Matrix: Identifying means-end chains on the basis of several Ladders follows a pre-
defined procedure (Reynolds, 2001). The categorized total amount of 33 Ladders was summarized by
the so-called “Implication Matrix” as shown in Table 3. This matrix indicates the number of direct
relations between the particular Content Codes in the total expenditure of Ladders. Once the
Implication Matrix is constructed one is able to identify the most important nodes. In Table 3 the
Implication Matrix indicates all relations higher than 2 (marked in grey). This is the cut-off level we
chose for the given study. This means that relations are considered as relevant if at least two Ladders
named by respondents show a direct relation. To analyze one starts with the first row in the
application matrix observing nodes with a number of relations higher than the cut-off level. For
instance, in Table 3 junction 2/14 shows a number of 2 direct relations. Further, one skips the row to
Content Code 14. Again, node 14/A shows an amount of relations higher than the cut-off level. The
constructed means-end chain is: 2, “flexible and adjustable” (attribute) – 14, “like felt progress of
work and productivity” (consequence) – 4, “ambition / professional and personal advancement”
(value).

Leitner, et al. 167

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

 8

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

 attributes consequences values
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 A B C D

1 1 2 2 1
2 2 1
3 2 4 1 2 3
4 1 1 1 2 2

5 1 3 1
6 1 1
7 1 1 1

8 1 1 1 1
9 1 1 1 1 2 2

10 1 1
11 1 1 1 1 3

12 2 1 1 2
13 1 1
14 1 4 1 1 1
15 1 1

16 1 1 4 1 3
17 1 1 2 1 1

Table 3: Implication Matrix: From Content Codes and Ladders to means-end chains and the HVM.
Arrows indicate the construction of one “mean-end chain” on the basis of the implication matrix.

Other means-end chains are constructed similarly and are displayed in the HVM. In this study we did
consider a “cut-off” level of 2 meaning that attributes, consequences and high-level goals (values)

are considered if they exceed two mentions (entries marked in grey).

In this manner the whole HVM (see Figure 1) was constructed. Doing all relevant nodes of the
Implication Matrix where taken into account (= all nodes that show a number higher than the cut-off
level, in Table 3 highlighted in grey). The HVM is a visual summary of all relevant relations and
important Content Codes (Figure 1). Note that Content Codes with no relevant relations are not
further considered (In our case Nodes below 2). Further details on the analysis process are presented
in (Reynolds, 2001).

3.5. Study Results

On the basis of that analysis procedure the visual layout in Figure 1 was derived, representing the
Hierarchical Value Map for XP Programmers. It describes the most dominant answers grouped and
classified by the defined Content Codes. Note that overall the interview series with the 10 respondents
produced 33 Ladders (One participant constructed more than one Ladder). Furthermore only the
groups of answers (Content Codes) with a number of mentions higher than the cut-off level are
displayed in the Hierarchical Value Map meaning that only the strongest correlations between Content
Codes are considered in the construction of the HVM.

Leitner, et al. 168

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

 9

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Figure 1 – Hierarchical Value Map for XP Programmers. At the bottom the named attributes are

displayed, in the middle the resulting consequences and at the top level the high-level goals (values).
The digits in the body of the items indicate the number of answers that are categorized under this

Content Code (Compare to Table 1). The thickness of arrows indicates the strongness of the
correlation between the items (the thicker the stronger a correlation – Compare to Table 3). Note that

for reasons of readability the described Content Codes in Table 1 are abbreviated.

Figure 1 gives an overview of the relevant items that were extracted of this interview series. Overall,
the HVM gives a very personal view of programmer’s perception of XP settings. As general
conclusion we are able to state that XP is highly people centred and emotionally satisfying due to its
team and organisational structure. The most important and interesting facts of this study on high-level
goals and values are summarized in the following way:

Team orientation and inter-team communication: Figure 1 clearly indicates the most important fact
influencing the perception of XP settings is the communicative and team-oriented work setting. This
basic attribute supports a) the work on a democratic basis, which is heavily important to programmers
as it provides several channels for feedback on their own work and b) due to the dynamic nature of the
XP setting it gives programmers the impression to be able “to learn and find new approaches”.

Learn and find new approaches: This consequence was identified as the most important consequence.
In the interview series the study participants expressed that working on a “collective code” provides
possibilities to access colleagues and co-workers solutions on particular problems. Further and on the
basis of participant’s comments and statements “pair programming” – a more interactive way to learn
from co-workers - was perceived as a “forum” to learn and benefit from each other.

Ambition (professional AND personal achievement): As indicated in Figure 1 the study series
revealed that XP settings are able to benefit programmers beyond the professional working borders. In
the interviews participants expressed that by this flexible work setting they are able to align their work

Leitner, et al. 169

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

 10

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

to their personal interests. This lead to a perception of achieving something in a professional but as
well in a personal way as the setting is able to support personal interests and ambitions.

The findings displayed in the Hierarchical Value Map confirm the results found in other studies.
Especially findings of Whitworth (2007) who indicated that team-awareness, motivation and
enhanced effectiveness and increased self-esteem are one of the most important points in agile
settings. Other findings referring to satisfaction and better self-image are related to the findings of this
study. However, by applying the means-end theory and using laddering interviews we tackled this
area of research with a new and fruitful approach. Our study clearly provides new insights by
structuring the findings in attributes, consequences and values. Secondly, an added value of the
hierarchical visualization (=HVM) is identified, which shows linkages between attributes,
consequences and high-level goals (values) in a structured way.

In the following step we use these findings on high-level goals (values) and motivational aspects of
agile programming to discuss the use and necessary adaption of usability and user-centred methods in
agile team settings.

4. Impact on Usability Methods in Agile Teams

4.1 Agile-oriented Usability Methods

In this section the study results are used to discuss different enhancements of usability methods for a
better application in agile setups. The objectives are twofold:

a) We discuss the necessary adaptation and positioning of usability methods upon the results of
this study on programmers values. In this chapter we define a strategy of how to integrate and
adapt the usability methods in order to support the programmer’s goals. In order to do so we
elicited the most potential programmer values and motivational aspects from the foregoing
study from the current point of view. For a deeper discussion about value impacts on the use
of user-centred methods a broader range of values can be taken into account. For the current
study we aim to consider the most predominant values for our purpose.

b) As mentioned in the introduction of this article the described study on programmer’s values is
part of a project dedicated to the orchestration and enhancement of usability methods in agile
teams. In the following chapters only the usability and user-centred methods that are used in
this project are discussed, which are the following (compare to [Wolkerstorfer, 2008]):

• Personas: These are archetypical descriptions of real users, representing the target user
group. Personas are often described in a narrative way and are designed to help software
developers to get a better understanding of the real end-user they are developing for
(Pruitt, J. and Adlin, 2005).

• Usability evaluation and ad-hoc usability (expert) evaluation/input: These are ongoing
usability reports (of the currently available solution) and as well ad-hoc inputs on current
issues in development (given orally or face2face or via video or audio-conferencing).

• Automated usability evaluation (system evaluation) as extension to unit tests: These are
test cases that are integrated to the nightly builds. These tools should be able to indicate a
certain level of usability of the current version. For this usability method we draw some
principle implications but do not go in any detail due to the lack of practical experiences.

For our purposes these methods need to be adapted to the specific agile context in order to be better
aligned to programmers’ goals. The overall objective is to position these adapted methods in a way
that leads to a higher acceptance level and an increased use (for teams that have no specific team
member working on usability).

In order to enforce our methodological suggestions we discuss practical experiences that we gathered
using “Personas” and “Usability evaluation and ad-hoc usability input” in practise. We are aware that
this feedback is no valid proof of the methodological improvement suggested by this paper, however
we believe that these short case studies provide a good insight and support our arguments. Note that

Leitner, et al. 170

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

 11

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

for automated usability evaluation (AUE) no practical experiences are available at the moment. For
this part we draw principle conclusions without any further discussion.

4.2. Implications and Conclusions for Usability Methods in Agile Teams

For each of the usability method defined above particular potential and necessary adaptations are
required. For each of the methods that are discussed in the following paragraphs we elicited the high-
level goals (values) that were found in this study and that have the most potential impact on the
methods from the current point of view. On the basis of these selected results we conduct the
following discussion. We are aware that for a broader discussion several values of the foregoing study
can be used, however, for the purpose of this study we stick to the most dominant ones. We are
further aware that these suggestions need to be evaluated in the field before we can draw any final
conclusions. In general and on the basis of this paper a more detailed study evaluating the suggested
improvements needs to be conducted.

Personas: In order to use personas in agile settings this methodology needs to be adjusted towards a
more flexible use in the project setting. The traditional definition of personas foresees no changes to a
defined personas description. In classical development process the personas are defined once
(typically at the beginning of a project) and are not changed during the project. This method is too
rigid for XP projects when it is used in its traditional form.

Personas can be used to focus on the programmer’s consequences of “visible progress” and “increase
quality of the product” in the following ways:

• Visible progress: It is very important for programmers to see the progress of their work. Static
personas descriptions do not support this programmer goal. The implication is that personas
need a list of “usability problems” (or something similar) that needs to be updated according
to the work done by the developer team. This feedback serves as a “visible progress” as the
list of usability problems for a specific personas decreases due to a checked-in solution.
Likewise the usability problems of a persona could as well be added due to a current solution
that was checked in. This would as well lead to a more visible progress in reference to
usability problems.

• Increase quality of the product: Overall we argue that the use of personas in agile team
settings supports programmer’s aim to increase the quality of the product. Whereas in the
interview study “quality of code” was mainly used as an indicator of quality, we believe that
personas (or usability in general) can serve as alternative “metric” of quality of a software
product in XP setups. In order to do so the persona marketing method must be enhanced (e.g.
personas can send e-mail to programmers or personas can communicate over the
programmer’s mailing list discussing progress of the solution). Such approaches would
introduce a new metric of the quality beyond “quality of code” (which is of course an
important metric – however, new ways of quality assurance can be introduced by this way).

To strengthen these conclusions we report the following practical experiences using personas in agile
settings5: Applying this method in our project on user centred-methods in agile setups we were using a
quite traditional personas approach for the agile developers team. After a while we noticed that we
used too little marketing and that we failed to adapt the personas description in a flexible way. The
result was that the personas were not visible and therefore not used or considered as important in the
project as we expected them to be. As extreme example of our case study the personas description
posters were removed from the developer’s room. We are aware that this is just one experience of a
particular project and the reasons for the removal have not been discussed in detail with the agile
programmers team, but we believe that this example is a quite striking describing the potential (mis-)
use of personas in XP projects.

5 Note: These observations were collected in a project that used agile development (as mentioned in the introduction of this

paper). In this project the personas method was used without the suggested improvements claimed in this paper.

Leitner, et al. 171

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

 12

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Usability evaluation and ad-hoc usability input: Traditionally, usability reviews done in structured
ways result in a usability report that might be considered at various stages of a software project. Such
reports may have numerous pages listing different problems and solutions. We believe that this form
of input is not suitable for agile settings. Likewise the following programmer’s values are not
considered by this method:

• Simple project structure: Usability input has to consider the need and the expectation of a
simple project structure. Highly elaborated usability reports are not supporting this goal. In
contrast usability input needs to be selective in the form of little and well-structured pieces.
We propose to feed the developer team with particular “usability user stories” and
possibilities of ad-hoc usability input. This fits the programmer’s expectations better than
whole usability reports (with a lot of pages to consider and to disseminate, etc.)

• Work on a democratic basis: Referring to ad-hoc usability input the usability experts need to
be accepted as “full project team member”. We argue that by imposing usability reports on
the team the developer’s sense of a “democratic setting” is decreased. In contrast a
bidirectional relationship has to be established.

To strengthen these conclusions we report the following practical experiences for the use of usability
reports and ad-hoc expert usability input6: Working with the agile programmers we applied both,
usability reports and ad-hoc input that was requested by programmers whenever they need the input.
We noticed that the programmer teams did not value large usability reports in classical forms as much
as expected (note: often a 40 pages report). Programmer’s feedback was that they perceived this input
as too exhaustive. In contrast, usability bugs reported like user stories had major impact (and were
often considered). We got very positive feedback on this form of usability expert input e.g. via given
via Skype or face-2-face. We got the impression that orally discussed problems (in contrast to written
formal reports) satisfy the attributes of team-orientation and “simple project structure” in a much
better way. An other form of creating usability awareness with major impact was observed during
usability testing. As has been found elsewhere, programmers who were physically present during
usability tests, watching and observing users dealing with their software, were observed to be quite
concerned with usability.

Impact of automated usability evaluation (AUE): Automated usability evaluation can be a fruitful
instrument to create a metric on the basis of ongoing code development. The idea of this setting is to
check usability automatically as extension to unit tests. This could serve – similar to personas
descriptions – as a qualitative metric of increased or decreased usability index. We argue that this
would support the programmer’s consequences “visible progress” and the wish to “increase the
quality of the product”. We conclude automated usability evaluation tools should be an add-on to the
unit-tests with visible output in relation to usability metrics for each nightly build report (or similar).
A set of metrics for each build (graphs or numbers) has to be introduced that communicates results to
programmers in order to guarantee awareness. In this way AUE should be included in the workflow of
the developers. As mentioned above, for these suggestions no practical experiences are reportable at
the moment.

Summarizing we conclude that there is a need for a well-defined mix of usability methods (Without
claiming that the methods that are discussed above constitute the whole range of methods that should
be used in a setup – of course there should be more methods brought together). However, applying
traditional usability methods in agile setups might lead to mis-use or non-use of these methods. In
contrast, different adapted methods should be available that can be used flexibly by programmers.
Overall the strategy is not to apply as many methods as possible within the agile setting but a good
and well-defined range of methods that are adapted to the context of use accordingly.

