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The OOP Course

 Last term you studied functional programming (ML)
 This term you are looking at imperative programming 

(Java primarily). 
 You already have a few weeks of Java experience
 This course is hopefully going to let you separate the 

fundamental software design principles from Java's 
quirks and specifics

 Four Parts
 From Functional to Imperative
 Object-Oriented Concepts
 The Java Platform

 Design Patterns and OOP design examples

Last term you learnt to program using the functional programming
language ML. There are many reasons we started with this, chief
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amongst them being that everything is a well-formed function, by
which we mean that an output is dependent solely on the inputs
(arguments). This generally makes understanding easier. In fact, if
you try any other functional programming languages you’ll probably
discover that its very similar to ML in many respects and translation
is very easy.

However, if you have any experience of programming outside this
course, you’re probably aware that functional programming remains
a niche choice. The dominant paradigm is that of imperative pro-
gramming. Jumping from one imperative language to another is
quite tricky if you haven’t been able to distinguish the underlying
programming concepts from the quirks of the specific language you
know. So this course serves both to back up you java practicals and
to make sure you’ve thought about the underlying paradigms that
you’re meeting.

To make specific points, I’ll use a few imperative languages through-
out the course. But predominantly we’ll be using Java and you won’t
be expected to program in anything else.
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Java Practicals

 This course is meant to complement your 
practicals in Java
 Some material appears only here
 Some material appears only in the practicals
 Some material appears in both: deliberately*!

* Some material may be repeated unintentionally. If so I will claim it was deliberate. 

Books and Resources I

 OOP Concepts
 Look for books for those learning to first program in an OOP language 

(Java, C++, Python)

 Java: How to Program by Deitel & Deitel (also C++)

 Thinking in Java by Eckels

 Java in a Nutshell (O' Reilly)  if you already know another OOP 
language

 Lots of good resources on the web

 Design Patterns

 Design Patterns by Gamma et al.

 Lots of good resources on the web
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Books and Resources II
 Also check the course web page

 Updated notes (with annotations where possible)
 Code from the lectures
 Sample tripos questions

http://www.cl.cam.ac.uk/teaching/1011/OOProg/

There is no shortage of books and websites describing the basics of
object oriented programming. The concepts themselves are quite
abstract, but most texts will use a specific language to demonstrate
them. The books I’ve given favour Java (because that’s the primary
language you learn this term). You shouldn’t see that as a dis-
recommendation for other books. In terms of websites, SUN produce
a series of tutorials for Java, which cover OOP:

http://java.sun.com/docs/books/tutorial/

but you’ll find lots of other good resources if you search. And don’t
forget your practical workbooks, which aim not to assume anything
from these lectures.
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Chapter 1

From Functional to
Imperative
Programming

What can Computers Do? I

 The computability problem
 Given infinite computing 'power' what can we do? 

How do we do it? What can't we do?
 Option 1: Forget any notion of a physical machine 

and do it all in maths
 Leads to an abstract mathematical programming approach 

that uses functions
 Gets us Declaritive/Functional Programming (e.g. ML)

 Option 2: Build a computer and extrapolate what it 
can do from how it works
 Not so abstract. Now the programming language links 

closely to the hardware
 This leads naturally to imperative programming (and on 

to object-oriented)

λ

6



What can Computers Do? II

 The computability problem
 Both very different (and valid) 

approaches to understanding computer 
and computers
 Turns out that they are equivalent
 Useful for the functional programmers since if it 

didn't, you couldn't put functional programs 
on real machines...

WWII spurred an interest in machinery that could compute. During
the war, this interest was stoked by a need to break codes, but also
to compute relatively mundane quantities such as the trajectory of
an artillery shell. After the war, interest continued in the abstract
notion of ‘computability’. Brilliant minds (Alan Turing, etc) began
to wonder what was and wasn’t ‘computable’. They defined this in
an abstract way: given an infinite computing power (whatever that
is), could they solve anything? Are there things that can’t be solved
by machines?

Roughly two approaches to answering these questions appeared:

Maths, maths, maths. Ignore the mechanics of any real machine
and imagine a hypothetical machine that had infinite compu-
tation power, then write some sort of ‘programming language’
for it.

Build it and they will come. Understand how to build and use
a real computing machine. This resulted in the von Neumann
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architecture and the notion of a Turing machine (basically what
we would call a computer).

It turned out that both approaches were useful for answering the
fundamental questions. In fact, they can be proven to be the same
thing now! All very nice, but why do you care??

Some Programming Paradigms

Declarative Imperative

Functional Logic Structured Non-Structured

Procedural Object-Oriented

We can classify programming languages in many ways, but one of the
most fundamental is as a declarative or imperative language. These
roughly map to the two approaches just mentioned:

Declarative Languages. These allow the programmer to specify
what should be done, and not how it should be done.

Imperative Languages. These specify exactly how something should
be done
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It should be clear to you that (most of) the ML you have done falls
in the declarative camp. At no point were you specifying what was
happening in memory and you have no idea how your values were
represented at such a low level. Functional languages are therefore
naturally declarative1.

Imperative languages come rather naturally from abstraction of ma-
chine/assembly code. Assembly is not exactly human-readable (it’s
barely compsci-readable!). Imperative languages really just provide
human-readable abstraction of assembly and as such they are natu-
rally very close to the hardware in the sense you do low level manip-
ulations.

Key Declarative/Imperative Differences

 Declarative programs do not have state
 Declarative programs have functions whilst 

imperative programs have procedures
 Imperative programs require you to 

explicitly specify the type of every variable
 Declarative languages typically rely on 

recursion whilst imperative languages can 
also use control flow techniques such as 
while, for, etc.

If you look back to your Foundations of CS notes, you will see there
1It turns out that pure functional languages can be a bit limiting, so many

’functional’ languages are not actually pure functional. You’ve already seen this
with ML references, which are very definitely imperative in style! When I talk
about ML here I will almost always be ignoring the imperative hacks that have
invaded the language.
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is a distinction drawn between functions and procedures. Strictly
speaking, a function maps directly to the same notion in mathemat-
ics: its output is solely dependent on the supplied arguments and
there can be no “side effects” of calling it.

In contrast, the output from a procedure can depend on program
state that is not supplied in the arguments and it can also mod-
ify that external state. This is a “side effect” because, given only
the procedure name and its arguments, we cannot predict what the
state of the system will be after calling it without reading the full
procedure definition.

Procedures are much more powerful, but as that awful line in Spi-
derman goes, “with great power comes great responsibility”. Now,
that’s not to say that imperative programming makes you into some
superhuman freak who runs around in his pyjamas climbing walls
and battling the evil declaratives. It’s just that it introduces a layer
of complexity into programming that makes the results better but
the job harder.

Health warning: Most languages are imperative and many of them
use the word ‘function’ as a synonym for ‘procedure’. To be honest,
I bet a lot of programmers couldn’t tell you the difference between
a function and a procedure so you will have to use your intelligence
when you hear the word. Similarly, many people think of ‘procedural
programming’ as a synonym for ‘imperative programming’.
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1.1 Mapping Code to Hardware

Thinking Imperatively

 Most people find imperative more natural, 
but each has its own strengths and 
weaknesses

 Because imperative is a bit closer to the 
hardware, it does help to have a good 
understanding of the basics of computers. 

 It's worth reviewing a few points from the CF 
course last term to make sure we're all up to 
speed...

As I said before, the imperative style of programming maps quite
easily to the underlying computer hardware. A good understanding
of how computers work can greatly improve your programming ca-
pabilities with an imperative language. What’s here is a really basic
refresher of some salient points from your CF course:

Computers do lots of very simple things very fast. Over the years
we have found optimisation after optimisation to make the simple
processes that little bit quicker, but really the fundamentals involve
some memory to store information and a CPU to perform simple
actions on small chunks of it.

We use lots of different types of memory, but conceptually only two
are of interest here. System memory is a very large pool of memory
(the 2GB or so you get when you buy a machine). Then there are
some really fast, but very small, chunks of memory called registers.
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These are built into the CPU itself.

The CPU acts only on the chunks in the registers so the computer
is constantly copying chunks of data from system memory into reg-
isters, operating on the registers and copying back any changes to
system memory.

Let’s recap the fetch-execute cycle. There is a special register called
the program counter (marked P) that tells the computer where to
look to get its next instruction. Here I’ve made up some operations:

LAM. LOAD the value in memory slot A into register M
AMNO. ADD the values in registers M and N and put the result

in register O.
SMA. STORE the value in register M into memory slot A

Dumb Model of a Computer I

L6X L7Y AXYZ SZ8

Registers

Memory

63 12

0 1 2 3 4 5 6 7 8

1P

X

Y

Z
ALU

CPU
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Dumb Model of a Computer II

L6X L7Y AXYZ SZ8

Registers

Memory

63 12

0 1 2 3 4 5 6 7 8

63

2P

X

Y

Z
ALU

CPU

Dumb Model of a Computer III

L6X L7Y AXYZ SZ8

Registers

Memory

63 12

0 1 2 3 4 5 6 7 8

12

63

3P

X

Y

Z
ALU

CPU
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Dumb Model of a Computer IV

L6X L7Y AXYZ SZ8

Registers

Memory

63 12

0 1 2 3 4 5 6 7 8

75

12

63

4P

X

Y

Z
ALU

CPU

All a computer does is execute instruction after instruction. Never
forget this when programming!

System Memory

 We model memory as a series of slots
 Each slot has a set size (1 byte or 8 bits)
 Each slot has a unique address

 Each address is a set length of n bits
 Mostly n=32 or n=64 in today’s world
 Because of this there is obviously a maximum number of 

addresses available for any given system, which means 
a maximum amount of installable memory

Memory

0 1 2 3 4 5 6 7 8

14



We are going to look at manipulating memory at a low level, so we
had better have a model for how it works. We slice system memory
up into 8-bit (1 byte) chunks and give each one an address (i.e. a
slot number). Looking back oat our dumb computer model, we have
to squeeze an address into one register (of n bits above), so we’re
immediately limited in the number of addresses available to us.

Big Numbers

 So what happens if we can’t fit the data into 8 
bits e.g. the number 512?

 We end up distributing the data across 
(consecutive) slots 

 Now, if we want to act on the number as a whole, 
we have to process each slot individually and 
then combine the result

 Perfectly possible, but who wants to do that every 
time you need an operation?

Memory

0 1 2 3 4 5 6 7 8
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Pointers

 In many imperative languages we have variables 
that hold memory addresses.

 These are called pointers

 A pointer is just the memory address of the first 
memory slot used by the object

 The pointer type tells the compiler how many 
slots the whole object uses

xptr2

xxptr1
int x = 72;
int *xptr1 = &x;
int *xptr2 = xptr1;

In your FoCS notes, there is a line that says “...creates references
(also called pointers or locations)”. Here, we need to be a bit more
formal: there is a subtle but important difference between references
and pointers.

The slide shows some C code. I know you haven’t done any C, but
since the Java syntax is based on C, it should look roughly familiar
to you. In order, the lines do:

• Create a new variable of type int called x and set it to the value
72;

• Create a new int pointer (a variable that holds a memory ad-
dress that leads to an int in memory) and set it to point to the
variable x;

• Create another new int pointer and make it point to the same
thing as the first.

