
Design Patterns

 Back to generic OOP (not Java)
 Design patterns are generally reusable

solutions to commonly occurring problems
in software design

 We will spend some time looking at some
patterns to:
 Show you (hopefully) that OOP has some

power
 Demonstrate that naïve solutions may be bad
 Give you a programmer's vocab.

Scenario

Multiple Products I

Multiple Products II

Problem: Want to support gift wrapped
products

Decorator I

Add state to Product to describe whether
or not we should wrap and how

public class Product {

 private boolean mWrap = false;
 private int mWrapType = 0;

 …
}

Decorator II

Decorator III

Decorator (General)

Problem: Now need to support gift bags,
gift wrapping, gift boxes...

State I

void initiate_wrapping() {
 if (wrap.equals(“BOX”)) {
 …
 }
 else if (wrap.equals(“BAG”)) {
 …
 }
 else ...

State II

State III

State (General)

Problem: Want to trial a new lookup
algorithm for the postcode->address

translation

Strategy I

 String getAddress(String pcode) {
 if (algorithm==0) {
 // Use old approach
 ...
 }
 else if (algorithm==1) {
 // use new approach
 ...
 }
 }

Strategy II

Strategy (General)

State vs Strategy

 Seems like the same design..?

State Strategy

Problem: Want to support groups of
related products

Composite I

 public class Product {

private int mGroupID;

}

Composite II

Composite (General)

Problem: Don't want lots of
simultaneous connections to the

database

Singleton I/II

 Use a global variable or a public static
variable

 public class GlobalStuff {
public static Database sDatabase = new Database();

}

…

Database d = GlobalStuff.sDatabase;

Singleton III

 Pass in a Database object to everything
that might use it

 public class System {
public System (Database d) {...};

}

public class Session {
public Session(Database d) {...}

…

Database d = new Database(); // Create the one database
System s = new System(d);
Session sesh = new Session(d);

Singleton IV

Singleton (General)