6 Note: These observations were collected in a project that used agile development. In this project usability evaluation was

conducted without the suggested improvements claimed in this paper.

Leitner, et al. 172

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

 13

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

5. Conclusion and Future Work
We conducted a study on programmer’s values in agile settings. The results of this study were used to
discuss and adapt usability methods for the use in such agile settings.

With this study we are able to extend the current state of the art in two ways:

• Identification of programmer’s high-level goals (values): We confirmed and extended current
studies in the area of “perception of agile team settings” and introduce a new way of
visualizing different facts about XP programmer values. We conclude that “team-orientation”
is one of the most important facts about agile settings. Programmers like the fact that they are
able to “learn and find new approaches” and that XP settings highly support their ambition (in
a private AND professional sense). The presented HVM is able to show interrelations and
correlations between different findings, which further enhances the understanding in this area
of research.

• Adapt usability and user-centred methods for agile settings: We discussed the user centred
methods “personas” and “usability reporting and ad-hoc usability input” and discussed some
practical experiences in adapting them to an agile context. Our main conclusion is that these
methods (except ad-hoc usability input) are too rigid in their current and classical way of use.
Further, clear metrics need to be defined that communicate the progress in reference to
usability. This has to apply to all of the discussed methods. As there is little know-how
available so far on how usability methods need to be extended and adjusted for agile teams,
with this work we lay the basis for further research in the area of usability in agile team
settings by suggesting concrete and necessary enhancement of user centred methods and their
positioning in agile teams.

We are aware that our current observations of the applicability and of the added value of our proposed
adaptations of usability methods rely on qualitative observations and qualitative feedback of
programmers. As future work we are aiming at measuring the impact of these adapted usability
methods in a quantitative way.

5. References
Bjørnar Tessem, Frank Maurer, Job Satisfaction and Motivation in a Large Agile Team in Agile

Processes in Software Engineering and Extreme Programming, (Page 54- 61), 2007; DOI -
10.1007/978-3-540-73101-6_8; http://www.springerlink.com/content/gh18347t4172k769

Constantine, L. L., & Lockwood, L. A. D. (2003). Usage-centered software engineering: an agile
approach to integrating users, user interfaces, and usability into software engineering practice. In
ICSE 2003: Proceedings of the 25th International Conference on Software Engineering (pp. 746-
747). Los Alamitos: IEEE Computer Society.

Ferreira, J., Noble, J., & Biddle, R. (2007). Agile development iterations and UI design. In: Agile
2007 (pp. 50-58). Los Alamitos: IEEE Computer Society.

Göransson, B., Gulliksen, J., & Boivie, I. (2003). The usability design process – integrating user-
centered systems design in the software development process. Software Process: Improvement
and Practice, 8(2), 111–131.

Grunert G. Klaus; Grunert C. Suzanne; Measuring subjective meaning structures by the laddering
method: Theretical considerations and methodological problems; International Journal of
Research in Marketing 12, 209 – 225, 1995

Gutman, Jonathan; Means-End Chains as Goal Hierarchies; Psychology & Marketing, Vol. 14(6):
545-560, 1997

Holzinger, A. (2005). Usability Engineering for Software Developers. Communications of the ACM
48(1), 71-74.

Leitner, et al. 173

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

 14

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Holzinger, A., Errath, M., Searle, G., Thurnher, B., & Slany, W. (2005). From extreme programming
and usability engineering to extreme usability in software engineering education (XP+UE→XU).
In COMPSAC 2005: Vol. 2. Proceedings of the 29th Annual International Computer Software
and Applications Conference (pp. 169-172). Los Alamitos: IEEE Computer Society.

Hudson, W. (2005). A tale of two tutorials: a cognitive approach to interactive system design and
interaction design meets agility. Interactions 12(1), 49-51.

Kent Beck, Extreme programming explained: embrace change, Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, 1999

Law, Amy; Charron, Raylene; Effects of Agile Practices on Social Factors; Human and Social Factors
of Software Engineering (HSSE) May 16, 2005, St. Louis, Missouri, USA

McInerney, P., & Maurer, F. (2005). UCD in agile projects: dream team or odd couple? Interactions
12(6), 19–23.

Miller, Lynn and Sy, Desiree, Agile user experience SIG, in: CHI '09: Proceedings of the 27th
international conference extended abstracts on Human factors in computing systems, Boston, MA,
USA, pages 2751--2754, ACM, 2009

Norman, D. A. (2006). Logic versus usage: the case for activity-centered design. Interactions 13(6),
45-ff.

Pruitt, J. and Adlin, T. 2005 The Persona Lifecycle: Keeping People in Mind Throughout Product
Design (The Morgan Kaufmann Series in Interactive Technologies). Morgan Kaufmann
Publishers Inc.

Reynolds, Thomas J. and Olson, Jerry C.; Lawrence, Understanding Consumer Decision Making, The
means-end approach to marketing and advertising strategy; Erlbaum Associates, 2001

Rokeach, Milton, The nature of human values. New York, Free Press

T. Dyba˚ , T. Dingsøyr, Empirical studies of agile software development: A systematic review,
Inform. Softw. Technol. (2008), doi:10.1016/j.infsof.2008.01.006

Whitworth, E. and Biddle, R.; The Social Nature of Agile Teams; Agile, 2007, AGILE‘07,
Conference, (26-36), 2007

Wolkerstorer, P.; Tscheligi, M.; Sefelin, R.; Milchrahm, H.; Hussain, Z.; Lechner, M.; Shahzad, S.;
Probing an agile usability process; in: CHI '08: Proceedings of the 26th international conference
extended abstracts on Human factors in computing systems, Florence, Italy, pages 2151--2158,
ACM, 2008

Leitner, et al. 174

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

A logical mind, not a programming mind:
Psychology of a professional end-user

Alan F. Blackwell

Computer Laboratory
Cambridge University

Alan.Blackwell@cl.cam.ac.uk

Cecily Morrison

Engineering Design Centre
Cambridge University

cpm38@cam.ac.uk

Keywords: POP-I.A. social organisation and work, POP-I.C. health records POP-II.A. end-users

Abstract
This paper reports a case study of a specific end-user programming context, in which an electronic
patient record system was being customised by a healthcare professional. Our research involved
making an unusual intervention, employing a professional programmer as a quasi-experimental
participant, in order to explore and contrast the different ways that the same situation was conceived
by an end-user programmer and by a professional programmer. We found a range of pragmatic
strategies that were employed by the end-user, causing her to resist some conventional views of how
programs and source code should be interpreted. Rather than different ‘cognitive styles’, we believe
these differing mental models can be accounted for by the context of the practical work the two need
to achieve, and the organisational contexts within which they work. We make some observations and
recommendations about the design of tools for end-user programmers, extrapolating from our in-depth
observation of one particular product.

1. Introduction
This research investigates a context in which a complex software product is expected to be
customisable by (some of) its users. The customisation facilities offered by the product include a
range of scripting and programming facilities, some quite sophisticated. Although the product supplier
intends that end-users should be able to use most of the customisation facilities, in practice some of
these facilities would be more familiar to professional programmers. We present a case study in which
we compare the experience of a non-programmer end-user who is responsible for local customisation
of this product, with the experience of a professional programmer whom we employed temporarily in
order to carry out our research. The interaction between the two can be contrasted with the types of
situation studied by Segal (2005), in which scientific end-user programmers interact with professional
software engineers. In Segal’s research, the scientists being studied are confident programmers, but
faced challenges when asked to integrate their work practices into more structured software
engineering processes. In our research, it is the end-user who is most engaged with structures of
professional practice (in this case, healthcare rather than engineering), while not being familiar with
programming language concepts. In her own phrase, she has ‘a logical mind, not a programming
mind’.

From a psychology of programming perspective, it is well understood that end-user programmers and
professionally-trained programmers are likely to have different mental models of programming tools.
If that is understood, then one might expect that interaction between the two will reveal systematic
challenges. In this paper we are interested both in the pragmatic consequences of those challenges –
what can be done to assist such collaborations – and also in the opportunity to understand more about
the mental models on both sides, by analysing the content of the conversation.

Blackwell and Morrison 175

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

2. The Case-Study Context
We conducted this research in the Intensive Care Unit (ICU) of a specialist cardio-thoracic hospital,
over a period of three years from the summer of 2006 until 2009. At the start of this period, the
director of the ICU had agreed a contract to purchase and deploy an electronic patient record system
(EPR). In a research-active hospital such as this one, new clinical initiatives are routinely
accompanied by a research agenda. The ICU director therefore approached the University of
Cambridge to identify researchers likely to have an interest in EPR deployment, and a research team
was assembled via the Crucible network for research in interdisciplinary design. That team included
researchers in Management Information Systems, Social Psychology, Anthropology and Computer
Science. A number of studies have been conducted during the study period, but here we describe only
one of these, conducted primarily by the two authors.

The EPR that had been selected after a competitive tender was MetaVision ICU, a product from
Israeli company IMDsoft. Among the selection criteria applied by the ICU director, features
supporting end-user customisation were a high priority. The shortlisted candidates had included
another EPR product that had previously come to the attention of the End-User Software Engineering
research community (Orrick 2006), meaning that end-user programming was identified from the
outset as a research question of potential interest.

Over the following months, we observed the arrangements for deployment and commissioning of the
product, the product training conducted by IMDsoft personnel, the customisation of the standard
product to fit local practices, the operational training of the ICU nurses and clinicians, and the
transition from paper records in the ICU to full reliance on the EPR. We also continued to observe
over the next year as the system ‘bedded-in’, and became integrated into the ICU operation. In the
third year, we observed ongoing maintenance and customisation work as an aspect of the routine
operation of an ICU-based EPR. We also participated in convening a user group of other UK hospitals
that were deploying MetaVision. The user group meets biannually in Cambridge, and provides an
opportunity to compare the experiences of other hospitals to the one in which our case study has been
located.

3. Programming Intervention
In the final six months of this study, we decided to experiment with an unconventional research
technique, in order to gain a new perspective on end-user programming. By this stage, two members
of the ICU staff had assumed primary responsibility for ongoing customisation and systems
management of the EPR. The ICU director, a consultant anaesthetist, takes responsibility for medical
customisation, while the EPR manager takes responsibility for customisations related to nursing, and
for systems management. The EPR manager, C., had by this time become familiar with the limitations
of the product, and with the constraints that it placed on the kinds of customisation she could achieve.
In some cases, problems could be solved with assistance from IMDsoft technical support staff
(although often remotely, from Israel). In other cases, it would have been possible to commission
product customisation work from IMDsoft, but this was an expensive option, not anticipated in the
ICU operating budget, and had only been done once since the EPR had been deployed.

We therefore proposed that we should employ a professional programmer for a short period of time,
to provide an opportunity for a new research study. We advertised in a local forum for freelance
programmers, and recruited J., a programmer with broad experience of Visual Basic-like scripting
within a database environment, of the kind that the MetaVision system employed. We intentionally
recruited a programmer without prior experience of MetaVision, of ICU practices, or of clinical
computing more generally. The reason for this was that we wished to observe, record and analyse all
conversations between J. and C., as a situation where each of them would need to make their
understanding of the system very explicit to the other. We saw this as an opportunity to contrast the
mental model of an experienced end-user programmer with that of an experienced professional
programmer. We recorded all conversations between the two participants, and used those verbal
protocols as our primary source material for analysis. The main purpose of our research intervention
was thus to set up a situation in which we could elicit descriptions of mental models in a natural

Blackwell and Morrison 176

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

manner, rather than through think-aloud protocols. This research method is intended as a variant of
‘constructive interaction’ – a dialogue-based elicitation technique (Miyake 1986) that has previously
been applied with some success in HCI (Kahler, Muller & Kensing 2000)

Our research intervention, in addition to eliciting dialogue for later analysis, also provided us with an
opportunity to study a realistic professional situation. It is often the case that end-user programmers,
when faced with a specific technical problem, or a design task that is outside the scope of their
experience, will seek assistance from a more experienced or technically knowledgeable professional.
We believed that it was important to gain more understanding of this kind of situation, and that
observing a specific and well-defined task over a defined period of time would provide a reasonably
well controlled opportunity for doing so.

The specific problem indentified by C. as a focus for this intervention was the creation of a more
versatile reporting mechanism by which a paper report could be created with information about a
specific patient. MetaVision has many standard reporting facilities, all of which are customisable, but
it had proven impossible to create a particular report incorporating historical information on a single
patient in a readable format. (In a previous publication (Morrison & Blackwell 2009), we have
described the extent to which the ICU regularly customised its paper forms). The one piece of
customisation work commissioned from IMDsoft in the past had, in fact, been the development of a
particular customised report. However, the customisation of reports is a sufficiently common activity
that it was not desirable to have this amount of expenditure every time a report was customised. C.
had been disappointed, after that earlier experience, with the fact that the custom code created by
IMDsoft was not delivered in a form that she was able to further modify it herself. The practical
motivation for employing J. was therefore to observe the report customisation process, and if possible,
learn to do it herself in future. This meant that there were two practical objectives – one short-term, in
which J. might create a new customised report, and one long-term, in which C. might learn to create
such reports herself in future. There is clearly a degree of conflict between these. On reviewing a draft
of this paper, J. wished to emphasise that he could easily have achieved the first goal, and that it was
the introduction of the second that gave rise to many of the results we report. This is precisely the
dynamic that we consider to be interesting. As noted, C. had already commissioned a programmer to
carry out system customisation, but now wanted to learn how to achieve the same results herself. We
believe that this experimental situation, although to some extent manufactured through our
intervention, is also typical of end-user programming experiences.