In lectures I will show some examples of how the pointers may be
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used. The crucial point is that you can set a pointer value to any-
thing you like. This can be both immensely useful and immensely
dangerous (if you start reading at random locations, things can go
very wrong indeed!).

References

 The danger with pointers is that you can just 
randomly assign numbers to them (this can be 
very useful, but also dangerous as we've seen)

 Therefore many languages introduce a safer 
version of pointers: references
 References always point to a valid place in 

memory or are explicitly NULL
 You can't perform pointer arithmetic on them

xref2

xxref1

One fix for pointers is the introduction of references to a language.
As per the slide, a reference is a restricted pointer. It’s still just a
chunk of memory that contains a memory address, but the compiler
(not the computer) will prevent us from doing certain operations on
it to make things safer.

Sun decided that Java would have only references and no pointers.
Whilst slightly limiting, this makes programming much safer (and
it’s one of the many reasons we teach with it).
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References Example (Java)

{1,2,3,4}
ref2

ref1

{1,2,3,72}
ref2

ref1

int[] ref1 = {1,2,3,4};
int[] ref2 = r1;

ref2[3]=72;

In your practicals you have found that arrays are handled by refer-
ence in Java. So in this code we create one array in memory, with
four elements. ref1 is a reference to that array; we then set ref2 to
have the same value i.e. point to the same memory address.

Thus, when we dereference ref2 and make a change, the change will
also affect ref2. We will return to this shortly.
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1.2 Aside: Dealing with Machine Archi-
tectures

Dealing with Machine Architectures

 Different CPUs have different instruction sets
 We write high level code
 We compile the code to a specific architecture

 Where was the compiled 
result when you were 
doing ML then?

Source Code (e.g. C++)

Binary executable
for PC (x86)

Binary executable
for ARM

C++ Compiler
for ARM

C++ Compiler
for x86

In Computer Fundamentals you learnt that each CPU has its own
set of instructions: the so-called instruction set. These instructions
do not make for easily readable or writable code and so we introduce
the notion of layered machines. We write using high level languages
such as C++, Java, python, ML, etc. We then need a compiler to
convert these to something that makes sense to the CPU (a “binary
executable”).

The traditional approach is write source code; compile source to bi-
nary machine code; run binary program. This paradigm is “compile
once, run many on one architecture”. If you can guarantee enough
machines understand the machine code you’ve used, you can dis-
tribute your software and hopefully make a profit!
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An alternative approach is to compile “on-the-fly” i.e. as it is needed.
If we do this we consider the compiler to be an interpreter. The
advantage is the ‘program’ is then just the source code and it will
run on any architecture that has a working interpreter. When you
have programmed in ML, you have used an ML interpreter to run
the code. In effect this is “write once, run anywhere” code. The
downside is that there is an overhead associated with the translation
and performance won’t be as good as with compiled programs.

Enter Java

 Sun Microcomputers came up with a different 
solution
 They conceived of a Virtual Machine – a sort of idealised 

computer.
 You compile Java source code into a set of instructions for 

this Virtual Machine (“bytecode”)
 Your real computer runs a program (the “Virtual machine” 

or VM) that can efficiently translate from bytecode to local 
machine code.

 Java is also a Platform
 So, for example, creating a window is the same on any 

platform
 The VM makes sure that a Java window looks the same on a 

Windows machine as a Linux machine.

 Sun sells this as “Write Once, Run Anywhere”

Sun Microsystems invented Java as the web started to take off. Sud-
denly many different devices with many different machine architec-
tures were communicating and they wanted to produce programs
that could be run on any machine. They could have sent source
code to an interpreter in the browser (a valid approach - it’s what
javascript does), but they i) wanted to get the best performance
they could and ii) realised that there are times when you want to
distribute binary files not source code.
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So Java is a bit of a half-way house. It compiles high-level source
code into binary files that use a special instruction set called byte-
code. You can think of this as being machine code for a virtual,
generic CPU. Ironically there are now CPUs that use the bytecode
instruction set but that wasn’t really the intention.

So how do we use a bytecode file? The machine running the program
must have a Virtual Machine (VM)), which acts as an interpreter
for bytecode, translating it to the local CPU’s instruction set on the
fly. At first glance, this doesn’t seem to be worth it—why not just
use an interpreter directly? Well, high level languages are made for
humans not CPUs; the compilation to bytecode does all of the hard
work moving from something that is easy for a human to understand
to something that is easy for a VM to understand. The VM is really
just converting machine code to machine code. The end result is that
the VM interpreter has much less work to do and therefore overall
performance is increased when you run the program. As with an
interpreter, this is “write once, run anywhere”.

SUN publishes the specification of a Java Virtual Machine (JVM)
and anyone can write one, so there are a plenty available if you want
to explore. Start here:

http://java.sun.com/docs/books/jvms/

21

http://java.sun.com/docs/books/jvms/


1.3 Handling Typed Variables

Types and Variables

 We write code like:

 The high-level language has a series of primitive 
(built-in) types that we use to signify what’s in the 
memory
 The compiler then knows what to do with them
 E.g. An “int” is a primitive type in C, C++, Java and many 

languages.  It’s usually a 32-bit signed integer 

 A variable is a name used in the code to refer to a 
specific instance of a type
 x,y,z are variables above
 They are all of type int

int x = 512;
int y = 200;
int z = x+y;

By this stage you’ve no doubt had a few headaches dealing with
types in ML. When you wrote ML functions you tried hard to avoid
specifying the types: occasionally you had to but you knew that if
you could keep it general then you could use polymorphism to avoid
writing separate functions for integers, reals, etc.

In imperative languages, every variable has a type assigned when it
is declared, and every function specifies the type of its output (it’s
return type) and the types of its arguments. You’ve already seen the
primitive (built-in) types available in ML and Java:

22



E.g. Primitive Types in Java

 “Primitive” types are the built in ones.
 They are building blocks for more complicated types 

that we will be looking at soon.

 boolean – 1 bit (true, false)
 char – 16 bits
 byte – 8 bits as a signed integer (-128 to 127)
 short – 16 as a signed integer
 int – 32 bits as a signed integer
 long – 64 bits as a signed integer
 float – 32 bits as a floating point number
 double – 64 bits as a floating point number

See Workbook 1

For any C/C++ programmers out there: yes, Java looks a lot like
the C syntax. But watch out for the obvious gotcha — a char in C is
a byte (an ASCII character), whilst in Java it is two bytes (a Unicode
character). If you have an 8-bit number in Java you may want to
use a byte, but you also need to be aware that a byte is signed..!

You do lots more work with number representation and primitives in
your Java practical course. You do a lot more on floats and doubles
in your Floating Point course.
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1.3.1 Passing Procedure Arguments

Passing Procedure Arguments In Java

class Reference {

   public static void update(int i, int[] array) {
      i++;
      array[0]++;
   }

   public static void main(String[] args) {
      int test_i = 1;
      int[] test_array = {1};
      update(test_i, test_array);
      System.out.println(test_i);
      System.out.println(test_array[0]);
   }

}

“1”

“2”

See Workbook 3

This example is taken from practical workbook 3, where you observed
the different behaviour of test i and test array—the former being a
primitive type and the latter being a reference to an array. We
often say that primitive values are “passed by value” and arrays are
“passed by reference”, but I think this is rather confusing area for
Java.

Let’s create a model for what happens when we pass a primitive,
say an int like test i. The operating system allocates another int
somewhere in memory (called i)and copies the value of the original
(test i=i). All subsequent operations in the procedure occur on the
copy (test i), which is then deleted at the end of the procedure.

Now let’s look at what happens to the test array variable. This is a
reference to an array in memory. When passed as an argument, Java
makes a copy of the reference (called array above). The reference ob-
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viously points to the same array since it contains the copied memory
address. i.e. If we dereference the copy we end up at the same place
in memory. All subsequent operations in the procedure occur on the
copied reference, which is then deleted at the end of the procedure.

If you view the Java world this way, you can see that really passes
all arguments by value, it’s just that arguments are either primitives
or references.

The confusion over this comes from the fact that many people view
test array to be the array and not a reference to it. If you think like
that, then Java passes it by reference, as many books claim. The
examples sheet has a question that explores this further.

Check...

A. “70 Bob”
B. “70 Alice”
C. “71 Bob”
D. “71 Alice”

void myfunction(int x, Person p) {
     x=x+1;
     p.name=“Alice”;
}

void static main(String[] arguments) {
    int num=70;
    Person person = new Person();
    person.name=“Bob”;

    myfunction(num, p);
    System.out.println(num+” “+person.name)
}
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Passing Procedure Arguments In C

void update(int i, int &iref){
  i++;
  iref++;
} 

int main(int argc, char** argv) {
  int a=1;
  int b=1;
  update(a,b);
  printf("%d %d\n",a,b);
}

Things are a bit clearer in other languages, such as C. They may allow
you to specify how something is passed. In this C example, putting
an ampersand (‘&’) in front of the argument tells the compiler to
pass by reference and not by value.

Having the ability to choose how you pass variables can be very
powerful, but also problematic. Look at this code:

bool testA(HugeInt h) {
if (h > 1000) return TRUE;
else return FALSE;

}

bool testB(HugeInt &h) {
if (h > 1000) return TRUE;
else return FALSE;

}
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Here I have made a fictional type HugeInt which is meant to represent
something that takes a lot of space in memory. Calling either of these
functions will give the same answer, but what happens at a low level
is quite different. In the first, the variable is copied (lots of memory
copying required—bad) and then destroyed (ditto). Whilst in the
second, only a reference is created and destroyed, and that’s quick
and easy.

So, even though both pieces of code work fine, if you miss that you
should pass by reference (just one tiny ampersand’s difference) you
incur a large overhead and slow your program.

I see this sort of mistake a lot in C++ programming and I guess the
Java designers did too—they stripped out the need to specify pass
by reference or value from Java!

Reference Types in Java

 Back to Java
 Primitives always passed by value – why?

 Set size in memory
 Of similar size to a reference...

 Anything that isn't a primitive type is passed by 
reference
 We call them reference types

 Arrays
 Classes

See Workbook 3

27



28



Chapter 2

Object-Oriented
Programming

Custom Types

 You saw that there was an advantage to 
declaring your own types in ML
 First you declared a type and then you wrote 

functions that could act on it

 In OOP we go a step further
 We think of types as having both state and 

procedures
 The idea is that each type groups together 

related state and procedures, providing an 
implementation of a single concept

 We call our types classes

See Workbook 3
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Classes, Instances and Objects I

 Primitive types are pre-defined e.g. int defines 
32-bit integer in Java

 We create instances of a primitive type by 
declaring a variable of that type
 E.g. 

declares two instances of type int

int x=7;
int y=6;

Classes, Instances and Objects II

 Classes map to the the type in that they are 
basically a template for that concept

 We create instances of classes in a similar way. 
e.g.

makes two instances of class 
MyMegaCoolClass.

 An instance of a class is called an object

MyMegaCoolClass m = new  MyMegaCoolClass();
MyMegaCoolClass n = new  MyMegaCoolClass();

The difference between a class an an object is very simple, but you’d
be surprised how much confusion it can cause for novice program-
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mers. Classes define what properties and methods every instance of
it should have, whilst each object is a specific implementation with
set values. So a Person class might specify that a Person class has a
name and an age. Each object of type Person has those properties
set.

Loose Terminology (again!)

