
Introduction to Network Introduction to Network 
TheoryTheory



What is a Network?What is a Network?

 Network = graphNetwork = graph
 Informally a Informally a graphgraph is a set of nodes joined by a set of lines or is a set of nodes joined by a set of lines or

arrows.arrows.
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Graph-based representations

 Representing a problem as a graph can
provide a different point of view

 Representing a problem as a graph can
make a problem much simpler
 More accurately, it can provide the

appropriate tools for solving the problem



What is network theory?

 Network theory provides a set of
techniques for analysing graphs

 Complex systems network theory provides
techniques for analysing structure in a
system of interacting agents, represented
as a network

 Applying network theory to a system
means using a graph-theoretic
representation



What makes a problem graph-like?

 There are two components to a graph
 Nodes and edges

 In graph-like problems, these components
have natural correspondences to problem
elements
 Entities are nodes and interactions between

entities are edges

 Most complex systems are graph-like



Friendship Network



Scientific collaboration network



Business ties in US biotech-
industry



Genetic interaction network



Protein-Protein Interaction
Networks



Transportation Networks



Internet



Ecological Networks



Graph Theory - HistoryGraph Theory - History

Leonhard Leonhard Euler's paper on Euler's paper on ““SevenSeven
Bridges of Bridges of KönigsbergKönigsberg”” , ,

published in 1736.published in 1736.



Graph Theory - HistoryGraph Theory - History

Cycles in Polyhedra

Thomas P. Kirkman        William R. Hamilton

Hamiltonian cycles in Platonic graphs



Graph Theory - HistoryGraph Theory - History

Gustav Kirchhoff

Trees in Electric Circuits



Graph Theory - HistoryGraph Theory - History

     Arthur Cayley        James J. Sylvester      George Polya 

Enumeration of Chemical Isomers



Graph Theory - HistoryGraph Theory - History

  Francis Guthrie  Auguste DeMorgan

Four Colors of Maps



Definition: GraphDefinition: Graph

 G is an ordered triple G:=(V, E, f)G is an ordered triple G:=(V, E, f)
 V is a set of nodes, points, or vertices.V is a set of nodes, points, or vertices.
 E is a set, whose elements are known as edges or lines.E is a set, whose elements are known as edges or lines.
 f is a functionf is a function

 maps each element of Emaps each element of E
 to an unordered pair of vertices in V.to an unordered pair of vertices in V.



DefinitionsDefinitions

 VertexVertex
 Basic ElementBasic Element
 Drawn as a Drawn as a nodenode or a  or a dotdot..
 VVertex setertex set of  of GG is usually denoted by  is usually denoted by VV((GG), or ), or VV

 EdgeEdge
 A set of two elementsA set of two elements
 Drawn as a line connecting two vertices, called end vertices, orDrawn as a line connecting two vertices, called end vertices, or

endpoints.endpoints.
 The edge set of G is usually denoted by E(G), or E.The edge set of G is usually denoted by E(G), or E.



Example

 V:={1,2,3,4,5,6}V:={1,2,3,4,5,6}
 E:={{1,2},{1,5},{2,3},{2,5},{3,4},{4,5},{4,6}}E:={{1,2},{1,5},{2,3},{2,5},{3,4},{4,5},{4,6}}



Simple Graphs

Simple graphsSimple graphs are graphs without multiple edges or self-loops. are graphs without multiple edges or self-loops.



Directed Graph (digraph)Directed Graph (digraph)

 Edges have directionsEdges have directions
 An edge is an An edge is an ordered ordered pair of nodespair of nodes

loop

node

multiple arc

arc



Weighted graphs
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  is a graph for which each edge has an associated  is a graph for which each edge has an associated weightweight, usually, usually
given by a given by a weight functionweight function  w: Ew: E  →→  RR..



Structures and structural
metrics

 Graph structures are used to isolate
interesting or important sections of a
graph

 Structural metrics provide a measurement
of a structural property of a graph
 Global metrics refer to a whole graph
 Local metrics refer to a single node in a graph



Graph structures

 Identify interesting sections of a graph
 Interesting because they form a significant

domain-specific structure, or because they
significantly contribute to graph properties

 A subset of the nodes and edges in a
graph that possess certain characteristics,
or relate to each other in particular ways



Connectivity

  a graph is  a graph is connectedconnected if if
 you can get from any node to any other by following a sequence of edgesyou can get from any node to any other by following a sequence of edges

OROR
 any two nodes are connected by a path.any two nodes are connected by a path.

