
1

Usability of Programming Languages 

MPhil ACS module R201 - Alan Blackwell

Overview

 Practical experimental course
 lectures are only introductory

 Lecture 1 - theoretical principles 
l  h classic approaches

 current trends in leading research.

 Lecture 2 - candidate research methods 
 advantages and disadvantages

 Lecture 3 - specific classes of user
 Lecture 4 - directed by your research interests Lecture 4 - directed by your research interests

Reading List

 Hoc, Green, Samurçay and Gilmore (1990) 
 Psychology of Programming. 

 Psychology of Programming Interest Groupy gy g g p
 www.ppig.org

 Cambridge guidance on human participants
 Cairns and Cox (2008) 
 Research Methods for Human-Computer Interaction

 Carroll (2003) Carroll (2003)
 HCI Models, Theories and Frameworks: Toward a 

multidisciplinary science

Lecture 1: Principles of human 
factors in programming



2

Cognitive models in HCI

 Engineering model of human ‘I/O subsystems’ and 
‘central processor’
 Derived from human factors/ergonomics

S d d  f  Speed and accuracy of movement
 Include working memory capacity

 7 +/- 2 ‘chunks’
 Single visual scene

 Programming as ‘cognitive ergonomics’?

Cognitive models of programming

 Deciding what to do is harder than doing it
 HCI models assume a ‘correct’ sequence of actions 

 Classic cognitive models derived from GOFAIg
 problem solving
 planning
 knowledge representation

 PoP book
 ch 1.4 - Human Cognition and Programming
 ch 3 1  - Expert Programming Knowledge:  ch 3.1  - Expert Programming Knowledge: 

A Schema-based Approach
 ch 2.3 - Language Semantics, Mental Models and Analogy

 cf user interface “metaphor”

Software Development Context

 Cognitive science: individuals in controlled contexts
 carefully construct experimental tasks to explore schemas, 

plans, analogy etc
d  AI i  f  bl correspond to AI constraints of toy problems

 Compare to wicked problems
 goals and criteria under-specified, constraints conflict etc

 Commercial software development is more social
 understand problem domain, negotiate specification change

 PoP book
 ch 1.3 - The Tasks of Programming
 ch 3.3 - Expert Software Design Strategies
 ch 4.1 - The Psychology of Programming in the Large: 

Team and Organizational Behaviour
 cf Information Systems literature

Individual Variation

 Cognitive theories are general theories
 Consistent aspects of human performance 

 But some programmers are far more productivep g p
 Always more productive in a language they know
 Performance also correlated with

 general intelligence
 self-efficacy
 diagnostic tests for autism

 “expert” vs “novice” 
 Study knowledge by comparing those with to those without
 Study naïve users who are not ‘crippled’ or ‘mutilated’
 Real expert performance may include design research



3

Major research centres and programmes

Venues

 Psychology of Programming Interest Group (PPIG)
 annual conference - proceedings available online
 “Work in Progress” meeting (PPIG-WIP)

 European Association for Cognitive Ergonomics (EACE)
 Empirical Studies of Programmers foundation (ESP)
 IEEE Visual Languages and Human Centric Computing
 ESP symposia in 2002, 2003

 International conference/workshop on Program International conference/workshop on Program 
Comprehension (ICPC, formerly IWPC)

 ACM CHI
 Evaluation and Assessment in Software Engineering 

(EASE)

NSF EUSES

 End-Users Shaping Effective Software
 Margaret Burnett at Oregon State University
 Brad Myers at Carnegie Mellon University

M  B h R   P  S  U i i Mary Beth Rosson at Penn State University
 Susan Wiedenbeck at Drexel University
 Gregg Rothermel at University of Nebraska
 Alan Blackwell at Cambridge

 See brand new publication
 Ko,  A.J., Abraham, R., Beckwith, L., Blackwell, A.F., Burnett, M., 

Erwig, M., Lawrence, J., Lieberman, H., Myers, B., Rosson, M.-B., 
Rothermel, G., Scaffidi, C., Shaw, M., and Wiedenbeck, S. (2011). 
The State of the Art in End-User Software Engineering. ACM 
Computing Surveys 43(3), Article 21.

