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Copyright

These slides constitute the lecture notes for

• MACS L111 Advanced Data Flow Analysis course at Cambridge
University, and

• CS 618 Program Analysis course at IIT Bombay.

They have been made available under GNU FDL v1.2 or later (purely for
academic or research use) as teaching material accompanying the book:

• Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow

Analysis: Theory and Practice. CRC Press (Taylor and Francis
Group). 2009.

Apart from the above book, some slides are based on the material from
the following books

• M. S. Hecht. Flow Analysis of Computer Programs. Elsevier
North-Holland Inc. 1977.

• F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program
Analysis. Springer-Verlag. 1998.
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Outline

• Partial Redundancy Elimination (previous lecture)

• Introduction to Constant Propagation (previous lecture)

• Theoretical Abstractions in Data Flow Analysis
◮ The world of data flow values (previous lecture)
◮ The world of functions and operations that compute data values

(today)
◮ Results of data flow analysis (today)
◮ Algorithms for performing data flow analysis (today)

• Precise Modelling of General flows (today)
Example: Constant Propagation
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Flow Functions: An Outline of Our Discussion

• Defining flow functions

• Properties of flow functions
(Some properties discussed in the context of solutions of data flow
analysis)
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The Set of Flow Functions

• F is the set of functions f : L 7→ L such that

◮ F contains an identity function

To model “empty” statements, i.e. statements which do not
influence the data flow information

◮ F is closed under composition

Cumulative effect of statements should generate data flow
information from the same set.

◮ For every x ∈ L, there must be a finite set of flow functions
{f1, f2, . . . fm} ⊆ F such that

x =
1≤i≤m

fi (BI )

• Properties of f

◮ Monotonicity and Distributivity

◮ Separability
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Flow Functions in Bit Vector Data Flow Frameworks

• Bit Vector Frameworks: Available Expressions Analysis, Reaching
Definitions Analysis Live variable Analysis, Anticipable Expressions
Analysis, Partial Redundancy Elimination etc.

◮ All functions can be defined in terms of constant Gen and Kill

f (x) = Gen ∪ (x − Kill )

◮ Lattices are powersets with partial orders as ⊆ or ⊇ relations
◮ Information is merged using ∩ or ∪
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Flow Functions in Bit Vector Data Flow Frameworks

• Bit Vector Frameworks: Available Expressions Analysis, Reaching
Definitions Analysis Live variable Analysis, Anticipable Expressions
Analysis, Partial Redundancy Elimination etc.

◮ All functions can be defined in terms of constant Gen and Kill

f (x) = Gen ∪ (x − Kill )

◮ Lattices are powersets with partial orders as ⊆ or ⊇ relations
◮ Information is merged using ∩ or ∪

• Flow functions in Faint Variables Analysis, Pointer Analyses, Constant
Propagation, Possibly Uninitialized Variables cannot be expressed using
constant Gen and Kill .

Local context alone is not sufficient to describe the effect of statements
fully.

May 2011 Uday Khedker



MACS L111 Generalizations-2: Flow Functions 6/59

Monotonicity of Flow Functions

• Partial order is preserved: If x can be safely used in place of y then
f (x) can be safely used in place of f (y)

x y

f

f (x) f (y)
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Monotonicity of Flow Functions

• Partial order is preserved: If x can be safely used in place of y then
f (x) can be safely used in place of f (y)

x y

f

f (x) f (y)⊑

⊑
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Monotonicity of Flow Functions

• Partial order is preserved: If x can be safely used in place of y then
f (x) can be safely used in place of f (y)

∀x , y ∈ L, x ⊑ y ⇒ f (x) ⊑ f (y)

x y

f

f (x) f (y)⊑

⊑
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Monotonicity of Flow Functions

• Partial order is preserved: If x can be safely used in place of y then
f (x) can be safely used in place of f (y)

∀x , y ∈ L, x ⊑ y ⇒ f (x) ⊑ f (y)

x y

f

f (x) f (y)⊑

⊑

• Alternative definition

∀x , y ∈ L, f (x ⊓ y) ⊑ f (x) ⊓ f (y)
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Monotonicity of Flow Functions

• Partial order is preserved: If x can be safely used in place of y then
f (x) can be safely used in place of f (y)

∀x , y ∈ L, x ⊑ y ⇒ f (x) ⊑ f (y)

x y

f

f (x) f (y)⊑

⊑

• Alternative definition

∀x , y ∈ L, f (x ⊓ y) ⊑ f (x) ⊓ f (y)

• Merging at intermediate points in shared segments of paths is safe
(However, it may lead to imprecision).
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Distributivity of Flow Functions

• Merging distributes over function application

x y

f

f (x) ⊓ f (y)
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Distributivity of Flow Functions

• Merging distributes over function application

x y

f

f (x ⊓ y)
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Distributivity of Flow Functions

• Merging distributes over function application

∀x , y ∈ L, x ⊑ y ⇒ f (x ⊓ y) = f (x) ⊓ f (y)

x y

f

f (x ⊓ y)
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Distributivity of Flow Functions

• Merging distributes over function application

∀x , y ∈ L, x ⊑ y ⇒ f (x ⊓ y) = f (x) ⊓ f (y)

x y

f

f (x ⊓ y)

• Merging at intermediate points in shared segments of paths does
not lead to imprecision.
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Monotonicity and Distributivity

⊤

⊥

L
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⊥
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⊥
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Monotonicity and Distributivity

⊤

⊥
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⊥
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Monotonicity and Distributivity

⊤

⊥
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⊥
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Monotonicity and Distributivity

⊤

⊥

L

⊤

⊥

L

Monotonic and
Distributive
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Monotonicity and Distributivity

⊤

⊥

L

⊤

⊥

L

Monotonic but
not Distributive

May 2011 Uday Khedker



MACS L111 Generalizations-2: Flow Functions 9/59

Distributivity of Bit Vector Frameworks

f (x) = Gen ∪ (x − Kill )

f (y) = Gen ∪ (y − Kill )

f (x ∪ y) = Gen ∪ ((x ∪ y)− Kill )

= Gen ∪ ((x − Kill ) ∪ (y − Kill ))

= (Gen ∪ (x − Kill ) ∪ Gen ∪ (y − Kill ))

= f (x) ∪ f (y)

f (x ∩ y) = Gen ∪ ((x ∩ y)− Kill )

= Gen ∪ ((x − Kill ) ∩ (y − Kill ))

= (Gen ∪ (x − Kill ) ∩ Gen ∪ (y − Kill ))

= f (x) ∩ f (y)
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Non-Distributivity of Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3
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Non-Distributivity of Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

a = 1, b = 2

• x = 〈1, 2, 3, ?〉 (Along Outn1 → Inn2)
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Non-Distributivity of Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

a = 1, b = 2

a = 2, b = 1

• x = 〈1, 2, 3, ?〉 (Along Outn1 → Inn2)

