Overview

Usability of Programming Languages

MPhil ACS module R201 - Alan Blackwell

» Practical experimental course
» lectures are only introductory

» Lecture 1 - theoretical principles
» classic approaches
» current trends in leading research.

» Lecture 2 - candidate research methods
» advantages and disadvantages

» Lecture 3 - specific classes of user
» Lecture 4 - directed by your research interests

Reading List

» Hoc, Green, Samurcay and Gilmore (1990)
» Psychology of Programming.

» Psychology of Programming Interest Group
» WWW.ppig.org
» Cambridge guidance on human participants

» Cairns and Cox (2008)
» Research Methods for Human-Computer Interaction

» Carroll (2003)
» HCI Models, Theories and Frameworks: Toward a
multidisciplinary science

Lecture 1: Principles of human
factors in programming




Cognitive models in HCI

» Engineering model of human ‘I/O subsystems’ and
‘central processor’
» Derived from human factors/ergonomics
» Speed and accuracy of movement
» Include working memory capacity
» 7 +/- 2 ‘chunks’
» Single visual scene

» Programming as ‘cognitive ergonomics’?

Cognitive models of programming

» Deciding what to do is harder than doing it
» HCI models assume a ‘correct’ sequence of actions

» Classic cognitive models derived from GOFAI
» problem solving
» planning
» knowledge representation

» PoP book
» ch 1.4 - Human Cognition and Programming
» ch 3.1 - Expert Programming Knowledge:
A Schema-based Approach

» ch 2.3 - Language Semantics, Mental Models and Analogy
» cf user interface “metaphor”

Software Development Context

» Cognitive science: individuals in controlled contexts
» carefully construct experimental tasks to explore schemas,
plans, analogy etc
» correspond to Al constraints of toy problems

» Compare to wicked problems
» goals and criteria under-specified, constraints conflict etc

» Commercial software development is more social
» understand problem domain, negotiate specification change

» PoP book
» ch 1.3 -The Tasks of Programming
» ch 3.3 - Expert Software Design Strategies
» ch 4.1 -The Psychology of Programming in the Large:

Team and Organizational Behaviour
» cf Information Systems literature

Individual Variation

» Cognitive theories are general theories
» Consistent aspects of human performance

» But some programmers are far more productive
» Always more productive in a language they know

» Performance also correlated with
» general intelligence
» self-efficacy
» diagnostic tests for autism

» “expert” vs “novice”
» Study knowledge by comparing those with to those without
» Study naive users who are not ‘crippled’ or ‘mutilated’
» Real expert performance may include design research




Major research centres and programmes

Venues

» Psychology of Programming Interest Group (PPIG)
» annual conference - proceedings available online
» “Work in Progress” meeting (PPIG-WIP)

» European Association for Cognitive Ergonomics (EACE)
» Empirical Studies of Programmers foundation (ESP)

» IEEE Visual Languages and Human Centric Computing
» ESP symposia in 2002,2003

» International conference/workshop on Program
Comprehension (ICPC, formerly IWPC)

» ACM CHI

» Evaluation and Assessment in Software Engineering
(EASE)

NSF EUSES

» End-Users Shaping Effective Software

4
14
>
4
4
14

Margaret Burnett at Oregon State University
Brad Myers at Carnegie Mellon University
Mary Beth Rosson at Penn State University
Susan Wiedenbeck at Drexel University
Gregg Rothermel at University of Nebraska
Alan Blackwell at Cambridge

» See brand new publication

4

Ko, AJ.,Abraham, R., Beckwith, L., Blackwell, A.F,, Burnett, M.,
Erwig, M., Lawrence, |., Lieberman, H., Myers, B., Rosson, M.-B,,

Rothermel, G., Scaffidi, C., Shaw, M., and Wiedenbeck, S. (201 1).

The State of the Art in End-User Software Engineering. ACM
Computing Surveys 43(3),Article 21.

