Interactive Formal Verification

I: Introduction

Tjark Weber
(Slides: Lawrence C Paulson)
Computer Laboratory
University of Cambridge
Motivation
Motivation

- Complex systems almost inevitably contain bugs.
Motivation

- Complex systems almost inevitably contain bugs.
Motivation

• Complex systems almost inevitably contain bugs.

• Program testing can be used to show the presence of bugs, but never to show their absence!

 Edsger W. Dijkstra
What is Interactive Proof?
What is Interactive Proof?

• Work in a logical formalism
 • precise definitions of concepts
 • formal reasoning system
What is Interactive Proof?

- Work in a logical formalism
 - precise definitions of concepts
 - formal reasoning system
- Construct hierarchies of definitions and proofs
 - libraries of formal mathematics
 - specifications of components and properties
Interactive Theorem Provers
Interactive Theorem Provers

- Based on higher-order logic
 - Isabelle, HOL (many versions), PVS
Interactive Theorem Provers

- Based on higher-order logic
 - Isabelle, HOL (many versions), PVS
- Based on constructive type theory
 - Coq, Twelf, Agda, ...
Interactive Theorem Provers

- Based on higher-order logic
 - Isabelle, HOL (many versions), PVS
- Based on constructive type theory
 - Coq, Twelf, Agda, ...
- Based on first-order logic with recursion
 - ACL2
The LCF Architecture
The LCF Architecture

• A small kernel implements the logic and can generate theorems.
The LCF Architecture

• A small kernel implements the logic and can generate theorems.

• All specification methods and automatic proof procedures expand to full proofs.
The LCF Architecture

- A small kernel implements the logic and can generate theorems.
- All specification methods and automatic proof procedures expand to full proofs.
- Unsoundness is less likely with this architecture.
The LCF Architecture

• A small kernel implements the logic and can generate theorems.

• All specification methods and automatic proof procedures expand to full proofs.

• Unsoundness is less likely with this architecture

• ...but the implementation is more complicated, and performance can suffer.
The LCF Architecture

- A small kernel implements the logic and can generate theorems.
- All specification methods and automatic proof procedures expand to full proofs.
- Unsoundness is less likely with this architecture.
- ...but the implementation is more complicated, and performance can suffer.
- Used in Isabelle, HOL, Coq but not PVS or ACL2.
Theorem Provers: Characteristic Features
Theorem Provers: Characteristic Features

- Logic (higher-order, type theory etc.)
Theorem Provers: Characteristic Features

- Logic (higher-order, type theory etc.)
- Correctness (LCF vs. non-LCF)
Theorem Provers: Characteristic Features

- Logic (higher-order, type theory etc.)
- Correctness (LCF vs. non-LCF)
- User interface
Theorem Provers: Characteristic Features

- Logic (higher-order, type theory etc.)
- Correctness (LCF vs. non-LCF)
- User interface
- Proof language
Theorem Provers: Characteristic Features

• Logic (higher-order, type theory etc.)
• Correctness (LCF vs. non-LCF)
• User interface
• Proof language
• Automation
Theorem Provers: Characteristic Features

- Logic (higher-order, type theory etc.)
- Correctness (LCF vs. non-LCF)
- User interface
- Proof language
- Automation
- Existing libraries
Theorem Provers: Characteristic Features

- Logic (higher-order, type theory etc.)
- Correctness (LCF vs. non-LCF)
- User interface
- Proof language
- Automation
- Existing libraries
- Tools
Isabelle
Isabelle

- Isabelle is a generic interactive theorem prover, developed by Lawrence Paulson (Cambridge) and Tobias Nipkow (Munich). First release in 1986.
Isabelle

- Isabelle is a generic interactive theorem prover, developed by Lawrence Paulson (Cambridge) and Tobias Nipkow (Munich). First release in 1986.