• y = 〈2, 1, 3, 2〉 (Along Outn3 → Inn2)
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Non-Distributivity of Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

a = 1, b = 2

a = 2, b = 1

• x = 〈1, 2, 3, ?〉 (Along Outn1 → Inn2)

• y = 〈2, 1, 3, 2〉 (Along Outn3 → Inn2)

• Function application for block n2 before merging

f (x) ⊓ f (y) = f (〈1, 2, 3, ?〉) ⊓ f (〈2, 1, 3, 2〉)
= 〈1, 2, 3, 2〉 ⊓ 〈2, 1, 3, 2〉
= 〈⊥̂, ⊥̂, 3, 2〉
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Non-Distributivity of Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

a = 1, b = 2

a = 2, b = 1

• x = 〈1, 2, 3, ?〉 (Along Outn1 → Inn2)

• y = 〈2, 1, 3, 2〉 (Along Outn3 → Inn2)

• Function application for block n2 before merging

f (x) ⊓ f (y) = f (〈1, 2, 3, ?〉) ⊓ f (〈2, 1, 3, 2〉)
= 〈1, 2, 3, 2〉 ⊓ 〈2, 1, 3, 2〉
= 〈⊥̂, ⊥̂, 3, 2〉

• Function application for block n2 after merging

f (x ⊓ y) = f (〈1, 2, 3, ?〉 ⊓ 〈2, 1, 3, 2〉)
= f (〈⊥̂, ⊥̂, 3, 2〉)
= 〈⊥̂, ⊥̂, ⊥̂, ⊥̂〉
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Non-Distributivity of Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

a = 1, b = 2

a = 2, b = 1

• x = 〈1, 2, 3, ?〉 (Along Outn1 → Inn2)

• y = 〈2, 1, 3, 2〉 (Along Outn3 → Inn2)

• Function application for block n2 before merging

f (x) ⊓ f (y) = f (〈1, 2, 3, ?〉) ⊓ f (〈2, 1, 3, 2〉)
= 〈1, 2, 3, 2〉 ⊓ 〈2, 1, 3, 2〉
= 〈⊥̂, ⊥̂, 3, 2〉

• Function application for block n2 after merging

f (x ⊓ y) = f (〈1, 2, 3, ?〉 ⊓ 〈2, 1, 3, 2〉)
= f (〈⊥̂, ⊥̂, 3, 2〉)
= 〈⊥̂, ⊥̂, ⊥̂, ⊥̂〉

• f (x ⊓ y) ⊏ f (x) ⊓ f (y)
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Why is Constant Propagation Non-Distribitive?

a = 1
b = 2

a = 2
b = 1

c = a + b
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Why is Constant Propagation Non-Distribitive?

a = 1
b = 2

a = 2
b = 1

c = a + b

a = 1 a = 2 b = 1 b = 2

Possible combinations due to merging
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Why is Constant Propagation Non-Distribitive?

a = 1
b = 2

a = 2
b = 1

c = a + b

a = 1 a = 2 b = 1 b = 2

Possible combinations due to merging

c = a + b = 3

• Correct combination.
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Why is Constant Propagation Non-Distribitive?

a = 1
b = 2

a = 2
b = 1

c = a + b

a = 1 a = 2 b = 1 b = 2

Possible combinations due to merging

c = a + b = 3

• Correct combination.
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Why is Constant Propagation Non-Distribitive?

a = 1
b = 2

a = 2
b = 1

c = a + b

a = 1 a = 2 b = 1 b = 2

Possible combinations due to merging

c = a + b = 2

• Wrong combination.

• Mutually exclusive information.

• No execution path along which
this information holds.
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Why is Constant Propagation Non-Distribitive?

a = 1
b = 2

a = 2
b = 1

c = a + b

a = 1 a = 2 b = 1 b = 2

Possible combinations due to merging

c = a + b = 4

• Wrong combination.

• Mutually exclusive information.

• No execution path along which
this information holds.
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Solutions of Data Flow Analysis: An Outline of Our
Discussion

• MoP and MFP assignments and their relationship

• Existence of MoP assignment

◮ Boundedness of flow functions

• Existence and Computability of MFP assignment

◮ Flow functions Vs. function computed by data flow equations

• Safety of MFP solution
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Solutions of Data Flow Analysis

• An assignment A associates data flow values with program points.
A ⊑ B if for all program points p, A(p) ⊑ B(p)

• Performing data flow analysis

Given

◮ A set of flow functions, a lattice, and merge operation

◮ A program flow graph with a mapping from nodes to flow functions

Find out

◮ An assignment A which is as exhaustive as possible and is safe
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Meet Over Paths (MoP) Assignment

Entry

p

Exit

Entry
• The largest safe approximation of the information
reaching a program point along all information
flow paths.

MoP(p) =
d

ρ∈Paths(p)
fρ(BI)

◮ fρ represents the compositions of flow functions
along ρ.

◮ BI refers to the relevant information from the
calling context.

◮ All execution paths are considered potentially
executable by ignoring the results of conditionals.
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Meet Over Paths (MoP) Assignment

Entry

p

Exit

Entry
• The largest safe approximation of the information
reaching a program point along all information
flow paths.

MoP(p) =
d

ρ∈Paths(p)
fρ(BI)

◮ fρ represents the compositions of flow functions
along ρ.

◮ BI refers to the relevant information from the
calling context.

◮ All execution paths are considered potentially
executable by ignoring the results of conditionals.

• Any Info(p) ⊑ MoP(p) is safe.
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Maximum Fixed Point (MFP) Assignment

• Difficulties in computing MoP assignment
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Maximum Fixed Point (MFP) Assignment

• Difficulties in computing MoP assignment

◮ In the presence of cycles there are infinite paths

If all paths need to be traversed ⇒ Undecidability
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Maximum Fixed Point (MFP) Assignment

• Difficulties in computing MoP assignment

◮ In the presence of cycles there are infinite paths

If all paths need to be traversed ⇒ Undecidability

◮ Even if a program is acyclic, every conditional
multiplies the number of paths by two

If all paths need to be traversed ⇒ Intractability

n

n n

May 2011 Uday Khedker



MACS L111 Generalizations-2: Solutions of Data Flow Analysis 15/59

Maximum Fixed Point (MFP) Assignment

• Difficulties in computing MoP assignment

◮ In the presence of cycles there are infinite paths

If all paths need to be traversed ⇒ Undecidability

◮ Even if a program is acyclic, every conditional
multiplies the number of paths by two

If all paths need to be traversed ⇒ Intractability

• Why not merge information at intermediate points?

◮ Merging is safe but may lead to imprecision.

◮ Computes fixed point solutions of data flow equations.
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Maximum Fixed Point (MFP) Assignment

• Difficulties in computing MoP assignment

◮ In the presence of cycles there are infinite paths

If all paths need to be traversed ⇒ Undecidability

◮ Even if a program is acyclic, every conditional
multiplies the number of paths by two

If all paths need to be traversed ⇒ Intractability

• Why not merge information at intermediate points?

