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The automaton A,

The states of A, are the equivalence classes of =M%0 where m is

the quantifier rank of ¢.

We write TypeMS©(A) for the set of all formulas ¢ with qr(¢) < m

m

such that A = ¢.

A —MSO

-m

B is equivalent to
Type,, °(A) = Type,,**(B)
There is a single formula 6, that characterizes Typerl\,/'lSO (A).

It turns out that we can compute g, from fg, .

MSO is FPT on Words

There is a computable function f such that the problem of

deciding, given a word w and an MSO sentence ¢ whether,

Suw k= 6

can be decided in time O(f(I)n) where [ is the length of ¢ and n is
the length of w.

The algorithm proceeds by constructing, from ¢ an automaton Ag
such that the language recognized by A, is

{w | Sw = ¢}

then running A, on w.

Trees

An (undirected) forest is an acyclic graph and a tree is a connected

forest.

We next aim to show that there is an algorithm that decides, given
a tree T and an MSO sentence ¢ whether

T

and runs in time O(f(I)n where [ is the length of ¢ and n is the
size of T



Rooted Directed Trees Sums of Rooted Trees

A rooted, directed tree (T, a) is a directed graph with a Given rooted, directed trees (T),a) and (S, b) we define the sum
distinguished vertex a such that for every vertex v there is a unique

directed path from a to v. (T,a) ® (5,0)

to be the rooted directed tree which is obtained by taking the
We will actually see that MSO satisfaction is FPT for rooted, disjoint union of the two trees while identifying the roots.
directed trees.

. . That is
The result for undirected trees follows, as any undirected tree can ’

be turned into a rooted directed one by choosing any vertex as a e the set of vertices of (T, a) ® (S,b) is V(T) W V(S) \ {b}.

root and directing edges away from it. o the set of edges is E(T) U E(S) U{(a,v) | (b,v) € E(S)}.
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Congruence Add Root
If (Ty,a1) =MSO (Ty, az) and (Sy,b1) =MSO (S, by), then For any rooted, directed tree (T, a) define r(T,a) to be rooted
directed tree obtained by adding to (T, a) a new vertex, which is
T S1,b1) =m0 (T Sa,ba). ’ ’
(T1,01) @ (S1,b1) =™ (T2, 02) @ (52, b2) the root and whose only child is a.
That is,
This can be proved by an application of Ehrenfeucht games. ) ) )
e the vertices of (T, a) are V(T') U {a’} where @’ is not in V(T);
Moreover (though we skip the proof), TypeM*° (T, a) @ (S,b)) can e the root of (7', a) is a’; and
be computed from Type),*®((7) a)) and Typey, (S, b)). o the edges of r(T,a) are E(T) U{(d,a)}.
Again, TypeM*©(r(T, a)) can be computed from TypeV*° (T, a).



MSQO satisfaction is FPT on Trees

Any rooted, directed tree (T, a) can be obtained from singleton trees

by a sequence of applications of & and r.
The length of the sequence is linear in the size of T

We can compute TypeV*° (T, a) in linear time.
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Treewidth

The treewidth of an undirected graph is a measure of how tree-like
the graph is.

A graph has treewidth & if it can be covered by subgraphs of at
most k + 1 nodes in a tree-like fashion.

This gives a tree decomposition of the graph.
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The Method of Decompositions

Suppose C is a class of graphs such that there is a finite class B and
a finite collection Op of operations such that:

e (C is contained in the closure of B under the operations in Op;
e there is a polynomial-time algorithm which computes, for any

G € C, an Op-decomposition of G over B; and

_MSO

o for each m, the equivalence class =),°>~ is an effective

congruence with respect to to all operations o € Op (i.e., the
Emso—type of o(Gy,...,Gs) can be computed from the
=MSO_types of G, ..., Gy).

Then, MSO satisfaction is fixed-parameter tractable on C.
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Treewidth

Treewidth is a measure of how tree-like a graph is.

For a graph G = (V, E), a tree decomposition of G is a relation
D CV x T with a tree T such that:

o for each v € V, the set {t | (v,t) € D} forms a connected
subtree of T'; and

e for each edge (u,v) € E, there is a t € T such that
(u,t), (v,t) € D.
The treewidth of G is the least k such that there is a tree T and a

tree decomposition D C V x T such that for each t € T,

{oeV|(vt)e D} <k+1.
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Dynamic Programming

It has long been known that graphs of small treewidth admit
efficient dynamic programming algorithms for intractable problems.