 A directed graph is A directed graph is strongly connectedstrongly connected if there is a directed path from if there is a directed path from
any node to any other node.any node to any other node.



ComponentComponent

 Every disconnected graph can be split up into a number ofEvery disconnected graph can be split up into a number of
connected connected componentscomponents..



DegreeDegree

 Number of edges incident on a nodeNumber of edges incident on a node

The degree of 5 is 3



Degree (Directed Graphs)Degree (Directed Graphs)

 In-degree: Number of edges enteringIn-degree: Number of edges entering
 Out-degree: Number of edges leavingOut-degree: Number of edges leaving

 Degree = Degree = indeg indeg + + outdegoutdeg

outdeg(1)=2
  indeg(1)=0

outdeg(2)=2
  indeg(2)=2 

outdeg(3)=1
  indeg(3)=4



Degree: Simple Facts

 If If G G  is a graph with  is a graph with mm edges, then edges, then
ΣΣ deg( deg(vv) = 2) = 2mm  = 2 |= 2 |EE | |

 If If G G  is a digraph then is a digraph then
ΣΣ  indegindeg((vv)=)=ΣΣ  outdegoutdeg((vv) ) = = ||EE | |

 Number of Odd degree Nodes is evenNumber of Odd degree Nodes is even



Walks

A walk of length k in a graph is a succession of k
(not necessarily different) edges of the form

uv,vw,wx,…,yz.

This walk is denote by uvwx…xz, and is referred to
as a walk between u and z.

A walk is closed is u=z.



PathPath

 A A pathpath is a walk in which all the edges and all the nodes are different. is a walk in which all the edges and all the nodes are different.

Walks and Paths   
 1,2,5,2,3,4         1,2,5,2,3,2,1             1,2,3,4,6

walk of length 5      CW of length 6       path of length 4



Cycle

 A A cyclecycle is a closed path in which all the edges are different. is a closed path in which all the edges are different.

1,2,5,1     2,3,4,5,2
3-cycle      4-cycle



Special Types of Graphs

 Empty Graph / Edgeless graphEmpty Graph / Edgeless graph
 No edgeNo edge

 Null graphNull graph
 No nodesNo nodes
 Obviously no edgeObviously no edge



TreesTrees

 Connected Acyclic GraphConnected Acyclic Graph

 Two nodes have Two nodes have exactlyexactly one path one path
between thembetween them



Special TreesSpecial Trees

Paths

Stars



Connected Graph

All nodes have the same
degree

Regular



Special Regular Graphs: Cycles

C3                  C4                 C5



BipartiteBipartite  graphgraph

 VV can be partitioned into 2 sets  can be partitioned into 2 sets VV11
and and VV22
such that (such that (uu,,vv))∈∈EE implies implies
 either either uu  ∈∈VV11 and  and vv  ∈∈VV22

 OR OR vv  ∈∈VV1 1  and  and uu∈∈VV2.2.



Complete GraphComplete Graph

 Every pair of vertices are adjacentEvery pair of vertices are adjacent
 Has n(n-1)/2 edgesHas n(n-1)/2 edges



Complete Bipartite GraphComplete Bipartite Graph

 Bipartite Variation of Complete GraphBipartite Variation of Complete Graph
 Every node of one set is connected to every other node on theEvery node of one set is connected to every other node on the

other setother set

Stars



Planar GraphsPlanar Graphs

 Can be drawn on a plane such that no two edges intersectCan be drawn on a plane such that no two edges intersect
 KK44 is the largest complete graph that is planar is the largest complete graph that is planar



SubgraphSubgraph

 Vertex and edge sets are subsets of those of GVertex and edge sets are subsets of those of G
 a a supergraphsupergraph of a graph G is a graph that contains G as a of a graph G is a graph that contains G as a

subgraphsubgraph..



Special Special SubgraphsSubgraphs: Cliques: Cliques

A clique is a maximum complete
connected subgraph..

A B

D

H

FE

C

IG



Spanning Spanning subgraphsubgraph

 SubgraphSubgraph H has the same vertex set as G. H has the same vertex set as G.
 Possibly not all the edgesPossibly not all the edges
 ““H spans GH spans G””..