◮ Merging is safe but may lead to imprecision.

◮ Computes fixed point solutions of data flow equations.

Path based
specification

Edge based
specifications
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Assignments for Constant Propagation Example

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3
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Assignments for Constant Propagation Example

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

MoP

〈⊤̂, ⊤̂, ⊤̂, ⊤̂〉

〈1, 2, 3, ⊤̂〉

〈⊥̂, ⊥̂, 3, 2〉

〈⊥̂, ⊥̂, 3, 2〉

〈⊥̂, ⊥̂, 3, 2〉

〈2, 1, 3, 2〉
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Assignments for Constant Propagation Example

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

MoP

〈⊤̂, ⊤̂, ⊤̂, ⊤̂〉

〈1, 2, 3, ⊤̂〉

〈⊥̂, ⊥̂, 3, 2〉

〈⊥̂, ⊥̂, 3, 2〉

〈⊥̂, ⊥̂, 3, 2〉

〈2, 1, 3, 2〉

MFP

〈⊤̂, ⊤̂, ⊤̂, ⊤̂〉

〈1, 2, 3, ⊤̂〉

〈⊥̂, ⊥̂, 3, ⊥̂〉

〈⊥̂, ⊥̂, ⊥̂, ⊥̂〉

〈⊥̂, ⊥̂, ⊥̂, ⊥̂〉

〈2, 1, 3, ⊥̂〉
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Possible Assignments as Solutions of Data Flow Analyses

All possible assignments
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Possible Assignments as Solutions of Data Flow Analyses

All possible assignments

All safe assignments
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Possible Assignments as Solutions of Data Flow Analyses

All possible assignments

All safe assignments

All fixed point solutions
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Possible Assignments as Solutions of Data Flow Analyses

All possible assignments

All safe assignments

All fixed point solutions

∀i , Ini = Outi = ⊤
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Possible Assignments as Solutions of Data Flow Analyses

All possible assignments

All safe assignments

All fixed point solutions

∀i , Ini = Outi = ⊤

∀i , Ini = Outi = ⊥
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Possible Assignments as Solutions of Data Flow Analyses

All possible assignments

All safe assignments

All fixed point solutions

∀i , Ini = Outi = ⊤

∀i , Ini = Outi = ⊥

Meet Over Paths Assignment
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Possible Assignments as Solutions of Data Flow Analyses

All possible assignments

All safe assignments

All fixed point solutions

∀i , Ini = Outi = ⊤

∀i , Ini = Outi = ⊥

Meet Over Paths Assignment

Maximum Fixed Point
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Possible Assignments as Solutions of Data Flow Analyses

All possible assignments

All safe assignments

All fixed point solutions

∀i , Ini = Outi = ⊤

∀i , Ini = Outi = ⊥

Meet Over Paths Assignment

Maximum Fixed Point

Least Fixed Point
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Available Expr. Analysis Framework with Two Expressions

Lattice

{a∗b, b∗c}

{a∗b} {b∗c}

∅

Constant Functions Dependent Functions

f f (x) f f (x)

f⊤ {a∗b, b∗c} fid x

f⊥ ∅ fc x ∪ {a∗b}
fa {a∗b} fd x ∪ {b∗c}
fb {b∗c} fe x − {a∗b}

ff x − {b∗c}
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Available Expr. Analysis Framework with Two Expressions

Lattice

{a∗b, b∗c}

{a∗b} {b∗c}

∅

Constant Functions Dependent Functions

f f (x) f f (x)

f⊤ {a∗b, b∗c} fid x

f⊥ ∅ fc x ∪ {a∗b}
fa {a∗b} fd x ∪ {b∗c}
fb {b∗c} fe x − {a∗b}

ff x − {b∗c}

Program

a∗b
b∗c1

a∗b2
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Available Expr. Analysis Framework with Two Expressions

Lattice

{a∗b, b∗c}

{a∗b} {b∗c}

∅

Constant Functions Dependent Functions

f f (x) f f (x)

f⊤ {a∗b, b∗c} fid x

f⊥ ∅ fc x ∪ {a∗b}
fa {a∗b} fd x ∪ {b∗c}
fb {b∗c} fe x − {a∗b}

ff x − {b∗c}

Program

a∗b
b∗c1

a∗b2

Flow Functions

Node
Flow

Function

1 f⊤
2 fid
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Available Expr. Analysis Framework with Two Expressions

Lattice

{a∗b, b∗c}

{a∗b} {b∗c}

∅

Constant Functions Dependent Functions

f f (x) f f (x)

f⊤ {a∗b, b∗c} fid x

f⊥ ∅ fc x ∪ {a∗b}
fa {a∗b} fd x ∪ {b∗c}
fb {b∗c} fe x − {a∗b}

ff x − {b∗c}

Program

a∗b
b∗c1

a∗b2

Flow Functions

Node
Flow

Function

1 f⊤
2 fid

Some Possible Assignments
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Performing Data Flow Analysis

• Algorithms for computing MFP solution

• Complexity of data flow analysis

• Factor affecting the complexity of data flow analysis
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Iterative Methods of Performing Data Flow Analysis

Successive recomputation after conservative initialization (⊤)

• Round Robin. Repeated traversals over nodes in a fixed order

Termination : After values stabilise

+ Simplest to understand and implement

− May perform unnecessary computations
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Termination : After values stabilise
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Iterative Methods of Performing Data Flow Analysis

Successive recomputation after conservative initialization (⊤)

• Round Robin. Repeated traversals over nodes in a fixed order

Termination : After values stabilise

+ Simplest to understand and implement

− May perform unnecessary computations

Our examples use
this method.

• Work List. Dynamic list of nodes which need recomputation

Termination : When the list becomes empty

+ Demand driven. Avoid unnecessary computations.

− Overheads of maintaining work list.
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Elimination Methods of Performing Data Flow Analysis

Delayed computations of dependent data flow values of dependent nodes.

Find suitable single-entry regions.

• Interval Based Analysis. Uses graph partitioning.

