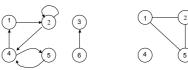
Network/Graph Theory

What is a Network?

- Network = graph
- Informally a *graph* is a set of nodes joined by a set of lines or arrows.



Graph-based representations

- Representing a problem as a graph can provide a different point of view
- Representing a problem as a graph can make a problem much simpler
 - More accurately, it can provide the appropriate tools for solving the problem

What is network theory?

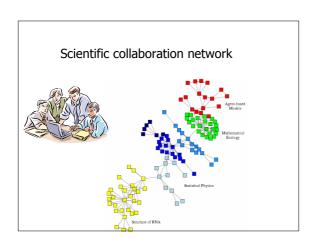
- Network theory provides a set of techniques for analysing graphs
- Complex systems network theory provides techniques for analysing structure in a system of interacting agents, represented as a network
- Applying network theory to a system means using a graph-theoretic representation

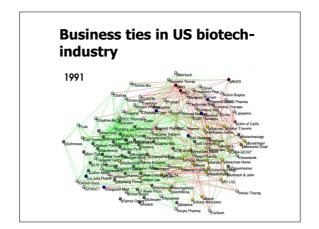
What makes a problem graph-like?

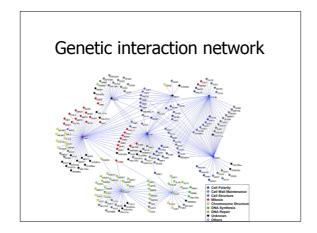
- There are two components to a graph
 - Nodes and edges
- In graph-like problems, these components have natural correspondences to problem elements
 - Entities are nodes and interactions between entities are edges
- Most complex systems are graph-like

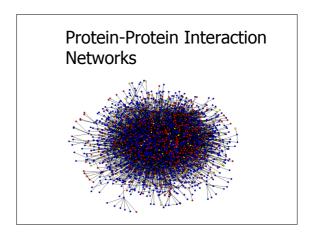
Friendship Network

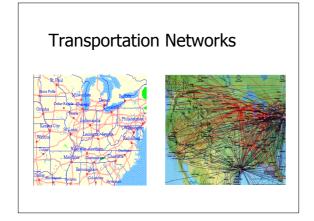


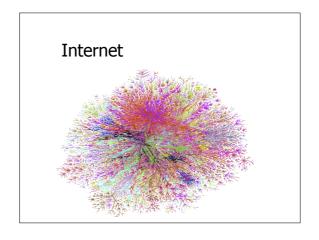


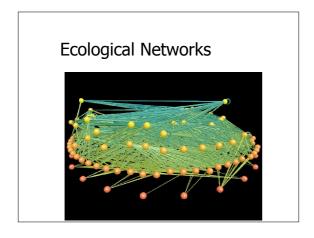


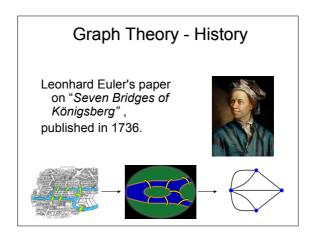


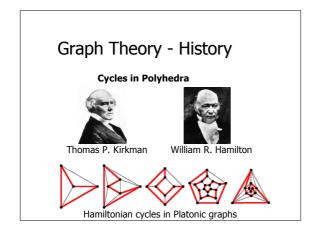


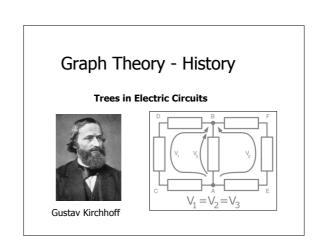


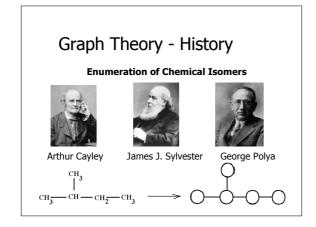


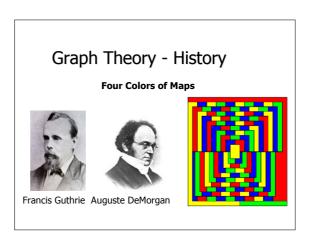












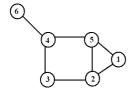
Definition: Graph

- G is an ordered triple G:=(V, E, f)
 - V is a set of nodes, points, or vertices.
 - E is a set, whose elements are known as edges or lines.
 - f is a function
 - · maps each element of E
 - to an unordered pair of vertices in V.