Spanning treeSpanning tree

 Let G be a connected graph. Then aLet G be a connected graph. Then a
spanning treespanning tree in G is a  in G is a subgraphsubgraph of G of G
that includes every node and is also athat includes every node and is also a
tree.tree.



IsomorphismIsomorphism

 BijectionBijection, i.e., a one-to-one mapping:, i.e., a one-to-one mapping:
f : V(G) -> V(H)f : V(G) -> V(H)

u and v from G are adjacent if and only if f(u) and f(v) areu and v from G are adjacent if and only if f(u) and f(v) are
adjacent in H.adjacent in H.

 If an isomorphism can be constructed between two graphs, thenIf an isomorphism can be constructed between two graphs, then
we say those graphs are we say those graphs are isomorphicisomorphic..



Isomorphism ProblemIsomorphism Problem

 Determining whether two graphs areDetermining whether two graphs are
isomorphicisomorphic

 Although these graphs look very different,Although these graphs look very different,
they are isomorphic; one isomorphismthey are isomorphic; one isomorphism
between them isbetween them is
f(a)=1  f(b)=6  f(c)=8  f(d)=3f(a)=1  f(b)=6  f(c)=8  f(d)=3
f(g)=5  f(h)=2  f(i)=4  f(j)=7f(g)=5  f(h)=2  f(i)=4  f(j)=7



Representation (Matrix)Representation (Matrix)

 Incidence MatrixIncidence Matrix
 V x EV x E
 [vertex, edges] contains the edge's data[vertex, edges] contains the edge's data

 Adjacency MatrixAdjacency Matrix
 V x VV x V
 Boolean values (adjacent or not)Boolean values (adjacent or not)
 Or Edge WeightsOr Edge Weights



MatricesMatrices

10000006
01010105
11100004
00101003
00011012
00000111
6,45,44,35,23,25,12,1

0010006
0010115
1101004
0010103
0101012
0100101
654321



Representation (List)Representation (List)

 Edge ListEdge List
 pairs (ordered if directed) of verticespairs (ordered if directed) of vertices
 Optionally weight and other dataOptionally weight and other data

 Adjacency List (node list)Adjacency List (node list)



Implementation of a Graph.Implementation of a Graph.

 Adjacency-list representationAdjacency-list representation
 an array of |an array of |VV | lists, one for each vertex in  | lists, one for each vertex in VV..
 For each For each uu  ∈∈  VV ,  , ADJADJ [  [ uu ] points to all its adjacent vertices. ] points to all its adjacent vertices.



Edge and Node ListsEdge and Node Lists

Edge List
1 2
1 2
2 3
2 5
3 3
4 3
4 5
5 3
5 4

Node List
1 2 2
2 3 5
3 3
4 3 5
5 3 4 



Edge List
1 2 1.2
2 4 0.2
4 5 0.3
4 1 0.5 
5 4 0.5
6 3 1.5

Edge Lists for WeightedEdge Lists for Weighted
GraphsGraphs



Topological Distance

A shortest path is the minimum pathA shortest path is the minimum path
connecting two nodes.connecting two nodes.

The number of edges in the shortest pathThe number of edges in the shortest path
connecting connecting pp and  and qq is the  is the topologicaltopological
distancedistance between these two nodes,  between these two nodes, ddpp,q,q



||VV | x | | x |V |V |  matrix D  matrix D  = ( = ( ddijij  ))  such that  such that
  ddijij    is the topological distance between is the topological distance between ii and  and jj..

0212336
2012115
1101224
2210123
3121012
3122101
654321

Distance MatrixDistance Matrix



Random Graphs

N N nodesnodes

A pair of nodes has probability A pair of nodes has probability p p ofof
being connected.being connected.

Average degree, Average degree, k k ≈≈  pNpN

What interesting things can be said forWhat interesting things can be said for
different values of p or k ?different values of p or k ?