Classes

Behaviour
Functions
Methods

Procedures

State
Fields

Instance Variables
Properties
Variables
Members

Now, you remember all that fuss we had about ‘function’ and ‘pro-
cedure’? Well, it gets worse: when we’re talking about a procedure
inside a class, it’s called a method.

In the real world (which I’m assured does exist), you’ll find people
use ‘function’, ‘procedure’ and ‘method’ interchangeably. Thankfully
you’re all smart enough to cope!
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Identifying Classes

 We want our class to be a grouping of conceptually-
related state and behaviour

 One popular way to group is using English grammar
 Noun → Object
 Verb → Method

“Write a simulation of the Earth's orbit around the Sun”

Representing a Class Graphically (UML)

MyFancyClass

- age : int

+ SetAge(age: int) : void
Behaviour

State

“+” means
public access

“-” means
private access
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The has-a Association

College Student1 0...*

 Arrow going left to right says “a College has zero or more 
students”

 Arrow going right to left says “a Student has exactly 1 
College”

 What it means in real terms is that the College class will 
contain a variable that somehow links to a set of Student 
objects, and a Student will have a variable that 
references a College object.

 Note that we are only linking classes: we don't start 
drawing arrows to primitive types.

The graphical notation used here is part of UML (Unified Modeling
Language). UML is basically a standardised set of diagrams that
can be used to describe software independently of any programming
language used to create it.

UML contains many different diagrams (touched on in the Software
Design course). Here we just use the UML class diagram such as the
one in the slide.
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Anatomy of an OOP Program (Java)

public class MyFancyClass {

public int someNumber;
public String someText;

public void someMethod() {

}

public static void main(String[] args) {
MyFancyClass c = new

MyFancyClass();
}

}

Class name

Class state (properties 
that an object has such as 
colour or size)

Class behaviour (actions 
an object can do)

'Magic' start point 
for the program 
(named main by 
convention)

Create an object of 
type MyFancyClass in 
memory and get a 
reference to it

There are a couple of interesting things to note for later discussion.
Firstly, the word public is used liberally. Secondly, the main function
is declared inside the class itself and as static. Finally there is the
notation String[] which represents an array of String objects in Java.
You will see arrays in the practicals.
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class MyFancyClass {

public:
int someNumber;
public String someText;

void someMethod() {

}

};

void main(int argc, char **argv) {
MyFancyClass c; 

}

Anatomy of an OOP Program (C++)
Class name

Class state

Class behaviour 

'Magic' start point 
for the program 

Create an object of 
type MyFancyClass

This is here just so you can compare. The Java syntax is based on
C/C++ so it’s no surprise that there are a lot of similarities. This
certainly eases the transition from Java to C++ (or vice-versa), but
there are a lot of pitfalls to bear in mind (mostly related to memory
management).
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2.1 OOP Concepts

OOP Concepts

 OOP provides the programmer with a 
number of important concepts:

 Modularity
 Code Re-Use
 Encapsulation
 Inheritance
 Polymorphism

 Let's look at these more closely...

Let’s be clear here: OOP doesn’t enforce the correct usage of the
ideas we’re about to look at. Nor are the ideas exclusively found in
OOP languages. The main point is that OOP encourages the use of
these concepts, which is generally good for software design.
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2.1.1 Modularity and Code Re-Use

Modularity and Code Re-Use

 You've long been taught to break down 
complex problems into more tractable sub-
problems.

 Each class represents a sub-unit of code that (if 
written well) can be developed, tested and 
updated independently from the rest of the 
code.

 Indeed, two classes that achieve the same 
thing (but perhaps do it in different ways) can 
be swapped in the code

 Properly developed classes can be used in 
other programs without modification.

Modularity is extremely important in OOP. It’s the usual CS trick:
break big problems down into chunks and solve each chunk. In this
case, we have large programs, meaning scope for lots of coding bugs.
By identifying objects in our problem, we can write classes that rep-
resent them. Each class can be developed, tested and maintained
independently of the others (assuming we’ve done a good job).

There is a further advantage to breaking a program down into self-
contained objects: those objects can be ripped from the code and put
into other programs. So, once you’ve developed and tested a class
that represents a Student, say, you can use it in lots of other programs
with minimal effort. Even better, the classes can be distributed to
other programmers so they don’t have to reinvent the wheel. OOP
therefore strongly encourages software re-use.
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2.1.2 Encapsulation

Encapsulation I
 Here we create 3 Student objects 

when our program runs

 Problem is obvious: nothing stops 
us (or anyone using our Student 
class) from putting in garbage as 
the age

 Let's add an access modifier that 
means nothing outside the class 
can change the age

class Student {
   int age;
}

void main() {
   Student s = new Student();
   s.age = 21;

   Student s2 = new Student();
   s2.age=-1;

   Student s3 = new Student();
   s3.age=10055;
}

Encapsulation II
 Now nothing outside the class can 

access the age variable directly

 Have to add a new method to the 
class that allows age to be set (but 
only if it is a sensible value). i.e. 
SetAge()

 Also needed a GetAge() method 
so external objects can find out the 
age.

class Student {
   private int age;
   
   boolean SetAge(int a) {
      if (a>=0 && a<130) {

age=a;
return true;

      }
      return false;
   }

   int GetAge() {return age;}
}

void main() {
   Student s = new Student();
   s.SetAge(21);

}
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Encapsulation III

 We hid the state implementation to the outside world (no one 
can tell we store the age as an int without seeing the code), 
but provided mutator methods to... errr, mutate the state

 This is data encapsulation
 We define interfaces to our objects without committing long 

term to a particular implementation
 Advantages

 We can change the internal implementation whenever we 
like so long as we don't change the interface other than to 
add to it (E.g. we could decide to store the age as a float 
and add GetAgeFloat())

 Encourages us to write clean interfaces for things to 
interact with our objects

Another name for encapsulation is information hiding or (as some
pedants prefer) implementation hiding. The basic idea is that a class
should expose a clean interface that allows interaction, but nothing
about its internal state. So the general rule is that all state should
start out as private and only have that access relaxed if there is a
very, very good reason.

Encapsulation helps to minimise coupling between classes. High
coupling between two class, A and B, implies that a change to A is
likely to require a change to B. In a large software project, you really
don’t want a change in one class to mean you have to go and fix up
the other 200! So we strive for low coupling.

It’s also related to cohesion . A highly cohesive class contains only
a set of strongly-related functions rather than being a hotch-potch
of functionality. We strive for high cohesion.
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Access Modifiers

 e.g. public, protected, private in Java and C++
 Can apply to fields and methods

 If a method implementation gets very long, you 
might want to split it into smaller methods. We 
make the shorter methods private so no one can 
call them externally, and expose one public 
method (that makes use of those private 
methods)

 Not all OO languages have full access control
 If interested, take a look at the mess in the python 

language...

At this stage you should be comfortable with public and private fields
of a class. The former allows code outside of the object to read it
and alter it; whilst the latter prevents any access to the field from
outside the class. protected we will come to shortly....

Java actually throws in one more: package. You’ve met Java packages
in your practicals and now it a way to group classes together. If a
field has package access then any code within that package can access
it; all other code cannot. So package is to packages what private is
to classes. Interestingly, the default access modifier (i.e. the one
adopted if you don’t specify the access modifier when you declare
your field) is package and not public as is often thought.
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Vector2D Example

 We will create a class that represents a 2D vector

Vector2D

- mX: float
- mY : float

+ Vector2D(x:float, y:float)
+ GetX() : float
+ GetY() : float
+ Add(Vector2D v) : void

One of the examples we will develop in lectures is a representation of
a two dimensional vector (x, y). This class will require a constructor,
which you encountered in Workbook 3. We’ll talk more about them
later.

The class we create is obviously very simple, but it brings us to an
interesting question of mutability. An immutable class cannot have
its state changed after it has been created (you’re familiar with this
from ML, where everything functional is immutable). A mutable
class can be altered somehow (usually as a side effect of calling a
method).

To make a class immutable:

• Make sure all state is private.
• Consider making state final (this just tells the compiler that

the value never changes once constructed).
• Make sure no method tries to change any internal state.
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Some advantages of immutability:

• Simpler to contruct, test and use
• Automatically thread safe (don’t worry if this means nothing

to you yet).
• Allows lazy instantiation of objects.

In fact, to quote Effective Java by Joshua Bloch:

“Classes should be immutable unless there’s a very good
reason to make them mutable... If a class cannot be made
immutable, limit its mutability as much as possible.”

2.2 Inheritance

Inheritance I
class Student {
   public int age;
   public String name;
   public int grade;   
}

class Lecturer {
   public int age;
   public String name;
   public int salary;    
}

 There is a lot of duplication here
 Conceptually there is a hierarchy that we're 

not really representing
 Both Lecturers and Students are people 

(no, really).
 We can view each as a kind of 

specialisation of a general person
 They have all the properties of a person
 But they also have some extra stuff 

specific to them

(I should not have used public variables here, but I did it to keep things simple)
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Inheritance II
class Person {
   public int age;
   Public String name;
}

class Student extends Person {
   public int grade;   
}

class Lecturer extends Person {
   public int salary;    
}

 We create a base class (Person) 
and add a new notion: classes can 
inherit properties from it
 Both state and functionality

 We say:
 Person is the superclass of 

Lecturer and Student
 Lecturer and Student subclass 

Person

Representing Inheritance Graphically

name
age
exam_score

Student

name
age
salary

Lecturer

name
age

Person Also known as an “is-a” 
relation

As in “Student is-a Person”

S
p
e
cia

li seG
e
n
e
ra

lis
e

Inherited fields

Inheritance is an extremely powerful concept that is used extensively
in good OOP. We has discussed the “has-a” relation amongst classes;
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inheritance adds the “is-a” concept. E.g. A car is a vehicle that has
a steering wheel.

We speak of an inheritance tree where moving down the tree makes
things more specific and up the tree more general.

Unfortunately, we tend to use an array of different names for things
in an inheritance tree. For A extends B, you might hear any of:

• A is the superclass of B
• A is the parent of B
• A is the base class of B
• B is a subclass of A
• B is the child of A
• B derives from A
• B inherits from A
• B subclasses A

Many students seem to confuse “is-a” and “has-a” arrows in their
UML class diagrams: please make sure you don’t!
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Casting/Conversions
 As we descend our inheritance tree we specialise by adding more 

detail ( a salary variable here, a dance() method there)

 So, in some sense, a Student object has all the information we need 
to make a Person (and some extra).

 It turns out to be quite useful to group things by their common 
ancestry in the inheritance tree

 We can do that semantically by expressions like:

Student s = new Student();
Person p = (Person)s;

Person p = new Person();
Student s = (Student)p;

This is a widening conversion (we 
move up the tree, increasing 
generality: always OK)

This would be a narrowing 
conversion (we try to move down 
the tree, but it's not allowed here 
because the real object doesn't 
have all the info to be a Student)x

One way to think about this is that when we create a new Student the
computer allocates a chunk of memory for that object. In that chunk
there is space for all of the fields (name, age, exam score, etc) and
definitions of the methods it supports. Because a Student is a Person,
that chunk will contain everything required for a Person (name, age)
and some extras specific to being a Student (exam score).

Now, we work with references to objects (the memory chunks) in
Java. The type of the reference tells the computer what to expect
when it follows it. If we have a Person reference that points to an
object that’s really a Student, that’s fine—everything it needs for a
Person is in the object it finds (plus some extra ‘stuff’).

