
Error control

An Engineering Approach to Computer NetworkingAn Engineering Approach to Computer Networking

CRC

 DetectsDetects
 all single bit errorsall single bit errors
 almost all 2-bit errorsalmost all 2-bit errors
 any odd number of errorsany odd number of errors
 all bursts up to M, where generator length is Mall bursts up to M, where generator length is M
 longer bursts with probability 2^-mlonger bursts with probability 2^-m

Implementation

 HardwareHardware
 on-the-fly with a shift registeron-the-fly with a shift register
 easy to implement with ASIC/FPGAeasy to implement with ASIC/FPGA

 SoftwareSoftware
 precompute precompute remainders for 16-bit wordsremainders for 16-bit words
 add remainders to a running sumadd remainders to a running sum
 needs only one lookup per 16-bit blockneeds only one lookup per 16-bit block

Software schemes

 Efficiency is importantEfficiency is important
 touch each data byte only oncetouch each data byte only once

 CRCCRC
 TCP/UDP/IPTCP/UDP/IP

 all use same schemeall use same scheme
 treat data bytes as 16-bit integerstreat data bytes as 16-bit integers
 add with end-around carryadd with end-around carry
 oneone’’s complement = checksums complement = checksum
 catches all 1-bit errorscatches all 1-bit errors
 Misses longer errors with Misses longer errors with prob prob 1/655361/65536

Packet errors

 Different from bit errorsDifferent from bit errors
 typestypes

 not just erasure, but also duplication, insertion,etc.not just erasure, but also duplication, insertion,etc.
 correctioncorrection

 retransmission, instead of redundancyretransmission, instead of redundancy

Types of packet errors

 LossLoss
 due to uncorrectable bit errorsdue to uncorrectable bit errors
 buffer loss on overflowbuffer loss on overflow

 especially with bursty trafficespecially with bursty traffic
•• for the same load, the greater the burstiness, the more thefor the same load, the greater the burstiness, the more the

lossloss
 loss rate depends on burstiness, load, and buffer sizeloss rate depends on burstiness, load, and buffer size

 fragmented packets can lead to error multiplicationfragmented packets can lead to error multiplication
 longer the packet, more the losslonger the packet, more the loss

Types of packet errors (cont.)

 DuplicationDuplication
 same packet received twicesame packet received twice

 usually due to retransmissionusually due to retransmission
 InsertionInsertion

 packet from some other conversation receivedpacket from some other conversation received
 header corruptionheader corruption

 ReorderingReordering
 packets received in wrong orderpackets received in wrong order

 usually due to retransmissionusually due to retransmission
 some routers also reordersome routers also reorder

Packet error detection and correction

 DetectionDetection
 Sequence numbersSequence numbers
 TimeoutsTimeouts

 CorrectionCorrection
 RetransmissionRetransmission

Sequence numbers

 In each headerIn each header
 Incremented for non-retransmitted packetsIncremented for non-retransmitted packets
 Sequence spaceSequence space

 set of all possible sequence numbersset of all possible sequence numbers
 for a 3-bit seq #, space is {0,1,2,3,4,5,6,7}for a 3-bit seq #, space is {0,1,2,3,4,5,6,7}

Using sequence numbers

 LossLoss
 gap in sequence space allows gap in sequence space allows receiver receiver to detect lossto detect loss

 e.g. received 0,1,2,5,6,7 => lost 3,4e.g. received 0,1,2,5,6,7 => lost 3,4
 acks acks carry carry cumulativecumulative seq seq ##
 redundant informationredundant information
 if no if no ack ack for a while, for a while, sendersender suspects loss suspects loss

 ReorderingReordering

 DuplicationDuplication
 InsertionInsertion

 if the received if the received seq seq # is # is ““very differentvery different”” from what is expected from what is expected
 more on this latermore on this later

Sequence number size

 Long enough so that sender does not confuse sequenceLong enough so that sender does not confuse sequence
numbers on numbers on acksacks

 E.g, sending at < 100 packets/sec (R)E.g, sending at < 100 packets/sec (R)
 wait for 200 wait for 200 secs secs before giving up (T)before giving up (T)
 receiver may dally up to 100 sec (A)receiver may dally up to 100 sec (A)
 packet can live in the network up to 5 minutes (300 s)packet can live in the network up to 5 minutes (300 s)

((maximum packet lifetime - MPL)maximum packet lifetime - MPL)
 can get an can get an ack ack as late as 900 seconds after packet sent outas late as 900 seconds after packet sent out
 sent out 900*100 = 90,000 packetssent out 900*100 = 90,000 packets
 if if seqence seqence space smaller, then can have confusionspace smaller, then can have confusion
 so, sequence number > log (90,000), at least 17 bitsso, sequence number > log (90,000), at least 17 bits

 In general 2^seq_size > R(2 MPL + T + A)In general 2^seq_size > R(2 MPL + T + A)

MPL (Maximum Packet Lifetime)

 How can we bound it?How can we bound it?
 Generation time in headerGeneration time in header

 too complex!too complex!
 Counter in header decremented per hopCounter in header decremented per hop

 cruftycrufty, but works, but works
 used in the Internetused in the Internet
 assumes max. diameter, and a limit on forwarding timeassumes max. diameter, and a limit on forwarding time

Sequence number size (cont.)