(that are true as N (that are true as N   ∞∞))

Erdős and Renyi (1959)
p = 0.0 ; k = 0

N = 12

p = 0.09 ; k = 1

p = 1.0 ; k ≈ ½N2



Random Graphs
Erdős and Renyi (1959)

p = 0.0 ; k = 0

p = 0.09 ; k = 1

p = 1.0 ; k ≈ ½N2

p = 0.045 ; k = 0.5

Let’s look at…

Size of the largest connected cluster

Diameter (maximum path length between nodes) of the largest cluster 

Average path length between nodes (if a path exists)



Random Graphs

Erdős and Renyi (1959)

p = 0.0 ; k = 0 p = 0.09 ; k = 1 p = 1.0 ; k ≈ ½N2p = 0.045 ; k = 0.5

Size of largest component

Diameter of largest component

Average path length between nodes

1 5 11 12

0 4 7 1

0.0 2.0 4.2 1.0



Random Graphs

If If kk < 1: < 1:
 small, isolated clusterssmall, isolated clusters
 small diameterssmall diameters
 short path lengthsshort path lengths

At k = 1:At k = 1:
 aa giant component  giant component appearsappears
 diameter peaksdiameter peaks
 path lengths are highpath lengths are high

For k > 1:For k > 1:
 almost all nodes connectedalmost all nodes connected
 diameter shrinksdiameter shrinks
 path lengths shortenpath lengths shorten

Erdős and Renyi (1959)
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Random Graphs

What does this mean?What does this mean?

 If connections between people can be modeled as a random graph, thenIf connections between people can be modeled as a random graph, then……

 Because the average person easily knows more than one person (k  >> 1),Because the average person easily knows more than one person (k  >> 1),

 We live in a We live in a ““small worldsmall world”” where within a few links, we are connected to anyone in the world. where within a few links, we are connected to anyone in the world.

 ErdErdőős s and and Renyi Renyi showed that averageshowed that average
path length between connected nodes ispath length between connected nodes is

Erdős and Renyi (1959)
David

Mumford Peter
Belhumeur

Kentaro
Toyama

Fan
Chung



Random Graphs

What does this mean?What does this mean?

 If connections between people can be modeled as a random graph, thenIf connections between people can be modeled as a random graph, then……

 Because the average person easily knows more than one person (k  >> 1),Because the average person easily knows more than one person (k  >> 1),

 We live in a We live in a ““small worldsmall world”” where within a few links, we are connected to anyone in the world. where within a few links, we are connected to anyone in the world.

 ErdErdőős s and and Renyi Renyi computed averagecomputed average
path length between connected nodes to be:path length between connected nodes to be:

Erdős and Renyi (1959)
David

Mumford Peter
Belhumeur

Kentaro
Toyama

Fan
Chung

BIG “IF”!!!



The Alpha Model

The people you know arenThe people you know arenʼ̓t randomly chosen.t randomly chosen.

People tend to get to know those who are twoPeople tend to get to know those who are two
links away (links away (Rapoport Rapoport **, 1957)., 1957).

The real world exhibits a lot of The real world exhibits a lot of clustering.clustering.

Watts (1999)

* Same Anatol Rapoport, known for TIT FOR TAT!

The Personal Map
by MSR Redmond’s Social Computing Group



The Alpha Model

Watts (1999)

αα model:  Add edges to nodes, as in random model:  Add edges to nodes, as in random
graphs, but makes links more likely whengraphs, but makes links more likely when
two nodes have a common friend.two nodes have a common friend.

For a range of For a range of αα values: values:

 The world is small (average path length isThe world is small (average path length is
short), andshort), and

 Groups tend to form (high clusteringGroups tend to form (high clustering
coefficient).coefficient).

Probability of linkage as a function
of number of mutual friends

(α is 0 in upper left,
1 in diagonal,

and ∞ in bottom right curves.)



The Alpha Model

Watts (1999)
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αα model:  Add edges to nodes, as in random model:  Add edges to nodes, as in random
graphs, but makes links more likely whengraphs, but makes links more likely when
two nodes have a common friend.two nodes have a common friend.

For a range of For a range of αα values: values:

 The world is small (average path length isThe world is small (average path length is
short), andshort), and

 Groups tend to form (high clusteringGroups tend to form (high clustering
coefficient).coefficient).



The Beta Model

Watts and Strogatz (1998)

β = 0 β = 0.125 β = 1

People know
others at
random.

Not clustered,
but “small world”

People know
their neighbors,

and a few distant people.

Clustered and
“small world”

People know 
their neighbors.

Clustered, but
not a “small world”



The Beta Model

First five random links reduce the average pathFirst five random links reduce the average path
length of the network by half, regardless of length of the network by half, regardless of NN!!