UK/European centres

 PPIG UK
 Salford (Maria Kutar – chair)
 York (Thomas Green)

Sh ffi ld H ll  (Ch i  R ) Sheffield Hallam (Chris Roast)
 Open University (Marian Petre and Judith Segal)
 Sussex (Judith Good)
 Cambridge (Alan Blackwell)

 Joensuu, Finland (Sajaniemi, Tukiainen, Bednarik)
 Limerick Ireland (Buckley) Limerick, Ireland (Buckley)
 INRIA Eiffel group, Paris (Détienne, Visser)
 Fraunhofer (Wulf )



4

Other US centres

 University of Colorado at Boulder
 Gerhard Fischer & Alex Repenning

 MIT Media Lab
 Henry Lieberman

 IBM Research TJ Watson
 Rachel Bellamy

 IBM Research Almaden
 Allen Cypher

 Microsoft Research Redmond
Human Interactions in Programming (HIP) group
 Rob DeLine, Gina Venolia & Andrew Begel

Current areas of theoretical attention

Cognitive Dimensions of Notations

 Programming as interaction with an information 
structure (Ch 2.2 of PoP book)

 Sample dimension Sample dimension
 Viscosity: a viscous system is difficult to change

 Resources: 
 Visual language usability paper in JVLC by Green & Petre
 Tutorial by Green & Blackwell
 Questionnaire by Blackwell & Green
 Chapter in Carroll book Chapter in Carroll book

CDs Theory

 Any visible notation encodes an information structure. 
 The structure has different parts
 The parts have various relationships to each other

 Notational Layers
 one structure is often derived from another with similar parts 

and relationships
 e.g. web page, from PHP program, from UML diagram, from 

whiteboard sketch, from business plan



5

Notational Activities

 Search: 
 finding information in a familiar structure 

 Exploratory understanding: p y g
 understand a structure you haven’t seen 

 Incrementation: 
 add new items to existing structure 

 Modification: 
 change an existing structure 

 Transcription: 
 create a new structure derived from an existing layer

 Exploratory design: 
 create a structure you don’t understand yet

Attention Investment

 Cost-benefit equation - compare mental effort:
 to carry out a programming task
 against effort saved by the program

 With associated risk/uncertainty:
 In estimate of effort to finish the program
 In actual benefit if the program has a bug
 In chance of damage resulting from a severe bug

Attention Investment Biases

 Some expert programmers:
 under-estimate costs, and over-estimate benefits

 Novices might be reluctant to engage in programming: g g g p g g
 If they over-estimate the costs 
 If they over-estimate risk of negative return 
 Tools can provide ‘gentle slope’ to reduce this bias
 E.g. surprise – explain - reward

Gender HCI

 Attention investment + self-efficacy theory
 You need confidence to start programming
 Attention investment means that female students are less 

inclined to explore programming options.

 You need to do programming to gain confidence
 Self-efficacy develops through time spent experimenting

 Encourage ‘tinkering’ to explore behaviour
 But note that the same kind of tinkering can results in  poorer 

learning for males, who have a tendency to be over-confident, 
and not to think about what they are doing



6

Programming by Example

 Based on machine learning techniques
 Infer programs from examples of required output 
 Attention Investment benefits: Attention Investment benefits: 
 examples can be provided through normal direct manipulation, 

so reduced perceived cost
 inferred program is offered to user when already functional, so 

reduced perceived risk 

Natural Programming

 Programmme of Myers’ group at Carnegie Mellon 
 Study natural/everyday description of algorithms 
 Design programming languages compatible with naïve Design programming languages compatible with naïve 

knowledge
 Pane’s HANDS (for children)
 Miller’s LAPIS (for text manipulation)
 Ko’s CITRUS (constraint-based MVC platform)

Variable Roles

 Programme of Sajaniemi’s group at Joensuu 
 Based on analysis of source code corpuses
 Unlike Myer’s focus on naïve knowledge this focuses Unlike Myer’s focus on naïve knowledge, this focuses 

on expert knowledge
 Variables are used in only a few ways: 
 fixed, stepper, follower, gatherer etc

 Originally used for educational visualisation, instruction
 May be used for intelligent compilers in future

Agile/Pair Programming

 Study interaction between people doing pair 
programming

 theoretical focus on sociology rather than psychology theoretical focus on sociology rather than psychology
 See Computer-Supported Collaborative Work (CSCW) 

rather than HCI.



7

Programming Aptitude

 How to identify good programmers?
 good programmers are commercially valuable
 Identify talented students

Id if  d  di  ddi i l h l Identify students needing additional help

 Seldom any theoretical explanation, just psychometric 
correlations  
 cognitive style
 personality measures
 autism spectrum diagnoses

Organizational Contexts

 Speciality of Microsoft HIP group 
 Long-term studies of professional programmers in 

realistic teamsrealistic teams 
 Maintaining code bases on an industrial scale
 E.g. what activities are involved when a new programmmer 

joins an established team?

