
1

Flow Control

An Engineering Approach to Computer NetworkingAn Engineering Approach to Computer Networking

Flow control problem

 Consider file transferConsider file transfer
 Sender sends a stream of packets representing fragments of aSender sends a stream of packets representing fragments of a

filefile
 Sender should try to match rate at which receiver and networkSender should try to match rate at which receiver and network

can process datacan process data
 CanCan’’t send too slow or too fastt send too slow or too fast
 Too slowToo slow

 wastes timewastes time
 Too fastToo fast

 can lead to buffer overflowcan lead to buffer overflow
 How to find the correct rate?How to find the correct rate?

Other considerations

 SimplicitySimplicity
 OverheadOverhead
 ScalingScaling
 FairnessFairness
 StabilityStability

 Many interesting tradeoffsMany interesting tradeoffs

 overhead for stabilityoverhead for stability
 simplicity for unfairnesssimplicity for unfairness

Where?

 Usually at transport layerUsually at transport layer
 Also, in some cases, in Also, in some cases, in datalink datalink layerlayer

Model

 Source, sink, server, service rate, bottleneck, round trip timeSource, sink, server, service rate, bottleneck, round trip time

Classification

 Open loopOpen loop
 Source describes its desired flow rateSource describes its desired flow rate
 Network Network admits admits callcall
 Source sends at this rateSource sends at this rate

 Closed loopClosed loop
 Source monitors available service rateSource monitors available service rate

 Explicit or implicitExplicit or implicit
 Sends at this rateSends at this rate
 Due to speed of light delay, errors are bound to occurDue to speed of light delay, errors are bound to occur

 HybridHybrid
 Source asks for some minimum rateSource asks for some minimum rate
 But can send more, if availableBut can send more, if available

2

Open loop flow control

 Two phases to flowTwo phases to flow
 Call setupCall setup
 Data transmissionData transmission

 Call setupCall setup
 Network prescribes parametersNetwork prescribes parameters
 User chooses parameter valuesUser chooses parameter values
 Network admits or denies callNetwork admits or denies call

 Data transmissionData transmission
 User sends within parameter rangeUser sends within parameter range
 Network Network policespolices users users
 Scheduling policies give user QoSScheduling policies give user QoS

Hard problems

 Choosing a descriptor at a source
 Choosing a scheduling discipline at intermediate network

elements
 Admitting calls so that their performance objectives are met (call

admission control).

Traffic descriptors

 Usually an Usually an envelopeenvelope
 Constrains worst case behaviorConstrains worst case behavior

 Three usesThree uses
 Basis for traffic contractBasis for traffic contract
 Input to Input to regulatorregulator
 Input to Input to policerpolicer

Descriptor requirements

 RepresentativityRepresentativity
 adequately describes flow, so that network does not reserveadequately describes flow, so that network does not reserve

too little or too much resourcetoo little or too much resource
 VerifiabilityVerifiability

 verify that descriptor holdsverify that descriptor holds
 PreservabilityPreservability

 DoesnDoesn’’t change inside the networkt change inside the network
 UsabilityUsability

 Easy to describe and use for admission controlEasy to describe and use for admission control

Examples

 Representative, verifiable, but not useble
 Time series of interarrival timesTime series of interarrival times

 Verifiable, preservable, and useable, but not representativeVerifiable, preservable, and useable, but not representative
 peak ratepeak rate

Some common descriptors

 Peak ratePeak rate
 Average rateAverage rate
 Linear bounded arrival process (LBAP)Linear bounded arrival process (LBAP)

3

Peak rate

 Highest Highest ‘‘raterate’’ at which a source can send data at which a source can send data
 Two ways to compute itTwo ways to compute it
 For networks with fixed-size packetsFor networks with fixed-size packets

 min inter-packet spacingmin inter-packet spacing
 For networks with variable-size packetsFor networks with variable-size packets

 highest rate over highest rate over allall intervals of a particular duration intervals of a particular duration
 Regulator for fixed-size packetsRegulator for fixed-size packets

 timer set on packet transmissiontimer set on packet transmission
 if timer expires, send packet, if anyif timer expires, send packet, if any

 ProblemProblem
 sensitive to extremessensitive to extremes

Average rate

 Rate over some time period (Rate over some time period (windowwindow))
 Less susceptible to outliersLess susceptible to outliers
 Parameters: Parameters: tt and and aa
 Two types: jumping window and moving windowTwo types: jumping window and moving window
 Jumping windowJumping window

 over consecutive intervals of length over consecutive intervals of length tt, only , only a a bits sentbits sent
 regulator reinitializes every intervalregulator reinitializes every interval

 Moving windowMoving window
 over all intervals of length over all intervals of length t, t, only only aa bits sent bits sent
 regulator forgets packet sent more thanregulator forgets packet sent more than t t seconds ago seconds ago