UK/European centres

» PPIG UK

Salford (Maria Kutar — chair)

York (Thomas Green)

Sheffield Hallam (Chris Roast)

Open University (Marian Petre and Judith Segal)
Sussex (Judith Good)

Cambridge (Alan Blackwell)

» Joensuu, Finland (Sajaniemi, Tukiainen, Bednarik)

4
14
>
4
4
14

» Limerick, Ireland (Buckley)
» INRIA Eiffel group, Paris (Détienne, Visser)
» Fraunhofer (Wulf )




Other US centres

» University of Colorado at Boulder
» Gerhard Fischer & Alex Repenning

» MIT Media Lab
» Henry Lieberman

» IBM Research TJ Watson
» Rachel Bellamy

» IBM Research Almaden
» Allen Cypher

» Microsoft Research Redmond
Human Interactions in Programming (HIP) group
» Rob Deline, GinaVenolia & Andrew Begel

Current areas of theoretical attention

Cognitive Dimensions of Notations

» Programming as interaction with an information
structure (Ch 2.2 of PoP book)

» Sample dimension
» Viscosity: a viscous system is difficult to change

» Resources:
» Visual language usability paper in JVLC by Green & Petre
» Tutorial by Green & Blackwell
» Questionnaire by Blackwell & Green
» Chapter in Carroll book

CDs Theory

» Any visible notation encodes an information structure.
» The structure has different parts
» The parts have various relationships to each other

» Notational Layers
» one structure is often derived from another with similar parts
and relationships
» e.g.web page, from PHP program, from UML diagram, from
whiteboard sketch, from business plan




Notational Activities

» Search:
» finding information in a familiar structure

» Exploratory understanding:
» understand a structure you haven’t seen

» Incrementation:
» add new items to existing structure

» Modification:
» change an existing structure

» Transcription:
» create a new structure derived from an existing layer

» Exploratory design:
» create a structure you don’t understand yet

Attention Investment

» Cost-benefit equation - compare mental effort:
» to carry out a programming task
» against effort saved by the program

» With associated risk/uncertainty:
» In estimate of effort to finish the program
» In actual benefit if the program has a bug
» In chance of damage resulting from a severe bug

Attention Investment Biases

» Some expert programmers:
» under-estimate costs, and over-estimate benefits

» Novices might be reluctant to engage in programming:

» If they over-estimate the costs

» If they over-estimate risk of negative return

» Tools can provide ‘gentle slope’ to reduce this bias
» E.g.surprise — explain - reward

Gender HCI

» Attention investment + self-efficacy theory

» You need confidence to start programming
» Attention investment means that female students are less
inclined to explore programming options.

» You need to do programming to gain confidence
» Self-efficacy develops through time spent experimenting

» Encourage ‘tinkering’ to explore behaviour
» But note that the same kind of tinkering can results in poorer
learning for males, who have a tendency to be over-confident,
and not to think about what they are doing




Programming by Example

» Based on machine learning techniques
» Infer programs from examples of required output

» Attention Investment benefits:
» examples can be provided through normal direct manipulation,
so reduced perceived cost
» inferred program is offered to user when already functional, so
reduced perceived risk

Natural Programming

» Programmme of Myers’ group at Carnegie Mellon
» Study natural/everyday description of algorithms

» Design programming languages compatible with naive
knowledge
» Pane’s HANDS (for children)
» Miller’s LAPIS (for text manipulation)
» Ko’s CITRUS (constraint-based MVC platform)

Variable Roles

» Programme of Sajaniemi’s group at Joensuu
» Based on analysis of source code corpuses

» Unlike Myer’s focus on naive knowledge, this focuses
on expert knowledge

» Variables are used in only a few ways:
» fixed, stepper, follower, gatherer etc

» Originally used for educational visualisation, instruction
» May be used for intelligent compilers in future

Agile/Pair Programming

» Study interaction between people doing pair
programming

» theoretical focus on sociology rather than psychology

» See Computer-Supported Collaborative Work (CSCW)
rather than HCI.




Programming Aptitude Organizational Contexts

» How to identify good programmers? » Speciality of Microsoft HIP group
» good programmers are commercially valuable
» ldentify talented students
» ldentify students needing additional help

» Seldom any theoretical explanation, just psychometric » Maintaining code bases on an industrial scale
correlations » E.g. what activities are involved when a new programmmer

joins an established team?

