
Access Modifiers

 e.g. public, protected, private in Java and C++
 Can apply to fields and methods

 If a method implementation gets very long, you
might want to split it into smaller methods. We
make the shorter methods private so no one can
call them externally, and expose one public
method (that makes use of those private
methods)

 Not all OO languages have full access control
 If interested, take a look at the mess in the python

language...

7MQYPEXI�E�FEPP�FSYRGMRK�SR�XLI�ÆSSV��8LI�FEPP�WLSYPH�LEZI
E�GSIÇGMIRX�SJ�VIWXMXYXMSR��O��EW�[IPP�EW�TSWMXMSR��ZIPSGMX]�
ERH�EGGIPIVEXMSR��8LI�ÆSSV�WLSYPH�FI�EX�LIMKLX����Q��%
ZMWYEPMWEXMSR�WLSYPH�FI�TVSZMHIH�

Vector2D Example

 We will create a class that represents a 2D vector

Vector2D

- mX: float
- mY : float

+ Vector2D(x:float, y:float)
+ GetX() : float
+ GetY() : float
+ Add(Vector2D v) : void

Inheritance I
class Student {
 public int age;
 public String name;
 public int grade;
}

class Lecturer {
 public int age;
 public String name;
 public int salary;
}

 There is a lot of duplication here
 Conceptually there is a hierarchy that we're

not really representing
 Both Lecturers and Students are people

(no, really).
 We can view each as a kind of

specialisation of a general person
 They have all the properties of a person
 But they also have some extra stuff

specific to them

(I should not have used public variables here, but I did it to keep things simple)

Inheritance II
class Person {
 public int age;
 Public String name;
}

class Student extends Person {
 public int grade;
}

class Lecturer extends Person {
 public int salary;
}

 We create a base class (Person)
and add a new notion: classes can
inherit properties from it
 Both state and functionality

 We say:
 Person is the superclass of

Lecturer and Student
 Lecturer and Student subclass

Person

Representing Inheritance Graphically

name
age
exam_score

Student

name
age
salary

Lecturer

name
age

Person Also known as an “is-a”
relation

As in “Student is-a Person”

S
p
e
cia

li seG
e
n
e
ra

lis
e

Inherited fields

Casting/Conversions
 As we descend our inheritance tree we specialise by adding more

detail (a salary variable here, a dance() method there)

 So, in some sense, a Student object has all the information we need
to make a Person (and some extra).

 It turns out to be quite useful to group things by their common
ancestry in the inheritance tree

 We can do that semantically by expressions like:

Student s = new Student();
Person p = (Person)s;

Person p = new Person();
Student s = (Student)p;

This is a widening conversion (we
move up the tree, increasing
generality: always OK)

This would be a narrowing
conversion (we try to move down
the tree, but it's not allowed here
because the real object doesn't
have all the info to be a Student)x

Fields and Inheritance

class Person {
 public String mName;
 protected int mAge;
 private double mHeight;
}

class Student extends Person {

 public void do_something() {
 mName=”Bob”;
 mAge=70;
 mHeight=1.70;
 }

}

Student inherits this as a
public variable and so can
access it

Student inherits this as a
protected variable and so can
access it

Student inherits this as a private
variable and so cannot access it

Fields and Inheritance: Shadowing

class A {
 public int x;
}

class B extends A {
 public int x;
}

class C extends B {
 public int x;

 public void action() {
 // Ways to set the x in C
 x = 10;
 this.x = 10;

 // Ways to set the x in B
 super.x = 10;
 ((B)this).x = 10;

 // Ways to set the x in A
 ((A)this.x = 10;
 }
}

What happens here?? There is an
inheritance tree (A is the parent of B is the
parent of C). Each of these declares an
integer field with the name x.

In memory, you will find three allocated
integers for every object of type C. We say
that variables in parent classes with the
same name as those in child classes are
shadowed.

Note that the variables are being
shadowed: i.e. nothing is being replaced.
This is contrast to the behaviour with
methods...

