
Design Patterns

 Back to generic OOP (not Java)
 Design patterns are generally reusable

solutions to commonly occurring problems
in software design

 We will spend some time looking at some
patterns to:
 Show you (hopefully) that OOP has some

power
 Demonstrate that naïve solutions may be bad
 Give you a programmer's vocab.

Scenario

Multiple Products I

Multiple Products II

Problem: Want to support gift wrapped
products

Decorator I

Add state to Product to describe whether
or not we should wrap and how

public class Product {

 private boolean mWrap = false;
 private int mWrapType = 0;

 …
}

Decorator II

Decorator III

Decorator (General)

Problem: Now need to support gift bags,
gift wrapping, gift boxes...

State I

void initiate_wrapping() {
 if (wrap.equals(“BOX”)) {
 …
 }
 else if (wrap.equals(“BAG”)) {
 …
 }
 else ...

State II

State III

State (General)

Problem: Want to trial a new lookup
algorithm for the postcode->address

translation

Strategy I

 String getAddress(String pcode) {
 if (algorithm==0) {
 // Use old approach
 ...
 }
 else if (algorithm==1) {
 // use new approach
 ...
 }
 }

Strategy II

Strategy (General)

State vs Strategy

 Seems like the same design..?

State Strategy

Problem: Want to support groups of
related products

Composite I

 public class Product {

private int mGroupID;

}

Composite II

Composite (General)

Problem: Don't want lots of
simultaneous connections to the

database

Singleton I/II

 Use a global variable or a public static
variable

 public class GlobalStuff {
public static Database sDatabase = new Database();

}

…

Database d = GlobalStuff.sDatabase;

Singleton III

 Pass in a Database object to everything
that might use it

 public class System {
public System (Database d) {...};

}

public class Session {
public Session(Database d) {...}

…

Database d = new Database(); // Create the one database
System s = new System(d);
Session sesh = new Session(d);

Singleton IV

Singleton (General)