When we write (Person)s as above we often say we are casting the
Student object to a Person object.
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2.2.1 Inheritance and State

Fields and Inheritance

class Person {
   public String mName;
   protected int mAge;
   private double mHeight;
}

class Student extends Person {

  public void do_something() {
    mName=”Bob”;
    mAge=70;
    mHeight=1.70;
  }

}

Student inherits this as a 
public variable and so can 
access it

Student inherits this as a 
protected variable and so can 
access it

Student inherits this as a private 
variable and so cannot access it

You will see that the protected access modifier can now be explained.
A protected variable is exposed for read and write within a class,
and within all subclasses of that class. Code outside the class or its
subclasses can’t touch it directly1.

1At least, that’s how it in most languages. Java actually allows any class in
the same Java package to access protected variables.
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Fields and Inheritance: Shadowing

class A {
   public int x;
}

class B extends A {
   public int x;
}

class C extends B {
  public int x;

  public void action() {
      // Ways to set the x in C
      x = 10;
      this.x = 10;

      // Ways to set the x in B
      super.x = 10;
      ((B)this).x = 10;

      // Ways to set the x in A
      ((A)this.x = 10;
  }
}

What happens here?? There is an 
inheritance tree (A is the parent of B is the 
parent of C). Each of these declares an 
integer field with the name x.

In memory, you will find three allocated 
integers for every object of type C.  We say 
that variables in parent classes with the 
same name as those in child classes are 
shadowed.

Note that the variables are being 
shadowed: i.e. nothing is being replaced.  
This is contrast to the behaviour with 
methods...

A common novice OOP error is to assume that we have to redeclare
a field in its subclasses for it to be inherited: not so. Every field is
inherited by a subclass.

There are two new keywords that have appeared here: super and this.
The this keyword can be used in any class method2 and provides us
with a reference to the current object. In fact, the this keyword is
what you need to access anything within a class, but because we’d
end up writing this all over the place, it is taken as implicit. So, for
example:

public class A {
private int x;
public void go() {
this.x=20;

}

2By this I mean it cannot be used outside of a class, such as within a static
method: see later for an explanation of these.
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}

becomes:

public class A {
private int x;
public void go() {
x=20;

}
}

The super keyword gives us access to the direct parent (one step up
in the tree). You’ve met both in your Java practicals.

2.2.2 Inheriting Methods and Polymorphism

It’s all very well inheriting fields, but what happens to all of the
methods?
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Methods and Inheritance: Overriding
 We might want to require that every Person can dance.  But the way 

a Lecturer dances is not likely to be the same as the way a Student 
dances...

class Person {
   public void dance() {
      jiggle_a_bit();
   }
}

class Student extends Person {
   public void dance() {
      body_pop();
   }
}

class Lecturer extends Person {  
}

Person defines a 
'default' 
implementation of 
dance()

Lecturer just 
inherits the default 
implementation and 
jiggles

Student overrides 
the default

Every object that has Person for a parent must have a dance() method
since it is defined in the Person class and is inherited. The situation
so far is directly analogous to what happens with fields.
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(Subtype) Polymorphism
 Assuming Person has a default 

dance() method, what should happen 
here??

Student s = new Student();
Person p = (Person)s;
p.dance();

 Option 1
 Compiler says “p is of type Person”
 So p.dance() should do the default dance() action in Person

 Option 2
 Compiler says “The object in memory is really a Student”
 So p.dance() should run the Student dance() method

Polymorphic behaviour

Option 1 would match our expectations from shadowing: the idea
that the object contains two dance() methods, and we can choose be-
tween them. Option 2 (called polymorphic) effectively has the parent
method replaced by the child method. It turns out that option 2 is
immensely useful and the Java designers decided to make it the only
behaviour.

Interestingly, not all OO languages choose between the options. C++,
for example, allows you to choose:

#include <iostream>

class A {
public:

void printNormal() {
std::cout << "A" << std::endl;

}

50



virtual void printVirtual() {
std::cout << "A" << std::endl;

}
};

class B : public A {
public:

void printNormal() {
std::cout << "B" << std::endl;

}

virtual void printVirtual() {
std::cout << "B" << std::endl;

}
};

int main(int argc, char ** argv) {
B bobj; // Declare an object of type B.

// Set up pointers in C++
B *bptr = &bobj;
A *aptr = (A*)bptr; // Cast

bptr->printNormal();
aptr->printNormal();

bptr->printVirtual();
aptr->printVirtual();

}

Which results in:
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B
A
B
B

i.e. you need to add a special tag (virtual) to the methods that you
want to behave polymorphically in C++.

Aside: You have of course met the word ‘polymorphism’ in your
Foundations course.3 There it was used to mean that you could
avoid specifying the type in your code and the compiler sorted it out
when it came to compile it (or interpret it if you prefer). This is
more properly called parametric or static polymorphism, where the
compiler figures out the type before the program runs, at compile-
time.

Here it is slightly different. At compile time the compiler is told a
type for the reference (e.g. Person) but the true type of the object
may be anything derived from that type (e.g. Student, Lecturer). The
ambiguity can only be resolved at run-time, when the computer can
look at what’s in memory and figure out the real type. This is more
properly called ad-hoc, dynamic, or even subtype polymorphism.

3The etymology of the word polymorphism is from the ancient Greek: poly
(many)–morph (form)–ism
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The Canonical Example I

 A drawing program that can draw circles, 
squares, ovals and stars

 It would presumably keep a list of all the 
drawing objects

 Option 1
 Keep a list of Circle objects, a list of 

Square objects,...
 Iterate over each list drawing each 

object in turn
 What has to change if we want to add 

a new shape?

Circle
+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

The Canonical Example II

 Option 2
 Keep a single list of Shape references
 Figure out what each object really is, 

narrow the reference and then draw()

 What if we want to add a new shape?

Shape

Circle
+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

for every Shape s in myShapeList
   if (s is really a Circle) 
      Circle c = (Circle)s;
      c.draw();
   else if (s is really a Square) 
      Square sq = (Square)s;
      sq.draw();
   else if...
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The Canonical Example III

 Option 3 (Polymorphic)
 Keep a single list of Shape references
 Let the compiler figure out what to do 

with each Shape reference

 What if we want to add a new shape?

Shape
- x_position: int
- y_position: int

+ draw()

Circle
+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

For every Shape s in myShapeList
   s.draw();

Implementations
 Java

 All methods are polymorphic.  Full stop.

 Python

 All methods are polymorphic.

 C++
 Only functions marked virtual are polymorphic

 Polymorphism is an extremely important concept that you need to make 
sure you understand...

What happens when you run a polymorphic function is that the sys-
tem must dynamically decide which version to run. As you might
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expect, this isn’t instantaneous and so there is an overhead associ-
ated with using polymorphic functions. This can be an advantage of
languages like C++ (which give you the choice), but more and more
languages seem to favour simplicity over power, and this choice is
one of the first things to go!

2.3 Abstract Classes

Abstract Methods
 There are times when we have a definite 

concept but we expect every specialism of 
it to have a different implementation (like 
the draw() method in the Shape example).  
We want to enforce that idea without 
providing a default method

 E.g. We want to enforce that all objects that 
are Persons support a dance() method
 But we don't now think that there's a 

default dance()

 We specify an abstract dance method in 
the Person class
 i.e. we don't fill in any implementation 

(code) at all in Person.

class Person {
   public void dance();
}

class Student extends Person {
   public void dance() {
      body_pop();
   }
}

class Lecturer extends Person {  
   public void dance() {
      jiggle_a_bit();
   }
}

An abstract method can be thought of as a contractual obligation:
any non-abstract class that inherits from this class will have that
method implemented.
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Abstract Classes
 Before we could write Person p = new Person()

 But now p.dance() is undefined

 Therefore we have implicitly made the class abstract ie. It cannot be directly instantiated 
to an object

 Languages require some way to tell them that the class is meant to be abstract and it 
wasn't a mistake:

 Note that an abstract class can contain state variables that get inherited as normal

 Note also that, in Java, we can declare a class as abstract despite not specifying an 
abstract method in it!!

public abstract class Person {
   public abstract void dance();
}

class Person {
   public:
      virtual void dance()=0;
}

Java C++

Abstract classes allow us to partially define a type. Because it’s not
fully defined, you can’t make an object from an abstract class (try
it). Only once all of the ‘blanks’ have been filled in can we create an
object from it. This is particularly useful when we want to represent
high level concepts that do not exist in isolation.

Depending on who you’re talking to, you’ll find different terminol-
ogy for the initial declaration of the abstract function (e.g. the
public abstract void dance() bit). Common terms include method pro-
totype and method stub.
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Representing Abstract Classes

Student Lecturer

Person

+ dance()

+ dance()+ dance()

Italics indicate the 
class or method is 
abstract

You have to look at UML diagrams carefully since the italics that
represent abstract methods or classes aren’t always obvious on a
quick glance.
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2.4 Interfaces

Multiple Inheritance

Student Lecturer

StudentLecturer

 What if we have a Lecturer who studies for 
another degree?

 If we do as shown, we have a bit of a 
problem
 StudentLecturer inherits two different 

dance() methods
 So which one should it use if we instruct 

a StudentLecturer to dance()?
 The Java designers felt that this kind of 

problem mostly occurs when you have 
designed your class hierarchy badly

 Their solution?  You can only extend 
(inherit) from one class in Java
 (which may itself inherit from another...)
 This is a Java oddity (C++ allows 

multiple class inheritance)

Java only allows you to inherit from one class (which may itself in-
herit from one other, which may itself...). Many programmers coming
from C++ find this limiting, but it just means you have to think of
another way to represent your classes (arguably a better way).
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Interfaces (Java only)
 Java has the notion of an interface which is like a class except:

 There is no state whatsoever

 All methods are abstract

 For an interface, there can then be no clashes of methods or variables to 
worry about, so we can allow multiple inheritance

<<interface>>
       Drivable

+ turn()
+ brake()

Car

<<interface>>
    Identifiable

+ getIdentifier()

Bicycle

+ turn()
+ brake()

+ turn()
+ brake()

+ turn()
+ brake()
+ getIdentifier()

Interface Drivable {
   public void turn();
   public void brake();
}

Interface Identifiable {
   public void getIdentifier();
}

class Bicycle implements Drivable {
   public void turn() {...}
   public void brake() {… }
}

class Car implements Drivable, Identifiable {
   public void turn() {...}
   public void brake() {… }
   Public void getIdentifier() {...}
}

abstract 
assumed for 
interfaces

Interfaces are so important to Java they are considered to be the
third reference type (the other two being classes and arrays).

Recap

 Important OOP concepts you need to understand:

 Modularity (classes, objects)
 Data Encapsulation
 Inheritance
 Abstraction
 Polymorphism
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2.5 Lifecycle of an Object

Constructors

 You will have noticed that the RHS looks rather like a function 
call, and that's exactly what it is.

 It's a method that gets called when the object is constructed, 
and it goes by the name of a constructor (it's not rocket 
science).