Our research budget provided resources to employ J. for a total of five days. Approximately 40% of
this time was spent away from the ICU, carrying out background research into the MetaVision
features and architecture, technical preparation and some exploration of potential approaches. The
remainder of the time was spent in C’s office at the ICU. The second author observed all of the
periods in which C and J worked together, and recorded all conversations for later transcription. Both
authors observed the final day of work, at which the results were reviewed and ‘handed over’. At the
close of the day, C and J were interviewed together, reflecting on their experience of the project. As
before, these conversations were recorded and transcribed.

After transcription of all the above conversations, the two authors independently coded the transcripts,
and then jointly reviewed those codes and their interpretations. An initial analysis of the project
results has been prepared for a clinical audience (Morrison et.al., in press). The draft manuscript
presenting results of that analysis was reviewed by C., and each author discussed with her the
interpretations that we had drawn, modifying any misinterpretation or misunderstanding. The
remainder of this paper presents the findings of our analysis as they relate to end-user programming
more generally, rather than the specific clinical context. We also draw on observations made through
the previous years of our case study, and on field recordings and notes by both of us, where necessary.
As with our earlier report for a clinical audience, this paper has also been reviewed in manuscript by
C. and by J. Both of them responded with detailed comments (C. returned a marked up manuscript),
and we have taken those comments into account in our analysis. In the following text, we specifically
indicate those situations in which we had initially drawn a particular interpretation, but one or both of
them asked us to correct it.

Blackwell and Morrison 177

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

4. Findings

4.1. Organisational context

As reported in more detail in (Morrison et.al., in press), this study revealed unanticipated aspects of
the role played by end-user programmers within an organisation. Our observations reinforce the
importance of the ‘EUSES’ view as advocated by Ko et al. (in press), which is that end-users must
engage in all aspects of end-user software engineering, rather than simply end-user programming.
However, the software engineering factors that arose in our research suggest some alternative
emphases to those described in the survey by Ko et al.

The main theme of our findings in this area could be summarised as ‘end-users have users too’.
Despite not being professionally trained as a programmer, C. has assumed responsibility within the
ICU for operation, maintenance and customisation of the EPR. Because she is the person with the
most technical knowledge of the system, and because the system is known to be customisable (and to
have been customised by her), she receives ‘feature requests’ from the other ICU staff, with proposals
or recommendations for further customisation. In responding to those requests, she must not only
consider programming work, but also business process analysis, user interface design, and many other
aspects of software engineering that in a professional software engineering team are considered to
require special training and experience for people taking particular roles within the team.

Once C. has identified necessary changes, either in response to requests, or as part of her own
continuing refinement and enhancement of the system, she must plan the deployment of those
changes. As with many end-user customisable systems, the customisation interface is a part of the live
system. However, an ICU operates on a 24-hour, 365-day basis, as with many critical business
systems that have dedicated software engineering teams. In such businesses, it is normal to maintain
three parallel systems: one ‘production’ system that business users actually interact with, one ‘test’
system configured in the same way as the production system, and one ‘development’ system that the
programmers interact with. Complex versioning and configuration control is maintained between
these systems, with specialist teams dedicated to each of the different systems, and to the overall build
and release process. In our case study, C. was responsible for all three kinds of work, but using one
system for all of them, and with few tools for version management and configuration control. As
noted in our earlier publication for the clinical audience, this situation is far from ideal, and ought to
be addressed in future tools for end-user software engineers.

Furthermore, it should not be assumed that the same tools used for these purposes in professional
software development organisations will also be appropriate in an end-user software engineering
context such as this. C. herself, despite having users of her own, does not regard herself as a
professional software engineer. When she engages with IMDsoft support staff, or in her collaboration
with J., she approaches her work very much in the manner of an end-user, with user concerns her key
focus. This places her constantly in a kind of border-land, where none of the people she interacts with
are exactly peers. This is another respect in which she is unlike professional software developers, who
usually work within teams of professional peers sharing their own assumptions and practices. At
many points in our observation, it was clear to us that C. did not share the assumptions and practices
advocated by J., and had no desire to do so. For a new software engineering tool to be of value to her,
it should be possible for her to adapt that tool to her particular working practices, rather than requiring
her to abandon them.

4.2. Mental models and motivation

In analysing the conversation between C. and J., we were particularly interested to identify differences
in the way that they conceived of programming tools and the programming task. This aspect of our
findings is the one that is most clearly related to established research concerns in psychology of
programming.

We were impressed by how actively C. resisted the conventional programming conceptions of system
behaviour. She described large parts of the system behaviour as involving technical facilities that were
‘in the background’. Most of the operation of the underlying database management system, for

Blackwell and Morrison 178

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

example, fell into this category. She was aware of certain behaviours of this system, for example in
carrying out data integrity checks, but did not want to be distracted by explanations or investigation of
those behaviours. She clearly regarded these as important, but as lying within the domain of
responsibility for IMDsoft. It would not be a good use of her own time to learn about aspects of the
system that other people will be responsible for. We found that this highly pragmatic attitude of a
busy and responsible person was in contrast to a typical technical attitude, occasionally expressed by
J., which is that aspects of system behaviour are interesting in themselves, and that it might always be
useful to know a little more about them for future use. C. regularly referred to these aspects as being
‘esoteric’ interests.

In part, this distinction is encouraged by IMDsoft, whose product documentation draws a clear
distinction between the system model that must be understood in order to do customisation work, and
the underlying technical behaviour of the system. As a company with long experience working with a
particular community of end-user developers, their design approach seems to be an appropriate one.
In the psychology of programming community, this has been described as ‘the black box inside the
glass box’ (du Boulay, O'Shea & Monk 1981). However the work of du Boulay et al. was oriented
toward the teaching of conventional programming languages. In this case, the end-users do not want
or need to know about a conventional programming model, but a customisation model. For the
purposes of tool design, the glass box must provide a virtual machine suitable for customisation work
– but there are challenges in achieving this in the MetaVision product, as we discuss below.

C. is quite willing to spend time learning about aspects of the system that may not be directly relevant
to her current task. In this respect, she is not completely captive to the ‘paradox of the active user’
(Carroll & Rosson 1987), and is able to make attention investment decisions with longer term
payback (the attention investment model, previously presented at PPIG, describes the way in which
some people choose whether to construct abstract/programming models of a task based on assessment
of future payback – see Blackwell& Green 1999, Blackwell 2002). C described a conscious strategy
of finding opportunities to make basic modifications in an area where she hadn’t worked before, in
order to open up possibilities for future enhancements, or understand the potential for new uses of the
system capabilities within the ICU. However, these are very specific decisions, such that the various
factors involved in the attention investment model become partitioned between areas of the system
functionality. There are some aspects of the system where C. has done a significant amount of
‘tinkering’ (Beckwith et.al. 2006), and as a result has developed a high degree of self-efficacy with
regard to that particular aspect. But at the same time, there are areas of system functionality that she
avoids, and where she was not confident to make changes or ‘tinker’. In terms of the early ‘garden
shed’ analogy for tinkering behaviour (Blackwell 2006), C. is happy tinkering in certain parts of the
shed, but there are others that she avoids.

Perhaps the most distinctive aspect we observed of the approach taken by C. to the end-user
customisation tools was the way that she approached reading of the source code itself. A number of
the MetaVision facilities (some report generation tools, a ‘query wizard’, event trigger rules and so
on) use relatively conventional programming language syntax, generally quite closely related to
Visual Basic. After several years of use, C. had become perfectly accustomed to reading, modifying
and adapting chunks of this code, but the way in which she did so was quite different to J’s reading of
the same chunks. Whenever we observed the two of them reading and discussing an extract of source
code, it seemed that any given word of text that was considered interesting by C. would not be
considered interesting to J. and vice versa.

When reading source code, C. generally found the identifier names meaningful, and treated them as
most likely to reveal the function of that code segment, and offer clues on how to modify or customise
it. She did not generally comment on programming language keywords, control constructs, type
declarations or syntax elements. Our impression was that these aspects of the code were relatively
uninteresting, were not perceptually salient, and perhaps even annoying distractions. At one point
where J. drew attention to them, she commented that these were typical of his ‘esoteric’ interests. J.,
on the other hand, like most professional programmers, was adept at reading past the (technically
speaking, arbitrary) names chosen for identifiers, in order to read the underlying structure and

Blackwell and Morrison 179

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

behaviour of the code. In his reading, it was the keywords, control constructs, syntax and so on that
were the important topics of conversation.

Of course we are not suggesting that either C. or J. are unaware of the importance of those aspects of
the source code that the other found more salient. In particular, the way that we had set up our
research intervention had left J. with a partial impression that we wished to study him ‘teaching’ C.
more about programming (we address this further below). This may have caused him to emphasis
formal features of the language in discussion precisely because he was concerned that she had been
paying insufficient attention to them. Nevertheless, we believe that the design of programming tools
for end-user programmers may have paid insufficient attention to their need to focus on their own
domain as the primary feature of the program representation.

There is a further possibility that these different orientations toward the code arise from applying
different personal styles within the professional context, of the kind reported by Wray (2007) and
Hudson (2009). As might be expected from their respective professional backgrounds, we found that
C. was more likely to describe the functions of the system in terms of people, and in terms of
particular roles that people play within the operation of the ICU. In contrast, J. was more likely to
describe the system functions from an abstract perspective, describing not only technical features, but
even the illustrative examples he chose in terms of data ontologies and abstract functions. These
alternate perspectives are completely typical of the end-user versus programmer orientation, but they
also demonstrate a contrast between characteristically empathising and systemising styles, as
observed by Wray and Hudson. Furthermore, they exhibit a contrast between human/social and
computational thinking, as discussed by Blackwell, Church and Green (2008). As C. stated when
reflecting on her own cognitive style, this experiment has led her to believe that she has ‘a logical
mind, but not a programming mind’.

All of these factors lead C. to regard programming, and investing time in learning about
programming, as an activity that although it has extrinsic benefits, does not have intrinsic ones (Nash,
Church & Blackwell, submitted). She described herself as becoming ‘impatient’ in the course of the
collaboration with J., because he persistently discussed topics that appeared to her not to be relevant
to the work at hand. To some degree, this resulted from the central concern of the study, which was
the extent to which C. might be able to learn how to do work of this kind in future. Although this had
been an objective from the outset, time spent discussing ‘educational’ topics was also perceived by C.
as time in which she was not making progress toward the immediate goal of creating the report. As a
result, J’s priorities appeared to her to be motivated by an attitude to programming as having some
intrinsic satisfaction, independent of the results achieved. This contrast between the priorities of
technical and non-technical users has been a common theme in past work that has emphasised the
importance of providing tools for end-users that offer visible progress toward achieving the user’s
own goals, rather than teaching abstract principles with no clear relationship to user priorities.

4.3. The collaborative relationship

Although the collaboration that we set up between C. and J. was in many ways an artificial one
(created explicitly as a component of a research project, with an explicit research agenda, paid for by
research funding), we believe that the conversations were quite typical of settings in which short-term
collaborations occur between end-user and professional programmers. Furthermore, in those settings,
the quality of the collaborative relationship is of interest because it can have direct commercial value.
We therefore analyse this relationship more closely.

As noted in our description of the way in which the study was set up, there was a fundamental tension
between the immediate goal of creating a customised report, and the longer-term goal in which C.
would learn how to create such customised reports herself. The first goal required J. to carry out
conventional professional programming work, while the second required him to act in the capacity of
a teacher. As he observed when reviewing a draft of this paper, he does not have teacher training or
experience, so we could not have expected that he would find this aspect of the project easy. We agree
that it may be unrealistic to expect professional programmers also to be professional teachers of
programming. Nevertheless, this situation is one that arises relatively frequently in the experiences of

Blackwell and Morrison 180

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

end-user programmers. As end-users, they have often not received professional training in
programming. Instead, they acquire knowledge from a variety of sources, including programmers
such as J. who have relevant technical knowledge but no teaching experience.

Although almost certainly exacerbated by the artificial nature of the research project, we observed a
significant degree of discomfort in the collaborative relationship between C. and J. Based on the
discussion in the previous section, we believe that this arises to a large extent from the different
psychological styles that are characteristic of ‘programming’ work and ‘user’ work. As described by
Bucciarelli (1994), technical professionals work within an ‘object world’ rather than one of primarily
human relations. However in professional software development organisations, there are a number of
specific technical roles dedicated to bridging these two worlds, such as systems analysts, technical
authors, helpdesk operators and so on. Each of these professions has an established culture, tools,
methods and practices that allow them routinely to carry out this bridging work. In the case of an end-
user developer such as C., her professional role does not include the cultural repertoire of tools and
methods that support easy interaction with professional programmers such as J.

For his part, J. accepted his responsibility in part as an educational one, providing C. with valuable
skills that would enable her to be more effective when carrying out future programming work. Given
that the two had comparable professional seniority, this educational objective often amounted to a
clash of alternative intellectual styles. In the educational approach taken by J., the future development
needs described by C. could be achieved more effectively by adopting more abstract analysis and
problem-solving strategies – strategies that are completely characteristic of programming work.
However, as described in the Attention Investment model (Blackwell 2002), abstract strategies can be
expensive ones, requiring greater initial investment of attention, with potentially low return, or even
negative return. When pursuing the educational objectives in his collaborative relationship with C., J.
was therefore acting as an advocate of a more abstract strategy, attempting to persuade her that she
should adjust the attention investment decision factors that she already applied. In many of their
conversations, C. resisted this advice, saying that she would prefer to make progress on the specific,
concrete, problem that had motivated the project in the first place. For his part, J. tried to persuade her
that it would be in her long-term interest to address not just this particular problem, but the general
category of problems of this type, or indeed the general capabilities to be acquired by gaining
experience of the most general capabilities of the programming language.

