
1

Linear Programming

Outline

 IntroductionIntroduction
 A diet problemA diet problem

 History of linear programmingHistory of linear programming
 ApplicationsApplications
 The Network Flow ProblemsThe Network Flow Problems
 Network AlgorithmsNetwork Algorithms
 Outline of Integer ProgrammingOutline of Integer Programming

Introduction
 A Diet ProblemA Diet Problem

 egeg: Polly wonders how much money she must spend on food in order to get all the: Polly wonders how much money she must spend on food in order to get all the
energy (2,000 kcal), protein (50 g), and calcium (800 mg) that she needs every day.energy (2,000 kcal), protein (50 g), and calcium (800 mg) that she needs every day.
She choose six foods that seem to be cheap sources of the nutrients:She choose six foods that seem to be cheap sources of the nutrients:

198014260260 gPork with
beans

20224420170 gCherry pie

92858160237 ccWhole Milk

1354131602 largeEggs

241232205100 gChicken

32411028 gOatmeal

Price per
serving (c)

Calcium
(mg)

Protein (g)Energy
(kcal)

Serving
size

Food

Introduction
 Servings-per-day limits on all six foods:Servings-per-day limits on all six foods:

OatmealOatmeal at most 4 servings per dayat most 4 servings per day
 ChickenChicken at most 3 servings per dayat most 3 servings per day

EggsEggs at most 2 servings per dayat most 2 servings per day
MilkMilk at most 8 servings per dayat most 8 servings per day
Cherry pieCherry pie at most 2 servings per dayat most 2 servings per day
Pork with beansPork with beans at most 2 servings per dayat most 2 servings per day

 Now there are so many combinations seem promising that one could go onNow there are so many combinations seem promising that one could go on
and on, looking for the best one. Trial and error is not particularly helpfuland on, looking for the best one. Trial and error is not particularly helpful
here.here.

Introduction

 A new way to express thisA new way to express this——using inequalities:using inequalities:

20
20
80
20
30
40

6

5

4

3

2

1

!!

!!

!!

!!

!!

!!

x
x
x
x
x
x

800802228554122
55144813324
000,1260420160160205110

654321

654321

654321

!+++++

!+++++

!+++++

xxxxxx
xxxxxx
xxxxxx

654321 1920913243 xxxxxx +++++minimize

subject to

Introduction
 Problems of this kind are called Problems of this kind are called ““linear programming problemslinear programming problems”” or or ““LP problemsLP problems”” for for

short; linear programming is the branch of applied mathematics concerned withshort; linear programming is the branch of applied mathematics concerned with
these problems.these problems.

 A A linear programming problemlinear programming problem is the problem of maximizing (or minimizing) a linear is the problem of maximizing (or minimizing) a linear
function subject to a finite number of linear constraints.function subject to a finite number of linear constraints.

 Standard form:Standard form:

!
=

n

j
jj xc

1

)...,,2,1(0

)...,,2,1(
1

njx

mibxa

j

i

n

j
jij

=!

="#
=

maximize

 subject to

2

History of Linear Programming
 It started in 1947 when It started in 1947 when G.B.DantzigG.B.Dantzig design the design the

““simplex methodsimplex method”” for solving linear programming for solving linear programming
formulations of U.S. Air Force planningformulations of U.S. Air Force planning
problems.problems.

 It soon became clear that a surprisingly wideIt soon became clear that a surprisingly wide
range of apparently unrelated problems inrange of apparently unrelated problems in
production management could be stated inproduction management could be stated in
linear programming terms and solved by thelinear programming terms and solved by the
simplex method.simplex method.

 Later, it was used to solve problems ofLater, it was used to solve problems of
management. Itmanagement. Itʼ̓s algorithm can also used tos algorithm can also used to
network flow problems.network flow problems.

History of Linear Programming
 On Oct.14th,1975, the Royal Sweden Academy of Science awarded the NobelOn Oct.14th,1975, the Royal Sweden Academy of Science awarded the Nobel

Prize in economic science to Prize in economic science to L.V.KantorovichL.V.Kantorovich and and T.C.KoopmansT.C.Koopmans ””for theirfor their
contributions to the theory of optimum allocation of resourcescontributions to the theory of optimum allocation of resources””

 The breakthrough in looking for a theoretically satisfactory algorithm to solve LPThe breakthrough in looking for a theoretically satisfactory algorithm to solve LP
problems came in 1979 when problems came in 1979 when L.G.KhachianL.G.Khachian published a description of such an published a description of such an
algorithm.algorithm.