» Long-term studies of professional programmers in
realistic teams

» cognitive style
» personality measures » Hard to achieve for academics

» autism spectrum diagnoses » beyond the resources of academic research budgets

» relies on access to commercially sensitive information

Integrated Development Environments

» The language is not the only usability problem
» Manage modules & dependencies
» integrated editors
» debugging and visualisation tools

» Some research using custom plug-ins for Eclipse

Syntax and tools » Burnett's Forms/3 research platform

» Complete novel IDEs for education use

» Blue) & Scratch

» Extensions to CMU Alice
» Ko’s WhyLine
» Kelleher’s storytelling Alice
» (compare Good’s struggles with Neverwinter Nights)




Visual Languages

» The ambition dates back to 60s and 70s
» ldea of measuring improvement arrived at IEEEVL 1996
» IEEEVL became IEEEVL/HCC soon afterward

» Pioneering commercial products
» National Instruments LabVIEW
» Prograph

» Recent examples
» Yahoo Pipes
» Microsoft Kodu
» Google Applnventor

» Most could benefit from evaluation, or application of
Cognitive Dimensions

Spreadsheets

» Widely used, sometimes for surprising purposes
» A large proportion of commercial spreadsheets contain errors
(Panko)
» Spreadsheet research corpus (Scaffidi)

» Empirical studies and extensions:
» Excel
» Burnett’s Forms/3, with free-format cells

» Specific usability improvements:
» testing and debugging facilities such as WYSIWYT (Burnett)
» type systems and generators (Erwig)
» Functional programming in Excel (Peyton-Jones, Blackwell,
Burnett)

Scripting Languages

» Allow users to customize and extend products, e.g.
» LISP variants in AutoCAD and EMACS
» Linden Scripting Language (LSL) in Second Life
» Apple Automator (and earlier Hypercard)

» Key research concern in end-user programming (later)
» Note that many evolve into professional languages (Perl, Flash)
» While others never really considered end-user needs (TCL,
JavaScript)

» Can address attention investment by starting with
macro recording, then exposing source code for
modification
» Visual Basic in Microsoft Word
» CoScripter for Firefox (Allen Cypher)

Lecture 2: Research methods in the
study of programming.




Ethical Issues in Research

» Review the Cambridge Technology Ethics guide
» What kind of study are you planning?
» What potential concerns might there be?
» What will you do to address them?

» Submit a proposal to the Computer Lab Ethics
committee, giving above details.

Controlled Experimental Methods

» Participants (subjects), potentially in groups
» Experimental task

» Performance measures (speed & accuracy)
» Trials

» Conditions / Treatments / Manipulations
» modify the programming language
» use different languages
» Use different features of the programming environment

» Effect of treatments on sample means
» Within-subjects (each participant uses all versions)
» Between-subjects (different groups use different versions)

Controlled Experiments

» Based on a number of observations:
» How long did Fred take to fix this bug (speed)?
» Did he get it right (accuracy)?

» But every observation is different.

» So we compare averages:
» Over a number of trials
» Over a range of people (participants)

» Results often have a normal distribution
» Compare difference of means

» Require significance testing
» What likelihood that result could occur at random?
» Is difference of means large relative to variance?

Typical experimental tasks

» Production tasks
» write a program that is correct, and write it quickly

» Comprehension tasks
» understanding, interpretation or recall

» Search tasks
» find code responsible for functionality, or bug

» May be possible to use standardised tasks, for
comparison to previous PPIG research
» See Blackwell list
» But ‘toy problems can lack external validity

» Perhaps use the six Cognitive Dimensions activities?




Experimental Manipulations

» Compare productivity gains (effect size) of version with new

feature to one without?

» Will system work without the new feature?

» Will the experimental task be meaningful if the feature is disabled?

» Must new feature be presented second in a within-subjects
comparison (order effect)

» Is your system sufficiently well-designed for external validity of
productivity measure?

