
Methods and Inheritance: Overriding
 We might want to require that every Person can dance. But the way

a Lecturer dances is not likely to be the same as the way a Student
dances...

class Person {
 public void dance() {
 jiggle_a_bit();
 }
}

class Student extends Person {
 public void dance() {
 body_pop();
 }
}

class Lecturer extends Person {
}

Person defines a
'default'
implementation of
dance()

Lecturer just
inherits the default
implementation and
jiggles

Student overrides
the default

(Subtype) Polymorphism
 Assuming Person has a default

dance() method, what should happen
here??

Student s = new Student();
Person p = (Person)s;
p.dance();

 Option 1
 Compiler says “p is of type Person”
 So p.dance() should do the default dance() action in Person

 Option 2
 Compiler says “The object in memory is really a Student”
 So p.dance() should run the Student dance() method

Polymorphic behaviour

The Canonical Example I

 A drawing program that can draw circles,
squares, ovals and stars

 It would presumably keep a list of all the
drawing objects

 Option 1
 Keep a list of Circle objects, a list of

Square objects,...
 Iterate over each list drawing each

object in turn
 What has to change if we want to add

a new shape?

Circle
+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

The Canonical Example II

 Option 2
 Keep a single list of Shape references
 Figure out what each object really is,

narrow the reference and then draw()

 What if we want to add a new shape?

Shape

Circle
+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

for every Shape s in myShapeList
 if (s is really a Circle)
 Circle c = (Circle)s;
 c.draw();
 else if (s is really a Square)
 Square sq = (Square)s;
 sq.draw();
 else if...

The Canonical Example III

 Option 3 (Polymorphic)
 Keep a single list of Shape references
 Let the compiler figure out what to do

with each Shape reference

 What if we want to add a new shape?

Shape
- x_position: int
- y_position: int

+ draw()

Circle
+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

For every Shape s in myShapeList
 s.draw();

Implementations
 Java

 All methods are polymorphic. Full stop.

 Python

 All methods are polymorphic.

 C++
 Only functions marked virtual are polymorphic

 Polymorphism is an extremely important concept that you need to make
sure you understand...

Abstract Methods
 There are times when we have a definite

concept but we expect every specialism of
it to have a different implementation (like
the draw() method in the Shape example).
We want to enforce that idea without
providing a default method

 E.g. We want to enforce that all objects that
are Persons support a dance() method
 But we don't now think that there's a

default dance()

 We specify an abstract dance method in
the Person class
 i.e. we don't fill in any implementation

(code) at all in Person.

class Person {
 public void dance();
}

class Student extends Person {
 public void dance() {
 body_pop();
 }
}

class Lecturer extends Person {
 public void dance() {
 jiggle_a_bit();
 }
}

Abstract Classes
 Before we could write Person p = new Person()
 But now p.dance() is undefined
 Therefore we have implicitly made the class abstract ie. It cannot be directly

instantiated to an object
 Languages require some way to tell them that the class is meant to be abstract and

it wasn't a mistake:

 Note that an abstract class can contain state variables that get inherited as normal
 Note also that, in Java, we can declare a class as abstract despite not specifying

an abstract method in it!!

public abstract class Person {
 public abstract void dance();
}

class Person {
 public:
 virtual void dance()=0;
}

Java C++

Representing Abstract Classes

Student Lecturer

Person

+ dance()

+ dance()+ dance()

Italics indicate the
class or method is
abstract

Multiple Inheritance

Student Lecturer

StudentLecturer

 What if we have a Lecturer who studies for
another degree?

 If we do as shown, we have a bit of a
problem
 StudentLecturer inherits two different

dance() methods
 So which one should it use if we instruct

a StudentLecturer to dance()?
 The Java designers felt that this kind of

problem mostly occurs when you have
designed your class hierarchy badly

 Their solution? You can only extend
(inherit) from one class in Java
 (which may itself inherit from another...)
 This is a Java oddity (C++ allows

multiple class inheritance)

Interfaces (Java only)
 Java has the notion of an interface which is like a class except:

 There is no state whatsoever

 All methods are abstract

 For an interface, there can then be no clashes of methods or variables to
worry about, so we can allow multiple inheritance

<<interface>>
 Drivable

+ turn()
+ brake()

Car

<<interface>>
 Identifiable

+ getIdentifier()

Bicycle

+ turn()
+ brake()

+ turn()
+ brake()

+ turn()
+ brake()
+ getIdentifier()

Interface Drivable {
 public void turn();
 public void brake();
}

Interface Identifiable {
 public void getIdentifier();
}

class Bicycle implements Drivable {
 public void turn() {...}
 public void brake() {… }
}

class Car implements Drivable, Identifiable {
 public void turn() {...}
 public void brake() {… }
 Public void getIdentifier() {...}
}

abstract
assumed for
interfaces

Recap

 Important OOP concepts you need to understand:

 Modularity (classes, objects)
 Data Encapsulation
 Inheritance
 Abstraction
 Polymorphism

Lifecycle of an Object

Constructors

 You will have noticed that the RHS looks rather like a function
call, and that's exactly what it is.

 It's a method that gets called when the object is constructed,
and it goes by the name of a constructor (it's not rocket
science).

 We use constructors to initialise the state of the class in a
convenient way.
 A constructor has the same name as the class
 A constructor has no return type specified

MyObject m = new MyObject();

Constructor Examples

public class Person {
 private String mName;

 // Constructor
 public Person(String name) {
 mName=name;
 }

 public static void main(String[] args) {
 Person p = new Person(“Bob”);
 }

}

class Person {
 private:
 std::string mName;

 public:
 Person(std::string &name) {
 mName=name;
 }
};

int main(int argc, char ** argv) {
 Person p (“Bob”);
}

Java C++

Default Constructor

public class Person {
 private String mName;

 public static void main(String[] args) {
 Person p = new Person();
 }

}

 If you specify no constructor at
all, the Java fills in an empty
one for you

 The default constructor takes no
arguments

