
Types and Variables

 We write code like:

 The high-level language has a series of primitive (built-
in) types that we use to signify what’s in the memory
 The compiler then knows what to do with them
 E.g. An “int” is a primitive type in C, C++, Java and many

languages. It’s usually a 32-bit signed integer

 A variable is a name used in the code to refer to a
specific instance of a type
 x,y,z are variables above
 They are all of type int

int x = 512;
int y = 200;
int z = x+y;

E.g. Primitive Types in Java

 “Primitive” types are the built in ones.
 They are building blocks for more complicated types

that we will be looking at soon.

 boolean – 1 bit (true, false)
 char – 16 bits
 byte – 8 bits as a signed integer (-128 to 127)
 short – 16 bits as a signed integer
 int – 32 bits as a signed integer
 long – 64 bits as a signed integer
 float – 32 bits as a floating point number
 double – 64 bits as a floating point number

See Workbook 1

Check...

A. “1 1”
B. “1 2”
C. “2 1”
D. “2 2”

public static void myfunction(int x, int[] a) {
x=x+1;
a[0]=a[0]+1;

}

public static void main(String[] arguments) {
int num=1;
int numarray[] = {1};

myfunction(num, numarray);

System.out.println(num+" "+numarray[0]);
}

Check...

A. “1 1”
B. “1 2”
C. “2 1”
D. “2 2”

public static void myfunction2(int x, int[] a) {
x=1;
x=x+1;
a = new int[]{1};
a[0]=a[0]+1;

}

public static void main(String[] arguments) {
int num=1;
int numarray[] = {1};

myfunction2(num, numarray);
System.out.println(num+" "+numarray[0]);

}

Passing Procedure Arguments In Java

class Reference {

 public static void update(int i, int[] array) {
 i++;
 array[0]++;
 }

 public static void main(String[] args) {
 int test_i = 1;
 int[] test_array = {1};
 update(test_i, test_array);
 System.out.println(test_i);
 System.out.println(test_array[0]);
 }

}

“1”

“2”

See Workbook 3

Passing Procedure Arguments In C

void update(int i, int &iref){
 i++;
 iref++;
}

int main(int argc, char** argv) {
 int a=1;
 int b=1;
 update(a,b);
 printf("%d %d\n",a,b);
}

Reference Types in Java

 Back to Java
 Primitives always passed by value – why?

 Set size in memory
 Of similar size to a reference...

 Anything that isn't a primitive type is passed by
reference
 We call them reference types

 Arrays
 Classes
 Interfaces

See Workbook 3

Object Oriented Programming

Custom Types

 You saw that there was an advantage to
declaring your own types in ML
 First you declared a type and then you wrote

functions that could act on it

 In OOP we go a step further
 We think of types as having both state and

procedures
 The idea is that each type groups together

related state and procedures, providing an
implementation of a single concept

 We call our types classes

See Workbook 3

Classes, Instances and Objects I

 Primitive types are pre-defined e.g. int defines
32-bit integer in Java

 We create instances of a primitive type by
declaring a variable of that type
 E.g.

declares two instances of type int

int x=7;
int y=6;

Classes, Instances and Objects II

 Classes map to the the type in that they are
basically a template for that concept

 We create instances of classes in a similar
way. e.g.

makes two instances of class
MyMegaCoolClass.

 An instance of a class is called an object

MyMegaCoolClass m = new MyMegaCoolClass();
MyMegaCoolClass n = new MyMegaCoolClass();

Loose Terminology (again!)

Classes

Behaviour
Functions
Methods

Procedures

State
Fields

Instance Variables
Properties
Variables
Members

Identifying Classes

 We want our class to be a grouping of conceptually-
related state and behaviour

 One popular way to group is using English grammar
 Noun → Object
 Verb → Method

“Write a simulation of the Earth's orbit around the
Sun”

Representing a Class Graphically (UML)

MyFancyClass

- age : int

+ SetAge(age: int) : void
Behaviour

State

“+” means
public access

“-” means
private access

The has-a Association

College Student1 0...*

 Arrow going left to right says “a College has zero or
more students”

 Arrow going right to left says “a Student has exactly 1
College”

 What it means in real terms is that the College class
will contain a variable that somehow links to a set of
Student objects, and a Student will have a variable
that references a College object.

 Note that we are only linking classes: we don't start
drawing arrows to primitive types.

Anatomy of an OOP Program (Java)

public class MyFancyClass {

public int someNumber;
public String someText;

public void someMethod() {

}

public static void main(String[] args) {
MyFancyClass c = new

MyFancyClass();
}

}

Class name

Class state (properties
that an object has such as
colour or size)

Class behaviour (actions
an object can do)

'Magic' start point
for the program
(named main by
convention)

Create an object of
type MyFancyClass in
memory and get a
reference to it

class MyFancyClass {

public:
int someNumber;
public String someText;

void someMethod() {

}

};

void main(int argc, char **argv) {
MyFancyClass c;

}

Anatomy of an OOP Program (C++)
Class name

Class state

Class behaviour

'Magic' start point
for the program

Create an object of
type MyFancyClass

OOP Concepts

OOP Concepts

 OOP provides the programmer with a
number of important concepts:

 Modularity
 Code Re-Use
 Encapsulation
 Inheritance
 Polymorphism

 Let's look at these more closely...

Modularity and Code Re-Use

 You've long been taught to break down
complex problems into more tractable sub-
problems.

 Each class represents a sub-unit of code that
(if written well) can be developed, tested and
updated independently from the rest of the
code.

 Indeed, two classes that achieve the same
thing (but perhaps do it in different ways) can
be swapped in the code

 Properly developed classes can be used in
other programs without modification.

Encapsulation I
 Here we create 3 Student objects

when our program runs

 Problem is obvious: nothing stops
us (or anyone using our Student
class) from putting in garbage as
the age

 Let's add an access modifier that
means nothing outside the class
can change the age

class Student {
 int age;
};

void main() {
 Student s = new Student();
 s.age = 21;

 Student s2 = new Student();
 s2.age=-1;

 Student s3 = new Student();
 s3.age=10055;
}

Encapsulation II
 Now nothing outside the class can

access the age variable directly
 Have to add a new method to the

class that allows age to be set (but
only if it is a sensible value). i.e.
SetAge()

 Also needed a GetAge() method
so external objects can find out the
age.

class Student {
 private int age;

 boolean SetAge(int a) {
 if (a>=0 && a<130) {

age=a;
return true;

 }
 return false;
 }

 int GetAge() {return age;}
}

void main() {
 Student s = new Student();
 s.SetAge(21);

}

Encapsulation III
 We hid the state implementation to the outside world (no one

can tell we store the age as an int without seeing the code),
but provided mutator methods to... errr, mutate the state

 This is data encapsulation
 We define interfaces to our objects without committing long

term to a particular implementation
 Advantages

 We can change the internal implementation whenever we
like so long as we don't change the interface other than to
add to it (E.g. we could decide to store the age as a float
and add GetAgeFloat())

 Encourages us to write clean interfaces for things to
interact with our objects