 We use constructors to initialise the state of the class in a 
convenient way.
 A constructor has the same name as the class
 A constructor has no return type specified

MyObject m = new MyObject();

You can’t specify a return type for a constructor because it is always
called using the special new keyword, which must return a reference
to the newly constructed object. You can, however, specify argu-
ments for a constructor in the same way as usual for a method.
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Constructor Examples

public class Person {
   private String mName;

   // Constructor
   public Person(String name) {
       mName=name;
   }

   public static void main(String[] args) {
     Person p = new Person(“Bob”);
   }

}

class Person {
   private:
      std::string mName;

   public:
      Person(std::string &name) {
          mName=name;
      }
};

int main(int argc, char ** argv) {
   Person p (“Bob”);
}

Java C++

Default Constructor

public class Person {
   private String mName;

   public static void main(String[] args) {
     Person p = new Person();
   }

}

 If you specify no constructor at 
all, the Java fills in an empty 
one for you

 The default constructor takes no 
arguments

Every class has a constructor. The only question is whether it’s
been specified manually by the programmer or whether the compiler
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has filled in a default (empty) constructor. Beware: As soon as
you specify any constructor whatsoever, Java won’t add in a default
constructor...

Multiple Constructors

public class Student {
    private String mName;
    private int mScore;

    public Student(String s) {
       mName=s;
       mScore=0;
    }
    public Student(String s, int sc) {
        mName=s; 
        mScore=sc;
    }

    public static void main(String[] args) {
      Student s1 = new Student("Bob");
      Student s2 = new Student("Bob",55);
    }
  }

 You can specify as many 
constructors as you like.

 Each constructor must have a 
different signature (argument 
list)
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Constructor Chaining

 When you construct an object of a type with parent 
classes, we call the constructors of all of the parents 
in sequence

Student s = new Student();

Animal

Person

Student

1. Call Animal()

2. Call Person()

3. Call Student()

What actually happens is that the first line of a constructor always
starts with super(), which is a call to the parent constructor (which
itself starts with super(), etc.). If it does not, the compiler adds one
for you:

public class Person {
public Person() {

}
}

becomes:

public class Person {
public Person() {
super();
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}
}

This can get messy though: what if the parent does not have a
default constructor? In this case, the code won’t compile, and we will
have to manually add a call to super ourselves, using the appropriate
arguments. E.g.

public class Person {
protected String mName;
public Person(String name) {
mName=name;

}
}

public class Student extends Person {
private int mScore;
public Student (String name, int score) {
super(name);
mScore = score;

}
}
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Destructors

 Most OO languages have a notion of a destructor too
 Gets run when the object is destroyed
 Allows us to release any resources (open files, etc) or memory 

that we might have created especially for the object

class FileReader {
   public:
   
      // Constructor
      FileReader() {
         f = fopen(“myfile”,”r”);
      }

      // Destructor
      ~FileReader() {
         fclose(f);
      }

   private :
      FILE *file;
}

int main(int argc, char ** argv) {

  // Construct a FileReader Object
  FileReader *f = new FileReader();

  // Use object here
  ...

  // Destruct the object
  delete f;

}

C++

Cleaning Up

 A typical program creates lots of objects, not all of which 
need to stick around all the time

 Approach 1:
 Allow the programmer to specify when objects should 

be deleted from memory
 Lots of control, but what if they forget to delete an 

object?
 Approach 2:

 Delete the objects automatically (Garbage 
collection)

 But how do you know when an object is finished with 
if the programmer doesn't explicitly tell you it is?
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Cleaning Up (Java) I

 Java reference counts. i.e. it keeps track of how many 
references point to a given object.  If there are none, the 
programmer can't access that object ever again so it can be 
deleted

Person object
#ref = 2

r2

r1

r1 = null;
r2 = null;

Person object
#ref = 0

r2

r1

Deletable

Cleaning Up (Java) II

 Good: 
 System cleans up after us

 Bad:
 It has to keep searching for objects with no 

references. This requires effort on the part of 
the CPU so it degrades performance.

 We can't easily predict when an object will be 
deleted
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Cleaning Up (Java) III

 So we can't tell when a destructor would run – so Java 
doesn't have them!!

 It does have the notion of a finalizer that gets run when 
an object is garbage collected
 BUT there's no guarantee an object will ever get 

garbage collected in Java...
 Garbage Collection != Destruction

2.6 Class-Level Data

Class-Level Data and Functionality I
 Imagine we have a class ShopItem. Every ShopItem has 

an individual core price to which we need to add VAT

 Two issues here:

1. If the VAT rate changes, we need to find every 
ShopItem object and run SetVATRate(...) on it.  We 
could end up with different items having different VAT 
rates when they shouldn't...

2. It is inefficient.  Every time we create a new ShopItem 
object, we allocate another 32 bits of memory just to 
store exactly the same number!

public class ShopItem {
   private float price;
   private float VATRate = 0.175;

   public float GetSalesPrice() {
      return price*(1.0+VATRate);
   }

   public void SetVATRate(float rate) {
      VATRate=rate;
   }

}

 What we have is a piece of information that is class-level not object level
 Each individual object has the same value at all times

 We throw in the static keyword:

public class ShopItem {
   private float price;
   private static float VATRate;
   ....
}

Variable created only once 
and has the lifetime of the 
program, not the object
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Class-Level Data and Functionality II
 We now have one place to update

 More efficient memory usage

17.5

17.5

17.5

17.5

17.5

17.5

 Can also make methods static too
 A static method must be instance independent i.e. it can't rely on member variables in 

any way
 Sometimes this is obviously needed. E.g

public class Whatever {
   public static void main(String[] args) {
      ...
   }
}

Must be able to run this 
function without creating an 
object of type Whatever 
(which we would have to do in 
the main()..!)

Why Use Other Static Functions?
 A static function is like a function in ML – it can depend only on its 

arguments
 Easier to debug (not dependent on any state)
 Self documenting
 Allows us to group related methods in a Class, but not require us 

to create an object to run them
 The compiler can produce more efficient code since no specific 

object is involved

public class Math {
   public float sqrt(float x) {…}
   public double sin(float x) {…}
   public double cos(float x) {…}
}

…
Math mathobject = new Math();
mathobject.sqrt(9.0);
...

public class Math {
   public static float sqrt(float x) {…}
   public static float sin(float x) {…}
   public static float cos(float x) {…}
}

…
Math.sqrt(9.0);
...

vs
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2.7 Exceptions

Error Handling
 You do a lot on this in your practicals, so we'll just touch on it here

 The traditional way of handling errors is to return a value that indicates 
success/failure/error

 Problems:

 Could ignore the return value

 Have to keep checking what the 'codes' are for success, etc.

 The result can't be returned in the usual way

public int divide(double a, double b) {
   if (b==0) return -1; // error
   double result = a/b;
   return 0; // success
}

…

if ( divide(x,y)<0) System.out.println(“Failure!!”);

Exceptions I

 An exception is an object that can be thrown up by a method 
when an error occurs and caught by the calling code

public double divide(double a, double b) throws DivideByZeroException {
   if (b==0) throw DivideByZeroException();
   else return a/b
}

…

try {
   double z = divide(x,y);
}
catch(DivideByZeroException d) {
   // Handle error here
}
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Exceptions II

 Advantages:
 Class name is descriptive (no need to look up codes)
 Doesn't interrupt the natural flow of the code by requiring 

constant tests
 The exception object itself can contain state that gives lots 

of detail on the error that caused the exception
 Can't be ignored, only handled

There is a lot more we could say about exceptions, but you have
the basic tools to understand them and they will be covered in your
practical Java course. Just be aware that exceptions are very pow-
erful and very popular in most modern programming languages. If
you’re struggling to understand them, take a look at:

http://java.sun.com/docs/books/tutorial/essential/exceptions/
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2.8 Copying or Cloning Java Objects

Cloning I

 Sometimes we really do want to copy an object

 Java calls this cloning

 We need special support for it

Person object
(name = 
“Bob”)

r

Person object
(name = 
“Bob”)

r

Person object
(name = 
“Bob”)

r_copy

Cloning II

 Every class in Java ultimately inherits from the Object 
class
 The Object class contains a clone() method
 So just call this to clone an object, right?
 Wrong!

 Surprisingly, the problem is defining what copy actually 
means
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Java is unusual in that it really, really wants you to use OOP. In
your practicals you must have noticed that, even to do simple proce-
dural stuff, you had to encase everything in a class—even the main()
method. A further decision they made is that ultimately all classes
will inherit from a special Object class. i.e. the top of all inheritance
trees is Object even though we never explicitly say so in code...

Cloning III

public class MyClass {
   private float price = 77;
}

MyClass 
object

(price=77)
Clone

MyClass 
object

(price=77)

MyClass 
object

(price=77)

72



Shallow and Deep Copies

public class MyClass {
   private MyOtherClass moc;
}

MyClass 
object Shallo

w

MyOtherClass 
object MyClass 

object

MyOtherClass 
object

MyClass 
object

MyOtherClass 
object

MyClass 
object

MyClass 
object

MyOtherClass 
object

Deep

Java Cloning
 So do you want shallow or deep?

 The default implementation of clone() performs a shallow copy
 But Java developers were worried that this might not be 

appropriate: they decided they wanted to know for sure that we'd 
thought about whether this was appropriate

 Java has a Cloneable interface
 If you call clone on anything that doesn't extend this interface, it 

fails
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Clone Example I

 public class Velocity {
    public float vx;
    public float vy;
    public Velocity(float x, float y) {
        vx=x;
        vy=y;
    }
  };
  
  public class Vehicle {
    private int age;
    private Velocity vel;
    public Vehicle(int a, float vx, float vy) {
        age=a;
        vel = new Velocity(vx,vy);
    }
  };

Clone Example II

 
  public class Vehicle implements Cloneable {
    private int age;
    private Velocity vel;
    public Vehicle(int a, float vx, float vy) {
        age=a;
        vel = new Velocity(vx,vy);
    }

    public Object clone() {
        return super.clone();
    }

  };

Here we fill in the clone() method using super.clone(). You can think
of this as doing a byte-for-byte copy of an object in memory. Any
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primitive types (such as age) will therefore be copied. And references
will also be copied, but not the objects they point to. Hence this
much gets us a shallow copy.

Clone Example III
    public class Velocity implement Cloneable {
        ....
       public Object clone() {
           return super.clone();
       }
  };
  
 
  public class Vehicle implements Cloneable {
    private int age;
    private Velocity v;
    public Student(int a, float vx, float vy) {
        age=a;
        vel = new Velocity(vx,vy);
    }

    public Object clone() {
        Vehicle cloned = (Vehicle) super.clone();
        cloned.vel = (Velocity)vel.clone();
        return cloned;
    }

  };

A deep clone requires that we clone the objects that are referenced
(and they, in turn clone any objects they reference, and so on). Here
we make Velocity cloneable and make sure to clone the member vari-
able that Vehicle has.
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Marker Interfaces
 If you look at what's in the Cloneable interface, you'll find it's empty!! 

 What's going on?
 Well, the clone() method is already inherited from Object so it 

doesn't need to specify it
 This is an example of a Marker Interface

 A marker interface is an empty interface that is used to label 
classes

 This approach is found occasionally in the Java libraries

You might also see these marker interfaces referred to as tag inter-
faces. They are simply a way to label or tag a class. They can be very
useful, but equally they can be a pain (you can’t dynamically tag a
class, nor can you prevent a tag being inherited by all subclasses).
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Chapter 3

Java Class Libraries

Java Class Library

 Java the platform contains around 4,000 
classes/interfaces
 Data Structures
 Networking, Files
 Graphical User Interfaces
 Security and Encryption
 Image Processing
 Multimedia authoring/playback
 And more...