» Test a fundamental research question?
» e.g.imperative vs declarative paradigms, textual vs visual syntax
» Are your two languages properly representative of the paradigms, yet
also equivalent in other respects?
» Are your experimental tasks equally suited to different paradigms?

» Is full implementation necessary?
» Can you simulate features with Wizard of Oz technique?

Measurement

» Speed (classically ‘reaction time’)
» E.g.time to write program

» Accuracy (number of (non)errors).
» Is program correct?

» Trade-off between speed and accuracy?
» Or poor performance on both?
» Check correlation between them

» Task completion:
» Stop after a fixed amount of time (ideally < | hour)
» Measure proportion of the overall task completed

Self-Report

» Did you find this easy to use? (Likert scale)
» applied value: appeal to customers
» theoretical value: estimate ‘cognitive load’

» Danger of bias
» Subjective impressions of performance inaccurate
» Suffer from experimental demand

» Participants want to be nice to the experimenter
» Should disguise which manipulation is the novel one

» May be necessary to capture affect measures:
» Did you enjoy it, feel creative/ enthusiastic?

» Alternative is to collect ‘richer’ data ...

Think-aloud

» “Tell me everything you are thinking”
» ‘concurrent verbalisation’

» Problems:
» Hard tasks become even harder while speaking aloud

» During the most intense (interesting) periods, participants

simply stop talking,

» Alternative:
» make video recording, or eye-tracking trace
» playback for participant to narrate
» ‘retrospective verbal report’

10



Qualitative Data

» Protocol analysis methods, e.g.
» verbal protocol — transcript of recorded verbal data
» video protocol — recording of actions

» Hypothesis-, or theory-driven
» Create ‘coding frame’ for hypothesised categories of behaviour
» Segment the protocol into episodes, utterances, phrases etc
» Classify these into relevant categories (with inter-rater
reliability)
» Compare frequency or order statistically

» Grounded theory (ch 7 of HCI Research Methods)
» Open coding, looking for patterns in the data
» Stages of thematic grouping and generalization
» Constant comparison of emerging framework to original data
» More interpretive, danger of subjective bias

Experiment Design

v

Arrangement of participants, groups, tasks, trials, conditions,
measures, and hypothesized effects of treatments

Within-subjects designs are preferred
» because so much variation between programmers

v

This leads to order effects:

» first condition may seem worse, because of learning effect
» last condition may suffer from fatigue effect

» task familiarity — can’t use the same task twice

v

Precautions:

» Prior training to reduce learning effects

» Minimise experimental session length to reduce fatigue effects

» Use different tasks in each condition, but ‘balance’ with treatment and
order

v

v

These are typically combined in a ‘latin square’ where each
participant gets a different combination

Analysis

» For an easy life, plan your analysis before collecting
data!

» Will quantitative data be normally distributed?
» t-test to compare two groups

» ANOVA to compare effect of multiple conditions (which include

latin square of task and order)
» Pearson correlation to compare relationship between measures

» Distributions of task times are often skewed:
» a small number of individuals complete the task quite slowly
» don’t exclude ‘outliers’ who have difficulty with your system

» log transform of time is usually found to be normally distributed

» Subjective ratings are seldom normally distributed
» chi-square test of categories
» ‘non-parametric’ comparison of means

Evaluation

» Rather than testing hypothesis, or comparing
treatments
» ask ‘is my language usable’?

» More typical of commercial practice, for short-term
goals, rather than general understanding
» Formative evaluation assesses options early in design process
» Summative evaluation identifies usability problems in a system
you have built
» Repeated for iterative refinement in user-centred design

» Weaker research, because no direct contribution to
theory
» However some mainstream applied research venues are starting

to require evidence of any claims made for new tools
» e.g.ICSE, OOPSLA/SPLASH

11



Field Study Methods

» Laboratory studies are not adequate for:
» organizational context of software development
» interaction within software development teams
» behaviour of programmers in actual work context

» Typical methods:
» ‘contextual inquiry’ interviews
» ‘focus group’ discussions
» ‘case studies’ of projects or organisations
» ‘ethnographic’ field work as participant-observer

» All result in qualitative data, often transcribed, and
analysed using grounded theory approaches

» You won't have time!