Linear Bounded Arrival Process

 Source bounds # bits sent in any time interval by a linearSource bounds # bits sent in any time interval by a linear
function of timefunction of time

 the number of bits transmitted in any active interval of length t is
less than rt + s

 r is the long term rate
 s is the burst limit
 insensitive to outliers

Leaky bucket

 A regulator for an LBAPA regulator for an LBAP
 Token bucket fills up at rate Token bucket fills up at rate rr
 Largest # tokens < Largest # tokens < ss

Variants

 Token and data bucketsToken and data buckets
 Sum is what mattersSum is what matters

 Peak rate regulatorPeak rate regulator

Choosing LBAP parameters

 Tradeoff between Tradeoff between r r and and ss
 Minimal descriptorMinimal descriptor

 doesndoesn’’t simultaneously have smaller t simultaneously have smaller rr and and ss
 presumably costs lesspresumably costs less

 How to choose minimal descriptor?How to choose minimal descriptor?
 Three way tradeoffThree way tradeoff

 choice of choice of s s (data bucket size)(data bucket size)
 loss rateloss rate
 choice of choice of rr

4

Choosing minimal parameters

 Keeping loss rate the sameKeeping loss rate the same
 if if s s is more, is more, r r is less (smoothing) is less (smoothing)
 for each for each rr we have least we have least ss

 Choose knee of curveChoose knee of curve

LBAP

 Popular in practice and in academiaPopular in practice and in academia
 sort of representativesort of representative
 verifiableverifiable
 sort of preservablesort of preservable
 sort of usablesort of usable

 Problems with multiple time scale trafficProblems with multiple time scale traffic
 large burst messes up thingslarge burst messes up things

Open loop vs. closed loop

 Open loopOpen loop
 describe trafficdescribe traffic
 network admits/reserves resourcesnetwork admits/reserves resources
 regulation/policingregulation/policing

 Closed loopClosed loop
 cancan’’t describe traffic or network doesnt describe traffic or network doesn’’t support reservationt support reservation
 monitor available bandwidthmonitor available bandwidth

 perhaps allocated using emulation of Generalized Processorperhaps allocated using emulation of Generalized Processor
Sharing (GPS - see later under Scheduling)Sharing (GPS - see later under Scheduling)

 adapt to itadapt to it
 if not done properly eitherif not done properly either

 too much losstoo much loss
 unnecessary delayunnecessary delay

Taxonomy

 First generationFirst generation
 ignores network stateignores network state
 only match receiveronly match receiver

 Second generationSecond generation
 responsive to stateresponsive to state
 three choicesthree choices

 State measurementState measurement
•• explicit or implicitexplicit or implicit

 ControlControl
•• flow control window size or rateflow control window size or rate

 Point of controlPoint of control
•• endpoint or within networkendpoint or within network

Explicit vs. Implicit

 ExplicitExplicit
 Network tells source its current rateNetwork tells source its current rate
 Better controlBetter control
 More overheadMore overhead

 ImplicitImplicit
 Endpoint figures out rate by looking at networkEndpoint figures out rate by looking at network
 Less overheadLess overhead

 Ideally, want overhead of implicit with effectiveness of explicitIdeally, want overhead of implicit with effectiveness of explicit

Flow control window

 Recall error control windowRecall error control window
 Largest number of packet outstanding (sent but not Largest number of packet outstanding (sent but not ackedacked))
 If endpoint has sent all packets in window, it must wait => slowsIf endpoint has sent all packets in window, it must wait => slows

down its ratedown its rate
 Thus, window provides Thus, window provides bothboth error control and flow control error control and flow control
 This is called This is called transmission transmission windowwindow
 Coupling can be a problemCoupling can be a problem

 Few buffers at receiver => slow rate!Few buffers at receiver => slow rate!

5

Window vs. rate

 In adaptive rate, we directly control rateIn adaptive rate, we directly control rate
 Needs a timer per connectionNeeds a timer per connection
 Plusses for windowPlusses for window

 no need for fine-grained timerno need for fine-grained timer
 self-limitingself-limiting

 Plusses for ratePlusses for rate
 better control (finer grain)better control (finer grain)
 no coupling of flow control and error controlno coupling of flow control and error control

 Rate control must be careful to avoid overhead and sending tooRate control must be careful to avoid overhead and sending too
muchmuch

Hop-by-hop vs. end-to-end

 Hop-by-hopHop-by-hop
 first generation flow control at each linkfirst generation flow control at each link

 next server = sinknext server = sink
 easy to implementeasy to implement

 End-to-endEnd-to-end
 sender matches all the servers on its pathsender matches all the servers on its path