Applications
 Efficient allocation of scarce resourcesEfficient allocation of scarce resources

 diet problemdiet problem
 Scheduling production and inventoryScheduling production and inventory

 multistage scheduling problemsmultistage scheduling problems
 The cutting-stock problemThe cutting-stock problem

 find a way to cut paper or textiles rolls byfind a way to cut paper or textiles rolls by
complicated summary of orderscomplicated summary of orders

 Approximating data by linear functionsApproximating data by linear functions
 find approximate solutions to possiblyfind approximate solutions to possibly

unsolvable systems of linear equationsunsolvable systems of linear equations

The Network Flow Problems
 The network flow problem concernsThe network flow problem concerns

finding the cheapest way to shipfinding the cheapest way to ship
prescribed amounts of a commodityprescribed amounts of a commodity
such as oranges from specified originssuch as oranges from specified origins
to specified destinations through ato specified destinations through a
concrete transportation networkconcrete transportation network
 NodesNodes

 SinksSinks
 SourcesSources
 intermediateintermediate

 arcs: an order pair (i, j) of distinctarcs: an order pair (i, j) of distinct
nodes i and jnodes i and j

 Assumption: The total supply equalsAssumption: The total supply equals
the total demandthe total demand

4

5

6

3

1

2

7

The Network Flow Problems
 It is convenient to write eachIt is convenient to write each

positive next to thepositive next to the
corresponding arc corresponding arc ijij and to and to
completely ignore arcs completely ignore arcs ijij with = with =
00

 Some requirementsSome requirements

ijx2

4

2

102

3
4

1

6
9

ijx

ijx

The Network Flow ProblemsAx = b, x >= 0Ax = b, x >= 0

!
!
!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$
$
$

%

&

''

''''

'

''''

'''

=

111
1111

1111
111

111
111111

11111

A

with

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

%

&

=

75

72

67

63

62

61

54

25

24

23

21

15

14

13

x
x
x
x
x
x
x
x
x
x
x
x
x
x

x

!
!
!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$
$
$

%

&

'

'

=

15
9
8
10
6
0
0

b

3

The Network Flow Problems
 Matrix A is called the incidence matrix of our networkMatrix A is called the incidence matrix of our network

 Each component of the demand vector b specifies the demand at node i, with suppliesEach component of the demand vector b specifies the demand at node i, with supplies
interpreted as negative demandsinterpreted as negative demands

 Denote the cost of shipping a unit amount along Denote the cost of shipping a unit amount along ijij by by

 Now the total cost of a schedule x equalsNow the total cost of a schedule x equals

ijc

ib

[]
[]59231498384453728608291853

7572676362615425242321151413 ccccccccccccccc
=

=

!= ijij xccx

The Network Flow Problems
 So the network flow problems is any problem:So the network flow problems is any problem:

such that A is the n ×m incidence matrix of some network and such thatsuch that A is the n ×m incidence matrix of some network and such that

this requirement stipulates assumption: The total supply equals the total demandthis requirement stipulates assumption: The total supply equals the total demand

cxminimize subject to 0, != xbAx

0
1

=!
=

n

i
ib

Network Algorithms
 The problem of finding the minimum time necessary to complete the project is solved byThe problem of finding the minimum time necessary to complete the project is solved by

finding the length of a longest path from the begin node to the end node in the graphfinding the length of a longest path from the begin node to the end node in the graph

 Longest path algorithmLongest path algorithm
 Two functionsTwo functions

 l (i): denote the longest path length from node i to node Il (i): denote the longest path length from node i to node I
 d (i): denote the predecessor node to node i in a longest pathd (i): denote the predecessor node to node i in a longest path

 The nodes will be scanned in topological order: 1,2,The nodes will be scanned in topological order: 1,2,……,k-1, longest paths to,k-1, longest paths to
nodes 1,nodes 1,……,i+1 are known after node i has been scanned,i+1 are known after node i has been scanned

Network Algorithms
 Initialization of l and pInitialization of l and p

Put l (i)=0,i>=1Put l (i)=0,i>=1

Put p (i)=*(empty), i>=1Put p (i)=*(empty), i>=1
denote the node to be scanned by u, begin by initializing u to 1denote the node to be scanned by u, begin by initializing u to 1

 Initialization of Node to Be scannedInitialization of Node to Be scanned
Put u = 1Put u = 1

 Scanning StepScanning Step
For each route [u, j],For each route [u, j],

If l (j)<l (u) + If l (j)<l (u) + len len [u, j],then[u, j],then
put l (j) = l (u) + put l (j) = l (u) + len len [u, j] and put p (j)=u[u, j] and put p (j)=u

 AlgorithmAlgorithm
Apply the scanning stepApply the scanning step
if u=k-1, then stop;if u=k-1, then stop;
otherwise, put u=u+1, and apply the scanning stepotherwise, put u=u+1, and apply the scanning step