In this last respect, the conversation between the two became a tutorial discourse, in which J. spent
time explaining the fundamental concepts of programming languages, such as classes and functions.
In doing so, he used the same kinds of example that are routinely presented in programming language
textbooks. To explain the notion of class type and aggregate relationships, he talked about the parts of
a car, and to explain functions, he constructed an example based on financial calculations. Although
these examples may have been effective tutorial illustrations of the necessary abstract principles, C.
was not necessarily motivated to acquire those abstract principles in the first place. The fact that the
tutorial examples were so far removed from her own problem domain exacerbated her impression that
formal aspects of programming were esoteric and irrelevant, and fuelled her impatience with the
collaboration as a whole.

After reviewing a draft of this paper, J. explained that he would certainly have preferred to use
teaching examples from the ICU itself, but felt that this would be risky, given the very limited time
that he had to become familiar with that domain. Although both collaborators felt frustrated by the
constraints arising from the short-term nature of our study, it is also typical of end-user development
dynamics, where it is always the case that the end-user is the person with the most complete
understanding of their own domain, and professional programming assistance, when available, will
come from people with less understanding of the end-user’s own work. However, even where J.
explored a particular approach in terms of C’s own domain tasks by re-implementing an existing
function (a common programming strategy), C. commented in her review of our draft paper that this
had seemed especially unproductive, when the time could have been spent implementing new
functionality.

Blackwell and Morrison 181

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Our study is open to critique, regarding the extent to which this collaborative relationship can be taken
as generally representative of end-user programming experiences. Although C. has extensive
responsibility for customisation, her experience specifically of programming is relatively limited. This
experiment, casting her in the role of a potential end-user programmer, was therefore not completely
typical of her work. J. also has extensive experience of working within client organisations, alongside
end-users, but has not in the past been expected either to teach programming skills to those end-users,
or to create productive collaborative relationships in such a short period of time. He commented that
his typical contracts would include time to learn about the environment before technical work starts.
Both entered into this experiment with an open attitude to collaboration, and it is likely that the
challenges they encountered in working together arose in part from the experimental constraints that
we had placed on them. Nevertheless, we believe that the experiment has been more illuminating of
actual professional practice than most laboratory studies, and that the combination of skills and
experience that we encountered within this specific professional situation is one that is often
encountered in real end-user programming contexts.

5. Implications for design
In earlier sections of this paper, we have noted aspects of the MetaVision tool that could be improved
to support C’s working environment and work processes. In a number of cases, such as the need for
change control and configuration management, these provide evidence for the importance of the end-
user software engineering perspective. End-user programmers, if working in a professional
environment, are very likely to need software engineering facilities like these. Failure to provide them
could be taken as a lack of respect for the professionalism of MetaVision customers, because
MetaVision’s own software engineers would certainly not be prepared to work without such facilities.
Many software companies are concerned to avoid this kind of attitude among their developers, which
has led to the practice described as ‘eating your own dog food’, where developers are required to use
their own products. In addition to the lack of change control features, we observed a number of
annoying deficits in the MetaVision customisation tools that would probably not have been
considered acceptable in professional development tools, such as screen space restrictions meaning
that it was not possible to view a complete form layout at the same time as running the form
customisation tool. We recommend that companies creating end-user programming tools should
regularly use those tools, rigorously comparing the features and limitations to those of the tools used
by the company itself.

We observed a number of issues related to the use of names in the MetaVision product. As discussed
above, it is identifier names that C. finds particularly salient when viewing source code of
customisation scripts. This suggests that the choice of identifier names is particularly important.
Unfortunately, customisable products with database back ends seem often to impose restrictions on
the choice of identifier names, and make it difficult to change these names, where they correspond to
aspects of the underlying database schema. We have previously noted the problems this caused during
the deployment of a student record system in Cambridge (Blackwell, Church Green 2008). In the case
of MetaVision, some identifier names can be altered when the system is first installed, but become
embedded through scripts over time, such that they are very difficult to change or modify. It might be
sensible to avoid this kind of premature commitment, by separating identifier names from the
behavioural relations they describe, so that they can be modified if necessary without breaking the
system.

We also observed some problems with the names of built-in functions, although these may have
arisen in part from the fact that the product was developed by engineers who were not native English
speakers. One example is that in MetaVision, the table of site-specific data values, which can be
extended and used in scripts and forms by the end-user, are described as ‘parameters’. In terms of the
design model of MetaVision’s own engineers, this no doubt refers to the aspects of the system
behaviour that can be ‘parameterised’ – customised at each customer site. However, the term
‘parameter’ is confusing to MetaVision users. To users without previous programming experience, the
word ‘parameter’ is relatively meaningless, and hence unhelpful. To end-users who do have previous
programming experience, the word is confusing, because in their view of the system, these values do

Blackwell and Morrison 182

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

not act as parameters. In the collaboration between C. and J., the word ‘parameter’ was a source of
confusion, because when J. was assuming his educational stance, he tried to describe the conventional
definition of a parameter in the context of functions and classes, but these explanations did not
correspond to C’s experience of the product. In order to avoid problems of this kind, we therefore
recommend that end-user development products should not use existing programming language terms
unless they are implementing a feature that has precisely the expected technical meaning.

As might be expected in a project of this kind, we noted a number of relatively routine usability
problems with various aspects of the MetaVision system. Some might be addressed by using
techniques borrowed from other end-user programming research – for example, the scripting language
used for event processing looked as though it would have been easier to use if it had presented a
publish/subscribe event model such as that used in the Scratch language, and the report scripts could
have benefited from a better way of defining layout constraints subject to varying amounts of data on
the page. Others appeared to have more fundamental problems, as in the case of the Query Wizard,
which all MetaVision users appear to find problematic. In that case, it was interesting for us to
observe the workarounds that C. had adopted to gain some value from the tool, using the wizard to
generate samples of script code that she then cut and pasted into other parts of the system, making
minor adaptations if necessary. This generate-and-paste approach, although somewhat clumsy by
comparison to the intended operation of the Wizard, was in practice both pragmatic and empowering.

In the course of observing the collaboration between C. and J., we also saw some unexpected and
positive uses of tools. When explaining the operation of Visual Basic within a Word macro, J.
demonstrated the code execution by following it in the VB debugger. C. had not seen this view of
code before, and found it very compelling as a visualisation of the system behaviour. We suspect that
a simple script debugger could do much to assist more sophisticated end-user developers. In
combination with the Wizard strategy, one might imagine an approach to scripting in which candidate
scripts are generated, and their operation is animated, as an alternative to programming approaches in
which code is generated from scratch, relying on an execution model that the programmer is supposed
to have learned and internalised before starting work.

6. Conclusions
We have presented findings from a field study of a real customisation project that involved
collaboration between a professional programmer and an end-user programmer. The context in which
they were working drew attention to the ways in which end-user programmers working within an
organisational context can have many of the same responsibilities as professional programmers (for
example, they have users too), yet without access to the same tools that professional programmers
take for granted. We observed a number of differences between the approaches taken by the two
participants in our study, providing rich illustrations that tend to confirm previous research
observations regarding the challenges of end-user programming relative to professional programming.
However, we also observed a number of ways in which the collaboration itself is problematic, as a
result of significant differences in mental models and in strategic approaches to technical problems.
We believe that collaborations of this kind are relatively frequent, though little studied, and that
further research is justified. Finally, we have developed a research method that is relatively novel in
psychology of programming research, involving a funded intervention in an organisational context,
with ethnographic observation and analysis of the resulting collaboration.

7. Acknowledgements
This research was funded by Boeing Corporation. We are grateful to our collaborators at the ICU
described in this study, including ICU director Alain Vuylsteke who initially invited us to study the
deployment of the MetaVision system, and especially C. and J. who have been both patient and
tolerant to a generous degree.

Blackwell and Morrison 183

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

8. References
Beckwith, L., Kissinger, C., Burnett, B., Wiedenbeck, S., Lawrance, J., Blackwell, A. and Cook, C.

(2006). Tinkering and gender in end-user programmers' debugging. In Proceedings of CHI 2006,
pp. 231-240.

Blackwell, A.F. & Green, T.R.G. (1999). Investment of Attention as an Analytic Approach to
Cognitive Dimensions. In T. Green, R. Abdullah & P. Brna (Eds.) Collected Papers of the 11th
Annual Workshop of the Psychology of Programming Interest Group (PPIG-11), pp. 24-35.

Blackwell, A.F. (2002). First steps in programming: A rationale for Attention Investment models. In
Proceedings of the IEEE Symposia on Human-Centric Computing Languages and Environments,
pp. 2-10.

Blackwell, A.F. (2006). Gender in domestic programming: From bricolage to séances d'essayage.
Presentation at CHI Workshop on End User Software Engineering.

Blackwell, A.F., Church, L. and Green, T.R.G. (2008). The abstract is 'an enemy': Alternative
perspectives to computational thinking. In Proceedings PPIG'08, 20th annual workshop of the
Psychology of Programming Interest Group, pp. 34-43.

du Boulay, J.B.H., O'Shea, T. and Monk, J. (1981). The black box inside the glass box: Presenting
computing concepts to novices. International Journal of Man Machine Studies, 14:237-249.

Bucciarelli, L.L., (1994). Designing Engineers. MIT Press.

Carroll, J.M. and Rosson, M.B. (1987). Paradox of the active user. In: J.M. Carroll, Editor, Interfacing
Thought: Cognitive Aspects of Human–Computer Interaction, Bradford Books/MIT Press, pp.
80–111.

Hudson, W. (2009). Reduced empathizing skills increase challenges for user-centered design. In
Proceedings of the 27th international Conference on Human Factors in Computing Systems
(CHI'09), pp. 1327-1330.

Kahler, H., Muller, M., Kensing, F. (2000). Methods & tools: constructive interaction and
collaborative work: introducing a method for testing collaborative systems. Interactions 7, 27-34.

Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A.F., Burnett, M., Erwig, M., Lawrence, J.,
Lieberman, H., Myers, B., Rosson, M.-B., Rothermel, G., Scaffidi, C., Shaw, M., and
Wiedenbeck, S. (in press). The State of the Art in End-User Software Engineering. Accepted for
publication in ACM Computing Surveys.

Miyake,N. (1986). Constructive interaction and the iterative process of understanding. Cognitive
Science 10, 151-177.

Morrison, C & Blackwell, A.F. (2009) Observing end-user customisation of electronic patient records.
In V. Pipek, M.-B. Rosson, B. de Ruyter and V. Wulf (Eds). Proc. 2nd International Symposium
on End-User Development, IS-EUD'09. Springer Verlag (Lecture Notes in Computer Science -
LNCS 5435), pp. 275-284.

Morrison, C., Blackwell, A. and Vuylsteke, A. (in press) Practitioner-­‐Customizable Clinical
Information Systems: a case-­‐study to ground further research and development opportunities.
Accepted for publication in Journal of Clinical Engineering.

Nash, C., Church, L. And Blackwell, A.F. (submitted). Designing Computational Tools for Creativity,
Flow and Mastery. Paper submitted to VL/HCC 2010.

Orrick, E. (2006). Position Paper for the CHI 2006 Workshop on End-User Software Engineering.
Available online from http://eusesconsortium.org/weuseii/docs/ErikaOrrick.pdf

Segal J. (2005). When software engineers met research scientists: a case study. Empirical Software
Engineering 10(4), 517-536.

Wray, S. (2007). SQ Minus EQ can Predict Programming Aptitude. In Proceedings PPIG'07, 10th
annual workshop of the Psychology of Programming Interest Group, pp. 243-254.

Blackwell and Morrison 184

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Empirically-Observed End-User Programming Behaviors in Yahoo! Pipes

Matthew D. Dinmore

Applied Information Sciences Department
Johns Hopkins University

Applied Physics Laboratory
Matthew.Dinmore@jhuapl.edu

C. Curtis Boylls

Applied Information Sciences Department
Johns Hopkins University

Applied Physics Laboratory
Curt.Boylls@jhuapl.edu

Keywords: end-users, visual languages, mental models, phenomenology

Abstract
Yahoo! Pipes is a well-known, widely used visual programming environment for creating data
mashups by aggregating, manipulating, and publishing web feeds. It provides a natural laboratory for
observing a range of end-user programming (EUP) behaviors on a large scale. We have examined
more than 30,000 Pipes compositions in a search for regularities that might inform the design of EUP
systems and their services. Although Pipes primitives span a broad range of functionality and can be
richly parameterized and composed, we find a number of patterns that govern the structure and
parameterization of Pipes in the wild. Most users sample only a tiny fraction of the available design
space, and simple models describe their composition behaviors. Our findings are consistent with the
idea that users attempt to minimize the degrees of freedom associated with a composition as it is built
and used.

1. Introduction
Research focused on user behavior in end-user programming (EUP) has typically been conducted
through observation of the activities of a few users in a relatively small environment, for example a
workgroup within an organization or laboratory experiment (Myers, et. al., 2006). The growth of the
Internet and EUP tools for it now offers a large-scale, open-access, live environment in which it is
possible to observe many end users at work, albeit primarily through the artifacts they create rather
than observation of their direct interactions with the EUP tool.

Here we report preliminary results from an empirical examination of artifacts created by users of the
Yahoo! Pipes web-based visual programming environment. Our research questions are motivated by
our interest in understanding users' compositional behaviors, and in particular, how they make use of
the collection of primitives provided by the environment, whether this collection adequately covers
the range of needs they attempt to satisfy with their compositions, and how they manage complexity.
This paper proceeds as follows: after a brief review of the literature, we describe the Pipes
environment, the measurements that can be derived from it, and our rationale for selecting it for this
study. We then detail our data collection and preparation methods. Using the resulting data corpus, we
next examine the question of how users who create pipes (end-user programmers) compose their
solutions given the primitives provided by the environment, and we identify and discuss several
models that fit our observations.