• T1,T2 Based Analysis. Uses graph parsing.
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Classification of Edges in a Graph

Graph G

1

2

6

34

5

7

8
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Classification of Edges in a Graph

Graph G A depth first spanning tree of G

1

2

6
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Classification of Edges in a Graph

Graph G A depth first spanning tree of G

1

2

6

34

5

7

8

1

2

6

34

5

7

8

Back edges
Forward edges
Tree edges
Cross edges
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Classification of Edges in a Graph

Graph G A depth first spanning tree of G

1

2

6

34

5

7

8

1

2

6

34

5

7

8

Back edges
Forward edges

For data flow analysis, we club tree,
forward, and cross edges into forward

edges. Thus we have just forward or
back edges in a control flow graph
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Reverse Post Order Traversal

• A reverse post order (rpo) is a topological sort of the graph
obtained after removing back edges

Graph G
G ′ obtained after removing

back edges of G

1

2
6

34

5
7

8

1

2
6

34

5
7

8

• Some possible RPOs for G are: (1, 2, 3, 4, 5, 6, 7, 8),
(1, 6, 7, 2, 3, 4, 5, 8), (1, 6, 2, 7, 4, 3, 5, 8), and (1, 2, 6, 7, 3, 4, 5, 8)
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Round Robin Iterative Algorithm

1 In0 = BI

2 for all j 6= 0 do
3 Inj = ⊤
4 change = true

5 while change do
6 { change = false

7 for j = 1 to N − 1 do

8 { temp =
p∈pred(j)

fp(Inp)

9 if temp 6= Inj then
10 { Inj = temp

11 change = true

12 }
13 }
14 }

May 2011 Uday Khedker
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7 for j = 1 to N − 1 do

8 { temp =
p∈pred(j)

fp(Inp)

9 if temp 6= Inj then
10 { Inj = temp

11 change = true

12 }
13 }
14 }

• Computation of Outj has
been left implicit
Works fine for unidirectional
frameworks
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10 { Inj = temp
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14 }

• Computation of Outj has
been left implicit
Works fine for unidirectional
frameworks

• ⊤ is the identity of ⊓
(line 3)
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10 { Inj = temp
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13 }
14 }

• Computation of Outj has
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Works fine for unidirectional
frameworks

• ⊤ is the identity of ⊓
(line 3)

• Reverse postorder (rpo)
traversal for efficiency
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Round Robin Iterative Algorithm

1 In0 = BI

2 for all j 6= 0 do
3 Inj = ⊤
4 change = true

5 while change do
6 { change = false

7 for j = 1 to N − 1 do

8 { temp =
p∈pred(j)

fp(Inp)

9 if temp 6= Inj then
10 { Inj = temp

11 change = true

12 }
13 }
14 }

• Computation of Outj has
been left implicit
Works fine for unidirectional
frameworks

• ⊤ is the identity of ⊓
(line 3)

• Reverse postorder (rpo)
traversal for efficiency
(line 7)

• rpo traversal AND no loops
⇒ no need of initialization
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Complexity of Round Robin Iterative Algorithm

• Unidirectional bit vector frameworks

◮ Construct a spaning tree T of G to identify postorder traversal
◮ Traverse G in reverse postorder for forward problems and

Traverse G in postorder for backward problems
◮ Depth d(G ,T ): Maximum number of back edges in any acyclic path

Task Number of iterations

First computation of In and Out 1
Convergence

d(G ,T )
(until change remains true)
Verifying convergence

1
(change becomes false)
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◮ Construct a spaning tree T of G to identify postorder traversal
◮ Traverse G in reverse postorder for forward problems and

Traverse G in postorder for backward problems
◮ Depth d(G ,T ): Maximum number of back edges in any acyclic path

Task Number of iterations

First computation of In and Out 1
Convergence

d(G ,T )
(until change remains true)
Verifying convergence

1
(change becomes false)

• What about bidirectional bit vector frameworks?
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Complexity of Round Robin Iterative Algorithm

• Unidirectional bit vector frameworks

◮ Construct a spaning tree T of G to identify postorder traversal
◮ Traverse G in reverse postorder for forward problems and

Traverse G in postorder for backward problems
◮ Depth d(G ,T ): Maximum number of back edges in any acyclic path

Task Number of iterations

First computation of In and Out 1
Convergence

d(G ,T )
(until change remains true)
Verifying convergence

1
(change becomes false)

• What about bidirectional bit vector frameworks?

• What about other frameworks?

May 2011 Uday Khedker



MACS L111 Generalizations-2: Performing Data Flow Analysis 26/59

Example C Program with d(G,T) = 2

1 void fun(int m, int n)
2 {
3 int i,j,a,b,c;
4 c=a+b;
5 i=0;
6 while(i<m)
7 {
8 j=0;
9 while(j<n)
10 {
11 a=i+j;
12 j=j+1;
13 }
14 i=i+1;
15 }
16 }
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1 void fun(int m, int n)
2 {
3 int i,j,a,b,c;
4 c=a+b;
5 i=0;
6 while(i<m)
7 {
8 j=0;
9 while(j<n)
10 {
11 a=i+j;
12 j=j+1;
13 }
14 i=i+1;
15 }
16 }

c = a + b
i = 0

if (i < m)

j = 0

if (j < n)

a = i + j
j = j + 1

i = i + 1

i = i + 1

n1

n2

n3

n4

n5

n6

n7
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Example C Program with d(G,T) = 2

1 void fun(int m, int n)
2 {
3 int i,j,a,b,c;
4 c=a+b;
5 i=0;
6 while(i<m)
7 {
8 j=0;
9 while(j<n)
10 {
11 a=i+j;
12 j=j+1;
13 }
14 i=i+1;
15 }
16 }

3 + 1 iterations for available expressions analysis

c = a + b
i = 0

if (i < m)

j = 0

if (j < n)

a = i + j
j = j + 1

i = i + 1

i = i + 1

n1
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Complexity of Bidirectional Bit Vector Frameworks

Example: Consider the following CFG for PRE

1

6

7

8 9

10

11
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2

3 4

5
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order
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• Node numbers are in reverse post
order

• Back edges in the graph are
n5 → n2 and n10 → n9.
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Complexity of Bidirectional Bit Vector Frameworks

Example: Consider the following CFG for PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Node numbers are in reverse post
order

• Back edges in the graph are
n5 → n2 and n10 → n9.

• d(G ,T ) = 1

• Actual iterations : 5
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Complexity of Bidirectional Bit Vector Frameworks

1

6 b∗c

7

8 9

10
b∗c
b=

11 b∗c

12

2

3 4

b∗c

5

Pairs of Out,In Values

Initia-
lization

Changes in
Iterations Final values &

transformation
#1 #2 #3 #4 #5

O,I O,I O,I O,I O,I O,I O,I
12 0,1
11 1,1
10 1,1
9 1,1
8 1,1
7 1,1
6 1,1
5 1,1
4 1,1
3 1,1
2 1,1
1 1,1
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9 1,1 1,0 1,0 Insert
8 1,1 1,0 1,0 Insert
7 1,1 0,0 0,0
6 1,1 1,0 0,0 0,0
5 1,1 0,0 0,0
4 1,1 0,1 0,0 0,0
3 1,1 0,0 0,0
2 1,1 1,0 0,0 0,0
1 1,1 0,0 0,0
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Information Flow and Information Flow Paths

• Default value at each program point: ⊤
• Information flow path
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• Default value at each program point: ⊤
• Information flow path

Sequence of adjacent program points
along which data flow values change

• A change in the data flow at a program point could be

◮ Generation of information

Change from ⊤ to a non-⊤ due to local effect (i.e. f (⊤) 6= ⊤)