- Integrated tool support for
 - Automated provers
 - Counterexamples
 - Code generation
 - \LaTeX{} document generation
Higher-Order Logic

“HOL = functional programming + logic”
Higher-Order Logic

- First-order logic extended with functions and sets

“HOL = functional programming + logic”
Higher-Order Logic

- First-order logic extended with functions and sets
- Polymorphic types, including a type of truth values

"HOL = functional programming + logic"
Higher-Order Logic

• First-order logic extended with functions and sets
• Polymorphic types, including a type of truth values
• No distinction between terms and formulas

“HOL = functional programming + logic”
Higher-Order Logic

- First-order logic extended with functions and sets
- Polymorphic types, including a type of truth values
- No distinction between terms and formulas
- ML-style functional programming

“HOL = functional programming + logic”
Basic Syntax of Formulas

formulas A, B, \ldots can be written as

$$
(A) \quad t = u \quad \neg A
$$

$$
A \land B \quad A \lor B \quad A \rightarrow B
$$

$$
A \leftrightarrow B \quad \forall x. A \quad \exists x. A
$$

(Among many others)

Isabelle also supports symbols such as

$$
\leq \quad \geq \quad \neq \quad \land \quad \lor \quad \rightarrow \quad \leftrightarrow \quad \forall \quad \exists
$$
Some Syntactic Conventions
Some Syntactic Conventions

In $\forall x. A \land B$, the quantifier spans the entire formula.
Some Syntactic Conventions

In $\forall x. A \land B$, the quantifier spans the entire formula.

Parentheses are required in $A \land (\forall x y. B)$.
Some Syntactic Conventions

In \(\forall x. A \land B \), the quantifier spans the entire formula.

Parentheses are **required** in \(A \land (\forall x \, y. B) \).

Binary logical connectives associate to the right: \(A \rightarrow B \rightarrow C \) is the same as \(A \rightarrow (B \rightarrow C) \).
Some Syntactic Conventions

In $\forall x. A \land B$, the quantifier spans the entire formula.

Parentheses are **required** in $A \land (\forall x y. B)$.

Binary logical connectives associate to the right: $A \rightarrow B \rightarrow C$ is the same as $A \rightarrow (B \rightarrow C)$.

$\neg A \land B = C \lor D$ is the same as $((\neg A) \land (B = C)) \lor D$.
Basic Syntax of Terms
Basic Syntax of Terms

• The typed λ-calculus:
 • constants, c
 • variables, x and flexible variables, $?x$
 • abstractions $\lambda x. t$
 • function applications $t u$
Basic Syntax of Terms

- The typed λ-calculus:
 - constants, c
 - variables, x and *flexible* variables, $?x$
 - abstractions $\lambda x. t$
 - function applications $t u$
- Numerous infix operators and binding operators for arithmetic, set theory, etc.
Types
Types

- Every term has a type; Isabelle infers the types of terms automatically. We write $t :: \tau$
Types

• Every term has a type; Isabelle infers the types of terms automatically. We write $t :: \tau$

• Types can be *polymorphic*, with a system of type classes (inspired by the Haskell language) that allows sophisticated overloading.
Types

- Every term has a type; Isabelle infers the types of terms automatically. We write \(t :: \tau \).
- Types can be *polymorphic*, with a system of type classes (inspired by the Haskell language) that allows sophisticated overloading.
- A formula is simply a term of type \(\text{bool} \).
Types

- Every term has a type; Isabelle infers the types of terms automatically. We write \(t :: \tau \)

- Types can be *polymorphic*, with a system of type classes (inspired by the Haskell language) that allows sophisticated overloading.

- A formula is simply a term of type \texttt{bool}.

- There are types of ordered pairs and functions.
Types

- Every term has a type; Isabelle infers the types of terms automatically. We write $t :: \tau$

- Types can be *polymorphic*, with a system of type classes (inspired by the Haskell language) that allows sophisticated overloading.

- A formula is simply a term of type \texttt{bool}.

- There are types of ordered pairs and functions.