1.1 Background

Our primary motivation for this work is a desire to understand how end users compose solutions to
problems in their domain; our focus is on the collection of primitives offered to the user and their
behaviors in using them. From an engineering point of view, how can we model these behaviors for
the purposes of either designing a set of primitives, or given alternative collections of primitives,
choosing among them for a particular task? Theoretical models such as Blackwell's (2002) Attention
Investment model consider this question in the context of the "cost" for a user to compose a solution
in a particular environment. Can empirical observations relate measurable costs to typical behaviors?

Dinmore and Boylls 185

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Likewise, what are the reuse behaviors of users? It has been observed that end users tend to learn by
building on the work of others (Gantt & Nardi, 1992); can an environment facilitate this? To what
degree to users make use of the ability to copy and modify? If offered the opportunity, do users create
hierarchical abstractions – reusable modules – for themselves and others? And, once a user has solved
a problem, to what extent are parameters exposed to other users for run-time customization? This
study begins to address these questions, with the focus primarily fixed on the design-time choices
users make in composing their solutions.

1.2 Other Large-Scale Studies

Few large-scale empirical studies of end-user programming have been previously reported. Several
studies have made uses of the EUSES spreadsheet corpus (Fisher & Rothermel, 2005) to examine the
behaviors of end-user spreadsheet developers; this corpus contains 4,498 artifacts. Bogart, et. al.
(2008) studied the CoScripter web scripting environment, and asked questions similar to our own
about user behavior. While both CoScripter and Pipes automate web processes, CoScripter is different
in that it could be described as text-based rather than visually-based, and execution of scripts occurs at
the browser (client), rather than at the web server. The authors examined a corpus of 1445 unique
scripts, in which they characterized user behaviors and scripting processes, to include reuse.

While Yahoo! Pipes is often cited as an example in work on web mashups, there have been few
specific studies of it or its artifacts. The largest we are aware of involved an examination of the social
network around Pipes by Jones and Churchill (2009), who looked at communications among users on
web groups associated with Pipes. They studied the posts of over 2,000 users, categorizing the user
network and the kinds of exchanges hosted on it.

2. The Yahoo! Pipes Environment
Yahoo!Pipes is a web-based, visual programming environment introduced by Yahoo! in 2007 with the
intent of enabling users to "rewire the web."1 Pipes is a dataflow system in which the data is sourced
from the web (RSS feeds, web pages, raw data) and flows through an interconnected set of modules
that act upon it, ultimately producing some result; the Pipes name is inspired by the concept of pipes
in Unix operating systems that enabled the composition of command line sequences of Unix tools
through which data “flow” for processing.

As a visual programming environment, Pipes is well suited to representing solutions to dataflow-
based processing problems (Whitley, 2006), and is also quite accessible to end-user programmers.
Here, we use the goals-based definition of end-user programmer—one who is creating software to
solve a problem in his/her domain of expertise, as contrasted with a professional programmer who
creates software for users in other domains (Ko, et. al., 2008); we suspect our data contain artifacts
created by both trained and untrained programmers.

The visual programming paradigm is one of the more common end-user programming modalities
(Burnett, 1999) and has been the subject of many end-user programming studies and tool development
projects (Kelleher & Pausch, 2005). Pipes offers the opportunity to extend this research to incorporate
the behaviors of thousands of users motivated to mash up content and services available on the web
for their own purposes. The compositions that they create in this process can be examined from a
number of perspectives, and doing so en masse offers an aggregate reflection of their approach to
problem solving through programming.

Pipes consists of a publicly accessible website that allows users to find existing pipes (by browsing or
searching by keyword), and to execute those pipes. Execution often involves entering runtime
parameters and results in the production of a web page. Users can also edit existing pipes and create
entirely new compositions. Our focus is on the structure of composed pipes, and in particular, three
elements of Pipes composition over which the users have direct control: the selection of modules, the
wiring of those modules, and the settings of parameters within the modules. Related to the last of

1 http://pipes.yahoo.com/

Dinmore and Boylls 186

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

these are also the parameters that the end-user developer exposes to users of the pipe in the form of
runtime settings. Figure 1 depicts these elements as they occur in a typical pipe.

Figure 1. Annotated view of a typical pipe's elements.

A pipe is assembled from a selection of modules. Presented as visual tokens along the left side of the
Pipes editor, these modules can be dragged onto the composition canvas, where their design-time
parameters are presented for editing, and they can be connected to other modules to form the pipe.
There are 51 primitive module types arranged in eight categories, including sources, user inputs (that
present a run-time parameter to a user), and classes for manipulating strings, URLs and other types of
data.

Within the pipe, the primary or “process” dataflow, which must originate in one or more source
modules, is denoted with blue "wires." Pipes also contain “control” wires, colored gray, that enable
parameters captured by one module to be wired to the outputs of other modules, allowing for those
parameters to be programmatically set.

The parameters for each module are presented as elements in a form within the body of the module.
Some offer a selection of settings (including binary on/off, radio buttons or a pick-list), while others
are freeform. As noted previously, certain parameters can be wired at design-time to the outputs of
other modules.

Pipes created by a user are saved in the user’s account; they can also be published, which makes them
visible in searches to other users (however, it is not necessary for a pipe to be published to be publicly
accessible, provided its URL is known). A user can also clone another user's pipe and employ it as the
starting point for developing their own; this facilitates a common "scaffolding" behavior in end-user
programming (e.g. Repenning & Ioannidou, 2006; Nardi & Miller, 1990) and represents a kind of
reuse.

Users also have the ability to augment the suite of primitive Pipes modules by designating an existing
pipe as a “subpipe,” a property that we will exploit in the analysis below. In this case, the (sub)pipe
appears in the user’s workspace as another module, and its runtime parameters are presented as the

Dinmore and Boylls 187

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

module's design-time parameters. Subpipes can be embedded within other pipes to any number of
levels. Subpipes do have one significant limitation: they cannot accept a blue-wire dataflow as an
input. It thus is not possible to create a pass-through “processing” subpipe. As a result, subpipes are
typically used as specialized data sources. Because users design and employ subpipes to “extend” the
repertoire of Pipes modules, we might expect to see different usage behaviors between pipes and
subpipes. We thus have separately analyzed the data from each, looking for such differences and their
implications.

3. The Pipes Data Corpus

3.1 Data collection

We collected the data set for this study over the 52 days between 31 December 2008 and 21 February
2009. Yahoo! Pipes does not provide direct access to the underlying “source code,” nor does it offer
the ability to simply list all available pipes. Instead, it is possible to browse a list of pipes presented by
the interface, and one can also search by keyword. However, access to search results is limited to
1010 items. These restrictions and others necessitated a snowball-styled sampling approach that
proceeded as follows: those pipes offered through the browsing mechanism were collected and their
most frequent keywords extracted. These keywords were then used to initiate searches, and those
pipes were collected, as well. Part of the collection process involved searching for a pipe by searching
on its specific title; in addition to returning the pipe of interest, this also often resulted in other hits,
which were similarly collected. Finally, some pipes included subpipes, which were subsequently
collected in their own right, as well as pipes related to them. The entire process resulted in a collection
of 70169 pipes.

We obtained two kinds of data about each pipe instance. First, we gathered metadata about the pipe:
when it was created, the author, the title and descriptive text provided by the author, whether it had
been cloned or identified as a favorite, and its run count (the number of invocations) on the date
collected. All of these fields were databased for analysis by collection date; pipes were revisited to
attempt to capture changes made over time, resulting in some cases in multiple records for each pipe.

We also collected the structure of the pipe by downloading its JavaScript Object Notation (JSON) file
and associating it with the metadata. This structure includes all of the details necessary to reconstruct
the pipe, including the modules and their placement, the wiring, and the parameter settings.

3.2 Data refinement

In our early examination of the data, we removed duplicates as well as those that had damaged JSON
files. It became clear there were large numbers of replicated pipes that were structurally the same, but
differed in the feeds they were creating. These proved to be targeting web pornography. As these
instances biased our data with their large numbers and did not satisfy our interest in problem solving
by end-user developers, we chose to exclude them from our analysis. We found that this could be
done by purging pipes in Pipes accounts containing 115 or more pipes; 41 accounts representing
27115 pipes, or 661 pipes per account appeared to be in this business (again, without exception). This
reduced our collection to 43054 pipe instances. For an additional 1599 instances, we found that we
were unable to collect some portion of the data (typically the structural file), and these were also
discarded.

We note here that we have made a decision about a class of functionality that is not of interest to us
(namely mass-produced pornography-related pipes) based on the observation that the class consists
largely of replicated pipes having different parameterizations. We have also not otherwise attempted
to understand the semantics of the pipes that we are studying (see Discussion), so our data may
include other instances of pipe replication with little novel end-user design, as well as instances in
which we have retained pipes with no meaningful utility; we believe the numbers of these would be
small, relative to the class of pipes we eliminated, but this nonetheless represents a limitation in our
understanding of the corpus.

For the remaining 41455 instances, we databased the following data pertinent to our study:

Dinmore and Boylls 188

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

• The unique pipe identifier (UID) assigned by Yahoo! when the pipe was created

• A self-assigned account identifier for the owner of the pipe (nominally the “author”)

• The pipe configuration: modules with their identifiers, inter-module wiring, parameters

• The total number of invocations (“runs”) of the pipe at the time it was collected

• Whether or not the pipe was used as a subpipe, and which other pipes “called” it

• Whether or not the pipe was published (made visible and searchable by visitors to the site)

• Whether or not the pipe was marked as having been "cloned"

We also obtained other information (e.g., the order in which users selected modules for the pipe, the
location of module representations in the visual workspace, etc.) that will be useful in further
investigations (see Discussion).

We quickly discovered that “raw” Pipes data include phenomena that could obscure our view into the
final programming choices made by end-user authors. Most of these nuisance variables arise because
Pipes is a live construction zone: authors are free to leave and return from work in progress
arbitrarily, and no Pipes metadata element, including publication status, reliably indicates that a pipe
is “complete.” However, we can easily spot and eliminate metadata from two types of non-functional
pipes that probably represent intermediate stages of construction:

a. All pipes are required to have an “output” module, so any pipe having only one module
cannot be doing anything interesting. We found 86 instances in our data.

b. All pipes having N modules, but fewer than N-1 wires, cannot be connected as a single pipe.
At least one module must be an “orphan.” Our data contained 2656 examples.

Eliminating these two categories, our corpus shrank to 38713 instances. We also considered culling
the data further by ruling out unpublished pipes (2384 instances) or pipes with few invocations, but
we decided against that because the affected population is small and the possible relationship with
end-user programming behavior is ambiguous.

Figure 2. Primitive module usage.

We next attempted to infer something about the tasks that end-user programmers are accomplishing
with Pipes. We counted the number of times that each module type was found in a Pipes composition
and rank-ordered the modules accordingly. Fig. 2 plots the results of this module “popularity contest”
(see section 4.3 for another use of this information). Note that the most frequently used modules (by

Dinmore and Boylls 189

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

far) are those associated with fetching and parameterizing data (fetch, URI builder), followed by
modules that filter, transform, and merge data (filter, sort, union, etc.). Pipes is advertised as a
vehicle for creating data mashups, and these observations are consistent with that use. In section 4.3,
we will use the same “popularity” information to assess other influences on users’ choices of modules
for compositions.

Pipes metadata does not directly tell us anything about the actual end-users whose work is represented
in the corpus. Users must create Pipes accounts to author compositions; but since multiple accounts
are allowed, one user, in principle, could have created all of the data. We did, however, observe
222852 unique account identifiers across all instances in the corpus, an average of 1.74 instances per
account. The maximum number of instances owned by one account was 110 (recall that we
eliminated pipes by authors with 115 or more instances, as these were all pornographic and probably
mass produced). We cannot draw strong conclusions about the size of the user population from these
figures alone. But it does seem reasonable to assume that a goodly number of “real humans” account
for the data, perhaps a population larger than has heretofore been the case in studies of end-user
programming in the wild. Further, we made no attempt to characterize the degree of programming
experience each user had, accepting that those with professional training may approach problem
solving differently than those without. We do believe that that future efforts with this data,
particularly with amplifying information such as that presented by Jones and Churchill (2009), could
potentially categorize users based on the artifacts we can observe.

Lastly, we partitioned the corpus into metadata from pipes that were never used as subpipes (36676
instances) from those that were (2037). Recall that, once designed and published, subpipes take on
the persona of a Pipes data-source module, including an analogous visual representation in the
workspace. This property will allow us to examine how end-users extend the Pipes environment as
meta-designers for other end-users.

4. End-User Programming Behaviors in Pipes

4.1 Choosing modules

To create a new composition in Yahoo! Pipes, an end-user must first drag modules from a menu into a
workspace before wiring them together and setting module parameters. Other than requiring a single
“output” module (that Pipes supplies automatically), Pipes places no limits on how many modules a
user employs, and the visual workspace expands to accommodate additions. Pipes also supplies
“layout” functions to regularize complex constructions.

Despite the support provided for creating large compositions, the pipes and subpipes in our corpus
proved to be quite parsimonious, as shown by the descriptive statistics in Table 1. We see that, while
outliers exist, the median number of modules is only 4 for pipes and 6 for subpipes, and compositions
of roughly 40 or fewer modules account for more than 99% of the data.

 Pipes Subpipes
Instances 36676 2037
Minimum modules/composition 2 2
Maximum modules/composition 177 87
Mode 3 4
Mean 6.2 7.4
Median 4 6
99.5% Quantile 33 43

Table 1. Modules in compositions.

2 We note that Jones and Churchill (2009) report "over 90,000 developers" at the time of their study in
December, 2008, suggesting that our contemporaneous sample of pipes represents roughly 1/3rd of the author
population.

Dinmore and Boylls 190

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

If we look at the empirical probability of finding compositions of length N in our collection (Fig. 3),
we see that the distributions for pipes and subpipes are similar, but that subpipes are biased toward
including more modules (see also Table 1).