Lecture 3: Special classes of
programming language use

Educational Languages

» Computer Science Education vs programming for children
Papert’s Logo

Kay’s Smalltalk

Repenning’s AgentSheets

Cypher and Smith’s StageCast

Kahn’s ToonTalk

Kolling’s Greenfoot

Carnegie Mellon’s Alice

MIT’s Scratch

» Many use VL techniques, to overcome syntax problems
» Is it ‘cheating’ to avoid teaching syntax?
» Or motivate children by making it easy for them to do things that
interest them (videogames or animations)
» ‘learning to program’ or ‘programming to learn’?
» ‘user-centred’ or ‘curriculum-centred’ design?

» If curriculum, what theoretical principles? Logic? Functional?
Objects?

v Vv VvV VvVvwVvw

End-User Programming

» In Information Systems ‘user’ is a (professional)
organisation
» ‘end-user’ is a person who will actually use the system

» an ‘end-user programmer’ both writes the program and uses it.

» ‘end-user development’ (EUD)
» ‘end-user customisation’ (EUC)

» Interesting research because:
» An externally valid source of ‘novice’ programmers
» Ubiquitous computing increases market for customisation
» Professional programmers don’t complain enough

12



End-User Programming

» EUP is usually defined to refer to a person who has
» not trained as a programmer
» not primarily employed as a programmer
» does not program for its own sake, but as a means to an end

» Motivation for end-user software engineering (e.g.
testing and debugging)
» programs may be used by other people
» programs may be business-critical

» Domain-specific languages
» Programming ‘novices’ are often domain experts
» LabView, MATLAB are both DSLs
» Even some mainstream tools are increasingly domain-specific,
e.g. WPF

Creative mashups and composition

» Not like military, industrial, bureaucratic domains
» those are well structured, with ample resources.
» leisure, media and the arts imply ‘discretionary-use’

» digital media creators collage, sample & mash-up
» art strategies are next generation agile methods

» Current generation of artist languages
» Max/MSP (+ Jitter)
» Processing
» SuperCollider

» Current research in Cambridge
» Flow in composition
» Live coding
» EUSE for improvisation processes

Domestic automation

» Classic domestic HCI challenges
» home heating controls
» VCR programming
» privacy configuration

» Home networking
» WiFi, Zigbee. X10
» AutoHAN
» software plumber or software DIY?

» Research opportunities
» Understand domestic economy of digital technology
» Apply gentle slope and attention investment

Lecture 4: Planning practical
empirical studies.

13



Goal

Candidate programming languages/tools

» Prepare for design of your study

» Previous lectures followed:
» theories of programming
» experimental methods
» specific users and programming technologies

» We use reverse order:
» specific programming technologies and users
» experimental methods
» theories of programming

» your own personal research
» e.g. MPhil dissertation

» Other research
» other research in Cambridge
» recent product releases
» research prototypes developed elsewhere

» Who is the intended user?
» What will they be trying to achieve?

Representative tasks and measures

Review of study design options

» Identify user activities you plan to observe
» assigned tasks (controlled experiment)
» or user’s goal (observational study)

» Will these explore an interesting research question?
» What measures are relevant to that question?
» Will qualitative data analysis be necessary?

» Will there be a threat to external validity?
» From task, measure or analysis

» Do you wish to carry out a comparison, an evaluation,
or an open exploratory study?

» If you plan to conduct a controlled experiment, will it be
possible to use a within-subjects design?

» What data analysis method will you use?

» What would you need to do in order to complete a pilot
study?

» What ethical issues are raised by your planned
research?

14



Theoretical goal

» What do you expect to learn from conducting your
study?

» What contribution will it make to the research literature
relevant to usability of programming languages?

» Where would you publish the results?

Course structure

» Assignment A, presented at seminars 1 & 2
» Target language, paradigm, tool or environment
» Review of relevant literature
» Study design
» Outline of analytic methods

» Assignment B, presented at seminars 3 & 4
» Full experimental report
» Data analysis and findings
» Suitable for publication at venue such as PPIG

15