- Other important types are those of the natural numbers (\texttt{nat}) and integers (\texttt{int}).
Product Types for Pairs
Product Types for Pairs

• \((x_1, x_2)\) has type \(\tau_1 \times \tau_2\) provided \(x_i :: \tau_i\)
Product Types for Pairs

- \((x_1, x_2)\) has type \(\tau_1 \times \tau_2\) provided \(x_i :: \tau_i\)
- \((x_1, \ldots, x_{n-1}, x_n)\) abbreviates \((x_1, \ldots, (x_{n-1}, x_n))\)
Product Types for Pairs

- \((x_1, x_2)\) has type \(\tau_1 \times \tau_2\) provided \(x_i :: \tau_i\)
- \((x_1, ..., x_{n-1}, x_n)\) abbreviates \((x_1, ..., (x_{n-1}, x_n))\)
- Extensible record types can also be defined.
Function Types
Function Types

- Infix operators are curried functions
 - $+ : \text{n}\text{at} \to \text{n}\text{at} \to \text{n}\text{at}$
 - $\& : \text{bool} \to \text{bool} \to \text{bool}$
- Curried function notation: $\lambda x\ y.\ t$
Function Types

- Infix operators are curried functions
 - $+ :: \text{nat} \Rightarrow \text{nat} \Rightarrow \text{nat}$
 - $\& :: \text{bool} \Rightarrow \text{bool} \Rightarrow \text{bool}$
- Curried function notation: $\lambda x \ y. \ t$
- Function arguments can be paired
 - Example: $\text{nat} \times \text{nat} \Rightarrow \text{nat}$
 - Paired function notation: $\lambda (x,y). \ t$
Arithmetic Types
Arithmetic Types

• nat: the natural numbers (nonnegative integers)
 • inductively defined: 0, Suc n
 • operators include +, -, *, div, mod
 • relations include $<$, \leq, dvd (divisibility)
Arithmetic Types

- \texttt{nat}: the natural numbers (nonnegative integers)
 - inductively defined: 0, Suc \(n \)
 - operators include \(+\) \(-\) \(*\) \(\text{div}\) \(\text{mod}\)
 - relations include \(<\) \(\leq\) \(\text{dvd}\) (divisibility)
- \texttt{int}: the integers, with \(+\) \(-\) \(*\) \(\text{div}\) \(\text{mod}\) ...
Arithmetic Types

- **nat**: the natural numbers (nonnegative integers)
 - inductively defined: 0, Suc \(n\)
 - operators include +, -, *, div, mod
 - relations include <, \(\leq\), dvd (divisibility)
- **int**: the integers, with +, -, *, div, mod ...
- **rat, real**: +, -, *, /, sin, cos, ln ...
Arithmetic Types

- **nat**: the natural numbers (nonnegative integers)
 - inductively defined: 0, Suc \(n \)
 - operators include +, -, *, div, mod
 - relations include <, ≤, dvd (divisibility)
- **int**: the integers, with +, -, *, div, mod ...
- **rat, real**: +, -, *, /, sin, cos, ln ...
- arithmetic constants and laws for these types
HOL as a Functional Language

datatype 'a list = Nil | Cons 'a ''a list

fun app :: ''a list => 'a list => 'a list
 where
 app Nil ys = ys
 | app (Cons x xs) ys = Cons x (app xs ys)

fun rev where
 rev Nil = Nil
| rev (Cons x xs) = app (rev xs) (Cons x Nil)
Proof by Induction

declaring a lemma

use it to simplify other formulas

lemma [simp]: "app xs Nil = xs"
apply (induct xs)
apply auto
done

two steps: induction followed by automation

done

declaring a lemma
Example of a Structured Proof

lemma "app xs Nil = xs"
proof (induct xs)
 case Nil
 show "app Nil Nil = Nil"
 by auto
next
 case (Cons a xs)
 show "app (Cons a xs) Nil = Cons a xs"
 by auto
qed
Example of a Structured Proof

- base case and inductive step can be proved explicitly

```plaintext
lemma "app xs Nil = xs"
proof (induct xs)
  case Nil
  show "app Nil Nil = Nil"
  by auto
next
  case (Cons a xs)
  show "app (Cons a xs) Nil = Cons a xs"
  by auto
qed
```
Example of a *Structured Proof*

- base case and inductive step can be proved explicitly
- Invaluable for proofs that need intricate manipulation of facts

lemma "app xs Nil = xs"
proof (induct xs)
 case Nil
 show "app Nil Nil = Nil"
 by auto
next
 case (Cons a xs)
 show "app (Cons a xs) Nil = Cons a xs"
 by auto
qed