 Plusses for hop-by-hopPlusses for hop-by-hop
 simplersimpler
 distributes overflowdistributes overflow
 better controlbetter control

 Plusses for end-to-endPlusses for end-to-end
 cheapercheaper

On-off

 Receiver gives ON and OFF signals
 If ON, send at full speed
 If OFF, stop
 OK when RTT is small
 What if OFF is lost?
 Bursty
 Used in serial lines or LANs

Stop and Wait

 Send a packetSend a packet
 Wait for ack before sending next packetWait for ack before sending next packet

Static window

 Stop and wait can send at most one pkt per RTTStop and wait can send at most one pkt per RTT
 Here, we allow multiple packets per RTT (= transmissionHere, we allow multiple packets per RTT (= transmission

window)window)

What should window size be?

 Let bottleneck service rate along path = b pkts/sec
 Let round trip time = R sec
 Let flow control window = w packet
 Sending rate is w packets in R seconds = w/R
 To use bottleneck w/R > b => w > bR
 This is the bandwidth delay product or optimal window size

6

Static window

 Works well if b and R are fixedWorks well if b and R are fixed
 But, bottleneck rate changes with time!But, bottleneck rate changes with time!
 Static choice of w can lead to problemsStatic choice of w can lead to problems

 too smalltoo small
 too largetoo large

 So, need to adapt windowSo, need to adapt window
 Always try to get to the Always try to get to the current current optimal valueoptimal value

DECbit flow control

 IntuitionIntuition
 every packet has a bit in headerevery packet has a bit in header
 intermediate routers set bit if queue has built up => sourceintermediate routers set bit if queue has built up => source

window is too largewindow is too large
 sink copies bit to acksink copies bit to ack
 if bits set, source reduces window sizeif bits set, source reduces window size
 in steady state, oscillate around optimal sizein steady state, oscillate around optimal size

DECbit

 When do bits get set?When do bits get set?
 How does a source interpret them?How does a source interpret them?

DECbit details: router actions

 Measure Measure demanddemand and mean queue length of each source
 Computed over queue regeneration cycles
 Balance between sensitivity and stability

Router actions

 If mean queue length > 1.0If mean queue length > 1.0
 set bits on sources whose demand exceeds fair shareset bits on sources whose demand exceeds fair share

 If it exceeds 2.0If it exceeds 2.0
 set bits on everyoneset bits on everyone
 panic!panic!

Source actions

 Keep track of bitsKeep track of bits
 CanCan’’t take control actions too fast!t take control actions too fast!
 Wait for past change to take effectWait for past change to take effect
 Measure bits over past + present window sizeMeasure bits over past + present window size
 If more than 50% set, then decrease window, else increaseIf more than 50% set, then decrease window, else increase
 Additive increase, multiplicative decreaseAdditive increase, multiplicative decrease

7

Evaluation

 Works with FIFOWorks with FIFO
 but requires per-connection state (demand)but requires per-connection state (demand)

 SoftwareSoftware
 ButBut

 assumes cooperation!assumes cooperation!
 conservative window increase policyconservative window increase policy

Sample trace TCP Flow Control

 ImplicitImplicit
 Dynamic windowDynamic window
 End-to-endEnd-to-end

 Very similar to Very similar to DECbitDECbit, but, but
 no support from routersno support from routers
 increase if no loss (usually detected using timeout)increase if no loss (usually detected using timeout)
 window decrease on a timeoutwindow decrease on a timeout
 additive increase multiplicative decreaseadditive increase multiplicative decrease

TCP details

 Window starts at 1Window starts at 1
 Increases exponentially for a while, then linearlyIncreases exponentially for a while, then linearly
 Exponentially => doubles every RTTExponentially => doubles every RTT
 Linearly => increases by 1 every RTTLinearly => increases by 1 every RTT
 During exponential phase, every ack results in window increaseDuring exponential phase, every ack results in window increase

by 1by 1
 During linear phase, window increases by 1 when # acks =During linear phase, window increases by 1 when # acks =

window sizewindow size
 Exponential phase is calledExponential phase is called slow start slow start
 Linear phase is calledLinear phase is called congestion avoidance congestion avoidance

More TCP details

 On a loss, current window size is stored in a variable called On a loss, current window size is stored in a variable called slowslow
start thresholdstart threshold or or ssthreshssthresh

 Switch from exponential to linear (slow start to congestionSwitch from exponential to linear (slow start to congestion
avoidance) when window size reaches thresholdavoidance) when window size reaches threshold

 Loss detected either with timeout or Loss detected either with timeout or fast retransmitfast retransmit (duplicate (duplicate
cumulative acks)cumulative acks)