Network Algorithms initial Node scanned (only changed values of l, p are recorded) initial Node scanned (only changed values of l, p are recorded)
NodeNode value 1 2 3 4 5 6 7 8 9 10 11 12value 1 2 3 4 5 6 7 8 9 10 11 12
1 0,*1 0,*
22 0,* 3,1 0,* 3,1
33 0,* 7,2 0,* 7,2
4 0,* 9,34 0,* 9,3
5 0,* 10,35 0,* 10,3
6 0,* 12,36 0,* 12,3
7 0,* 12,4 15,67 0,* 12,4 15,6
8 0,* 14,58 0,* 14,5
9 0,* 20,89 0,* 20,8
10 0,* 22,710 0,* 22,7
11 0,* 25,9 27,1011 0,* 25,9 27,10
12 0,* 11,4 14,612 0,* 11,4 14,6
13 0,* 27,1113 0,* 27,11

Network Algorithms

 Shortest path algorithmShortest path algorithm
 similar to the longest path algorithmsimilar to the longest path algorithm
 differs in that the whole scanning order is not known when the algorithm begins:differs in that the whole scanning order is not known when the algorithm begins:

the node to be scanned at step n+1 is determined during step nthe node to be scanned at step n+1 is determined during step n
 step 1, the node 1 scanned first: to find a shortest link-route beginning at node 1;step 1, the node 1 scanned first: to find a shortest link-route beginning at node 1;

this link-route is a shortest path to the other end u.this link-route is a shortest path to the other end u.
 step 2, node u is scanned to find another node to which a shortest path is knownstep 2, node u is scanned to find another node to which a shortest path is known
 continuing step by step, shortest paths are determined one node at a stepcontinuing step by step, shortest paths are determined one node at a step

4

Network Algorithms
 Two functionsTwo functions

 d (i): denote the minimal path distance from node 1 to node id (i): denote the minimal path distance from node 1 to node i
 p (i): denote the predecessor of i along the minimal path selected by the p (i): denote the predecessor of i along the minimal path selected by the

algorithmalgorithm
 List S: the nodes to which a minimal path is known, initially, S = {1}List S: the nodes to which a minimal path is known, initially, S = {1}
 Intermediate values of Intermediate values of d(id(i) and) and p(ip(i) are estimates based on shortest paths to nodes in) are estimates based on shortest paths to nodes in

S followed by a route-link from S to node iS followed by a route-link from S to node i
 InitializationInitialization

Put u=1Put u=1
Put S={1}Put S={1}
Put d(1)=0 and Put d(1)=0 and d(id(i)=M, i>1, where M is a big (enough) number)=M, i>1, where M is a big (enough) number
Put Put p(ip(i)=*(empty), i>=1: initially, no node has a predecessor)=*(empty), i>=1: initially, no node has a predecessor

Network Algorithms
 Scanning StepScanning Step

Put the links (u, v) with v not in S in a list and go through the list once, Put the links (u, v) with v not in S in a list and go through the list once, applying theapplying the
following following ““ifif”” statement to each link in the list: statement to each link in the list:

if if d(ud(u) +) + len(u,vlen(u,v)<)<d(vd(v), then), then
put put d(vd(v) =) = d(ud(u) +) + len(ulen(u, v) and, v) and
put put p(vp(v) = u) = u

Put u = Put u = argarg min{d(vmin{d(v); v is not in S}); v is not in S}
Put S = S + {u}; us is added to the end of the listPut S = S + {u}; us is added to the end of the list

 AlgorithmAlgorithm
Apply the scanning step. (node 1 is scanned first)Apply the scanning step. (node 1 is scanned first)
If S contains all the nodes, then stop;If S contains all the nodes, then stop;
otherwise, apply the scanning stepotherwise, apply the scanning step

Network Algorithms

initialinitial node scanned: current values of d, p shown node scanned: current values of d, p shown
NodeNode values of values of d,pd,p 11 22 44 33 55
11 0,*0,*
22 M,*M,* 2,12,1
33 M,*M,* 9,19,1 8,28,2 6,4 6,4
44 M,*M,* 3,13,1 3,13,1
5 5 M,*M,* M,*M,* 13,213,2 13,213,2 8,38,3
66 M,*M,* 14,114,1 14,114,1 13,413,4 13,413,4 13,413,4

6

1
2

4 3

5

10
3

2

9
3

7

26

14 11

Network Algorithms
 After scanning nodeAfter scanning node

 1, S = {1,2}1, S = {1,2}
 2, S = {1,2,4} 2, S = {1,2,4}
 4, S = {1,2,4,3} 4, S = {1,2,4,3}
 3, S = {1,2,4,3,5} 3, S = {1,2,4,3,5}
 5, S = {1,2,4,3,5,6} 5, S = {1,2,4,3,5,6}

