Interactive Formal Verification (L21)

1 Replace, Reverse and Delete

▷ Define a function \texttt{replace}, such that \texttt{replace} \(x \ y \ zs \) yields \(zs \) with every occurrence of \(x \) replaced by \(y \).

\[
\texttt{replace} :: \ \langle'\texttt{a} \Rightarrow '\texttt{a} \Rightarrow '\texttt{a} \ 	exttt{list} \Rightarrow '\texttt{a} \ 	exttt{list}\rangle
\]

▷ Prove or disprove (by counterexample) the following theorems. You may have to prove some lemmas first.

- \texttt{theorem} "\texttt{rev} (\texttt{replace} \ x \ y \ zs) = \texttt{replace} \ x \ y \ (\texttt{rev} zs)"
- \texttt{theorem} "\texttt{replace} \ x \ y \ (\texttt{replace} \ u \ v \ zs) = \texttt{replace} \ u \ v \ (\texttt{replace} \ x \ y \ zs)"
- \texttt{theorem} "\texttt{replace} \ y \ z \ (\texttt{replace} \ x \ y \ zs) = \texttt{replace} \ x \ z \ zs"

▷ Define two functions for removing elements from a list: \texttt{del1} \(x \) \(xs \) deletes the first occurrence (from the left) of \(x \) in \(xs \), \texttt{delall} \(x \) \(xs \) all of them.

\[
\texttt{del1} :: \ \langle'\texttt{a} \Rightarrow '\texttt{a} \ 	exttt{list} \Rightarrow '\texttt{a} \ 	exttt{list}\rangle
\]
\[
\texttt{delall} :: \ \langle'\texttt{a} \Rightarrow '\texttt{a} \ 	exttt{list} \Rightarrow '\texttt{a} \ 	exttt{list}\rangle
\]

▷ Prove or disprove (by counterexample) the following theorems.

- \texttt{theorem} "\texttt{del1} \ x \ (\texttt{delall} \ x \ xs) = \texttt{delall} \ x \ xs"
- \texttt{theorem} "\texttt{delall} \ x \ (\texttt{delall} \ x \ xs) = \texttt{delall} \ x \ xs"
- \texttt{theorem} "\texttt{delall} \ x \ (\texttt{delall} \ x \ xs) = \texttt{delall} \ x \ xs"
- \texttt{theorem} "\texttt{delall} \ x \ (\texttt{delall} \ y \ zs) = \texttt{delall} \ y \ (\texttt{delall} \ x \ zs)"
- \texttt{theorem} "\texttt{delall} \ x \ (\texttt{delall} \ x \ zs) = \texttt{delall} \ y \ (\texttt{delall} \ x \ zs)"
- \texttt{theorem} "\texttt{delall} \ y \ (\texttt{replace} \ x \ y \ xs) = \texttt{delall} \ x \ xs"
- \texttt{theorem} "\texttt{delall} \ y \ (\texttt{replace} \ x \ y \ zs) = \texttt{delall} \ z \ (\texttt{replace} \ x \ y \ zs)"
- \texttt{theorem} "\texttt{replace} \ x \ y \ (\texttt{delall} \ z \ zs) = \texttt{delall} \ z \ (\texttt{replace} \ x \ y \ zs)"
- \texttt{theorem} "\texttt{rev} (\texttt{delall} \ x \ xs) = \texttt{delall} \ x \ (\texttt{rev} \ xs)"
- \texttt{theorem} "\texttt{rev} (\texttt{delall} \ x \ xs) = \texttt{delall} \ x \ (\texttt{rev} \ xs)"