 Hard to achieve for academics
 beyond the resources of academic research budgets
 relies on access to commercially sensitive information

Syntax and tools

Integrated Development Environments

 The language is not the only usability problem
 Manage modules & dependencies
 integrated editors

d b i  d i li i  l debugging and visualisation tools

 Some research using custom plug-ins for Eclipse
 Burnett’s Forms/3 research platform
 Complete novel IDEs for education use
 BlueJ & Scratch
 Extensions to CMU Alice

 Ko’s WhyLine
 Kelleher’s storytelling Alice
 (compare Good’s struggles with Neverwinter Nights)



8

Visual Languages

 The ambition dates back to 60s and 70s
 Idea of measuring improvement arrived at IEEE VL 1996
 IEEE VL became IEEE VL/HCC soon afterward

 Pioneering commercial products 
 National Instruments LabVIEW
 Prograph

 Recent examples
 Yahoo Pipes 
 Microsoft Kodu  Microsoft Kodu 
 Google AppInventor 

 Most could benefit from evaluation, or application of 
Cognitive Dimensions

Spreadsheets

 Widely used, sometimes for surprising purposes
 A large proportion of commercial spreadsheets contain errors 

(Panko)
S d h  h  (S ffidi) Spreadsheet research corpus (Scaffidi)

 Empirical studies and extensions:
 Excel
 Burnett’s Forms/3, with free-format cells

 Specific usability improvements:
 testing and debugging facilities such as WYSIWYT (Burnett)  testing and debugging facilities such as WYSIWYT (Burnett) 
 type systems and generators (Erwig)
 Functional programming in Excel (Peyton-Jones, Blackwell, 

Burnett)

Scripting Languages

 Allow users to customize and extend products, e.g.
 LISP variants in AutoCAD and EMACS
 Linden Scripting Language (LSL) in Second Life

A l  A  ( d li  H d) Apple Automator (and earlier Hypercard)

 Key research concern in end-user programming (later)
 Note that many evolve into professional languages (Perl, Flash)
 While others never really considered end-user needs (TCL, 

JavaScript)

 Can address attention investment by starting with Can address attention investment by starting with 
macro recording, then exposing source code for 
modification
 Visual Basic in Microsoft Word
 CoScripter for Firefox (Allen Cypher)

Lecture 2: Research methods in the 
study of programming. 



9

Ethical Issues in Research

 Review the Cambridge Technology Ethics guide
 What kind of study are you planning?
 What potential concerns might there be?

Wh  ill  d   dd  h ? What will you do to address them?

 Submit a proposal to the Computer Lab Ethics 
committee, giving above details.

Controlled Experimental Methods

 Participants (subjects), potentially in groups
 Experimental task
 Performance measures (speed & accuracy) Performance measures (speed & accuracy)
 Trials
 Conditions / Treatments / Manipulations
 modify the programming language
 use different languages
 Use different features of the programming environment Use different features of the programming environment

 Effect of treatments on sample means
 Within-subjects (each participant uses all versions)
 Between-subjects (different groups use different versions) 

Controlled Experiments

 Based on a number of observations:
 How long did Fred take to fix this bug (speed)?
 Did he get it right (accuracy)?

 But every observation is different.
 So we compare averages:
 Over a number of trials
 Over a range of people (participants)

 Results often have a normal distribution
 Compare difference of means

 Require significance testing
 What likelihood that result could occur at random?
 Is difference of means large relative to variance?

Typical experimental tasks

 Production tasks
 write a program that is correct, and write it quickly

 Comprehension tasksp
 understanding, interpretation or recall

 Search tasks
 find code responsible for functionality, or bug

 May be possible to use standardised tasks, for 
comparison to previous PPIG research
 See Blackwell list
 But ‘toy problems can lack external validity

 Perhaps use the six Cognitive Dimensions activities?



10

Experimental Manipulations

 Compare productivity gains (effect size) of version with new 
feature to one without?
 Will system work without the new feature? 
 Will the experimental task be meaningful if the feature is disabled?  Will the experimental task be meaningful if the feature is disabled? 
 Must new feature be presented second in a within-subjects 

comparison (order effect)
 Is your system sufficiently well-designed for external validity of 

productivity measure?

