Flow Control

An Engineering Approach to Computer Networking

Flow control problem

Consider file transfer

Sender sends a stream of packets representing fragments of a
file

Sender should try to match rate at which receiver and network
can process data
Can't send too slow or too fast
Too slow
wastes time
Too fast
can lead to buffer overflow
How to find the correct rate?

Other considerations

Simplicity
Overhead
Scaling
Fairness
Stability

= Many interesting tradeoffs
overhead for stability
simplicity for unfairness

Where?

= Usually at transport layer
m Also, in some cases, in datalink layer

Model

Source, sink, server, service rate, bottleneck, round trip time

SOURCE

Classification

= Open loop
Source describes its desired flow rate
Network admits call
Source sends at this rate
= Closed loop
Source monitors available service rate
+ Explicit or implicit
Sends at this rate
Due to speed of light delay, errors are bound to occur
= Hybrid
Source asks for some minimum rate
But can send more, if available

Open loop flow control

= Two phases to flow
Call setup
Data transmission

= Call setup
Network prescribes parameters
User chooses parameter values
Network admits or denies call

= Data transmission
User sends within parameter range
Network polices users
Scheduling policies give user QoS

Hard problems

Choosing a descriptor at a source

Choosing a scheduling discipline at intermediate network
elements

Admitting calls so that their performance objectives are met (call
admission control).

Traffic descriptors

= Usually an envelope

Constrains worst case behavior
m Three uses

Basis for traffic contract

Input to regulator

Input to policer

Descriptor requirements

= Representativity
adequately describes flow, so that network does not reserve
too little or too much resource
= Verifiability
verify that descriptor holds
= Preservability
Doesn’t change inside the network
= Usability
Easy to describe and use for admission control

Examples

= Representative, verifiable, but not useble
Time series of interarrival times

= Verifiable, preservable, and useable, but not representative
peak rate

Some common descriptors

= Peak rate
= Average rate
m Linear bounded arrival process (LBAP)

Peak rate

Highest ‘rate’ at which a source can send data
Two ways to compute it
For networks with fixed-size packets
min inter-packet spacing
For networks with variable-size packets
highest rate over all intervals of a particular duration
Regulator for fixed-size packets
timer set on packet transmission
if timer expires, send packet, if any
Problem
sensitive to extremes

Average rate

Rate over some time period (window)
Less susceptible to outliers
Parameters: t and a
Two types: jumping window and moving window
Jumping window
over consecutive intervals of length ¢, only a bits sent
regulator reinitializes every interval
Moving window
over all intervals of length t, only a bits sent
regulator forgets packet sent more than t seconds ago

Linear Bounded Arrival Process

= Source bounds # bits sent in any time interval by a linear
function of time

= the number of bits transmitted in any active interval of length t is
lessthanrt+s

r is the long term rate
s is the burst limit
insensitive to outliers

Leaky bucket

TOKENS ARRIVE
PERIODICALLY
»
= Aregulator for an LBAP
i TOKEN &>
m Token bucket fills up at rate r peser b H
m Largest #tokens < s
X, 1851
INPUT —FC/ ourrur

v
DATA |
BUFFER)

Variants

Token and data buckets
Sum is what matters
Peak rate regulator

Choosing LBAP parameters

m Tradeoff between r and s
= Minimal descriptor
doesn’t simultaneously have smaller r and s
presumably costs less
= How to choose minimal descriptor?
= Three way tradeoff
choice of s (data bucket size)
loss rate
choice of r

Choosing minimal parameters

= Keeping loss rate the same
if s is more, r is less (smoothing)
for each r we have least s

m Choose knee of curve

LBAP

= Popular in practice and in academia
sort of representative
verifiable
sort of preservable
sort of usable

= Problems with multiple time scale traffic
large burst messes up things

Open loop vs. closed loop

= Open loop
describe traffic
network admits/reserves resources
regulation/policing
u Closed loop
can't describe traffic or network doesn’t support reservation
monitor available bandwidth
+ perhaps allocated using emulation of Generalized Processor
Sharing (GPS - see later under Scheduling)
adapt to it
if not done properly either
+ too much loss
+ unnecessary delay

Taxonomy

m First generation
ignores network state
only match receiver
= Second generation
responsive to state
three choices
+ State measurement
« explicit or implicit
+ Control
« flow control window size or rate
+ Point of control
« endpoint or within network

Explicit vs. Implicit

= Explicit
Network tells source its current rate
Better control
More overhead
= Implicit
Endpoint figures out rate by looking at network
Less overhead
= lIdeally, want overhead of implicit with effectiveness of explicit

Flow control window

Recall error control window
Largest number of packet outstanding (sent but not acked)
If endpoint has sent all packets in window, it must wait => slows
down its rate
Thus, window provides both error control and flow control
This is called transmission window
Coupling can be a problem
Few buffers at receiver => slow rate!

Window vs. rate

In adaptive rate, we directly control rate
Needs a timer per connection
Plusses for window
no need for fine-grained timer
self-limiting
Plusses for rate
better control (finer grain)
no coupling of flow control and error control

Rate control must be careful to avoid overhead and sending too
much

Hop-by-hop vs. end-to-end

= Hop-by-hop
first generation flow control at each link
+ next server = sink
easy to implement
= End-to-end
sender matches all the servers on its path
m Plusses for hop-by-hop
simpler
distributes overflow
better control
= Plusses for end-to-end
cheaper

On-off

Receiver gives ON and OFF signals
If ON, send at full speed

If OFF, stop

OK when RTT is small

What if OFF is lost?

Bursty

Used in serial lines or LANs

Stop and Wait

Send a packet
Wait for ack before sending next packet

Oo——0o0—O
SOURCE ROUTER DESTINATION

WAIT

Static window

= Stop and wait can send at most one pkt per RTT
m Here, we allow multiple packets per RTT (= transmission
window)

SOURCE ROUTER DESTINATION

What should window size be?