 Shortest path solutionShortest path solution
NodeNode Distance to nodeDistance to node shortest path to nodeshortest path to node
22 22 [1,2][1,2]
44 33 [1,4][1,4]
33 66 [1,4,3][1,4,3]
55 88 [1,4,3,5][1,4,3,5]
66 1313 [1,4,6][1,4,6]

Network Algorithms

 Minimum spanning tree algorithmMinimum spanning tree algorithm
 The strategy is to begin somewhere and pave short links first.The strategy is to begin somewhere and pave short links first.
 Start at node 1 and pave as little as you can to reach another node.Start at node 1 and pave as little as you can to reach another node.
 Then pave as little as you can to reach another nodeThen pave as little as you can to reach another node
 Repeat this procedure until all nodes are accessible by pavementRepeat this procedure until all nodes are accessible by pavement
 Two setsTwo sets

 S: denotes the set of nodes currently accessible from node 1 by pavementS: denotes the set of nodes currently accessible from node 1 by pavement
 T: denotes the set of nodes not currently accessible by pavementT: denotes the set of nodes not currently accessible by pavement

Network Algorithms
 InitializationInitialization

Put S = {1}Put S = {1}
Put T = {2,3,Put T = {2,3,……,k},k}

 IterationIteration
Put d = min { Put d = min { len(ulen(u, v); u is in S, v is in T }, v); u is in S, v is in T }
Put y = Put y = argarg min { v; u is in S, v is in T, min { v; u is in S, v is in T, len(ulen(u, v) = d }, v) = d }
Put x = Put x = argarg min { u; u is in S, min { u; u is in S, len(ulen(u, y) = d }, y) = d }
Pave (x, y)Pave (x, y)
Put S = S + { y }: add y to SPut S = S + { y }: add y to S
Put T = T Put T = T –– { y }: delete y from T { y }: delete y from T

 AlgorithmAlgorithm
 If S = {1,2, If S = {1,2,……,k}, then stop,k}, then stop

 (all nodes are accessible by pavement); (all nodes are accessible by pavement);
 otherwise, do an iteration otherwise, do an iteration

5

Network Algorithms

Tabular solutionTabular solution
IterationIteration dd yy xx path pavedpath paved
11 22 22 11 (1,2)(1,2)
22 33 44 11 (1,4)(1,4)
33 33 33 44 (4,3)(4,3)
44 22 55 33 (3,5)(3,5)
5 5 77 66 55 (5,6)(5,6)

6

1
2

4 3

5

10
3

2

9
3

7

26

14 11

Network Algorithms

 Other network flow problemsOther network flow problems
 Upper-bounded network flow problemsUpper-bounded network flow problems
 Maximum flows through networksMaximum flows through networks
 The primal-dual methodThe primal-dual method
 ……

Outline of Integer Programming
 When formulating LPWhen formulating LPʼ̓s we often found that, certain variables should have beens we often found that, certain variables should have been

regarded as taking integer values but, for the sake of convenience, we let them takeregarded as taking integer values but, for the sake of convenience, we let them take
fractional values reasoning that the variables were likely to be so large that anyfractional values reasoning that the variables were likely to be so large that any
fractional part could be neglected. Whilst this is acceptable in some situations, infractional part could be neglected. Whilst this is acceptable in some situations, in
many cases it is not, and in such cases we must find a numeric solution in which themany cases it is not, and in such cases we must find a numeric solution in which the
variables take integer values.variables take integer values.

 Problems in which this is the case are called Problems in which this is the case are called integer programsinteger programs ((IP'sIP's) and the subject) and the subject
of solving such programs is called of solving such programs is called integer programminginteger programming (also referred to by the initials (also referred to by the initials
IPIP).).

 IP's occur frequently because many decisions are essentially discrete (such asIP's occur frequently because many decisions are essentially discrete (such as
yes/no, go/no-go) in that one (or more) options must be chosen from a finite set ofyes/no, go/no-go) in that one (or more) options must be chosen from a finite set of
alternatives. Topics like: capital budgetingalternatives. Topics like: capital budgeting

References
 [1] [1] Vasek ChvatalVasek Chvatal. Linear Programming. ISBN 0-7167-1195-8, 1983. Linear Programming. ISBN 0-7167-1195-8, 1983

 [2] Richard B.[2] Richard B.DarstDarst. Colorado State University. Introduction to Linear. Colorado State University. Introduction to Linear
ProgrammingProgramming——Applications and Extensions. ISBN 0-8247-8383-2,1991Applications and Extensions. ISBN 0-8247-8383-2,1991

 [3] http://people.brunel.ac.uk/~mastjjb/jeb/or/ip.html[3] http://people.brunel.ac.uk/~mastjjb/jeb/or/ip.html

