

Cloning I

 Sometimes we really do want to copy an object

 Java calls this cloning

 We need special support for it

Person object
(name =
“Bob”)

r

Person object
(name =
“Bob”)

r

Person object
(name =
“Bob”)

r_copy

Cloning II

 Every class in Java ultimately inherits from the Object
class
 The Object class contains a clone() method
 So just call this to clone an object, right?
 Wrong!

 Surprisingly, the problem is defining what copy actually
means

Cloning III

public class MyClass {
 private float price = 77;
}

MyClass
object

(price=77)
Clone

MyClass
object

(price=77)

MyClass
object

(price=77)

Shallow and Deep Copies

public class MyClass {
 private MyOtherClass moc;
}

MyClass
object Shallo

w

MyOtherClass
object MyClass

object

MyOtherClass
object

MyClass
object

MyOtherClass
object

MyClass
object

MyClass
object

MyOtherClass
object

Deep

Java Cloning
 So do you want shallow or deep?

 The default implementation of clone() performs a shallow copy
 But Java developers were worried that this might not be

appropriate: they decided they wanted to know for sure that we'd
thought about whether this was appropriate

 Java has a Cloneable interface
 If you call clone on anything that doesn't extend this interface, it

fails

Clone Example I

 public class Velocity {
 public float vx;
 public float vy;
 public Velocity(float x, float y) {
 vx=x;
 vy=y;
 }
 };

 public class Vehicle {
 private int age;
 private Velocity vel;
 public Vehicle(int a, float vx, float vy) {
 age=a;
 vel = new Velocity(vx,vy);
 }
 };

Clone Example II

 public class Vehicle implements Cloneable {
 private int age;
 private Velocity vel;
 public Vehicle(int a, float vx, float vy) {
 age=a;
 vel = new Velocity(vx,vy);
 }

 public Object clone() {
 return super.clone();
 }

 };

Clone Example III
 public class Velocity implement Cloneable {

 public Object clone() {
 return super.clone();
 }
 };

 public class Vehicle implements Cloneable {
 private int age;
 private Velocity v;
 public Student(int a, float vx, float vy) {
 age=a;
 vel = new Velocity(vx,vy);
 }

 public Object clone() {
 Vehicle cloned = (Vehicle) super.clone();
 cloned.vel = (Velocity)vel.clone();
 return cloned;
 }

 };

Marker Interfaces
 If you look at what's in the Cloneable interface, you'll find it's empty!!

 What's going on?
 Well, the clone() method is already inherited from Object so it

doesn't need to specify it
 This is an example of a Marker Interface

 A marker interface is an empty interface that is used to label
classes

 This approach is found occasionally in the Java libraries

The Java Class Libraries

Java Class Library

 Java the platform contains around 4,000
classes/interfaces
 Data Structures
 Networking, Files
 Graphical User Interfaces
 Security and Encryption
 Image Processing
 Multimedia authoring/playback
 And more...

 All neatly(ish) arranged into packages (see API docs)

Java's Collections Framework

<<interface>>
Collection

<<interface>>
Collection

<<interface>>
Collection

<<interface>>
Iterable

 Important chunk of the class library
 A collection is some sort of grouping of

things (objects)
 Usually when we have some grouping we

want to go through it (“iterate over it”)

 The Collections framework has two main
interfaces: Iterable and Collections. They
define a set of operations that all classes
in the Collections framework support

 add(Object o), clear(), isEmpty(), etc.

Major Collections Interfaces I

 <<interface>> Set
 Like a mathematical set in DM 1

 A collection of elements with no duplicates

 Various concrete classes like TreeSet (which keeps the set elements sorted)

 <<interface>> List
 An ordered collection of elements that may contain duplicates

 ArrayList, Vector, LinkedList, etc.

 <<interface>> Queue
 An ordered collection of elements that may contain duplicates and supports

removal of elements from the head of the queue

 PriorityQueue, LinkedLIst, etc.

A
B

C

A

B

C

B

A

B

C

B

Major Collections Interfaces II

 <<interface>> Map
 Like relations in DM 1, or dictionaries in ML

 Maps key objects to value objects

 Keys must be unique

 Values can be duplicated and (sometimes) null.

K1
A

B

B

K3 K2