 All neatly(ish) arranged into packages (see API docs)
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Remember Java is a platform, not just a programming language. It
ships with a huge class library : that is to say that Java itself contains
a big set of built-in classes for doing all sorts of useful things like:

• Complex data structures and algorithms
• I/O (input/output: reading and writing files, etc)
• Networking
• Graphical interfaces

Of course, most programming languages have built-in classes, but
Java has a big advantage. Because Java code runs on a virtual ma-
chine, the underlying platform is abstracted away. For C++, for ex-
ample, the compiler ships with a fair few data structures, but things
like I/O and graphical interfaces are completely different for each
platform (Windows, OSX, Linux, whatever). This means you usu-
ally end up using lots of third-party libraries to get such extras—not
so in Java.

There is, then, good reason to take a look at the Java class library
to see how it is structured.
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3.0.1 Collections and Generics

Java's Collections Framework

<<interface>>
Collection

<<interface>>
Collection

<<interface>>
Collection

<<interface>>
Iterable

 Important chunk of the class library
 A collection is some sort of grouping of 

things (objects)
 Usually when we have some grouping we 

want to go through it (“iterate over it”)

 The Collections framework has two main 
interfaces: Iterable and Collections. They 
define a set of operations that all classes in 
the Collections framework support

 add(Object o), clear(), isEmpty(), etc.

The Java Collections framework is a set of interfaces and classes that
handles groupings of objects and allows us to implement various
algorithms invisibly to the user (you’ll learn about the algorithms
themselves next term).
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Major Collections Interfaces I

 <<interface>> Set
 Like a mathematical set in DM 1

 A collection of elements with no duplicates

 Various concrete classes like TreeSet (which keeps the set elements sorted)

 <<interface>> List
 An ordered collection of elements that may contain duplicates

 ArrayList, Vector, LinkedList, etc.

 <<interface>> Queue
 An ordered collection of elements that may contain duplicates and supports 

removal of elements from the head of the queue

 PriorityQueue, LinkedLIst, etc.

A
B

C

A

B

C

B

A

B

C

B

Major Collections Interfaces II

 <<interface>> Map
 Like relations in DM 1, or dictionaries in ML

 Maps key objects to value objects

 Keys must be unique

 Values can be duplicated and (sometimes) null.

K1
A

B

B

K3 K2

There are other interfaces in the Collections class, and you may want
to poke around in the API documentation. In day-to-day program-
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ming, however, these are likely to be the interfaces you use.

Obviously, you can’t use the interfaces directly. So Java includes a
few implementations that implement sensible things. Again, you will
find them in the API docs, but as an example for Set:

TreeSet. A Set that keeps the elements in sorted order so that when
you iterate over them, they come out in order.

HashSet. A Set that uses a technique called hashing (don’t worry
— you’re not meant to know about this yet) that happens
to make certain operations (add, remove, etc) very efficient.
However, the order the elements iterate over is neither obvious
nor constant.

Now, don’t worry about what’s going on behind the scenes (that
comes in the Algorithms course), just recognise that there are a series
of implementations in the class library that you can use, and that
each has different properties.

Generics I

 The original Collections framework just dealt with 
collections of Objects
 Everything in Java “is-a” Object so that way our 

collections framework will apply to any class we like 
without any special modification.

 It gets messy when we get something from our 
collection though: it is returned as an Object and we 
have to do a narrowing conversion to make use of it:

// Make a TreeSet object
TreeSet ts = new TreeSet();

// Add integers to it
ts.add(new Integer(3));

// Loop through
iterator it = ts.iterator();
while(it.hasNext()) {
      Object o = it.next();
      Integer i = (Integer)o;
}
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Generics II

 It gets worse when you realise that the add() method 
doesn't stop us from throwing in random objects:

// Make a TreeSet object
TreeSet ts = new TreeSet();

// Add integers to it
ts.add(new Integer(3));
ts.add(new Person(“Bob”));

// Loop through
iterator it = ts.iterator();
while(it.hasNext()) {
      Object o = it.next();
      Integer i = (Integer)o;
}

Going to fail for the 
second element! 
(But it will compile: 
the error will be at 
runtime)

Generics III

 To help solve this sort of problem, Java introduced 
Generics in JDK 1.5

 Basically, this allows us to tell the compiler what is 
supposed to go in the Collection

 So it can generate an error at compile-time, not run-time

// Make a TreeSet of Integers
TreeSet<Integer> ts = new TreeSet<Integer>();

// Add integers to it
ts.add(new Integer(3));
ts.add(new Person(“Bob”));

// Loop through
iterator<Integer> it = ts.iterator();
while(it.hasNext()) {
      Integer i = it.next();
}

Won't even compile

No need to cast :-)

Now, assuming you’re still awake (long shot, I know), you might
have noticed that this is all about determining types at compile-time
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rather than dynamically at run-time. Which of course is what the
(static) polymorphism you met in ML does. So really generics just
adds in static polymorphism, calling it “generics” in an attempt to
avoid confusion (or perhaps cause it—I’m never sure).

Notation in Java API

 Set<E>
 List<E>
 Queue<E>
 Map<K,V>

Here the letter between the brackets just signifies some class, so you
might do:

TreeSet<Person> ts = new TreeSet<Person>()
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Generics and SubTyping
// Object casting
Person p = new Person();
Animal o = (Animal) p;

// List casting
List<Person> plist = new LinkedList<Person>();
List<Animal> alist = (List<Animal>)plist;<<interface>>

Collection
Person

<<interface>>
Collection

Animal

So a list of Persons is a list of Animals, yes?

3.0.2 Comparing Java Objects

Comparing Primitives

>    Greater Than

>= Greater than or equal to

== Equal to

!= Not equal to

< Less than

<= Less than or equal to

 Clearly compare the value of a primitive
 But what does (object1==object2) mean??

 Same object?
 Same state (“value”) but different object?
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The problem is that we deal with references to objects, not objects.
So when we compare two things, do we compare the references of
the objects they point to? As it turns out, both can be useful so we
want to support both.

Option 1: a==b, a!=b

 These compare the references

Person p1 = new Person(“Bob”);
Person p2 = new Person(“Bob”);

(p1==p2);

(p1!=p2);

p1==p1;

False (references differ)

True (references differ)

True (references the same)

String s = “Hello”;
if (s==”Hello”) System.out.println(“Hello”);
else System.out.println(“Nope”);
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Option 2: The equals() Method

 Object defines an equals() method. By default, this 
method just does the same as ==.
 Returns boolean, so can only test equality
 Override it if you want it to do something different
 Most (all?) of the core Java classes have properly 

implemented equals() methods

Person p1 = new Person(“Bob”);
Person p2 = new Person(“Bob”);

(p1==p2);

String s1 = “Bob”;
String s2 = “Bob”;

(s1==s2);

False (we haven't 
overridden the equals()
method so it just
compares references

True (String has equals()
overridden)

I find this mildly irritating: every class you use will support equals()
but you’ll have to check whether or not it has been overridden to do
something other than ==. Personally, I only use equals() on objects
from core Java classes.
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Option 3: Comparable<T> Interface I

int compareTo(T obj);

 Part of the Collections Framework
 Returns an integer, r:

 r<0 This object is less than obj
 r==0 This object is equal to obj
 r>0 This object is greater than obj

Option 3: Comparable<T> Interface II
public class Point  implements Comparable<Point> {
     private final int mX;
     private final int mY;
     public Point (int, int y) { mX=x; mY=y; }

     // sort by y, then x
     public int compareTo(Point p) {
         if ( mY>p.mY) return 1;
         else if (mY<p.mY) return -1;
         else {
             if (mX>p.mX) return 1;
             else if (mX<p.mX) return -1;
             else return 0.
         }
     }
}

// This will be sorted automatically by y, then x
Set<Point> list = new TreeSet<Point>(); 

Note that the class itself contains the information on how it is to be
sorted: we say that it has a natural ordering.
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Option 4: Comparator<T> Interface 

int compareTo(T obj1, T obj2)

 Also part of the Collections framework and 
allows us to specify a particular comparator for 
a particular job

 E.g. a Person might have a compareTo() 
method that sorts by surname.  We might wish 
to create a class AgeComparator that sorts 
Person objects by age.  We could then feed 
that to a Collections object. 

At first glance, it may seem that Comparator doesn’t add much
over Comparable. However it’s very useful to be able to specify
Comparators and apply them dynamically to Collections. If you
look in the API, you will find that Collections has a static method
sort(List l, Comparator, c).

So, imagine we have a class Student that stores the forename, sur-
name and exam percentage as a String, String, and a float respec-
tively. The natural ordering of the class sorts by surname. We
might then supply two Comparator classes: ForenameComparator and
ExamScoreComparator that do as you would expect. Then we could
write:

List list = new SortedList();

// Populate list
// List will be sorted naturally
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...

// Sort list by forename
Collections.sort(list, new ForenameComparator());

// Sort list by exam score
Collections.sort(list, new ExamScoreComparator());

3.0.3 Java’s I/O Framework

Java's I/O framework

 Support for system input and output (from/to sources 
such as network, files, etc).

<<interface>>
Collection

Reader
Abstract class for reading 
data from some source

<<interface>>
Collection

InputStreamReader

<<interface>>
Collection

FileReader

Concrete Instance that works  
on an InputStream object

Specialisation that allows us to 
specify a filename, then creates 
and InputStream for it 

89



Speeding it up

 In general file I/O is sloowwww

 One trick we can use is that whenever we're asked to read 
some data in (say one byte) we actually read lots more in (say 
a kilobyte) and buffer it somewhere on the assumption that it 
will be wanted eventually and it will just be there in memory, 
waiting for us. :-)

 Java supports this in the form of a BufferedReader

FileReader f = new FileReader();
BufferedReader br = new BufferedReader(f); Reader

InputStreamReader BufferedReader

BufferedReader

 Whenever we call read() on a 
BufferedReader it looks in its 
buffer to see whether it has the 
data already

 If not it passes the request onto 
the Reader object 

 We'll come back to this...

The reason file I/O is typically so slow is that hard drives take a
long time to deliver information. They contain big, spinning disks
and the read head has to move to the correct place to read the data
from, then wait until the disc has spun around enough to read all the
data it wanted (think old 12 inch record players). Contrast this with
memory (in the sense of RAM), where you can just jump wherever
you like without consequence and with minimal delay.

The BufferedReader simply tries to second guess what will happen
next. If you asked for the first 50 bytes of data from a file, chances
are you’ll be asking for the next 50 bytes (or whatever) before long,
so it loads that data into a buffer (i.e. into RAM) so that if you do
turn out to want it, there will be little or no delay. If you don’t use
it: oh well, we tried.

The key thing is to look at the tree structure: a BufferedReader is-a
Reader but also has-a Reader. The idea is that a BufferedReader has
all the capabilities of the Reader object that it contains, but also
adds some extra functionality.
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For example, a Reader allows you to read text in byte-by-byte using
read(). If you have a string of text, you have to read it in character
by character until you get to the terminating character that marks
the end of the string. A BufferedReader reads ahead and can read
the entire string in one go: it adds a readLine() function to do so.
But it still supports the read() functionality if you want to do it the
hard way.

The really nice thing is that we don’t have to write a BufferedReader
for a Reader that we create from scratch. I could create a SerialPortReader
that derives from Reader and I could immediately make a BufferedReader
for it without having to write any more code.