◮ Propagation of information

Change from x to y such that y ⊑ x due to global effect
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Information Flow and Information Flow Paths

• Default value at each program point: ⊤
• Information flow path

Sequence of adjacent program points
along which data flow values change

• A change in the data flow at a program point could be

◮ Generation of information

Change from ⊤ to a non-⊤ due to local effect (i.e. f (⊤) 6= ⊤)

◮ Propagation of information

Change from x to y such that y ⊑ x due to global effect

• Information flow path (ifp) need not be a graph theoretic path
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Edge and Node Flow Functions

n

m

Inn

Outn

Inm

Outm

f fn

f fn→m

f fm

Inn

Outn

Inm

Outm

f bn

f bn→m

f bm
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n
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Inn

Outn
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Outm

f fn

f fn→m

f fm

Inn

Outn

Inm

Outm

f bn

f bn→m

f bm

Forward Node Flow Function

Forward Edge Flow Function

Backward Node Flow Function

Backward Edge Flow Function
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General Data Flow Equations

Inn =





BIStart ⊓ f bn (Outn) n = Start(

m∈pred(n)
f fm→n(Outm)

)
⊓ f bn (Outn) otherwise

Outn =





BIEnd ⊓ f fn (Inn) n = End(

m∈succ(n)
f bm→n(Inm)

)
⊓ f fn (Inn) otherwise

• Edge flow functions are typically identity

∀x ∈ L, f (x) = x

• If particular flows are absent, the correponding flow functions are

∀x ∈ L, f (x) = ⊤

May 2011 Uday Khedker



MACS L111 Generalizations-2: Performing Data Flow Analysis 33/59

Modelling Information Flows Using Edge and Node Flow
Functions

Forward Backward Bidirectional Bidirectional

j j

j

j j

i j

k

l m

j j

j

j j

i j

k

l m

j j

j

j j

i j

k

l m

j j

j

j j

i j

k

l m

f fk→l ◦ f fk ◦ f fi→k f bi→k ◦ f bk ◦ f bk→l f fi→k ◦ f bk→j f fk→l ◦ f bk→m
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Information Flow Paths in PRE
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• Information could flow along arbitrary
paths
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Information Flow Paths in PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Information could flow along arbitrary
paths

• Theoretically predicted number : 144

• Actual iterations : 5

• Not related to depth (1)
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Lacuna with PRE Complexity

• Lacuna with PRE : Complexity O(n2) traversals.

Practical graphs may have upto 50 nodes.

◮ Predicted number of traversals : 2,500.

◮ Practical number of traversals : ≤ 5.

• No explanation for about 14 years despite dozens of efforts.

• Not much experimentation with performing advanced optimizations
involving bidirectional dependency.
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Complexity of Round Robin Iterative Method

Chemist Cloth Shop Doctor Tailor X-Ray Clinic

• Buy OTC (Over-The-Counter) medicine. No U-Turn 1 Trip
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Chemist Cloth Shop Doctor Tailor X-Ray Clinic

• Buy OTC (Over-The-Counter) medicine. No U-Turn 1 Trip

• Buy cloth. Give it to the tailor for stitching. No U-Turn 1 Trip
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Complexity of Round Robin Iterative Method

Chemist Cloth Shop Doctor Tailor X-Ray Clinic

• Buy OTC (Over-The-Counter) medicine. No U-Turn 1 Trip

• Buy cloth. Give it to the tailor for stitching. No U-Turn 1 Trip

• Buy medicine with doctor’s prescription. 1 U-Turn 2 Trips

• Buy medicine with doctor’s prescription. 2 U-Turns 3 Trips

The diagnosis requires X-Ray.
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Information Flow Paths and Width of a Graph

• A traversal u → v in an ifp is

◮ Compatible if u is visited before v in the chosen graph traversal
◮ Incompatible if u is visited after v in the chosen graph traversal
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Information Flow Paths and Width of a Graph

• A traversal u → v in an ifp is

◮ Compatible if u is visited before v in the chosen graph traversal
◮ Incompatible if u is visited after v in the chosen graph traversal

• Every incompatible edge traversal requires one additional iteration

• Width of a program flow graph with respect to a data flow
framework
Maximum number of incompatible traversals in any ifp, no part of
which is bypassed

• Width + 1 iterations are sufficient to converge on MFP solution
(1 additional iteration may be required for verifying convergence)
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Complexity of Bidirectional Bit Vector Frameworks
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• Every “incompatible” edge traversal
⇒ One additional graph traversal

• Max. Incompatible edge traversals
= Width of the graph = 4

• Maximum number of traversals =
1 + 4 = 5

May 2011 Uday Khedker



MACS L111 Generalizations-2: Performing Data Flow Analysis 39/59

Width Subsumes Depth

• Depth is applicable only to unidirectional data flow frameworks

• Width is applicable to both unidirectional and bidirectional
frameworks

• For a given graph, Width ≤ Depth
Width provides a tighter bound
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Comparison Between Width and Depth

• Depth is purely a graph theoretic property whereas width depends
on control flow graph as well as the data framework

• Comparison between width and depth is meaningful only
◮ For unidirectional frameworks
◮ When the direction of traversal for computing width is the natural

direction of traversal

• Since width excludes bypassed path segments, width can be smaller
than depth

May 2011 Uday Khedker



MACS L111 Generalizations-2: Performing Data Flow Analysis 41/59

Width and Depth

c = a + b
i = 0

if (i < m)

j = 0

if (j < n)

a = i + j
j = j + 1

i = i + 1

i + 1

n1

n2

n3

n4

n5

n6

n7

Assuming reverse postorder traversal
for available expressions analysis

• Depth = 2
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Width and Depth

c = a + b
i = 0

if (i < m)

j = 0

if (j < n)

a = i + j
j = j + 1

i = i + 1

i + 1

n1

n2

n3

n4

n5

n6

n7

Assuming reverse postorder traversal
for available expressions analysis

• Depth = 2

• Information generation point
n5 kills expression “a + b”

• Information propagation path
n5 → n4 → n6 → n2
No Gen or Kill for “a + b”
along this path

• Width = 2

• What about “j + 1”?