 Test a fundamental research question?
 e.g. imperative vs declarative paradigms, textual vs visual syntaxg p p g , y
 Are your two languages properly representative of the paradigms, yet 

also equivalent in other respects? 
 Are your experimental tasks equally suited to different paradigms?

 Is full implementation necessary?
 Can you simulate features with Wizard of Oz technique?

Measurement

 Speed (classically ‘reaction time’)
 E.g. time to write program

 Accuracy (number of (non)errors). y ( ( ) )
 Is program correct? 

 Trade-off between speed and accuracy?
 Or poor performance on both?
 Check correlation between them

 Task completion: 
 Stop after a fixed amount of time (ideally < 1 hour)
 Measure proportion of the overall task completed

Self-Report

 Did you find this easy to use? (Likert scale)
 applied value: appeal to customers
 theoretical value: estimate ‘cognitive load’

 Danger of bias 
 Subjective impressions of performance inaccurate 
 Suffer from experimental demand

 Participants want to be nice to the experimenter
 Should disguise which manipulation is the novel one

 May be necessary to capture affect measures:y y p
 Did you enjoy it, feel creative/ enthusiastic?

 Alternative is to collect ‘richer’ data …

Think-aloud

 “Tell me everything you are thinking”
 ‘concurrent verbalisation’

 Problems:
 Hard tasks become even harder while speaking aloud
 During the most intense (interesting) periods, participants 

simply stop talking, 

 Alternative:
 make video recording, or eye-tracking trace
 playback for participant to narrate playback for participant to narrate
 ‘retrospective verbal report’



11

Qualitative Data

 Protocol analysis methods, e.g.
 verbal protocol – transcript of recorded verbal data
 video protocol – recording of actions

 Hypothesis-, or theory-driven
 Create ‘coding frame’ for hypothesised categories of behaviour
 Segment the protocol into episodes, utterances, phrases etc
 Classify these into relevant categories (with inter-rater 

reliability)
 Compare frequency or order statistically

 Grounded theory (ch 7 of HCI Research Methods)
 Open coding, looking for patterns in the data
 Stages of thematic grouping and generalization
 Constant comparison of emerging framework to original data
 More interpretive, danger of subjective bias

Experiment Design

 Arrangement of participants, groups, tasks, trials, conditions, 
measures, and hypothesized effects of treatments

 Within-subjects designs are preferred
 because so much variation between programmers because so much variation between programmers

 This leads to order effects: 
 first condition may seem worse, because of learning effect
 last condition may suffer from fatigue effect
 task familiarity – can’t use the same task twice

 Precautions:
 Prior training to reduce learning effects Prior training to reduce learning effects
 Minimise experimental session length to reduce fatigue effects
 Use different tasks in each condition, but ‘balance’ with treatment and 

order

 These are typically combined in a ‘latin square’ where each 
participant gets a different combination

Analysis

 For an easy life, plan your analysis before collecting 
data!

 Will quantitative data be normally distributed? Will quantitative data be normally distributed?
 t-test to compare two groups
 ANOVA to compare effect of multiple conditions (which include 

latin square of task and order)
 Pearson correlation to compare relationship between measures

 Distributions of task times are often skewed:
 a small number of individuals complete the task quite slowly a small number of individuals complete the task quite slowly
 don’t exclude ‘outliers’ who have difficulty with your system
 log transform of time is usually found to be normally distributed

 Subjective ratings are seldom normally distributed
 chi-square test of categories
 ‘non-parametric’ comparison of means

Evaluation

 Rather than testing hypothesis, or comparing 
treatments
 ask ‘is my language usable’?

 More typical of commercial practice, for short-term 
goals, rather than general understanding
 Formative evaluation assesses options early in design process
 Summative evaluation identifies usability problems in a system 

you have built
 Repeated for iterative refinement in user-centred designp g

 Weaker research, because no direct contribution to 
theory
 However some mainstream applied research venues are starting 

to require evidence of any claims made for new tools
 e.g. ICSE, OOPSLA/SPLASH



12

Field Study Methods

 Laboratory studies are not adequate for:
 organizational context of software development
 interaction within software development teams

b h i  f  i  l k  behaviour of programmers in actual work context

 Typical methods:
 ‘contextual inquiry’ interviews
 ‘focus group’ discussions
 ‘case studies’ of projects or organisations
 ‘ethnographic’ field work as participant-observer

 All result in qualitative data, often transcribed, and 
analysed using grounded theory approaches

 You won’t have time!