Figure 3. Distribution of pipe and subpipe size (number of modules).

Figure 4. Log-likelihood ratio of use in a pipe vs. subpipe for each module type.

If, through log-likelihoods, we compare how often specific modules are used in pipes versus subpipes
(Fig. 4), we see that the utilization of roughly ¼ of Pipes modules differs by several orders of
magnitude between pipes and subpipes. Subpipes are not just a random subset of pipes that users
have decided to encapsulate as extensions of the Pipes module set.

Given their tendency to include more, and different, modules in subpipes relative to pipes, it might be
that users are attempting to use subpipes to hide complexity behind simple interfaces. In Fig. 5, we
explore this hypothesis by comparing, for both pipes and subpipes, the average number of modules
encapsulated in a composition—a coarse-grained indicator of functional complexity—with the

Dinmore and Boylls 191

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

number of interface parameters3 that the author provides to users of the composition. We see that as
the count grows, the number of parameters in both pipes and subpipes initially increases, but then
levels off, even as “complexity” increases (see upper and middle panels of Fig. 5). This favors the
“complexity-hiding” argument. However, except for very small compositions, the subpipes:pipes
ratio of these counts hovers around 2.5:1, indicating that complexity-hiding is found in both types of
compositions. Note: the erratic subpipe behavior at higher module counts is a sparse-data artifact.

Figure 5. Comparative use of exposed interface parameters in pipes vs. subpipes

The “exponential” shape of the right-hand tail of each distribution in Fig. 2 led us to examine the log
probabilities in those tails (Fig. 6). Not only is the exponential fit reasonably good, but the slopes of
the fitted regression lines are both approximately 0.18. This suggests that, to a first approximation, an
end-user adds modules to a composition based upon the outcome of tossing a figurative coin with p =
exp(-0.18) = 0.84 in favor of the addition. Furthermore, this (binomial) process qualitatively
describes module composition for both pipes and subpipes.

3 When a pipe is converted into a subpipe, the pipe’s run-time parameters become the subpipe’s design-time
parameters (section 2). We refer to both collectively as “interface parameters.”

Dinmore and Boylls 192

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Figure 6. Log fit of probability of observing a pipe or subpipe containing N modules.

4.2 Choosing wires and configurations

As an environment originally intended for mashing-up RSS feeds, the Pipes environment includes
features that encourage convergent “stream-processing.” Not only is a composition allowed only one
output, but wires are segregated into those that carry data and those that carry parameters; dataflow in
both is one-way, and most modules have only one output (as does a pipe composition) and default to a
handful of inputs. However, Pipes does include explicit “split” and “union” modules that allow
streams to be split, merged, and processed in parallel, and a “loop” construct allows iteration. Many
modules also allow expansion of parameters and their associated wires. The question is, do end-user
programmers exploit this richness?

The answer is, “not very often.” Fig. 7 plots the average and the range of the number of wires in a
composition as a function of the number of modules in that composition. We do this for both pipes
and subpipes, and we make no distinction between data- and parameter-carrying wires. For both
pipes and subpipes, the average number of wires is almost perfectly predicted by the relation: # wires
= # modules – 1. In other words, users tend to employ only the minimum number of wires needed to
connect modules. Moreover, as evident in the range bars in Fig. 7, this propensity is even stronger in
subpipes than it is in pipes. Given this finding, it seems reasonable to propose that end-users
configure most Pipes as directed acyclic graphs, often a linear chain or cascade of modules.

Dinmore and Boylls 193

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Figure 7. Relationship of number of modules and connecting wires for pipes and subpipes.

4.3 Choosing parameters

Most of the 51 primitive Pipes modules have parameters that end-user programmers must either
default or set, some when the pipe or subpipe is configured (“design-time”), and some when it is
executed (“run-time”). Fig. 8 shows how the design-time parameters distribute over the module
collection as initially presented to the user as a “module menu.”

Figure 8. Distribution of available design-time parameters in the Pipes primitives.

We know from the module “popularity contest” in Fig. 2 (section 3.2) that users have strong
preferences for certain modules in compositions, and that these preferences correlate with Pipe’s use
as a data mash-up environment. However, we also wondered if there might be a relationship with the
number of parameters that a user must contend with in using a module: too few parameters might

Dinmore and Boylls 194

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

seem to limit flexibility; too many increases complexity (or “cognitive load”) and work-factor. Fig. 9
plots the number of parameters in Pipes modules as a function of module usage or “popularity.” As in
Fig. 2, the most frequently used modules appear on the left, and the least-used on the right. We see no
obvious pattern, perhaps because none exists, or perhaps because of two confounding factors: first,
Pipes modules are functionally independent. One cannot readily derive the function of a given
module from some allowable combination of the others. Pipes users thus have no choice about using
certain modules for certain functions; unless users forego those functions altogether, their
“preferences” make no difference in module choice. Second, during composition, users are able to
add an arbitrary number of parameters to many modules (example: additional regular-expression
patterns to the regex module). A “simple” module can thus become very complex at the user’s
discretion. Fig. 9 shows only the default number of parameters, not the results of such extensions.

Figure 9. Relationship between primitive selection and design-time parameter count.

We can, however, gain insight into the influence of module parameters on end-user compositional
behavior by looking at the fabrication and utilization of modules that users themselves create: the
subpipes. Recall that when an end-user author publishes a subpipe, any interface parameters for the
subpipe appear in the subpipe’s representation as an addition to the “module menu.” Authors are free
to specify as many parameters as they wish. But if we look at how interface parameters actually
distribute across subpipes, we see a familiar pattern (Fig. 10): subpipes with no parameters are the
most common, and the frequency falls steeply as the number of parameters increases. The falloff is
exponential and fits a binomial, coin-tossing model with p approximately 0.4. Thus, the process of
adding interface parameters when a subpipe is originally composed is empirically akin to the process
of adding modules to compositions in general (section 4.1).

Dinmore and Boylls 195

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Figure 10: Log fit of relationship between observed subpipes and number of interface parameters.

How, then, might the number of interface parameters affect the likelihood that an end-user will choose
to employ a published subpipe in another composition? Since subpipes are presumably created to
save users the effort of fashioning specialized functions, we might expect to see the same “random”
relationship between parameters and the likelihood of subpipe utilization as we do with other Pipes
modules (Fig. 9). To examine this, we first need to find those subpipes that: (a) have actually been
made available to other end-users by their authors; and (b) have actually seen service. Of the 2037
subpipes in the corpus, only 199 meet these criteria. Fig. 11 illustrates how often these subpipes were
used in other compositions (average and range) as a function of the number of interface parameters
that they present. It appears to us that, except when a subpipe has no parameters at all, the number of
parameters has little influence on whether a subpipe is selected for use.

Figure 11. Relationship of exposed subpipe interface parameters and observed reuse.

A final question that we asked involved what we refer to as the reduction in degrees of freedom from
the composition space to the use space. When a user composes a pipe, he or she has to make choices
about which parameters to set within the composition at design time – thereby fixing those values –
and which to expose to other users as run-time parameters. The ratio for a given pipe of parameters

Dinmore and Boylls 196

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

offered to users at run-time to those set and fixed at design-time is the reduction in degrees of
freedom. We would expect that developers of pipes seek to make a task easier, and therefore attempt
to reduce the number of parameters that need to be set by a user. However, providing too few run-
time parameters may make the pipe less generalizable to other purposes, reducing its utility to users
other than the developer. Figure 12 shows the distributions of design-time parameters actually set by
the developer (this includes extended parameters, but excludes defaulted parameters), as well as the
distribution of run-time parameters.

Figure 12. Design-time (left) and run-time (right) parameter frequencies.

The first thing that we note is that the majority (76%) of pipes offer users no run-time parameters at
all. In the cases of both design-time and run-time parameters, we again see the binomial coin-tossing
model (see fig. 10). However, when compared to each other (fig. 12), there does not appear to be an
obvious relationship that would enable us to predict the number of run-time parameters given the
number of design-time parameters. To better visualize this, we grouped ranges of design-time
parameters (15 per bin), and then plotted the number of pipes corresponding to each binned design-
time parameter count and run-time parameter counts as bubbles; it appears that these selection
processes are independent (fig. 13).

Figure 13. Run-time parameters as predicted by design-time parameters.

5. Discussion
In our view, it would be premature to aim for deep conclusions about end-user programming behavior
from the empirical results offered here. Pipes is a specialized EUP environment, and we clearly need

Dinmore and Boylls 197

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

to compare our findings with those from other domains operating at similar scale. Nevertheless,
certain principles do seem to govern how end-users approach Pipes:

First, and most obviously, users employ only a small number of the programming options that Pipes
offers to them,. They regularly make use of perhaps one-quarter of the available primitives and
typically compose them in pipes consisting of only three or four modules. Further, while they are able
to create more complex, multi-branch pipelines, they strongly favor simple, straight-through pipes.

Second, we repeatedly see behaviors that fit simple models quite well. In particular, the recurring
"coin tossing" model suggests that the decision process for adding a module or interface parameter to
a pipe is invariant and independent. This design behavior seems to reflect a process in which, in order
to achieve a particular objective, users choose modules from those available, at each step determining
if they have or have not achieved the objective (the metaphorical coin toss). The result is what would
appear to be the simplest working solution to the problem, evidenced by the strongly linear structure
of pipes, in effect, leaving no real choice for wiring. Similarly, users set design-time parameters – as
few as possible – to achieve an objective, again asking the question, “am I done?” Decoupled from
this is the choice of parameters to expose at run-time. Usually, users simply hardwire the pipe and
offer no run-time parameters, though when they do, we again see the coin-toss behavior.

5.1 Future Work

Our study of the Pipes data has only looked at the surface aspects of compositional behavior. There
are several other research questions that we propose could be answered by this data. First is a deeper
study of the nature of subpipes, clones and other reuse behaviors. Initial research we have done shows
that it is possible to identify the lineage of individual pipes to form "families" of related pipes; we
have found that the cloning metadata associated with a pipe is an unreliable indicator of actual cloning
behavior.

Additional design-time information available to us will allow us to examine questions such as the
order in which a user chose modules to place in the workspace, and the spatial organization of pipes.
The first may offer insights into intent and planning, while the second may show the evolution of the
design and whether the available screen space is a constraint, despite the availability of an essentially
unlimited canvas.

We also collected other use-time information, such as the run count for each pipe; this was collected
longitudinally, so we can examine the relationship between pipe design (as studied here) and
"popularity" at an instant and over time.

Of course, we have completely ignored the semantics of the pipes involved; what was the user trying
to accomplish? Information available in tags associated with the pipes, text content, and perhaps even
the use of certain modules, could all be used to categorize pipes. An interesting question is whether
any particular category exhibits significant differences from the aggregate behaviors we have
described here.

6. Acknowledgments
The authors would like to thank our colleagues Rose Daley and Peter Li for their contributions to our
study of the Pipes data.

7. References
Blackwell, A. (2002). First Steps in Programming: A Rationale for Attention Investment Models.

Paper presented at the IEEE Symposia on Human-Centric Computing Languages and
Environments.

Bogart, C., Burnett, M., Cypher, A., & Scaffidi, C. (2008). End-User Programming in the Wild: A
Field Study of CoScripter Scripts. Paper presented at the IEEE Symposium on Visual Languages
and Human Centric Computing (VLHCC '08), Herrsching am Ammersee, Germany.

Dinmore and Boylls 198

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Burnett, M. (1999). Visual Programming. In J. G. Webster (Ed.), Encyclopedia of Electrical and
Electronics Engineering. New York: John Wiley & Sons.

Fisher, M., & Rothermel, G. (2005). The EUSES spreadsheet corpus: a shared resource for
supporting experimentation with spreadsheet dependability mechanisms. Paper presented at the
Proceedings of the first workshop on End-user software engineering, St. Louis, Missouri.

Gantt, M., & Nardi, B. A. (1992). Gardeners and gurus: patterns of cooperation among CAD users.
Paper presented at the SIGCHI conference on Human factors in computing systems, Monterey,
California, United States.

Jones, M. C., & Churchill, E. F. (2009). Conversations in developer communities: a preliminary
analysis of the yahoo! pipes community. Paper presented at the The fourth international
conference on Communities and technologies, University Park, PA, USA.

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of
programming environments and languages for novice programmers. ACM Comput. Surv, 37(2),
83-137.

Ko, A., Abraham, R., Beckwith, L., Blackwell, A. F., Burnett, M., Erwig, M. et al. (2008). The State
of the Art in End-User Software Engineering. ACM Computing Surveys.

Myers, B. A., Ko, A. J., & Burnett, M. M. (2006). Invited research overview: end-user programming.
Paper presented at the CHI '06 extended abstracts on Human factors in computing systems,
Montréal, Québec, Canada.

Nardi, B., A., & Miller, J., R. (1990). An ethnographic study of distributed problem solving in
spreadsheet development. Paper presented at the Proceedings of the 1990 ACM conference on
Computer-supported cooperative work.

Repenning, A., & Ioannidou, A. (2006). What Makes End-User Development Tick? 13 Design
Guidelines. End User Development, 51-85.

Whitley, K., N., Novick, L., R., & Fisher, D. (2006). Evidence in favor of visual representation for the
dataflow paradigm: An experiment testing LabVIEW's comprehensibility. Int. J. Hum.-Comput.
Stud, 64(4), 281-303.

Dinmore and Boylls 199

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Bricolage Programming in the Creative Arts

Alex McLean and Geraint Wiggins

Centre for Cognition, Computation and Culture
Department of Computing

Goldsmiths, University of London

Abstract. In this paper we consider artists who create their work by writing algorithms, which
when interpreted by a computer generates their plotted drawings, synthesised music, animated
digital video, or whatever target medium they have chosen. We examine the demands that such
artists place upon their environments, the relationships between concepts and algorithms, and of
cognition and computation. We begin by considering an artist’s creative process, and situating
it within the bricolage style of programming. An embodied view of bricolage programming is
related, underpinned by theories of cognitive metaphor and computational creativity, and finally
with consideration of the bricolage programmer’s relation to time.