 If no If no acksacks, then size depends on two things, then size depends on two things
 reordering span: how much packets can be reorderedreordering span: how much packets can be reordered

 e.g. span of 128 => e.g. span of 128 => seq seq # > 7 bits# > 7 bits
 burst loss span: how many consecutive burst loss span: how many consecutive pktspkts. can be lost. can be lost

 e.g. possibility of 16 consecutive lost packets => e.g. possibility of 16 consecutive lost packets => seq seq # > 4 bits# > 4 bits
 In practice, hope that technology becomes In practice, hope that technology becomes obselete obselete beforebefore

worst case hits!worst case hits!

Packet insertion

 Receiver should be able to distinguish packets from otherReceiver should be able to distinguish packets from other
connectionsconnections

 Why?Why?
 receive packets on VCI 1receive packets on VCI 1
 connection closesconnection closes
 new connection also with VCI 1new connection also with VCI 1
 delayed packet arrivesdelayed packet arrives
 could be acceptedcould be accepted

 SolutionSolution
 flush packets on connection closeflush packets on connection close
 cancan’’t do this for connectionless networks like the Internett do this for connectionless networks like the Internet

Packet insertion in the Internet

 Packets carry source IP, Packets carry source IP, dest dest IP, IP, source port number,source port number,
destination port numberdestination port number

 How we can have insertion?How we can have insertion?
 host A opens connection to B, source port 123, host A opens connection to B, source port 123, dest dest port 456port 456
 transport layer connection terminatestransport layer connection terminates
 new connection opens, A and B assign the same portnew connection opens, A and B assign the same port

numbersnumbers
 delayed packet from old connection arrivesdelayed packet from old connection arrives
 insertion!insertion!

Solutions

 Per-connection Per-connection incarnation numberincarnation number
 incremented for each connection from each hostincremented for each connection from each host
 - takes up header space- takes up header space
 - on a crash, we may repeat- on a crash, we may repeat

 need stable storage, which is expensiveneed stable storage, which is expensive
 Reassign port numbers only after 1 MPLReassign port numbers only after 1 MPL

 - needs stable storage to survive crash- needs stable storage to survive crash

Solutions (cont.)

 Assign port numbers serially: new connections have new portsAssign port numbers serially: new connections have new ports
 Unix starts at 1024Unix starts at 1024
 this fails if we wrap around within 1 MPLthis fails if we wrap around within 1 MPL
 also fails of computer crashes and we restart with 1024also fails of computer crashes and we restart with 1024

 Assign initial sequence numbers seriallyAssign initial sequence numbers serially
 new connections may have same port, but new connections may have same port, but seq seq # differs# differs
 fails on a crashfails on a crash

 Wait 1 MPL after boot up (30s to 2 min)Wait 1 MPL after boot up (30s to 2 min)
 this flushes old packets from networkthis flushes old packets from network
 used in most Unix systemsused in most Unix systems

3-way handshake

 Standard solution, then, isStandard solution, then, is
 choose port numbers seriallychoose port numbers serially
 choose initial sequence numbers from a clockchoose initial sequence numbers from a clock
 wait 1 MPL after a crashwait 1 MPL after a crash

 Needs communicating ends to tell each other initial sequenceNeeds communicating ends to tell each other initial sequence
numbernumber

 Easiest way is to tell this in a Easiest way is to tell this in a SYNchronizeSYNchronize packet (TCP) that packet (TCP) that
starts a connectionstarts a connection

 2-way handshake2-way handshake

3-way handshake

 Problem really is that SYNs themselves are not protected withProblem really is that SYNs themselves are not protected with
sequence numberssequence numbers

 3-way handshake protects against delayed SYNs3-way handshake protects against delayed SYNs

Loss detection

 At receiver, from a gap in sequence spaceAt receiver, from a gap in sequence space
 send a send a nacknack to the senderto the sender

 At sender, by looking at cumulative At sender, by looking at cumulative acksacks, and , and timeing timeing out if noout if no
ack ack for a whilefor a while
 need to choose timeout intervalneed to choose timeout interval

Nacks

 Sounds good, but does not work wellSounds good, but does not work well
 extra load during loss, even though in reverse directionextra load during loss, even though in reverse direction

 If nack is lost, receiver must retransmit itIf nack is lost, receiver must retransmit it
 moves timeout problem to receivermoves timeout problem to receiver