 Two versions of TCPTwo versions of TCP
 Tahoe: in both cases, drop window to 1Tahoe: in both cases, drop window to 1
 Reno: on timeout, drop window to 1, and on fast retransmitReno: on timeout, drop window to 1, and on fast retransmit

drop window to half previous size (also, increase window ondrop window to half previous size (also, increase window on
subsequent acks)subsequent acks)

TCP vs. DECbit

 Both use dynamic window flow control and additive-increase Both use dynamic window flow control and additive-increase
multiplicative decreasemultiplicative decrease

 TCP uses implicit measurement of congestionTCP uses implicit measurement of congestion
 probe a black boxprobe a black box

 Operates at the Operates at the cliffcliff
 Source does not filter informationSource does not filter information

8

Evaluation

 Effective over a wide range of bandwidthsEffective over a wide range of bandwidths
 A lot of operational experienceA lot of operational experience
 WeaknessesWeaknesses

 loss => overload? (wireless)loss => overload? (wireless)
 overload => self-blame, problem with FCFSoverload => self-blame, problem with FCFS
 overload detected only on a lossoverload detected only on a loss

 in steady state, source in steady state, source inducesinduces loss loss
 needs at least bR/3 buffers per connectionneeds at least bR/3 buffers per connection

Sample trace TCP Vegas

 Expected throughput =Expected throughput =
transmission_window_size/propagation_delaytransmission_window_size/propagation_delay

 Numerator: knownNumerator: known
 Denominator: measure Denominator: measure smallestsmallest RTT
 Also know actual throughput
 Difference = how much to reduce/increase rate
 Algorithm

 send a special packetsend a special packet
 on on ackack, compute expected and actual throughput, compute expected and actual throughput
 (expected - actual)* RTT packets in bottleneck buffer(expected - actual)* RTT packets in bottleneck buffer
 adjust sending rate if this is too largeadjust sending rate if this is too large

 Works better than TCP RenoWorks better than TCP Reno

NETBLT

 First rate-based flow control scheme
 Separates error control (window) and flow control (no coupling)
 So, losses and retransmissions do not affect the flow rate
 Application data sent as a series of buffers, each at a particular

rate
 Rate = (burst size + burst rate) so granularity of control = burst
 Initially, no adjustment of rates
 Later, if received rate < sending rate, multiplicatively decrease

rate
 Change rate only once per buffer => slow

Packet pair

 Improves basic ideas in NETBLTImproves basic ideas in NETBLT
 better measurement of bottleneckbetter measurement of bottleneck
 control based on predictioncontrol based on prediction
 finer granularityfiner granularity

 Assume all bottlenecks serve packets in round robin orderAssume all bottlenecks serve packets in round robin order
 Then, spacing between packets at receiver (= ack spacing) =Then, spacing between packets at receiver (= ack spacing) =

1/(rate of slowest server)1/(rate of slowest server)
 If If allall data sent as paired packets, no distinction between data data sent as paired packets, no distinction between data

and probesand probes
 Implicitly determine service rates if servers are round-robin-likeImplicitly determine service rates if servers are round-robin-like

Packet pair

9

Packet-pair details

 Acks Acks give time series of service rates in the pastgive time series of service rates in the past
 We can use this to predict the next rateWe can use this to predict the next rate
 Exponential Exponential averageraverager, with fuzzy rules to change the averaging, with fuzzy rules to change the averaging

factorfactor
 Predicted rate feeds into flow control equationPredicted rate feeds into flow control equation

Packet-pair flow control

 Let X = # packets in bottleneck buffer
 S = # outstanding packets
 R = RTT
 b = bottleneck rate
 Then, X = S - Rb (assuming no losses)
 Let l = source rate
 l(k+1) = b(k+1) + (setpoint -X)/R

Sample trace

Comparison among closed-loop schemes

 On-off, stop-and-wait, static window, DECbit, TCP, NETBLT,On-off, stop-and-wait, static window, DECbit, TCP, NETBLT,
Packet-pairPacket-pair

 Which is best? No simple answerWhich is best? No simple answer
 Some rules of thumbSome rules of thumb

 flow control easier with RR schedulingflow control easier with RR scheduling
 otherwise, assume cooperation, or police ratesotherwise, assume cooperation, or police rates

 explicit schemes are more robustexplicit schemes are more robust
 hop-by-hop schemes are more resposive, but more compleshop-by-hop schemes are more resposive, but more comples
 try to separate error control and flow controltry to separate error control and flow control
 rate based schemes are inherently unstable unless well-rate based schemes are inherently unstable unless well-

engineeredengineered

Hybrid flow control

 Source gets a minimum rate, but can use moreSource gets a minimum rate, but can use more
 All problems of both open loop and closed loop flow controlAll problems of both open loop and closed loop flow control
 Resource partitioning problemResource partitioning problem

 what fraction can be reserved?what fraction can be reserved?
 how?how?