In general, these algorithms proceed bottom-up along a tree
decomposition of G.

At any stage, a small set of vertices form the “interface” to the rest
of the graph.

This allows a recursive decomposition of the problem.
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Treewidth

More formally,

Consider graphs with up to k + 1 distinguished vertices
C= {Co,...,ck}.

Define a merge operation (G @¢ H) that forms the union of G and
H disjointly apart from C.

Also define erase;(G) that erases the name c¢;.

Then a graph G is in 7} if it can be formed from graphs with at
most k + 1 vertices through a sequence of such operations.

14
Treewidth
Looking at the decomposition bottom-up, a graph of treewidth k is
obtained from graphs with at most k£ 4+ 1 nodes through a finite
sequence of applications of the operation of taking sums over sets
of at most k elements.
Gl G2
G1 ©x Go
(X[ <k
X
We let 7;, denote the class of graphs G such that tw(G) < k.
16

Congruence

e Any G € 7} is obtained from By by finitely many applications
of the operations erase; and ®¢.

o If G1, ;1 E!,\:lso G, p2, then

3

erase; (G, p1) =M50 erase; (G, p2)
o If Gy, p1 Emso Go, p2, and Hy, 01 Emso H,, 09 then

(G1,p1) @ (Hy,01) =M5C (Gy, p2) ®c (Ha, 02)

Note: a special case of this is that EMSO is a congruence for

disjoint union of graphs.
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Courcelle’s Theorem

Theorem (Courcelle)
For any MSO sentence ¢ and any k there is a linear time algorithm
that decides, given G € 7}, whether G = ¢.

Given G € 7}, and ¢, compute:
e from (G a labelled tree T'; and
e from ¢ a bottom-up tree automaton A

such that A accepts T if, and only if, G | ¢.
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Bounded Degree Graphs

Theorem (Seese)
For every sentence ¢ of FO and every k there is a linear time
algorithm which, given a graph G € Dy, determines whether G |= ¢.

A proof is based on locality of first-order logic.

To be precise a strengthening of Hanf’s theorem.

Note: this is not true for MSO unless P = NP.

Construct, for any graph G, a graph G’ such that
A(G") <5 and G’ is 3-colourable iff G is, and the map
G — @' is polynomial-time computable.
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Bounded Degree Graphs
In a graph G = (V, E) the degree of a vertex v € V' is the number of
neighbours of v, i.e.
{ue V| (u,v) € E}.
We write 6(G) for the smallest degree of any vertex in G.
We write A(G) for the largest degree of any vertex in G.
Di—the class of graphs G with A(G) < k.
20

Hanf Types

For an element a in a structure A, define

N2(a)—the substructure of A generated by the elements

whose distance from a (in GA) is at most 7.

We say A and B are Hanf equivalent with radius r and threshold ¢
(A ~, 4 B) if, for every a € A the two sets

{d' €a| NMa) = NA(@)} and {be B|NA(a) = NP@))
either have the same size or both have size greater than ¢;

and, similarly for every b € B.
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Hanf Locality Theorem
Theorem (Hanf)
For every vocabulary ¢ and every m there are r < 3" and q < m
such that for any o-structures A and B: if A ~, , B then A =, B.
In other words, if » > 3™, the equivalence relation =, ,, is a
refinement of =,,.
For A € Dy.:
N2(a) has at most k" + 1 elements
each ~, ,, has finite index.
Each ~, ,,-class t can be characterised by a finite table, I;, giving
isomorphism types of neighbourhoods and numbers of their
occurrences up to threshold m.
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Reading List for this Handout

1. Libkin. Sections 7.6 and 7.6

Satisfaction on D,

For a sentence ¢ of FO, we can compute a set of tables {I,...
describing =, ,,,-classes consistent with it.

This computation is independent of any structure A.

Given a structure A € Dy,
for each a, determine the isomorphism type of N2 (a)
construct the table describing the =, ,,-class of A.
compare against {I1,..., s} to determine whether A = ¢.

For fixed k, r, m, this requires time linear in the size of A.

Note: satisfaction for FO is in O(f(l, k)n).

s}
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