Definitions

- Vertex
 - Basic Element
 - Drawn as a node or a dot.
 - Vertex set of G is usually denoted by V(G), or V
- Edge
 - A set of two elements
 - Drawn as a line connecting two vertices, called end vertices, or endpoints.
 - The edge set of G is usually denoted by E(G), or E.

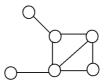
Example



- V:={1,2,3,4,5,6}
- E:={{1,2},{1,5},{2,3},{2,5},{3,4},{4,5},{4,6}}

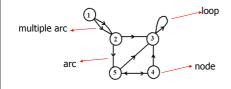
Simple Graphs

Simple graphs are graphs without multiple edges or self-loops.



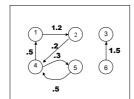
Directed Graph (digraph)

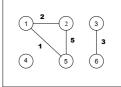
- · Edges have directions
 - An edge is an ordered pair of nodes



Weighted graphs

 is a graph for which each edge has an associated weight, usually given by a weight function w: E → R.





Structures and structural metrics

- Graph structures are used to isolate interesting or important sections of a graph
- Structural metrics provide a measurement of a structural property of a graph
 - Global metrics refer to a whole graph
 - Local metrics refer to a single node in a graph

Graph structures

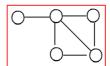
- Identify interesting sections of a graph
 - Interesting because they form a significant domain-specific structure, or because they significantly contribute to graph properties
- A subset of the nodes and edges in a graph that possess certain characteristics, or relate to each other in particular ways

Connectivity

- · a graph is connected if
 - you can get from any node to any other by following a sequence of edges OR
 - any two nodes are connected by a path.
- A directed graph is strongly connected if there is a directed path from any node to any other node.

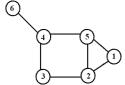
Component

 Every disconnected graph can be split up into a number of connected components.



Degree

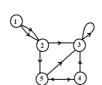
· Number of edges incident on a node



The degree of 5 is 3

Degree (Directed Graphs)

- In-degree: Number of edges entering
- · Out-degree: Number of edges leaving
- Degree = indeg + outdeg



outdeg(1)=2 indeg(1)=0

outdeg(2)=2 indeg(2)=2

outdeg(3)=1indeg(3)=4

Degree: Simple Facts

- If G is a graph with m edges, then $\sum \deg(v) = 2m = 2 |E|$
- If G is a digraph then Σ indeg(v)= Σ outdeg(v) = |E|
- Number of Odd degree Nodes is even

Walks

A **walk of length k** in a graph is a succession of k (not necessarily different) edges of the form

uv,vw,wx,...,yz.

This walk is denote by uvwx...xz, and is referred to as a *walk between u and z*.

A walk is **closed** is u=z.

Path

• A path is a walk in which all the edges and all the nodes are different.

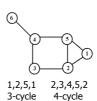
Walks and Paths

1,2,5,2,3,4 walk of length 5 1,2,5,2,3,2,1 CW of length 6

1,2,3,4,6 path of length 4

Cycle

• A *cycle* is a closed path in which all the edges are different.



Special Types of Graphs

- Empty Graph / Edgeless graph
 - No edge

4

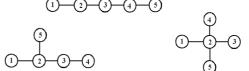
(5)

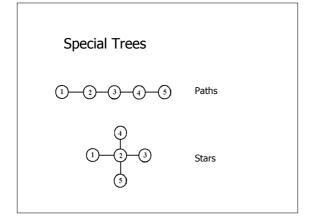
,

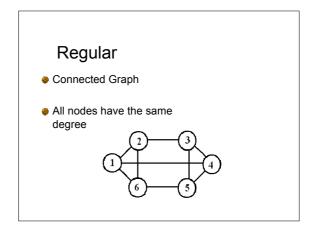
- 1
- · Null graph
 - No nodes
 - Obviously no edge

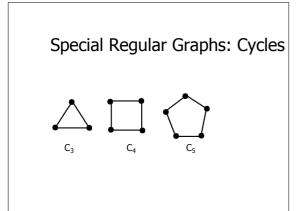
Trees

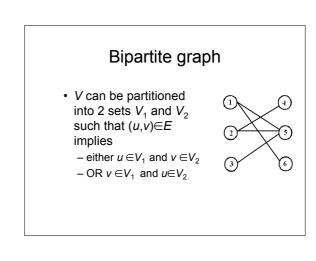
- · Connected Acyclic Graph
- Two nodes have exactly one path between them