1 Introduction

Over the last decade, computer programming has enjoyed a major resurgence as a medium
for the arts. A wealth of new programming environments for the arts, such as Processing,
SuperCollider, ChucK, VVVV and OpenFrameworks have joined more established environments
such as PureData and Max which have themselves gained enthusiastic adoption outside their
traditional academic base. These environments offer varied approaches to supporting artistic
use, including alternative programming languages, interfaces and workflow.

The purpose of the present discussion is to examine psychological issues which the resurgence
of artistic programming has brought to the fore. What is the relationship between an artist,
their creative process, their program, and their artistic works? We will look for answers from
perspectives of psychology, cognitive linguistics, computer science and computational creativity,
but first from the perspective of the artist.

2 Creative Processes

The painter Paul Klee [1953, p. 33] describes a creative process as a feedback loop: “Already
at the very beginning of the productive act, shortly after the initial motion to create, occurs
the first counter motion, the initial movement of receptivity. This means: the creator controls
whether what he has produced so far is good. The work as human action (genesis) is productive
as well as receptive. It is continuity.” This is creativity without planning, a feedback loop
of making a mark on canvas, perceiving the effect, and reacting with a further mark. Being
engaged in a tight creative feedback loop places the artist close to their work, guiding an idea
to unforeseeable conclusion through a flow of creative perception and action. Klee writes as a
painter, working directly with his medium. Programmer-artists instead work using computer
language as a textual representation of their medium, and it might seem that this extra level of
abstraction could hinder creative feedback. We will see however that this is not necessarily the
case, beginning with the account of Turkle and Papert [1992], describing a bricolage approach
to programming by analogy with painting:

The bricoleur resembles the painter who stands back between brushstrokes, looks at
the canvas, and only after this contemplation, decides what to do next. Bricoleurs use a
mastery of associations and interactions. For planners, mistakes are missteps; bricoleurs
use a navigation of midcourse corrections. For planners, a program is an instrument for
premeditated control; bricoleurs have goals but set out to realize them in the spirit of

McLean and Wiggins 200

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

a collaborative venture with the machine. For planners, getting a program to work is
like “saying one’s piece”; for bricoleurs, it is more like a conversation than a monologue.
[Turkle and Papert, 1990, p. 136]

Although Turkle and Papert address gender issues in education, this quote should not be
misread as dividing all programmers into two types; while associating bricolage with feminine
and planning with male traits, they are careful to note that these are extremes of a behavioural
continuum. Indeed, programming style is clearly task specific: for example a project requiring
a large team needs more planning than a short script written by the end user.

Bricolage programming seems particularly applicable to artistic tasks, such as writing soft-
ware to generate music, video animation or still images. Imagine a visual artist, programming
their work using Processing. They may begin with an urge to draw superimposed curved lines,
become interested in a tree-like structure they perceive in the output of their first implemen-
tation, and change their program to explore this new theme further. The addition of the algo-
rithmic step would appear to affect the creative process as a whole, and we seek to understand
how in the following.

2.1 Creative Process of Bricolage

Fig. 1. The process of action and reaction in bricolage programming

Figure 1 shows bricolage programming as a creative feedback loop encompassing the written
algorithm, its interpretation, and the programmer’s perception and reaction to its output or
behaviour. The addition of the algorithmic component in the creative feedback loop makes an
additional inner loop explicit between the programmer and their text. At the beginning, the
programmer may have a half-formed concept, which only reaches internal consistency through
the process of being expressed as an algorithm. The inner loop is where the programmer elabo-
rates upon their imagination of what might be, and the outer where this trajectory is grounded
in the pragmatics of what they have actually made. Through this process both algorithm and
concept are developed, until the programmer feels they accord with one another or otherwise
judges the creative process to be finished.

Representations in the computer and the brain are evidently distinct from one another.
Computer output evokes perception, but that percept will both exclude features that are explicit
in the output and include features that are not, due to a host of effects including attention,
knowledge and illusion. Equally, a human concept is distinct from a computer algorithm. Perhaps

McLean and Wiggins 201

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

a program written in a declarative rather than imperative style is somewhat closer to a concept,
being not an algorithm for how to carry out a task, but rather a description of what is to be
done. But still, there is a clear line to be drawn between a string of discrete symbols in code and
the morass of symbolic, spatial and relational representations we assume underlies cognition.

There is however something curious about how the programmer’s creative process spawns
a second, computational one. The computational process is lacking in the cognitive abilities of
its author, but is nonetheless both faster and more accurate at certain tasks by several orders
of magnitude. It would seem that the programmer uses the programming language and its
interpreter as a cognitive resource, augmenting their own abilities in line with the extended
mind hypothesis [Clark, 2008]. We will revisit this issue within a formal framework in §5, after
first looking more broadly at how we relate programming to human experience, and related
issues of representation.

3 Anthropomorphism and Metaphor in Programming

Metaphor permeates our understanding of programming. Perhaps this is due to the abstract
nature of computer programs, requiring metaphorical constructs to allow us to ground program-
ming language in everyday reasoning. Petre and Blackwell [1999] gave subjects programming
tasks, and asked them to introspect upon their imagination while they worked. These self reports
are rich and varied, including exploration of a landscape of solutions, dealing with interacting
creatures, transforming a dance of symbols, hearing missing code as auditory buzzing, combi-
natorial graph operations, munching machines, dynamic mapping and conversation. While we
cannot rely on these introspective reports as authoritative on the inner workings of the mind,
the diversity of response hints at highly personalised creative processes, related to physical op-
erations in visual or sonic environments. It would seem that a programmer uses metaphorical
constructs defined largely by themselves and not by the computer languages they use. How-
ever mechanisms for sharing metaphor within a culture do exist. Blackwell [2006a] used corpus
linguistic techniques on programming language documentation in order to investigate the con-
ceptual systems of programmers, identifying a number of conceptual metaphors listed in Figure
2. Rather than finding metaphors supporting a mechanical, mathematical or logical approach
as you might expect, components were instead described as actors with beliefs and intentions,
being social entities acting as proxies for their developers.

The above research suggests that programmers understand the operation of their programs
by metaphorical relation to their experience as a human. Indeed the feedback loop described in
§2 is by nature anthropomorphic; by embedding the development of an algorithm in a human
creative process, the algorithm itself becomes a human expression. Dijkstra [1988] strongly
opposed such approaches: “I have now encountered programs wanting things, knowing things,
expecting things, believing things, etc., and each time that gave rise to avoidable confusions. The
analogy that underlies this personification is so shallow that it is not only misleading but also
paralyzing.” Dijkstra’s claim is that by focusing on the operation of algorithms, the programmer
submits to a combinatorial explosion of possibilities for how a program might run; not every
case can be covered, and so bugs result. Dijkstra argues for a strict, declarative approach to
computer science and programming in general, which he views as so radical that we should not
associate it with our daily existence, or else limit its development and produce bad software.

The alternative view presented here is that metaphors necessarily structure our understand-
ing of computation. This view is sympathetic to a common assumption in the field of cognitive
linguistics, that our concepts are organised in relation to each other and to our bodies, through
conceptual systems of metaphor. Software now permeates Western society, and is required to
function reliably according to human perception of time and environment. Metaphors of software
as human activity are therefore becoming ever more relevant.

McLean and Wiggins 202

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Components are agents of action in a causal universe.
Programs operate in historical time.
Program state can be measured in quantitative terms.
Components are members of a society.
Components own and trade data.
Components are subject to legal constraints.
Method calls are speech acts.
Components have communicative intent.
A component has beliefs and intentions.
Components observe and seek information in the execution environment.
Components are subject to moral and aesthetic judgement.
Programs operate in a spatial world with containment and extent.
Execution is a journey in some landscape.
Program logic is a physical structure, with material properties and
subject to decay.
Data is a substance that flows and is stored.
Technical relationships are violent encounters.
Programs can author texts.
Programs can construct displays.
Data is a genetic, metabolizing lifeform with body parts.
Software tasks and behaviour are delegated by automaticity.
Software exists in a cultural/historical context.
Software components are social proxies for their authors.

Fig. 2. Conceptual metaphors derived from analysis of Java library documentation by Blackwell [2006a]. Program
components are described metaphorically as actors with beliefs and intentions, rather than mechanical imperative
or mathematical declarative models.

4 Symbols and Space

We now turn our attention to how the components of the bricolage programming process shown
in Figure 1 are represented, in order to ground understanding of how they may interrelate.
Building upon the anthropomorphic view taken above, we propose that in bricolage program-
ming, the human cognitive representation of programs centres around perception. Perception is
a low dimensional representation of sensory input, giving us a somewhat coherent, spatial view
of our environment. By spatial we do not just mean in terms of physical objects, but also in
terms of features in the spaces of all possible tastes, sounds, tactile textures and so on. This
scene is built through a process of dimensional reduction from tens of thousands of chemo-,
photo-, mechano- and thermoreceptor signals. Algorithms on the other hand are represented in
discrete symbolic sequences, as is their output, which must go through some form of digital-to-
analogue conversion before being presented to our sensory apparatus, for example as light from
a monitor screen or sound pressure waves from speakers, a process we call observation. Recall
the programmer from §2, who saw something not represented in the algorithm or even in its
output, but only in their own perception of the output; observation may itself be a creative act.

The component from Figure 1 not yet mentioned in this section is that of programmers’
concepts. A concept is ‘a mental representation of a class of things’ [Murphy, 2002, p.5]. Figure
1 shows concepts mediating between spatial perception and symbolic algorithms, leading us to
ask; are concepts represented more like spatial geometry, like percepts, or symbolic language,
like algorithms? Our focus on metaphor leads us to take the former view, that conceptual repre-
sentation is grounded in perception and the body. This view is taken from Conceptual Metaphor
Theory (CMT) introduced by Lakoff and Johnson [1980], which proposes that concepts are pri-
marily structured by metaphorical relations, the majority of which are orientational, understood
relative to the human body in space or time. In other words, the conceptual system is grounded
in the perceptual system. Gärdenfors [2000] builds upon this by further proposing that the se-
mantic meanings of concepts and the metaphorical relationships between them are geometrical
properties and relationships. Concepts themselves are represented by geometric regions of low

McLean and Wiggins 203

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

dimensional spaces defined by quality dimensions, either mapped directly from, or structured
by metaphorical relation to perceptual qualities. For example “red” and “blue” are regions in
perceptual colour space, and the metaphoric semantics of concepts within the spaces of mood,
temperature and importance may be defined relative to geometric relationships of such colours.

Gärdenforsian conceptual spaces are compelling when applied to concepts related to bodily
perception, emotion and movement, and Forth et al. [2008] report early success in computa-
tional representations of conceptual spaces of musical rhythm and timbre, through reference to
research in music perception. However, it is difficult to imagine taking a similar approach to
computer programs. What would the quality dimensions of a geometrical space containing all
computer programs be? There is no place to begin to answer this question; computer programs
are symbolic in nature, and cannot be coherently mapped to a geometrical space grounded in
perception.

For clarity we turn once again to Gärdenfors [2000], who points out that spatial representa-
tion is not in opposition to symbolic representation; they are distinct but support one another.
This is clear in computing, hardware exists in our world of continuous space, but thanks to
reliable electronics, conjures up a symbolic world of discrete computation. Our minds are able
to do the same, for example by computing calculations in our head, or encoding concepts into
phonetic movements of the vocal tract or alphabetic symbols on the page. We can think of our-
selves as spatial beings able to simulate a symbolic environment to conduct abstract thought
and open channels of communication. On the other hand, a piece of computer software is a
symbolic being able to simulate spatial environments, perhaps to create a game world or guide
robotic movements, both of which may include some kind of model of human perception.

Computer language operates in the domain of abstraction and communication but in general
does not at base include spatial semantics. In some cases computer languages are described as
‘visual’ even when spatial arrangement is purely secondary notation, ignored by the interpreter,
such as in Patcher languages [Puckette, 1988]. In fact spatial layout is a feature of secondary
notation in mainstream ‘textual’ languages too, through use of whitespace with no syntactical
meaning. That programmers need to use spatial layout as a crutch while composing symbolic
sequences is telling; to the interpreter, a block may be a subsequence between braces, but to
an experienced programmer it is a perceptual gestalt grouped by indentation. From this we can
understand computation as separate from spatial reasoning, but supported by it, with secondary
notation helping bridge the divide.

An important aspect of CMT is that a conceptual system of semantic meaning exists within
an individual, not in the world. Through language, metaphors become established in a culture
and shared by its participants, but this is an effect of individual conceptual systems interacting,
and not individuals inferring and adopting external truths of the world (or of possible worlds).
This would account for the varied range of metaphor in programming discussed in §3, as well
as the general failure of attempts at designing metaphor into computer interfaces [Blackwell,
2006b]. Each programmer has a different set of worldly interests and experiences, and so estab-
lishes different metaphorical systems to support their programming activities.

5 Components of creativity

We now have sufficient grounds to fully characterise how the creative process operates in our case
study of bricolage programming. For this we employ the Creative Systems Framework (CSF), a
high-level formalisation of creativity introduced by Wiggins [2006a,b] and based upon the work
of Boden [2003]. Creativity is characterised as a search in a space of concepts. Three sets of rules
are employed in this search; R defining the search space itself, T defining traversal of the space
and E defining evaluation of concepts found in the space. However, the CSF describes much
more than a reactive process of traversal and evaluation. Creativity also requires introspection,
self-modification and for boundaries to be broken. In other words, the rulesets R, T and E are
examined and challenged by the creative agent following them.