This sort of solution crops up again and again in OOP, and this is
one of the “Design Patterns” we’ll talk about later in the course. So
you may want to come back to this at the end of the course if you
don’t fully ‘get’ it now.
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Chapter 4

Design Patterns

4.1 Introduction

Coding anything more complicated than a toy program usually bene-
fits from forethought. After you’ve coded a few medium-sized pieces
of object-oriented software, you’ll start to notice the same general
problems coming up over and over. And you’ll start to automati-
cally use the same solution each time. We need to make sure that
set of default solutions is a good one!

In his 1991 PhD thesis, Erich Gamma compared this to the field of
architecture, where recurrent problems are tackled by using known
good solutions. The follow-on book (Design Patterns: Elements
of Reusable Object-Oriented Software, 1994) identified a se-
ries of commonly encountered problems in object-oriented software
design and 23 solutions that were deemed elegant or good in some
way. Each solution is known as a Design Pattern:
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A Design Pattern is a general reusable solution to a com-
monly occurring problem in software design.

The modern list of design patterns is ever-expanding and there is no
shortage of literature on them. In this course we will be looking at
a few key patterns and how they are used.
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4.1.1 So Design Patterns are like coding recipes?

No. Creating software by stitching together a series of Design Pat-
terns is like painting by numbers — it’s easy and it probably works,
but it doesn’t produce a Picasso! Design Patterns are about intel-
ligent solutions to a series of generalised problems that you may be
able to identify in your software. You might that find they don’t
apply to your problem, or that they need adaptation. You simply
can’t afford to disengage your brain (sorry!)

4.1.2 Why Bother Studying Them?

Design patterns are useful for a number of things, not least:

1. They encourage us to identify the fundamental aims of given
pieces of code

2. They save us time and give us confidence that our solution is
sensible

3. They demonstrate the power of object-oriented programming

4. They demonstrate that näıve solutions are bad

5. They give us a common vocabulary to describe our code

The last one is important: when you work in a team, you quickly
realise the value of being able to succinctly describe what your code
is trying to do. If you can replace twenty lines of comments1 with a
single word, the code becomes more readable and maintainable. Fur-
thermore, you can insert the word into the class name itself, making
the class self-describing.

1You are commenting your code liberally, aren’t you?
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4.2 Design Patterns By Example

We’re going to develop a simple example to look at a series of design
patterns. Our example is a new online venture selling books. We will
be interested in the underlying (“back-end”) code—this isn’t going
to be a web design course!

We start with a very simple set of classes. For brevity we won’t be
annotating the classes with all their members and functions. You’ll
need to use common sense to figure out what each element supports.

Session. This class holds everything about a current browser ses-
sion (originating IP, user, shopping basket, etc).

Database. This class wraps around our database, hiding away the
query syntax (i.e. the SQL statements or similar).

Book. This class holds all the information about a particular book.
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4.3 Supporting Multiple Products

Problem: Selling books is not enough. We need to sell CDs and
DVDs too. And maybe electronics. Oh, and sports equipment.
And...

Solution 1: Create a new class for every type of item.

4 It works.
7 We end up duplicating a lot of code (all the products have

prices, sizes, stock levels, etc).
7 This is difficult to maintain (imagine changing how the VAT is

computed...).

Solution 2: Derive from an abstract base class that holds all the
common code.

4 “Obvious” object oriented solution
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4 If we are smart we would use polymorphism to avoid constantly
checking what type a given Product object is in order to get
product-specific behaviour.

4.3.1 Generalisation

This isn’t really an ‘official’ pattern, because it’s a rather funda-
mental thing to do in object-oriented programming. However, it’s
important to understand the power inheritance gives us under these
circumstances.
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4.4 The Decorator Pattern

Problem: You need to support gift wrapping of products.

Solution 1: Add variables to the Product class that describe
whether or not the product is to be wrapped and how.

4 It works. In fact, it’s a good solution if all we need is a binary
flag for wrapped/not wrapped.

7 As soon as we add different wrapping options and prices for
different product types, we quickly clutter up Product.

7 Clutter makes it harder to maintain.
7 Clutter wastes storage space.

Solution 2: Add WrappedBook (etc.) as subclasses of Product
as shown.

Don’t. Do. This. Ever.

4 We are efficient in storage terms (we only allocate space for
wrapping information if it is a wrapped entity).

7 We instantly double the number of classes in our code.
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7 If we change Book we have to remember to mirror the changes
in WrappedBook.

7 If we add a new type we must create a wrapped version. This
is bad because we can forget to do so.

7 We can’t convert from a Book to a WrappedBook without
copying lots of data.

Solution 3: Create a general WrappedProduct class that is both
a subclass of Product and references an instance of one of its siblings.
Any state or functionality required of a WrappedProduct is ‘passed
on’ to its internal sibling, unless it relates to wrapping.

4 We can add new product types and they will be automatically
wrappable.

4 We can dynamically convert an established product object into
a wrapped product and back again without copying overheads.

99



7 We can wrap a wrapped product!
7 We could, in principle, end up with lots of chains of little ob-

jects in the system

4.4.1 Generalisation

This is the Decorator pattern and it allows us to add to an object
dynamically. By that I mean we can take an object in the system
and effectively give it extra state or functionality. I say ‘effectively’
because the actual object in memory is untouched. Rather, we create
a new, small object that ‘wraps around’ the original. To remove
the wrapper we simply discard the wrapping object. Real world
example: humans can be ‘decorated’ with contact lenses to improve
their vision.
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Note that we can use the pattern to add state (variables) or func-
tionality (methods), or both if we want. In the diagram above, I
have explicitly allowed for both options by deriving StateDecorator
and FunctionDecorator. This is usually unnecessary — in our book
seller example we only want to decorate one thing so we might as
well just put the code into Decorator.
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4.5 State Pattern

Problem: We need to handle a lot of gift options that the customer
may switch between at will (different wrapping papers, bows, gift
tags, gift boxes, gift bags, ...).

Solution 1: Take our WrappedProduct class and add a lot of
if/then statements to the function that does the wrapping — let’s
call it initiate wrapping().

void initiate_wrapping() {
if (wrap.equals("BOX")) {

...
}
else if (wrap.equals("BOW")) {

...
}
else if (wrap.equals("BAG")) {

...
}
else ...

}

4 It works.
7 The code is far less readable.
7 Adding a new wrapping option is ugly.

Solution 2: We basically have type-dependent behaviour, which
is code for “use a class hierarchy”.
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4 This is easy to extend.
4 The code is neater and more maintainable.
7 What happens if we need to change the type of the wrapping

(from, say, a box to a bag)? We have to construct a new GiftBag
and copy across all the information from a GiftBox. Then we
have to make sure every reference to the old object now points
to the new one. This is hard!

Solution 3: Let’s keep our idea of representing states with a class
hierarchy, but use a new abstract class as the parent:
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Now, every WrappedProduct has-a GiftType. We have retained the
advantages of solution 2 but now we can easily change the wrap-
ping type in-situ since we know that only the WrappedObject object
references the GiftType object.

4.5.1 Generalisation

This is the State pattern and it is used to permit an object to
change its behaviour at run-time. A real-world example is how your
behaviour may change according to your mood. e.g. if you’re angry,
you’re more likely to behave aggressively.
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4.6 Strategy Pattern

Problem: Part of the ordering process requires the customer to en-
ter a postcode that is then used to determine the address to post the
items to. At the moment the computation of address from postcode
is very slow. One of your employees proposes a different way of com-
puting the address that should be more efficient. How can you trial
the new algorithm?

Solution 1: Let there be a class AddressFinder with a method
getAddress(String pcode). We could add lots of if/then/else state-
ments to the getAddress() function.

String getAddress(String pcode) {
if (algorithm==0) {

// Use old approach
...

}
else if (algorithm==1) {

// use new approach
...

}
}

7 The getAddress() function will be huge, making it difficult to
read and maintain.

7 Because we must edit AddressFinder to add a new algorithm,
we have violated the open/closed principle2.

2This states that a class should be open to extension but closed to modifi-
cation. So we allow classes to be easily extended to incorporate new behavior
without modifying existing code. This makes our designs resilient to change but
flexible enough to take on new functionality to meet changing requirements.
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Solution 2: Make AddressFinder abstract with a single abstract
function getAddress(String pcode). Derive a new class for each of
our algorithms.

4 We encapsulate each algorithm in a class.
4 Code is clean and readable.
7 More classes kicking around

4.6.1 Generalisation

This is the Strategy pattern. It is used when we want to support dif-
ferent algorithms that achieve the same goal. Usually the algorithm
is fixed when we run the program, and doesn’t change. A real life
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example would be two consultancy companies given the same brief.
They will hopefully produce the same result, but do so in different
ways. i.e. they will adopt different strategies. From the (external)
customer’s point of view, the result is the same and he is unaware
of how it was achieved. One company may achieve the result faster
than the other and so would be considered ‘better’.

Note that this is essentially the same UML as the State pattern!
The intent of each of the two patterns is quite different however:

• State is about encapsulating behaviour that is linked to spe-
cific internal state within a class.

• Different states produce different outputs (externally the class
behaves differently).

• State assumes that the state will continually change at run-
time.

• The usage of the State pattern is normally invisible to external
classes. i.e. there is no setState(State s) function.

• Strategy is about encapsulating behaviour in a class. This
behaviour does not depend on internal variables.
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• Different concrete Strategys may produce exactly the same out-
put, but do so in a different way. For example, we might have a
new algorithm to compute the standard deviation of some vari-
ables. Both the old algorithm and the new one will produce
the same output (hopefully), but one may be faster than the
other. The Strategy pattern lets us compare them cleanly.

• Strategy in the strict definition usually assumes the class is
selected at compile time and not changed during runtime.

• The usage of the Strategy pattern is normally visible to exter-
nal classes. i.e. there will be a setStrategy(Strategy s) function
or it will be set in the constructor.

However, the similarities do cause much debate and you will find
people who do not differentiate between the two patterns as strongly
as I tend to.
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4.7 Composite Pattern

Problem: We want to support entire groups of products. e.g. The
Lord of the Rings gift set might contain all the DVDs (plus a free
cyanide capsule).

Solution 1: Give every Product a group ID (just an int). If
someone wants to buy the entire group, we search through all the
Products to find those with the same group ID.

4 Does the basic job.
7 What if a product belongs to no groups (which will be the

majority case)? Then we are wasting memory and cluttering
up the code.

7 What if a product belongs to multiple groups? How many
groups should we allow for?

Solution 2: Introduce a new class that encapsulates the notion
of groups of products:
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If you’re still awake, you may be thinking this is a bit like the Deco-
rator pattern, except that the new class supports associations with
multiple Products (note the * by the arrowhead). Plus the intent is
different – we are not adding new functionality but rather supporting
the same functionality for groups of Products.

4 Very powerful pattern.
7 Could make it difficult to get a list of all the individual objects

in the group, should we want to.

4.7.1 Generalisation

This is the Composite pattern and it is used to allow objects and
collections of objects to be treated uniformly. Almost any hierarchy
uses the Composite pattern. e.g. The CEO asks for a progress

110



report from a manager, who collects progress reports from all those
she manages and reports back.

Notice the terminology in the general case: we speak of Leafs because
we can use the Composite pattern to build a tree structure. Each
Composite object will represent a node in the tree, with children
that are either Composites or Leafs.