Both Both αα and  and ββ models reproduce short-path results models reproduce short-path results
of random graphs, but also allow for clustering.of random graphs, but also allow for clustering.

Small-world phenomena occur at thresholdSmall-world phenomena occur at threshold
between order and chaos.between order and chaos.

Watts and Strogatz (1998) Nobuyuki
Hanaki

Jonathan
Donner

Kentaro
Toyama
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Power Laws
Albert and Barabasi (1999)

Degree distribution of a random graph,
N = 10,000   p = 0.0015   k = 15.

(Curve is a Poisson curve, for comparison.)

WhatWhat ʼ̓s the degree (number of edges) distributions the degree (number of edges) distribution
over a graph, for real-world graphs?over a graph, for real-world graphs?

Random-graph model results in PoissonRandom-graph model results in Poisson
distribution.distribution.

But, many real-world networks exhibit a But, many real-world networks exhibit a power-lawpower-law
distribution.distribution.



Power Laws
Albert and Barabasi (1999)

Typical shape of a power-law distribution.

WhatWhat ʼ̓s the degree (number of edges) distributions the degree (number of edges) distribution
over a graph, for real-world graphs?over a graph, for real-world graphs?

Random-graph model results in PoissonRandom-graph model results in Poisson
distribution.distribution.

But, many real-world networks exhibit a But, many real-world networks exhibit a power-lawpower-law
distribution.distribution.



Power Laws
Albert and Barabasi (1999)

Power-law distributions are straight lines in log-logPower-law distributions are straight lines in log-log
space.space.

How should random graphs be generated to createHow should random graphs be generated to create
a power-law distribution of node degrees?a power-law distribution of node degrees?

Hint:Hint:
ParetoParetoʼ̓ss** Law:  Wealth distribution follows a Law:  Wealth distribution follows a
power law.power law.

Power laws in real networks:
(a) WWW hyperlinks
(b) co-starring in movies
(c) co-authorship of physicists
(d) co-authorship of neuroscientists

* Same Velfredo Pareto, who defined Pareto optimality in game theory.



Power Laws

““The rich get richer!The rich get richer!””

Power-law distribution of node distribution arises ifPower-law distribution of node distribution arises if
 Number of nodes grow;Number of nodes grow;
 Edges are added in proportion to the number of edgesEdges are added in proportion to the number of edges

a node already has.a node already has.

Additional variable fitness coefficient allows for someAdditional variable fitness coefficient allows for some
nodes to grow faster than others.nodes to grow faster than others.

Albert and Barabasi (1999) Jennifer
Chayes

Anandan
Kentaro
Toyama

“Map of the Internet” poster



Searchable Networks

Just because a short path exists, doesnJust because a short path exists, doesn ʼ̓t meant mean
you can easily find it.you can easily find it.

You donYou don ʼ̓t know all of the people whom yourt know all of the people whom your
friends know.friends know.

Under what conditions is a network Under what conditions is a network searchablesearchable??

Kleinberg (2000)



Searchable Networks

a)a) Variation of Variation of WattsWattsʼ̓s s ββ model: model:
 Lattice is Lattice is dd-dimensional (-dimensional (dd=2).=2).
 One random link per node.One random link per node.
 Parameter Parameter αα controls probability of random link  controls probability of random link –– greater for closer nodes. greater for closer nodes.

b)  b)  For For dd=2, dip in time-to-search at =2, dip in time-to-search at αα=2=2
 For low For low αα, random graph; no , random graph; no ““geographicgeographic”” correlation in links correlation in links
 For high For high αα, not a small world; no short paths to be found., not a small world; no short paths to be found.

c)c) Searchability Searchability dips at dips at αα=2, in simulation=2, in simulation

Kleinberg (2000)



Searchable Networks

Watts, Watts, DoddsDodds, Newman (2002) show that for , Newman (2002) show that for dd = 2 = 2
or 3, real networks are quite searchable.or 3, real networks are quite searchable.

Killworth Killworth and Bernard (1978) found that peopleand Bernard (1978) found that people
tended to search their networks by tended to search their networks by dd = 2: = 2:
geography and profession.geography and profession.

Kleinberg (2000) Ramin
Zabih

Kentaro
Toyama

The Watts-Dodds-Newman model
closely fitting a real-world experiment
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