McLean and Wiggins 204

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Using the terms of Gärdenfors [2000], R is a concept defining a space of concept instances.1

For example in a creative search for music within a genre, the genre would be the concept and
a piece of music conforming to a genre would be a instance of that concept. Crucially, R is not
a closed space, but rather defined as a subspace of the universe of all possible concepts. This
means that a creative agent may creatively push beyond the boundaries of the search as we will
see.

We are now in a position to clarify the bricolage programming process introduced in §2.1
within the CSF. As shown in Figure 3, the ruleset R defines the programmer’s concept, being
their current artistic focus structured by learnt techniques and conventions, the traversal strat-
egy T is the process of encoding and interpreting the algorithm, and the evaluation function E
is the perceptual process of observation and reaction.

Fig. 3. The process of action and reaction in bricolage programming from Figure 1, annotated with the R
conceptual space, T traversal strategy and E evaluation components of the Creative Systems Framework.

In §2, we alluded to the extended mind hypothesis [Clark, 2008], claiming that bricolage
programming takes part of the human creative process outside of the mind and into the com-
puter. The above makes clear what we claim is being externalised: part of the traversal strategy
T . The programmer’s concept R motivates a development of the strategy T to be encoded in a
program, but the programmer does not necessarily have the cognitive ability to fully evaluate
the program. That task is taken on by the interpreter running on a computer system, meaning
that T encompasses both encoding by the human and interpretation by the computer.

The traversal strategy T is structured by the techniques and conventions employed to convert
concepts into operational algorithms. These may include design patterns, a standardised set
of ways of building that have become established around imperative programming languages.
Each design pattern identifies a kind of problem, and describes a kind of structure as a kind of
solution.2

The creative process is constrained by R, being the programmer’s idea of what is a valid
end result. This is shaped by the programmer’s current artistic focus, being the perceptual
qualities they are currently interested in, perhaps congruent with a cultural theme such as a
musical genre or artistic movement. Transformational creativity can be triggered in the CSF
when application of T results in a concept instance that exists outside the constraining bounds
of R, shown in Figure 4. If the instance is valued according to E , then R is changed to include

1 The terms used by Gärdenfors [2000] diverge from those used by Wiggins [2006a,b]. Wiggins uses the term
conceptual space in the place of Gärdenfors’ concept, and concept in the place of concept instance. The meaning
is however the same, particularly when the recursive hierarchy of Wiggins’ theory is taken into account.

2 Interestingly, this structural heuristic approach to problem solving originated in the field of urban design
[Alexander et al., 1977].

McLean and Wiggins 205

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Fig. 4. Application of a traversal strategy T leading outside the concept R, triggering transformational creativity.

it. If the instance is not valued, then T is changed to avoid that instance in the future. As a
result of including external interpretation in T , the programmer is likely to be less successful
in writing software that meets their preconceptions, but as a result more successful in being
surprised by the results. In other words, the artist’s act of externalising part of T as a computer
program makes the results less predictable, and transformational creativity more likely.

In artistic bricolage programming, then, we conclude that creativity is a process of imagining
a concept R, encoding an operational algorithm as part of T to explore within and beyond R,
and a perceptual process E to evaluate the output. Through this process both R and T are
continually transformed in respect of one another, in creative feedback.

According to our embodied view, not only is perception crucial in evaluating output within
bricolage programming, but also in structuring the space in which programs are conceptualised.
Indeed if the embodied view of CMT holds in general, the same would apply to all creative
endeavour. From this we find a message for the field of computational creativity: a prerequisite
for an artificial creative agent is in acquiring computational models of perception sufficient to
both evaluate its own works and structure its conceptual system. Only then will the agent have
a basis for guiding changes to its own conceptual system and generative traversal strategy, able
to modify itself to find artifacts that it was not programmed to find, and place value judgements
on them. Such an agent would need to adapt to human culture in order to interact with shifting
cultural norms, keeping its conceptual system and resultant creative process as coherent within
that culture. For now however this is all wishful thinking, and we must be content with generative
computer programs which extend human creativity, but are not creative agents in their own
right.

6 Programming in Time

“She is not manipulating the machine by turning knobs or pressing buttons. She is
writing messages to it by spelling out instructions letter by letter. Her painfully slow
typing seems laborious to adults, but she carries on with an absorption that makes it
clear that time has lost its meaning for her.” Sherry Turkle [2005, p. 92], on Robin, aged
4, programming a computer.

Having investigated the representation and operation of bricolage programming we now ex-
amine how the creative process operates in time. Considering computer programs as operating
in time at all, rather than as logic abstract from the world, is itself a form of the anthropomor-
phism examined in §3. However from the above quotation it seems that Robin stepped out of
any notion of physical time, and into the algorithm she was composing, entering a timeless state.
Speaking anecdotally, programmers report losing hours as they get ‘in the flow’ when writing
software. Perhaps a programmer is thinking in algorithmic time, attending to control flow as it
replays over and over in their imagination, and not to the world around them. Or perhaps they

McLean and Wiggins 206

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

are not attending to the passage of time at all, thinking entirely of declarative abstract logic,
in a timeless state of building. In either case, it would seem that the human is entering time
relationships of their software, rather than the opposite, anthropomorphic direction of software
entering human time. However there are ways in which human and computational time may be
united, which we will come to shortly.

Temporal relationships are generally not represented in source code. When a programmer
needs to do so, for example as an experimental psychologist requiring accurate time mea-
surements, or a musician needing accurate synchronisation between processes, they run into
problems. With the wide proliferation of interacting embedded systems, this is becoming a
broad concern [Lee, 2009]. In commodity systems time has been decentralised, abstracted away
through layers of caching, where exact temporal dependencies and intervals between events are
not deemed worthy of general interest. Programmers talk of ‘processing cycles’ as a valuable
resource which their processes should conserve, but they generally no longer have programmatic
access to the high frequency oscillations of the central processing units (now, frequently plural)
in their computer. The allocation of time to processes is organised top-down by an overseeing
scheduler, and programmers must work to achieve what timing guarantees are available. All is
not lost however, realtime kernels are now available for commodity systems, allowing psycholo-
gists [Finney, 2001] and musicians (e.g. via http://jackaudio.org/) to get closer to physical
time. Further, the representation of time semantics in programming is undergoing active re-
search in a subfield of computer science known as reactive programming [Elliott, 2009], with
applications emerging in music [McLean and Wiggins, 2010].

6.1 Interactive programming

Programmers who ‘think’ in algorithmic time, like Robin earlier, are well served by dynam-
ically interpreted languages. These allow a programmer to examine an algorithm while it is
interpreted, taking on live changes without restarts. This is known as interactive programming,
and unites the time flow of a program with that of its development. Interactive programming
makes a dynamic creative process of test-while-implement possible, rather than the conven-
tional implement-compile-test cycle, so that arrows shown in Figures 1 and 3 show concurrent
influences between components rather than time-ordered steps.

Interactive programming not only provides a more efficient creative feedback loop, but also
allows a programmer to connect software development with time based art. Since 2003 an
active group of practitioners and researchers have been developing new approaches to making
computer music and video animation, collectively known as Live coding [Blackwell and Collins,
2005, Ward et al., 2004, Collins et al., 2003, Rohrhuber et al., 2005]. The archetypal live coding
performance involves programmers writing code on stage, with their screens projected for an
audience, while the code is dynamically interpreted to generate music or video. Here the process
of development is the performance, with the work generated not by a finished program, but its
journey of development from an empty text editor to complex algorithm, generating continuously
changing musical or visual form along the way. This is bricolage programming perhaps taken
to a logical and artistic conclusion.

7 Conclusion

What we have seen provides strong motivation for programming which address the concerns of
artists. These include concerns of workflow, where any time elapsed between source code edit and
interpreted output is slows the creative process. Concerns of interfaces are also important, where
in certain situations greater emphasis is placed on presentation of short scripts in their entirety
as per bricolage programming, rather than hierarchical views of larger codebases. Perhaps most
importantly, we have seen motivated the development of programming languages to greater
support artistic expression.

McLean and Wiggins 207

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

From the embodied view we have taken, it would seem useful to integrate time and space
further into programming languages. In practice integrating time can mean on one hand includ-
ing temporal representations in core language semantics, and on the other uniting development
time with execution time, as we have seen with interactive programming. Temporal semantics
and interactive programming both already feature strongly in some programming languages for
the arts, as we saw in §6, but how about analogous developments in integrating space into the
semantics and activity of programming? This is a less well understood area requiring further
research, but it would seem that novel approaches to the integration of computational geometry
and perceptual models such as computer vision into programming language could serve artists
well. By harnessing and extending research into visual programming languages, this could ex-
tend to notation, taking for example the ReacTable as inspiration [Jordà et al., 2007].

We began with Paul Klee, a painter whose production was limited by his two hands. The
artist-programmer is not so limited, but shares what Klee called his limitation of reception, by
the “limitations of the perceiving eye”. This is perhaps a limitation to be expanded but not
overcome, rather celebrated and fully explored using all we have, including our new computer
languages. We have characterised a bricolage approach to artistic programming as an embodied,
creative feedback loop. This places the programmer close to their work, grounding symbolic
computation in orientational and temporal metaphors of their human experience. However the
computer interpreter extends the programmer’s abilities beyond their own imagination, making
unexpected results likely, leading the programmer to new creative possibilities.

McLean and Wiggins 208

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Bibliography

Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A Pattern Language: Towns,
Buildings, Construction. Oxford University Press, first edition, August 1977. ISBN
0195019199.

Alan Blackwell and Nick Collins. The programming language as a musical instrument. In
Proceedings of PPIG05. University of Sussex, 2005.

Alan F. Blackwell. Metaphors we program by: Space, action and society in java. In Proceedings
of the Psychology of Programming Interest Group 2006, 2006a.

Alan F. Blackwell. The reification of metaphor as a design tool. ACM Trans. Comput.-Hum.
Interact., 13(4):490–530, December 2006b. ISSN 1073-0516. doi: 10.1145/1188816.1188820.

Margaret A. Boden. The Creative Mind: Myths and Mechanisms. Routledge, 2 edition, Novem-
ber 2003. ISBN 0415314534.

Andy Clark. Supersizing the Mind: Embodiment, Action, and Cognitive Extension (Philosophy
of Mind Series). OUP USA, November 2008. ISBN 0195333217.

Nick Collins, Alex McLean, Julian Rohrhuber, and Adrian Ward. Live coding in laptop perfor-
mance. Organised Sound, 8(03):321–330, 2003. doi: 10.1017/S135577180300030X.

Edsger W. Dijkstra. On the cruelty of really teaching computing science. 1988.
Conal Elliott. Push-pull functional reactive programming. In Haskell Symposium, 2009.
Steven A. Finney. Real-time data collection in linux: A case study. Behavior Research Methods,
Instruments, & Computers, 33(2):167–173, May 2001.

Jamie Forth, Alex McLean, and Geraint Wiggins. Musical creativity on the conceptual level.
In IJWCC 2008, 2008.

Peter Gärdenfors. Conceptual Spaces: The Geometry of Thought. The MIT Press, March 2000.
ISBN 0262071991.

S. Jordà, G. Geiger, M. Alonso, and M. Kaltenbrunner. The reactable: Exploring the synergy
between live music performance and tabletop tangible interfaces. In Proc. Intl. Conf. Tangible
and Embedded Interaction (TEI07), 2007.

Paul Klee. Pedagogical sketchbook. Faber and Faber, 1953.
George Lakoff and Mark Johnson. Metaphors We Live By. University of Chicago Press, first

edition edition, April 1980. ISBN 0226468011.
Edward A. Lee. Computing needs time. Commun. ACM, 52(5):70–79, 2009. ISSN 0001-0782.

doi: 10.1145/1506409.1506426.
Alex McLean and Geraint Wiggins. Petrol: Reactive pattern language for improvised music. In
Proceedings of the International Computer Music Conference, June 2010.

Gregory L. Murphy. The Big Book of Concepts (Bradford Books). The MIT Press, August 2002.
ISBN 0262632993.

Marian Petre and Alan F. Blackwell. Mental imagery in program design and visual program-
ming. International Journal of Human-Computer Studies, 51:7–30, 1999.

M. Puckette. The patcher. In Proceedings of International Computer Music Conference, 1988.
Julian Rohrhuber, Alberto de Campo, and Renate Wieser. Algorithms today: Notes on language

design for just in time programming. In Proceedings of the 2005 International Computer Music
Conference, 2005.

Sherry Turkle. The Second Self: Computers and the Human Spirit, Twentieth Anniversary
Edition. The MIT Press, 20 anv edition, July 2005. ISBN 0262701111.

Sherry Turkle and Seymour Papert. Epistemological pluralism: Styles and voices within the
computer culture. Signs, 16(1):128–157, 1990. ISSN 00979740. doi: 10.2307/3174610.

Sherry Turkle and Seymour Papert. Epistemological pluralism and the revaluation of the con-
crete. Journal of Mathematical Behavior, 11(1):3–33, March 1992.

McLean and Wiggins 209

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Adrian Ward, Julian Rohrhuber, Fredrik Olofsson, Alex McLean, Dave Griffiths, Nick Collins,
and Amy Alexander. Live algorithm programming and a temporary organisation for its
promotion. In Olga Goriunova and Alexei Shulgin, editors, read me — Software Art and
Cultures, 2004.

G. A. Wiggins. A preliminary framework for description, analysis and comparison of creative
systems. Journal of Knowledge Based Systems, 2006a.

G. A. Wiggins. Searching for computational creativity. New Generation Computing, 24(3):
209–222, 2006b.

McLean and Wiggins 210

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

PPIG2010

http://www.ppig2010.org

http://www.ppig2010.org
http://www.ppig2010.org