• Not available on entry to the
loop
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Width and Depth
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Structures resulting from repeat-until loops with
premature exits

• Depth = 3
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Structures resulting from repeat-until loops with
premature exits

• Depth = 3

• However, any unidirectional bit vector is
guaranteed to converge in 2 + 1 iterations
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Width and Depth

1

2

3

4

5

6

7

8

Structures resulting from repeat-until loops with
premature exits

• Depth = 3

• However, any unidirectional bit vector is
guaranteed to converge in 2 + 1 iterations

• ifp 5 → 4 → 6 is bypassed by the edge 5 → 6
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Width and Depth

1

2

3

4

5

6

7

8

Structures resulting from repeat-until loops with
premature exits

• Depth = 3

• However, any unidirectional bit vector is
guaranteed to converge in 2 + 1 iterations

• ifp 5 → 4 → 6 is bypassed by the edge 5 → 6

• ifp 6 → 3 → 6 is bypassed by the edge 6 → 7
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Width and Depth

1

2

3

4

5

6

7

8

Structures resulting from repeat-until loops with
premature exits

• Depth = 3

• However, any unidirectional bit vector is
guaranteed to converge in 2 + 1 iterations

• ifp 5 → 4 → 6 is bypassed by the edge 5 → 6

• ifp 6 → 3 → 6 is bypassed by the edge 6 → 7

• ifp 7 → 2 → 8 is bypassed by the edge 7 → 8
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Width and Depth

1

2

3

4

5

6

7

8

Structures resulting from repeat-until loops with
premature exits

• Depth = 3

• However, any unidirectional bit vector is
guaranteed to converge in 2 + 1 iterations

• ifp 5 → 4 → 6 is bypassed by the edge 5 → 6

• ifp 6 → 3 → 6 is bypassed by the edge 6 → 7

• ifp 7 → 2 → 8 is bypassed by the edge 7 → 8

• For forward unidirectional frameworks, width
is 1
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Width and Depth

1

2

3

4

5

6

7

8

Structures resulting from repeat-until loops with
premature exits

• Depth = 3

• However, any unidirectional bit vector is
guaranteed to converge in 2 + 1 iterations

• ifp 5 → 4 → 6 is bypassed by the edge 5 → 6

• ifp 6 → 3 → 6 is bypassed by the edge 6 → 7

• ifp 7 → 2 → 8 is bypassed by the edge 7 → 8

• For forward unidirectional frameworks, width
is 1

• Splitting the bypassing edges and inserting
nodes along those edges increases the width
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Work List Based Iterative Algorithm

Directly traverses information flow paths

1 In0 = BI

2 for all j 6= 0 do
3 { Inj = ⊤
4 Add j to LIST
5 }
6 while LIST is not empty do
7 { Let j be the first node in LIST. Remove it from LIST

8 temp =
p∈pred(j)

fp(Inp)

9 if temp 6= Inj then
10 { Inj = temp

11 Add all successors of j to LIST
12 }
13 }
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Tutorial Problem

Perform work list based iterative analysis for earlier examples. Assume
that the work list follows FIFO (First in First Out) policy.

Show the trace of the analysis in the folloing format:

Step Program Remaining Data Program Resulting
No. Point Work list Flow Point(s) Work list

Selected Value Added
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Precise Modelling of General Flows
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Complexity of Constant Propagation?

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5
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Complexity of Constant Propagation?

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

Iteration #1
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Complexity of Constant Propagation?

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

Iteration #1

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = 3 4

5 d = 2 5

Iteration #2
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Complexity of Constant Propagation?

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

Iteration #1

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = 3 4

5 d = 2 5

Iteration #2

1 a = b + 1 1

2 a = b + 1 2

3 b = 4 3

4 c = 3 4

5 d = 2 5

Iteration #3
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Complexity of Constant Propagation?

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

Iteration #1

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = 3 4

5 d = 2 5

Iteration #2

1 a = b + 1 1

2 a = b + 1 2

3 b = 4 3

4 c = 3 4

5 d = 2 5

Iteration #3

1 a = 5 1

2 a = 5 2

3 b = 3 3

4 c = d + 1 4

5 d = 2 5

Iteration #4
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Loop Closures of Flow Functions

X

p1

X

p2

X
p3

x

f (x)

Paths Terminating at p2 Data Flow Value

p1, p2 x

p1, p2, p3, p2 f (x)
p1, p2, p3, p2, p3, p2 f (f (x)) = f 2(x)
p1, p2, p3, p2, p3, p2, p3, p2 f (f (f (x))) = f 3(x)
. . . . . .
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Loop Closures of Flow Functions

X

p1

X

p2

X
p3

x

f (x)

Paths Terminating at p2 Data Flow Value

p1, p2 x

p1, p2, p3, p2 f (x)
p1, p2, p3, p2, p3, p2 f (f (x)) = f 2(x)
p1, p2, p3, p2, p3, p2, p3, p2 f (f (f (x))) = f 3(x)
. . . . . .

• For static analysis we need to summarize the value at p2 by a value
which is safe after any iteration.

f ∗(x) = x ⊓ f (x) ⊓ f 2(x) ⊓ f 3(x) ⊓ f 4(x) ⊓ . . .
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Loop Closures of Flow Functions

X

p1

X

p2

X
p3

x

f (x)

Paths Terminating at p2 Data Flow Value

p1, p2 x

p1, p2, p3, p2 f (x)
p1, p2, p3, p2, p3, p2 f (f (x)) = f 2(x)
p1, p2, p3, p2, p3, p2, p3, p2 f (f (f (x))) = f 3(x)
. . . . . .

• For static analysis we need to summarize the value at p2 by a value
which is safe after any iteration.

f ∗(x) = x ⊓ f (x) ⊓ f 2(x) ⊓ f 3(x) ⊓ f 4(x) ⊓ . . .

• f ∗ is called the loop closure of f .
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Loop Closures in Bit Vector Frameworks

• Flow functions in bit vector frameworks have constant Gen and Kill

f ∗(x) = x ⊓ f (x) ⊓ f 2(x) ⊓ f 3(x) ⊓ . . .

f 2(x) = f (Gen ∪ (x − Kill ))

= Gen ∪ ((Gen ∪ (x − Kill ))− Kill )

= Gen ∪ ((Gen − Kill ) ∪ (x − Kill ))

= Gen ∪ (Gen − Kill ) ∪ (x − Kill )

= Gen ∪ (x − Kill ) = f (x)

f ∗(x) = x ⊓ f (x)
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Loop Closures in Bit Vector Frameworks

• Flow functions in bit vector frameworks have constant Gen and Kill

f ∗(x) = x ⊓ f (x) ⊓ f 2(x) ⊓ f 3(x) ⊓ . . .

f 2(x) = f (Gen ∪ (x − Kill ))

= Gen ∪ ((Gen ∪ (x − Kill ))− Kill )

= Gen ∪ ((Gen − Kill ) ∪ (x − Kill ))

= Gen ∪ (Gen − Kill ) ∪ (x − Kill )

= Gen ∪ (x − Kill ) = f (x)

f ∗(x) = x ⊓ f (x)

• Loop Closures of Bit Vector Frameworks are 2-bounded.
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Loop Closures in Bit Vector Frameworks

• Flow functions in bit vector frameworks have constant Gen and Kill

f ∗(x) = x ⊓ f (x) ⊓ f 2(x) ⊓ f 3(x) ⊓ . . .

f 2(x) = f (Gen ∪ (x − Kill ))

= Gen ∪ ((Gen ∪ (x − Kill ))− Kill )

= Gen ∪ ((Gen − Kill ) ∪ (x − Kill ))

= Gen ∪ (Gen − Kill ) ∪ (x − Kill )

= Gen ∪ (x − Kill ) = f (x)

f ∗(x) = x ⊓ f (x)

• Loop Closures of Bit Vector Frameworks are 2-bounded.