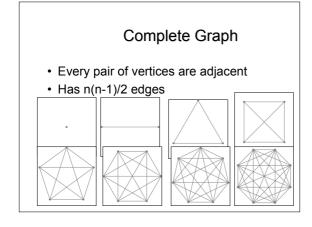


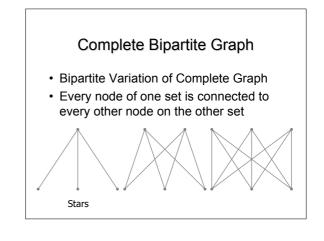






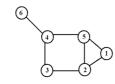






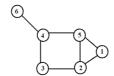
Planar Graphs

- Can be drawn on a plane such that no two edges intersect
- K₄ is the largest complete graph that is planar



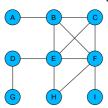
Subgraph

- Vertex and edge sets are subsets of those of G
 - a supergraph of a graph G is a graph that contains G as a subgraph.



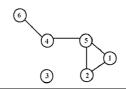
Special Subgraphs: Cliques

A **clique** is a maximum complete connected subgraph.



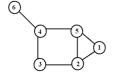
Spanning subgraph

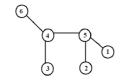
- Subgraph H has the same vertex set as G.
 - Possibly not all the edges
 - "H spans G".



Spanning tree

 Let G be a connected graph. Then a spanning tree in G is a subgraph of G that includes every node and is also a tree.





Isomorphism

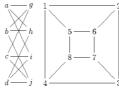
- Bijection, i.e., a one-to-one mapping:
 f: V(G) -> V(H)
 - u and v from G are adjacent if and only if f(u) and f(v) are adjacent in H.
- If an isomorphism can be constructed between two graphs, then we say those graphs are *isomorphic*.

Isomorphism Problem

Determining whether two graphs are isomorphic

f(g)=5 f(h)=2 f(i)=4 f(j)=7

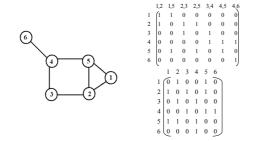
 Although these graphs look very different, they are isomorphic; one isomorphism between them is f(a)=1 f(b)=6 f(c)=8 f(d)=3



Representation (Matrix)

- · Incidence Matrix
 - -VxE
 - [vertex, edges] contains the edge's data
- · Adjacency Matrix
 - -VxV
 - Boolean values (adjacent or not)
 - Or Edge Weights

Matrices



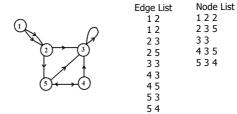
Representation (List)

- · Edge List
 - pairs (ordered if directed) of vertices
 - Optionally weight and other data
- · Adjacency List (node list)

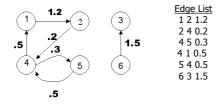
Implementation of a Graph.

- Adjacency-list representation
 - an array of |V| lists, one for each vertex in
 - For each $u \in V$, ADJ [u] points to all its adjacent vertices.

Edge and Node Lists



Edge Lists for Weighted Graphs

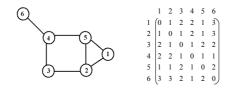


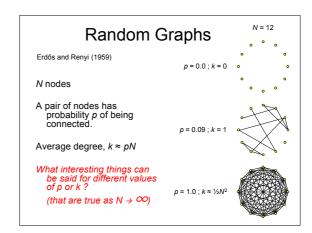
Topological Distance

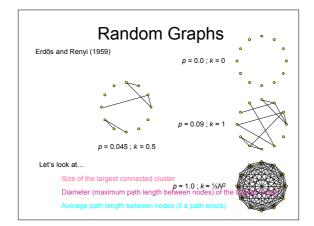
- A shortest path is the minimum path connecting two nodes.
- The number of edges in the shortest path connecting p and q is the topological distance between these two nodes, d_{p,q}

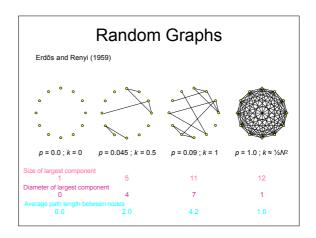
Distance Matrix

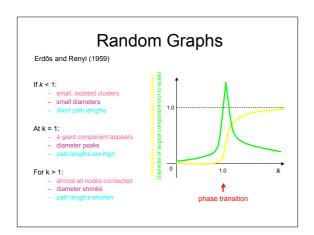
|V| x |V| matrix D = (d_{ij}) such that d_{ij} is the topological distance between i and j.