Lecture 3: Special classes of 
programming language use

Educational Languages

 Computer Science Education vs programming for children
 Papert’s Logo
 Kay’s Smalltalk
 Repenning’s AgentSheets
 Cypher and Smith’s StageCast
 Kahn’s ToonTalk
 Kolling’s Greenfoot
 Carnegie Mellon’s Alice
 MIT’s Scratch

 Many use VL  techniques, to overcome syntax problems 
 Is it ‘cheating’ to avoid teaching syntax?
 Or motivate children by making it easy for them to do things that 

interest them (videogames or animations)
 ‘learning to program’ or ‘programming to learn’?
 ‘user-centred’  or ‘curriculum-centred’ design?

 If curriculum, what theoretical principles? Logic? Functional? 
Objects?

End-User Programming

 In Information Systems ‘user’ is a (professional) 
organisation
 ‘end-user’ is a person who will actually use the system

 ‘ d  ’ b h  h   d   an ‘end-user programmer’ both writes the program and uses it.
 ‘end-user development’ (EUD)
 ‘end-user customisation’ (EUC)

 Interesting research because:
 An externally valid source of ‘novice’ programmers
 Ubiquitous computing increases market for customisation

P f i l  d ’  l i  h Professional programmers don’t complain enough



13

End-User Programming

 EUP is usually defined to refer to a person who has 
 not trained as a programmer
 not primarily employed as a programmer

d    f  i   k  b       d does not program for its own sake, but as a means to an end

 Motivation for end-user software engineering (e.g. 
testing and debugging)
 programs may be used by other people
 programs may be business-critical

 Domain specific languages Domain-specific languages
 Programming ‘novices’ are often domain experts
 LabView, MATLAB are both DSLs
 Even some mainstream tools are increasingly domain-specific, 

e.g. WPF

Creative mashups and composition

 Not like military, industrial, bureaucratic domains
 those are well structured, with ample resources. 
 leisure, media and the arts imply ‘discretionary-use’

 digital media creators collage, sample & mash-up
 art strategies are next generation agile methods

 Current generation of artist languages
 Max/MSP (+ Jitter)
 Processing
 SuperCollider SuperCollider

 Current research in Cambridge
 Flow in composition
 Live coding
 EUSE for improvisation processes

Domestic automation

 Classic domestic HCI challenges
 home heating controls
 VCR programming

i  fi i privacy configuration

 Home networking
 WiFi, Zigbee. X10
 AutoHAN
 software plumber or software DIY?

 Research opportunities Research opportunities
 Understand domestic economy of digital technology
 Apply gentle slope and attention investment

Lecture 4: Planning practical 
empirical studies.



14

Goal

 Prepare for design of your study
 Previous lectures followed:
 theories of programmingp g g
 experimental methods
 specific users and programming technologies

 We use reverse order:
 specific programming technologies and users 
 experimental methods
 theories of programming theories of programming

Candidate programming languages/tools

 your own personal research
 e.g. MPhil dissertation 

 Other research
 other research in Cambridge
 recent product releases
 research prototypes developed elsewhere

 Who is the intended user?
 What will they be trying to achieve?

Representative tasks and measures

 Identify user activities you plan to observe
 assigned tasks (controlled experiment) 
 or user’s goal (observational study) 

 Will these explore an interesting research question? 
 What measures are relevant to that question? 
 Will qualitative data analysis be necessary? 
 Will there be a threat to external validity? 
 From task  measure or analysis From task, measure or analysis

Review of study design options

 Do you wish to carry out a comparison, an evaluation, 
or an open exploratory study? 

 If you plan to conduct a controlled experiment, will it be If you plan to conduct a controlled experiment, will it be 
possible to use a within-subjects design? 

 What data analysis method will you use? 
 What would you need to do in order to complete a pilot 

study? 
 What ethical issues are raised by your planned What ethical issues are raised by your planned 

research?



15

Theoretical goal

 What do you expect to learn from conducting your 
study? 

 What contribution will it make to the research literature What contribution will it make to the research literature 
relevant to usability of programming languages? 

 Where would you publish the results?

Course structure

 Assignment A, presented at seminars 1 & 2
 Target language, paradigm, tool or environment 
 Review of relevant literature

S d  d i Study design
 Outline of analytic methods 

 Assignment B, presented at seminars 3 & 4
 Full experimental report
 Data analysis and findings
 Suitable for publication at venue such as PPIG 