This pattern crops up a lot, and we will see it in other contexts later
in this course.
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4.8 Singleton Pattern

Problem: Somewhere in our system we will need a database and
the ability to talk to it. Let us assume there is a Database class that
abstracts the difficult stuff away. We end up with lots of simultane-
ous user Sessions, each wanting to access the database. Each one
creates its own Database object and connects to the database over
the network. The problem is that we end up with a lot of Database
objects (wasting memory) and a lot of open network connections
(bogging down the database).

What we want to do here is to ensure that there is only one Database
object ever instantiated and every Session object uses it. Then the
Database object can decide how many open connections to have and
can queue requests to reduce instantaneous loading on our database
(until we buy a half decent one).

Solution 1: Use a global variable of type Database that every-
thing can access from everywhere.

7 Global variables are less desirable than David Hasselhoff’s great-
est hits.

7 Can’t do it in Java anyway...

Solution 2: Use a public static variable that everything uses (this
is as close to global as we can get in Java).

public class System {
public static Database database;

}
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...

public static void main(String[]) {
// Always gets the same object
Database d = System.database;

}

7 This is really just global variables by the back door.
7 Nothing fundamentally prevents us from making multiple Database

objects!

Solution 3: Create an instance of Database at startup, and pass
it as a constructor parameter to every Session we create, storing a
reference in a member variable for later use.

public class System {
public System(Database d) {...}

}

public class Session {
public Session(Database d) {...}

}

...

public static void main(String[]) {
Database d = new Database();
System sys = new System(d);
Session sesh = new Session(d);
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}

7 This solution could work, but it doesn’t enforce that only one
Database be instantiated – someone could quite easily create
a new Database object and pass it around.

7 We start to clutter up our constructors.
7 It’s not especially intuitive. We can do better.

Solution 4: (Singleton) Let’s adapt Solution 2 as follows. We
will have a single static instance. However we will access it through a
static member function. This function, getInstance() will either cre-
ate a new Database object (if it’s the first call) or return a reference
to the previously instantiated object.

Of course, nothing stops a programmer from ignoring the getInstance()
function and just creating a new Database object. So we use a neat
trick: we make the constructor private or protected. This means code
like new Database() isn’t possible from an arbitrary class.

4 Guarantees that there will be only one instance.
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4 Code to get a Database object is neat and tidy, and intuitive
to use. e.g. (Database d=Database.getInstance();)

4 Avoids clutter in any of our classes.
7 Must take care in Java. Either use a dedicated package or a

private constructor (see below).
7 Must remember to disable clone()-ing!

4.8.1 Generalisation

This is the Singleton pattern. It is used to provide a global point
of access to a class that should be instantiated only once.

There is a caveat with Java. If you choose to make the constructor
protected (this would be useful if you wanted a singleton base class
for multiple applications of the singleton pattern, and is actually the
‘official’ solution) you have to be careful.

Protected members are accessible to the class, any subclasses, and all
classes in the same package. Therefore, any class in the same package
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as your base class will be able to instantiate Singleton objects at will,
using the new keyword!

Additionally, we don’t want a crafty user to subclass our singleton
and implement Cloneable on their version. The examples sheet asks
you to address this issue.
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4.9 Proxy Pattern(s)

The Proxy pattern is a very useful set of three patterns: Virtual
Proxy, Remote Proxy, and Protection Proxy.

All three are based on the same general idea: we can have a place-
holder class that has the same interface as another class, but actually
acts as a pass through for some reason.

4.9.1 Virtual Proxy

Problem: Our Product subclasses will contain a lot of information,
much of which won’t be needed since 90% of the products won’t be
selected for more detail, just listed as search results.
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Solution : Here we apply the Proxy pattern by only loading
part of the full class into the proxy class (e.g. name and price). If
someone does want to access more information, the associated get()
methods in the proxy object automatically retrieve them from the
database.

4.9.2 Remote Proxy

Problem: Our server is getting overloaded.

Solution : We want to run a farm of servers and distribute the
load across them. Here a particular object resides on server A, say,
whilst servers B and C have proxy objects. Whenever the proxy
objects get called, they know to contact server A to do the work. i.e.
they act as a pass-through.

Note that once server B has bothered going to get something via
the proxy, it might as well keep the result locally in case it’s used
again (saving us another network trip to A). This is caching and we’ll
return to it shortly.

4.9.3 Protection Proxy

Problem: We want to keep everything as secure as possible.

Solution : Create a User class that encapsulates all the informa-
tion about a person. Use the Proxy pattern to fill a proxy class with
public information. Whenever private information is requested of the
proxy, it will only return a result if the user has been authenticated.

In this way we avoid having private details in memory unless they
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have been authorised.
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4.10 Observer Pattern

Problem: We use the Remote Proxy pattern to distribute our
load. For efficiency, proxy objects are set to cache information that
they retrieve from other servers. However, the originals could easily
change (perhaps a price is updated or the exchange rate moves). We
will end up with different results on different servers, dependent on
how old the cache is!!

Solution 1: Once a proxy has some data, it keeps polling the
authoritative source to see whether there has been a change (c.f.
polled I/O).

7 How frequently should we poll? Too quickly and we might as
well not have cached at all. Too slow and changes will be slow
to propagate.

Solution 2: Modify the real object so that the proxy can ‘register’
with it (i.e. tell it of its existence and the data it is interested in).
The proxy then provides a callback function that the real object can
call when there are any changes.
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4.10.1 Generalisation

This is the Observer pattern, also referred to as Publish-Subscribe
when multiple machines are involved. It is useful when changes need
to be propagated between objects and we don’t want the objects to
be tightly coupled. A real life example is a magazine subscription
— you register to receive updates (magazine issues) and don’t have
to keep checking whether a new issue has come out yet. You unsub-
scribe as soon as you realise that 4GBP for 10 pages of content and
60 pages of advertising isn’t good value.
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4.11 Abstract Factory

Assume that the front-end part of our system (i.e. the web interface)
is represented internally by a set of classes that represent various
entities on a web page:

Let’s assume that there is a render() method that generates some
HTML which can then be sent on to web browsers.

Problem: Web technology moves fast. We want to use the latest
browsers and plugins to get the best effects, but still have older
browsers work. e.g. we might have a Flash site, a SilverLight site, a
DHTML site, a low-bandwidth HTML site, etc. How do we handle
this?

Solution 1: Store a variable ID in the InterfaceElement class, or
use the State pattern on each of the subclasses.
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4 Works.
7 The State pattern is designed for a single object that regularly

changes state. Here we have a family of objects in the same
state (Flash, HTML, etc.) that we choose between at compile
time.

7 Doesn’t stop us from mixing FlashButton with HTMLButton,
etc.

Solution 2: Create specialisations of InterfaceElement:
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7 Lots of code duplication.
7 Nothing keeps the different TextBoxes in sync as far as the

interface goes.
7 A lot of work to add a new interface component type.
7 Doesn’t stop us from mixing FlashButton with HTMLButton,

etc.

Solution 3: Create specialisations of each InterfaceElement sub-
class:

4 Standardised interface to each element type.
7 Still possible to inadvertently mix element types.

Solution 4: Apply the Abstract Factory pattern. Here we
associate every WebPage with its own ‘factory’ — an object that is
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there just to make other objects. The factory is specialised to one
output type. i.e. a FlashFactory outputs a FlashButton when cre-
ate button() is called, whilst a HTMLFactory will return an HTMLButton()
from the same method.

4 Standardised interface to each element type.
4 A given WebPage can only generate elements from a single

family.
4 Page is completely decoupled from the family so adding a new

family of elements is simple.
7 Adding a new element (e.g. SearchBox) is difficult.
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7 Still have to create a lot of classes.

4.11.1 Generalisation

This is the Abstract Factory pattern. It is used when a system
must be configured with a specific family of products that must be
used together.
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Note that usually there is no need to make more than one factory for
a given family, so we can use the Singleton pattern to save memory
and time.
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4.12 Summary

From the original Design Patterns book:

Decorator Attach additional responsibilities to an object dynam-
ically. Decorators provide flexible alternatives to subclassing
for extending functionality.

State Allow and object to alter its behaviour when its internal state
changes.

Strategy Define a family of algorithms, encapsulate each on, and
make them interchangeable. Strategy lets the algorithm vary
independently from clients that use it.

Composite Compose objects into tree structures to represent part-
whole hierarchies. Composite lets clients treat individual ob-
jects and compositions of objecta uniformly.

Singleton Ensure a class only has one instance, and provide a global
point of access to it.

Proxy Provide a surrogate or placeholder for another object to con-
trol access to it.

Observer Define a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified
and updated accordingly.

Abstract Factory Provide an interface for creating families of re-
lated or dependent objects without specifying their concrete
classes.
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4.12.1 Classifying Patterns

Often patterns are classified according to what their intent is or what
they achieve. The original book defined three classes:

Creational Patterns . Patterns concerned with the creation of
objects (e.g. Singleton, Abstract Factory).

Structural Patterns . Patterns concerned with the composition
of classes or objects (e.g. Composite, Decorator, Proxy).

Behavioural Patterns . Patterns concerned with how classes or
objects interact and distribute responsibility (e.g. Observer,
State, Strategy).

4.12.2 Other Patterns

You’ve now met eight Design Patterns. There are plenty more (23
in the original book), but this course will not cover them. What has
been presented here should be sufficient to:

• Demonstrate that object-oriented programming is powerful.
• Provide you with (the beginnings of) a vocabulary to describe

your solutions.
• Make you look critically at your code and your software archi-

tectures.
• Entice you to read further to improve your programming.

Of course, you probably won’t get it right first time (if there even
s a ‘right’). You’ll probably end up refactoring your code as new
situations arise. However, if a Design Pattern is appropriate, you
should probably use it.
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4.12.3 Performance

Note that all of the examples here have concentrated on structuring
code to be more readable and maintainable, and to incorporate con-
straints structurally where possible. At no point have we discussed
whether the solutions perform better. Many of the solutions exploit
runtime polymorphic behaviour, for example, and that carries with
it certain overheads.

This is another reason why you can’t apply Design Patterns blindly.
[This is a good thing since, if it wasn’t true, programming wouldn’t
be interesting, and you wouldn’t get jobs!].

Once we have compiled our Java source code, we end up with a set
of .class files; these contain bytecode. We can then distribute these
files without their source code (.java) counterparts.

In addition to javac you will also find a javap program which allows
you to poke inside a class file. For example, you can disassemble a
class file to see the raw bytecode using javap -c classfile:

Input:

public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World");

}
}

javap output:
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Compiled from "HelloWorld.java"
public class HelloWorld extends java.lang.Object{
public HelloWorld();

Code:
0: aload_0
1: invokespecial #1; //Method java/lang/Object."<init>":()V
4: return

public static void main(java.lang.String[]);
Code:
0: getstatic #2; //Field java/lang/System.out:

//Ljava/io/PrintStream;
3: ldc #3; //String Hello World
5: invokevirtual #4; //Method java/io/PrintStream.println:

//(Ljava/lang/String;)V
8: return

}

This probably won’t make a lot of sense to you right now: that’s OK.
Just be aware that we can view the bytecode and that sometimes this
can be a useful way to figure out exactly what the JVM will do with
a bit of code. You aren’t expected to know bytecode.
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