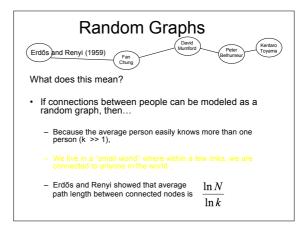


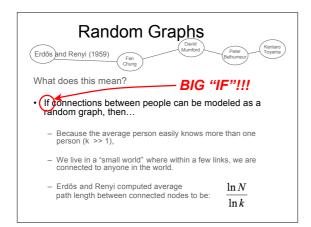


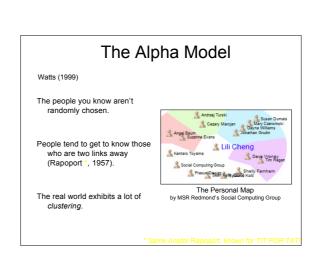


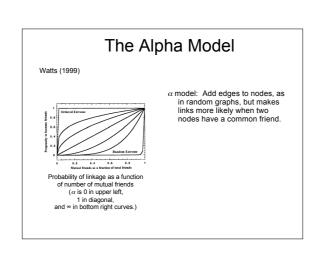


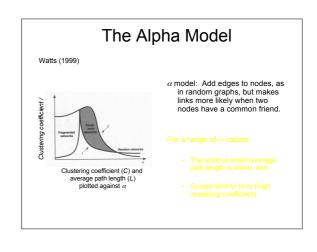


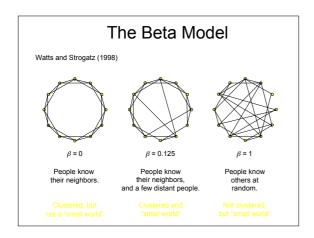


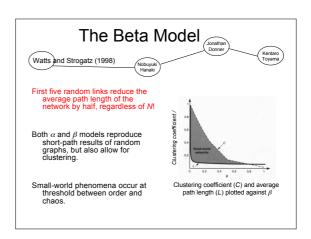


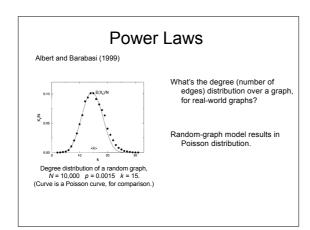


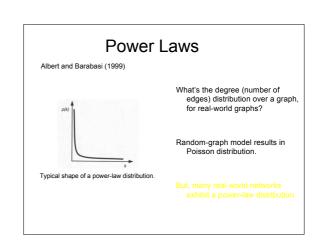


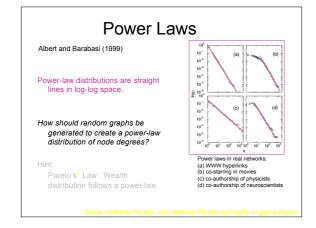


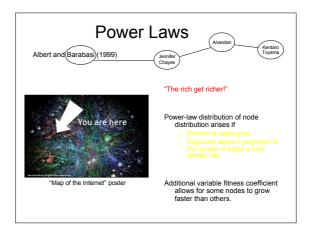


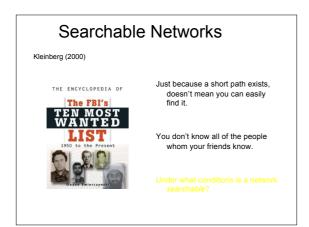


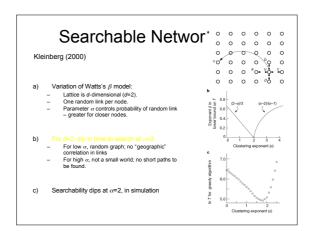


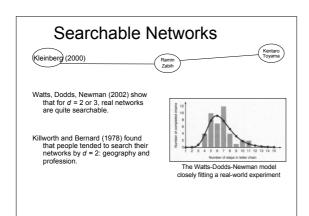












References

Idous & Wilson, *Graphs and Applications. An Introductory Approach*, Springer, 2000.

Wasserman & Faust, *Social Network Analysis*, Cambridge University Press, 2008.