Let bottleneck service rate along path = b pkts/sec

Let round trip time = R sec

Let flow control window = w packet

Sending rate is w packets in R seconds = w/R

To use bottleneck w/R > b =>w > bR

This is the bandwidth delay product or optimal window size

Static window

Works well if b and R are fixed
But, bottleneck rate changes with time!
Static choice of w can lead to problems
too small
too large
So, need to adapt window
Always try to get to the current optimal value

DEChbit flow control

= Intuition
every packet has a bit in header
intermediate routers set bit if queue has built up => source
window is too large
sink copies bit to ack
if bits set, source reduces window size
in steady state, oscillate around optimal size

SOURCE ROUTERA ROUTERB DESTINATION

O [[[fo—[[ko—0

DATA DATA) cory

DECbit

= When do bits get set?
= How does a source interpret them?

DECNbit details: router actions

Measure demand and mean queue length of each source
Computed over queue regeneration cycles
Balance between sensitivity and stability

QUEUE A
LENGTH Now

|f\\ ,/\‘w

(I - |
HEPREVIOUS —»H CURRENT— TIME
CYCLE CYCLE

— AvERAGING
INTERVAL

Router actions

= If mean queue length > 1.0

set bits on sources whose demand exceeds fair share
m [fit exceeds 2.0

set bits on everyone

panic!

Source actions

Keep track of bits

Can't take control actions too fast!

Wait for past change to take effect

Measure bits over past + present window size

If more than 50% set, then decrease window, else increase
Additive increase, multiplicative decrease

Evaluation

Sample trace

TCP Flow Control

= Works with FIFO o = Implicit
but requires per-connection state (demand) . = Dynamic window
= Software i \ ® End-to-end
= But ! & WWMMW = Very similar to DECbit, but
assumes cooperation!
conservative window increase policy ’ r\o support from routers o
increase if no loss (usually detected using timeout)
0w 2m WK e s window decrease on a timeout
- additive increase multiplicative decrease
TCP details More TCP details TCP vs. DECbit
= Window starts at 1 = On aloss, current window size is stored in a variable called slow = Both use dynamic window flow control and additive-increase
= Increases exponentially for a while, then linearly start threshold or ssthresh multiplicative decrease
= Exponentially => doubles every RTT = Switch from exponential to linear (slow start to congestion m TCP uses implicit measurement of congestion
= Linearly => increases by 1 every RTT avoidance) when window size reaches threshold probe a black box
= During exponential phase, every ack results in window increase = Loss de@ected either with timeout or fast retransmit (duplicate = Operates at the cliff
by 1 cumulative acks) = Source does not filter information
m During linear phase, window increases by 1 when # acks = m Two versions of TCP
window size Tahoe: in both cases, drop window to 1
= Exponential phase is called slow start Reno: on timeout, drop window to 1, and on fast retransmit
= Linear phase is called congestion avoidance drop window to half previous size (also, increase window on

subsequent acks)

Evaluation

Effective over a wide range of bandwidths
A lot of operational experience
Weaknesses
loss => overload? (wireless)
overload => self-blame, problem with FCFS
overload detected only on a loss
+ in steady state, source induces loss
needs at least bR/3 buffers per connection

Sample trace

m m 20 20

TCP Vegas

Expected throughput =
transmission_window_size/propagation_delay
Numerator: known
Denominator: measure smallest RTT
Also know actual throughput
Difference = how much to reduce/increase rate
Algorithm

send a special packet

on ack, compute expected and actual throughput

(expected - actual)* RTT packets in bottleneck buffer
adjust sending rate if this is too large
= Works better than TCP Reno
NETBLT Packet pair Packet pair
m First rate-based flow control scheme = Improves basic ideas in NETBLT
m Separates error control (window) and flow control (no coupling) better measurement of bottleneck NONBOITLENECK BOTILENRCK
= So, losses and retransmissions do not affect the flow rate control based on prediction SOURCE ROUTER ROUTER ~ SINK
= Application data sent as a series of buffers, each at a particular finer granularity

rate
Rate = (burst size + burst rate) so granularity of control = burst
Initially, no adjustment of rates

Later, if received rate < sending rate, multiplicatively decrease
rate

Change rate only once per buffer => slow

Assume all bottlenecks serve packets in round robin order

Then, spacing between packets at receiver (= ack spacing) =
1/(rate of slowest server)

If all data sent as paired packets, no distinction between data
and probes

Implicitly determine service rates if servers are round-robin-like

Packet-pair details Packet-pair flow control Sample trace
m Acks give time series of service rates in the past m Let X = # packets in bottleneck buffer
= We can use this to predict the next rate m S = # outstanding packets
= Exponential averager, with fuzzy rules to change the averaging ®m R=RTT 2500
factor = b = bottleneck rate 200
= Predicted rate feeds into flow control equation m Then, X = S - Rb (assuming no losses)
’ z 1
® Let|=source rate {
® I(k+1) = b(k+1) + (setpoint -X)/R oo
500
M TR
0 bl @ o0 B0 0o 120 Time
Comparison among closed-loop schemes Hybrid flow control
= On-off, stop-and-wait, static window, DECbit, TCP, NETBLT, = Source gets a minimum rate, but can use more

Packet-pair

= Which is best? No simple answer

= Some rules of thumb
flow control easier with RR scheduling

+ otherwise, assume cooperation, or police rates

explicit schemes are more robust
hop-by-hop schemes are more resposive, but more comples
try to separate error control and flow control

rate based schemes are inherently unstable unless well-
engineered

= All problems of both open loop and closed loop flow control
= Resource partitioning problem

what fraction can be reserved?

how?