• Intuition: Since Gen and Kill are constant, same things are generated or
killed in every application of f .

Multiple applications of f are not required unless the input value changes.
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Larger Values of Loop Closure Bounds

• Fast Frameworks ≡ 2-bounded frameworks (eg. bit vector
frameworks)
Both these conditions must be satisfied

◮ Separability

Data flow values of different entities are independent
◮ Constant or Identity Flow Functions

Flow functions for an entity are either constant or identity

• Non-fast frameworks
At least one of the above conditions is violated
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Separability

f : L 7→ L is 〈ĥ1, ĥ2, . . . , ĥm〉 where ĥi computes the value of x̂ i

May 2011 Uday Khedker



MACS L111 Generalizations-2: Precise Modelling of General Flows 49/59

Separability

f : L 7→ L is 〈ĥ1, ĥ2, . . . , ĥm〉 where ĥi computes the value of x̂ i

Separable Non-Separable

Example: All bit vector frameworks Example: Constant Propagation
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Example: All bit vector frameworks Example: Constant Propagation
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f : L 7→ L is 〈ĥ1, ĥ2, . . . , ĥm〉 where ĥi computes the value of x̂ i

Separable
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〈 ŷ1, ŷ 2, . . . , ŷm 〉

ĥ : L̂ 7→ L̂

Non-Separable

〈 x̂1, x̂2, . . . , x̂m 〉

f
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Example: All bit vector frameworks Example: Constant Propagation
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Separability

f : L 7→ L is 〈ĥ1, ĥ2, . . . , ĥm〉 where ĥi computes the value of x̂ i

Separable

〈 x̂1, x̂2, . . . , x̂m 〉

ĥ2

〈 ŷ1, ŷ 2, . . . , ŷm 〉

ĥ : L̂ 7→ L̂

Non-Separable

〈 x̂1, x̂2, . . . , x̂m 〉

ĥ2

〈 ŷ1, ŷ 2, . . . , ŷm 〉

ĥ : L 7→ L̂

Example: All bit vector frameworks Example: Constant Propagation
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Separability of Bit Vector Frameworks

• L̂ is {0, 1}, L is {0, 1}m
• ⊓̂ is either boolean AND or boolean OR

• ⊤̂ and ⊥̂ are 0 or 1 depending on ⊓̂.
• ĥ is a bit function and could be one of the following:

Raise Lower Propagate Negate

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂
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Separability of Bit Vector Frameworks

• L̂ is {0, 1}, L is {0, 1}m
• ⊓̂ is either boolean AND or boolean OR

• ⊤̂ and ⊥̂ are 0 or 1 depending on ⊓̂.
• ĥ is a bit function and could be one of the following:

Raise Lower Propagate Negate

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

Non-monotonicity
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Boundedness of Constant Propagation

1 a = 1 1

2 a = 1 2

3 a = 1 3

4 a = b + 1 4

5 b = c + 1 5

6 c = a + 1 5

7 a = 1 1
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Boundedness of Constant Propagation

1 a = 1 1

2 a = 1 2

3 a = 1 3

4 a = b + 1 4

5 b = c + 1 5

6 c = a + 1 5

7 a = 1 1

Summary flow function:
(data flow value at node 7)

f (〈va, vb, vc 〉) = 〈 1 ⊓ (vb + 1),
(vc + 1),
(va + 1)

〉

May 2011 Uday Khedker



MACS L111 Generalizations-2: Precise Modelling of General Flows 51/59

Boundedness of Constant Propagation

1 a = 1 1

2 a = 1 2

3 a = 1 3

4 a = b + 1 4

5 b = c + 1 5

6 c = a + 1 5

7 a = 1 1

Summary flow function:
(data flow value at node 7)

f (〈va, vb, vc 〉) = 〈 1 ⊓ (vb + 1),
(vc + 1),
(va + 1)

〉

f 0(⊤) = 〈⊤̂, ⊤̂, ⊤̂〉
f 1(⊤) = 〈1, ⊤̂, ⊤̂〉
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Boundedness of Constant Propagation

1 a = 1 1

2 a = 1 2

3 a = 1 3

4 a = b + 1 4

5 b = c + 1 5

6 c = a + 1 5

7 a = 1 1

Summary flow function:
(data flow value at node 7)

f (〈va, vb, vc 〉) = 〈 1 ⊓ (vb + 1),
(vc + 1),
(va + 1)

〉

f 0(⊤) = 〈⊤̂, ⊤̂, ⊤̂〉
f 1(⊤) = 〈1, ⊤̂, ⊤̂〉
f 2(⊤) = 〈1, ⊤̂, 2〉
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Boundedness of Constant Propagation

1 a = 1 1

2 a = 1 2

3 a = 1 3

4 a = b + 1 4

5 b = c + 1 5

6 c = a + 1 5

7 a = 1 1

Summary flow function:
(data flow value at node 7)

f (〈va, vb, vc 〉) = 〈 1 ⊓ (vb + 1),
(vc + 1),
(va + 1)

〉

f 0(⊤) = 〈⊤̂, ⊤̂, ⊤̂〉
f 1(⊤) = 〈1, ⊤̂, ⊤̂〉
f 2(⊤) = 〈1, ⊤̂, 2〉
f 3(⊤) = 〈1, 3, 2〉
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Boundedness of Constant Propagation

1 a = 1 1

2 a = 1 2

3 a = 1 3

4 a = b + 1 4

5 b = c + 1 5

6 c = a + 1 5

7 a = 1 1

Summary flow function:
(data flow value at node 7)

f (〈va, vb, vc 〉) = 〈 1 ⊓ (vb + 1),
(vc + 1),
(va + 1)

〉

f 0(⊤) = 〈⊤̂, ⊤̂, ⊤̂〉
f 1(⊤) = 〈1, ⊤̂, ⊤̂〉
f 2(⊤) = 〈1, ⊤̂, 2〉
f 3(⊤) = 〈1, 3, 2〉
f 4(⊤) = 〈⊥̂, 3, 2〉
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Boundedness of Constant Propagation

1 a = 1 1

2 a = 1 2

3 a = 1 3

4 a = b + 1 4

5 b = c + 1 5

6 c = a + 1 5

7 a = 1 1

Summary flow function:
(data flow value at node 7)

f (〈va, vb, vc 〉) = 〈 1 ⊓ (vb + 1),
(vc + 1),
(va + 1)

