Error control

An Engineering Approach to Computer Networking

CRC

= Detects
all single bit errors
almost all 2-bit errors
any odd number of errors
all bursts up to M, where generator length is M
longer bursts with probability 2*-m

Implementation

= Hardware
on-the-fly with a shift register
easy to implement with ASIC/FPGA
= Software
precompute remainders for 16-bit words
add remainders to a running sum
needs only one lookup per 16-bit block

Software schemes

m Efficiency is important
touch each data byte only once
= CRC
= TCP/UDP/IP
all use same scheme
treat data bytes as 16-bit integers
add with end-around carry
one’s complement = checksum
catches all 1-bit errors
longer errors with prob 1/65536

Packet errors

= Different from bit errors
types

+ not just erasure, but also duplication, insertion,etc.

correction
+ retransmission, instead of redundancy

Types of packet errors

= Loss

due to uncorrectable bit errors
buffer loss on overflow

+ especially with bursty traffic

< for the same load, the greater the burstiness, the more the
loss

+ loss rate depends on burstiness, load, and buffer size
fragmented packets can lead to error multiplication

+ longer the packet, more the loss

Types of packet errors (cont.)

= Duplication
same packet received twice
+ usually due to retransmission
= Insertion
packet from some other conversation received
+ header corruption
= Reordering
packets received in wrong order
+ usually due to retransmission
+ some routers also reorder

Packet error detection and correction

= Detection
Sequence numbers
Timeouts

= Correction
Retransmission

Sequence numbers

= In each header
= Incremented for non-retransmitted packets
= Sequence space
set of all possible sequence numbers
for a 3-bit seq #, space is {0,1,2,3,4,5,6,7}

Using sequence numbers

= Loss
gap in sequence space allows receiver to detect loss
+ e.g. received 0,1,2,5,6,7 => lost 3,4
acks carry cumulative seq #
redundant information
if no ack for a while, sender suspects loss

Reordering

Duplication
Insertion

if the received seq # is “very different” from what is expected

+ more on this later

Sequence number size

= Long enough so that sender does not confuse sequence
numbers on acks

= E.g, sending at < 100 packets/sec (R)
wait for 200 secs before giving up (T)
receiver may dally up to 100 sec (A)

packet can live in the network up to 5 minutes (300 s)
(maximum packet lifetime - MPL)

can get an ack as late as 900 seconds after packet sent out

sent out 900*100 = 90,000 packets

if seqence space smaller, then can have confusion

s0, sequence number > log (90,000), at least 17 bits
= In general 2%seq_size > R(2 MPL + T + A)

MPL (Maximum Packet Lifetime)

= How can we bound it?
= Generation time in header
too complex!
= Counter in header decremented per hop
crufty, but works
used in the Internet
assumes max. diameter, and a limit on forwarding time

Sequence number size (cont.)

= If no acks, then size depends on two things
reordering span: how much packets can be reordered
+ e.g. span of 128 => seq # > 7 bits
burst loss span: how many consecutive pkts. can be lost
+ e.g. possibility of 16 consecutive lost packets => seq # > 4 bits
In practice, hope that technology becomes obselete before
worst case hits!

Packet insertion

= Receiver should be able to distinguish packets from other
connections
= Why?
receive packets on VCI 1
connection closes
new connection also with VCI 1
delayed packet arrives
could be accepted
= Solution
flush packets on connection close
can't do this for connectionless networks like the Internet

Packet insertion in the Internet

m Packets carry source IP, dest IP, source port number,
destination port number

= How we can have insertion?
host A opens connection to B, source port 123, dest port 456
transport layer connection terminates
new connection opens, A and B assign the same port
numbers
delayed packet from old connection arrives
insertion!

Solutions

= Per-connection incarnation number
incremented for each connection from each host
- takes up header space
- on a crash, we may repeat
+ need stable storage, which is expensive
= Reassign port numbers only after 1 MPL
- needs stable storage to survive crash

Solutions (cont.)

= Assign port numbers serially: new connections have new ports
Unix starts at 1024
this fails if we wrap around within 1 MPL
also fails of computer crashes and we restart with 1024
= Assign initial sequence numbers serially
new connections may have same port, but seq # differs
fails on a crash
= Wait 1 MPL after boot up (30s to 2 min)
this flushes old packets from network
used in most Unix systems

3-way handshake

Standard solution, then, is
choose port numbers serially
choose initial sequence numbers from a clock
wait 1 MPL after a crash

= Needs communicating ends to tell each other initial sequence
number

Easiest way is to tell this in a SYNchronize packet (TCP) that
starts a connection

= 2-way handshake

3-way handshake

Loss detection

Nacks

(RTT)

= Dynamic scheme

a=09,b=2

= Problem really is that SYNs themselves are not protected with = Atreceiver, from a gap in sequence space = Sounds good, but does not work well
sequence numbers send a nack to the sender extra load during loss, even though in reverse direction
= 3-way handshake protects against delayed SYNs = Atsender, by looking at cumulative acks, and timeing out if no m If nack is lost, receiver must retransmit it
ack for a while moves timeout problem to receiver
need to choose timeout interval = So we need timeouts anyway
Timeouts Timeout schemes Old TCP scheme
= Set timer on sending a packet = Static scheme = RTTs are measured periodically
= If timer goes off, and no ack, resend know RTT a priori = Smoothed RTT (srtt)
= How to choose timeout value? timer set to this value m srit= a*srit+(1-a) *RTT
= Intuition is that we expect a reply in about one round trip time works well when RTT changes little = timeout = b * srtt
u
u

measure RTT
timeout is a function of measured RTTs

sensitive to choice of a
a=1=>timeout = 2 * initial srtt
a =0 =>no history

= doesn’t work too well in practice

New TCP scheme (Jacobson) Intrinsic problems Retransmissions
= introduce new term = mean deviation from mean (m) = Hard to choose proper timers, even with new TCP scheme = Sender detects loss on timeout
m m=|srit-RTT| What should initial value of srtt be? = Which packets to retransmit?
®m sm=a*sm+(1-a)*m High variability in R = Need to first understand concept of error control window
= timeout = srtt + b * sm Timeout => loss, delayed ack, or lost ack
+ hard to distinguish

= Lesson: use timeouts rarely
Error control window Go back N retransmission Selective retransmission
m Set of packets sent, but not acked = On a timeout, retransmit the entire error control window = Somehow find out which packets lost, then only retransmit them
m 123456789 (original window) = Receiver only accepts in-order packets = How to find lost packets?
m 123456789 (recv ack for 3) = +simple each ack has a bitmap of received packets
m 123456789 (send 8) m + no buffer at receiver + e.g. cum_ack = 5, bitmap = 101 => received 5 and 7, but not 6
= May want to restrict max size = window size = -can add to congestion + wastes hea.der space . .

= - wastes bandwidth sender periodically asks receiver for bitmap
= Sender blocked until ack comes back = usedin TCP fast retransmit

Fast retransmit

Assume cumulative acks

If sender sees repeated cumulative acks, packet likely lost
1,2,3,4,5,6

1,23 33

Send cumulative_ack + 1 =4

Used in TCP

SMART

Ack carries cumulative sequence number
Also sequence number of packet causing ack
1234567

123 333

123 567

Sender creates bitmap

No need for timers!

If retransmitted packet lost, periodically check if cumulative ack
increased.