 So we need timeouts anywaySo we need timeouts anyway

Timeouts

 Set timer on sending a packetSet timer on sending a packet
 If timer goes off, and no ack, resendIf timer goes off, and no ack, resend
 How to choose timeout value?How to choose timeout value?
 Intuition is that we expect a reply in about one round trip timeIntuition is that we expect a reply in about one round trip time

(RTT)(RTT)

Timeout schemes

 Static schemeStatic scheme
 know RTT know RTT a prioria priori
 timer set to this valuetimer set to this value
 works well when RTT changes littleworks well when RTT changes little

 Dynamic schemeDynamic scheme
 measure RTTmeasure RTT
 timeout is a function of measured RTTstimeout is a function of measured RTTs

Old TCP scheme

 RTTs are measured periodicallyRTTs are measured periodically
 Smoothed RTT (Smoothed RTT (srttsrtt))
 srtt = a * srtt + (1-a) * RTTsrtt = a * srtt + (1-a) * RTT
 timeout =timeout = b * srtt b * srtt
 a = 0.9, b = 2a = 0.9, b = 2
 sensitive to choice of asensitive to choice of a

 a = 1 => timeout = 2 * initial srtta = 1 => timeout = 2 * initial srtt
 a = 0 => no historya = 0 => no history

 doesndoesn’’t work too well in practicet work too well in practice

New TCP scheme (Jacobson)

 introduce new term = mean deviation from mean (m)introduce new term = mean deviation from mean (m)
 m = | srtt - RTT |m = | srtt - RTT |
 sm = a * sm + (1-a) * msm = a * sm + (1-a) * m
 timeout = srtt + b * smtimeout = srtt + b * sm

Intrinsic problems

 Hard to choose proper timers, even with new TCP schemeHard to choose proper timers, even with new TCP scheme
 What should initial value of srtt be?What should initial value of srtt be?
 High variability in RHigh variability in R
 Timeout => loss, delayed ack, or lost ackTimeout => loss, delayed ack, or lost ack

 hard to distinguishhard to distinguish

 Lesson: use timeouts rarelyLesson: use timeouts rarely

Retransmissions

 Sender detects loss on timeoutSender detects loss on timeout
 Which packets to retransmit?Which packets to retransmit?
 Need to first understand concept of error control windowNeed to first understand concept of error control window

Error control window

 Set of packets sent, but not Set of packets sent, but not ackedacked
 1 2 1 2 3 4 5 6 73 4 5 6 7 8 9 8 9 (original window)(original window)
 1 2 3 1 2 3 4 5 6 74 5 6 7 8 9 8 9 ((recv ack recv ack for 3)for 3)
 1 2 3 1 2 3 4 5 6 7 84 5 6 7 8 9 9 (send 8)(send 8)

 May want to restrict max size = window sizeMay want to restrict max size = window size

 Sender blocked until Sender blocked until ack ack comes backcomes back

Go back N retransmission

 On a timeout, retransmit the entire error control windowOn a timeout, retransmit the entire error control window
 Receiver only accepts in-order packetsReceiver only accepts in-order packets
 + simple+ simple
 + no buffer at receiver+ no buffer at receiver
 - can add to congestion- can add to congestion
 - wastes bandwidth- wastes bandwidth
 used in TCPused in TCP

Selective retransmission

 Somehow find out which packets lost, then only retransmit themSomehow find out which packets lost, then only retransmit them
 How to find lost packets?How to find lost packets?

 each each ack ack has a bitmap of received packetshas a bitmap of received packets
 e.g. e.g. cum_ack cum_ack = 5, bitmap = 101 => received 5 and 7, but not 6= 5, bitmap = 101 => received 5 and 7, but not 6
 wastes header spacewastes header space

 sender periodically asks receiver for bitmapsender periodically asks receiver for bitmap
 fast retransmitfast retransmit

Fast retransmit

 Assume cumulative Assume cumulative acksacks
 If sender sees repeated cumulative If sender sees repeated cumulative acksacks, packet likely lost, packet likely lost
 1, 2, 3, 4, 5 , 61, 2, 3, 4, 5 , 6
 1, 2, 3 3 31, 2, 3 3 3
 Send Send cumulative_ack cumulative_ack + 1 = 4+ 1 = 4
 Used in TCPUsed in TCP

SMART

 Ack Ack carries cumulative sequence numbercarries cumulative sequence number
 Also sequence number of packet causing Also sequence number of packet causing ackack
 1 2 3 4 5 6 71 2 3 4 5 6 7
 1 2 3 3 3 31 2 3 3 3 3
 1 2 3 5 6 71 2 3 5 6 7
 Sender creates bitmapSender creates bitmap
 No need for timers!No need for timers!
 If retransmitted packet lost, periodically check if cumulative If retransmitted packet lost, periodically check if cumulative ackack

increased.increased.

