lmbble oLU@Jg |

\/Qo‘DrZD J = "dw VéwaZb(\’
(ahr2d v = V)

Cloning |

= Sometimes we really do want to copy an object

Person object
(name =
{“ Bob")

N

r

\

-

= Java calls this cloning

Person object
(name =
{ Bob")

Person object
(name =
{“ Bob")

= We need special support for it

I Copy

Cloning Il

= Every class in Java ultimately inherits from the Object
class

* The Object class contains a clone() method
* So just call this to clone an object, right?
= Wrong!

= Surprisingly, the problem is defining what copy actually
means

Cloning I

public class MyClass {
private float price = 77;

}
MyClass MyClass MyClass
object Clone object object
(price=77) (price=77) (price=77)

Ob‘i@OI—
(] 1 L
At

1Y 'as

Shallow and Deep Copies

public class MyClass {
private MyOtherClass moc;

} —

MyClass
object

Y

MyOtherClass
object

MyClass

object
n

MyClass
object
o

\ MyOtherClass /

object

MyClass
object

Y

MyClass
object

MyOtherClass
object

Y

MyOtherClass
object

)
I~

//

o

ohjes

/4
/4

Java Cloning

" S0 do you want shallow or deep?
" The default implementation of clone() performs a shallow copy

" But Java developers were worried that this might not be
appropriate: they decided they wanted to know for sure that we'd
thought about whether this was appropriate

= Java has a Cloneable interface

" If you call clone on anything that doesn't extend this interface, it
fails

-]M{)[W” nkerace C[owl)(e

y) LY

2. make clone () PML[.'Q (\ofkoml)
3. super. clonel) e (tedhically ophioma]
| N bul Ao E)

g, Add recrsel clons \ =
CQ-US gL \ (’(‘gc,v) (,{D'\.Q

~— Shal

N
\\\m\q ,.L.',.“g
peor—Cio

Clone Example |

public class Velocity {
public float vx;
public float vy;
public Velocity(float x, float y) {
VX=X;
VYy=Yy;
}
I

public class Vehicle {
private int age;
private Velocity vel;
public Vehicle(int a, float vx, float vy) {
age=a;
vel = new Velocity(vx,vy);
}
b

Clone Example Il

public class Vehicle implements Cloneahle {
private int age;
private Velocity vel;
public Vehicle(int a, float vx, float vy) {
age=a;
vel = new Velocity(vx,vy);

}

public Object clone() {
return super.clone();

}
};

Clone Example Il

public class Velocity implemeniSCIoneab|e {

public Object clone() {
return super.clone();
}
¥

public class Vehicle implements Cloneable {
private int age;
private Velocity v;
public Student(int a, float vx, float vy) {
age=a;
vel = new Velocity(vx,vy);

}

public Object clone() {
Vehicle cloned = (Vehicle) super.clone();
cloned.vel = (Velocity)vel.clone();
return cloned;

}
};

Marker Interfaces

If you look at what's in the Cloneable interface, you'll find it's empty!!
What's going on?

Well, the clone() method is already inherited from Object so it
doesn't need to specify it

This is an example of a Marker Interface

" A marker interface is an empty interface that is used to label
classes

" This approach is found occasionally in the Java libraries

Or JMS werfnets

The Java Class Libraries

Java Class Library

" Java the platform contains around 4,000
classes/interfaces

" Data Structures

" Networking, Files

" Graphical User Interfaces

" Security and Encryption

" Image Processing

" Multimedia authoring/playback
" And more...

= All neatly(ish) arranged into packages (see API docs)

—<interface=> | ™ Important chunk of the class library

Iterable
" A collection is some sort of grouping of

4 things (objects)

<<interface>> | ® Usually when we have some grouping we
! . "7z)
want to go through it (“iterate over it")

" The Collections framework has two main
Interfaces: Iterable and Collections. They
define a set of operations that all classes
In the Collections framework support

= add(Object 0), clear(), isEmpty(), etc.

Major Collections Interfaces |

= <<interface>> Set

* Like a mathematical set in DM 1
* A collection of elements with no duplicates et .

* Various concrete classes like TreeSet (which keeps the set elements sorted)

——

* <<interface>> List H—>

* An ordered collection of elements that may contain duplicates
* Arraylist, Vector, LinkedList, etc.

= <<jinterface>> Queue

* An ordered collection of elements that may contain duplicates and supports
removal of elements from the head of the queue

" PriorityQueue, LinkedLlst, etc. C

Major Collections Interfaces I

" <<interface>> Map
* Like relations in DM 1, or dictionaries in ML
* Maps key objects to value objects
= Keys must be unique
* Values can be duplicated and (sometimes) null.