〉

f 0(⊤) = 〈⊤̂, ⊤̂, ⊤̂〉
f 1(⊤) = 〈1, ⊤̂, ⊤̂〉
f 2(⊤) = 〈1, ⊤̂, 2〉
f 3(⊤) = 〈1, 3, 2〉
f 4(⊤) = 〈⊥̂, 3, 2〉
f 5(⊤) = 〈⊥̂, 3, ⊥̂〉
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Boundedness of Constant Propagation

1 a = 1 1

2 a = 1 2

3 a = 1 3

4 a = b + 1 4

5 b = c + 1 5

6 c = a + 1 5

7 a = 1 1

Summary flow function:
(data flow value at node 7)

f (〈va, vb, vc 〉) = 〈 1 ⊓ (vb + 1),
(vc + 1),
(va + 1)

〉

f 0(⊤) = 〈⊤̂, ⊤̂, ⊤̂〉
f 1(⊤) = 〈1, ⊤̂, ⊤̂〉
f 2(⊤) = 〈1, ⊤̂, 2〉
f 3(⊤) = 〈1, 3, 2〉
f 4(⊤) = 〈⊥̂, 3, 2〉
f 5(⊤) = 〈⊥̂, 3, ⊥̂〉
f 6(⊤) = 〈⊥̂, ⊥̂, ⊥̂〉
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Boundedness of Constant Propagation

1 a = 1 1

2 a = 1 2

3 a = 1 3

4 a = b + 1 4

5 b = c + 1 5

6 c = a + 1 5

7 a = 1 1

Summary flow function:
(data flow value at node 7)

f (〈va, vb, vc 〉) = 〈 1 ⊓ (vb + 1),
(vc + 1),
(va + 1)

〉

f 0(⊤) = 〈⊤̂, ⊤̂, ⊤̂〉
f 1(⊤) = 〈1, ⊤̂, ⊤̂〉
f 2(⊤) = 〈1, ⊤̂, 2〉
f 3(⊤) = 〈1, 3, 2〉
f 4(⊤) = 〈⊥̂, 3, 2〉
f 5(⊤) = 〈⊥̂, 3, ⊥̂〉
f 6(⊤) = 〈⊥̂, ⊥̂, ⊥̂〉
f 7(⊤) = 〈⊥̂, ⊥̂, ⊥̂〉
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Boundedness of Constant Propagation

1 a = 1 1

2 a = 1 2

3 a = 1 3

4 a = b + 1 4

5 b = c + 1 5

6 c = a + 1 5

7 a = 1 1

f ∗(⊤) =
6d

i=0
f i(⊤)
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Boundedness of Constant Propagation

The moral of the story:

• The data flow value of every variable could change twice
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Boundedness of Constant Propagation

The moral of the story:

• The data flow value of every variable could change twice

• In the worst case, only one change may happen in every step of a
function application
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Boundedness of Constant Propagation

The moral of the story:

• The data flow value of every variable could change twice

• In the worst case, only one change may happen in every step of a
function application

• Maximum number of steps: 2× |Var|
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Boundedness of Constant Propagation

The moral of the story:

• The data flow value of every variable could change twice

• In the worst case, only one change may happen in every step of a
function application

• Maximum number of steps: 2× |Var|
• Boundedness parameter k is (2× |Var|) + 1

May 2011 Uday Khedker



MACS L111 Generalizations-2: Precise Modelling of General Flows 53/59

Modelling Flow Functions for General Flows

• General flow functions can be written as

fn(X ) = (X − Killn(X )) ∪ Genn(X )

where Gen and Kill have constant and dependent parts

Genn(X ) = ConstGenn ∪ DepGenn(X )

Killn(X ) = ConstKilln ∪ DepKilln(X )
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Modelling Flow Functions for General Flows

• General flow functions can be written as

fn(X ) = (X − Killn(X )) ∪ Genn(X )

where Gen and Kill have constant and dependent parts

Genn(X ) = ConstGenn ∪ DepGenn(X )

Killn(X ) = ConstKilln ∪ DepKilln(X )

• The dependent parts take care of
◮ dependence across different entities as well as
◮ dependence on the value of the same entity in the argument X
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Modelling Flow Functions for General Flows

• General flow functions can be written as

fn(X ) = (X − Killn(X )) ∪ Genn(X )

where Gen and Kill have constant and dependent parts

Genn(X ) = ConstGenn ∪ DepGenn(X )

Killn(X ) = ConstKilln ∪ DepKilln(X )

• The dependent parts take care of
◮ dependence across different entities as well as
◮ dependence on the value of the same entity in the argument X

• Bit vector frameworks are a special case

DepGenn(X ) = DepKilln(X ) = ∅
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Component Lattice for Integer Constant Propagation

(⊤̂)
undef or ?

−∞ . . . −1−2 0 1 2 . . . ∞

(⊥̂)

nonconst or ×

• Overall lattice L is the product of L̂ for all variables.

• ⊓ and ⊓̂ get defined by ⊑ and ⊑̂.

⊓̂ 〈v , ?〉 〈v ,×〉 〈v , c1〉
〈v , ?〉 〈v , ?〉 〈v ,×〉 〈v , c1〉
〈v ,×〉 〈v ,×〉 〈v ,×〉 〈v ,×〉
〈v , c2〉 〈v , c2〉 〈v ,×〉 If c1 = c2 then 〈v , c1〉 else 〈v ,×〉
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Flow Functions for Constant Propagation

• Flow function for r = a1 ∗ a2

mult 〈a1, ?〉 〈a1,×〉 〈a1, c1〉
〈a2, ?〉 〈r , ?〉 〈r ,×〉 〈r , ?〉
〈a2,×〉 〈r ,×〉 〈r ,×〉 〈r ,×〉
〈a2, c2〉 〈r , ?〉 〈r ,×〉 〈r , (c1 ∗ c2)〉
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Defining Data Flow Equations for Constant Propagation

ConstGenn DepGenn(X ) ConstKilln DepKilln(X )

v = c ,

c ∈ Const
{〈v , c〉} ∅ ∅ {〈v , d〉 |〈v , d〉∈X}

v = e,

e ∈ Expr
∅ {〈v , eval(e,X )〉} ∅ {〈v , d〉 |〈v , d〉∈X}

read(v) {〈v ,×〉} ∅ ∅ {〈v , d〉 |〈v , d〉∈X}
other ∅ ∅ ∅ ∅
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Defining Data Flow Equations for Constant Propagation

ConstGenn DepGenn(X ) ConstKilln DepKilln(X )

v = c ,

c ∈ Const
{〈v , c〉} ∅ ∅ {〈v , d〉 |〈v , d〉∈X}

v = e,

e ∈ Expr
∅ {〈v , eval(e,X )〉} ∅ {〈v , d〉 |〈v , d〉∈X}

read(v) {〈v ,×〉} ∅ ∅ {〈v , d〉 |〈v , d〉∈X}
other ∅ ∅ ∅ ∅

eval(a1 op a2,X )

〈a1, ?〉 ∈ X 〈a1,×〉 ∈ X 〈a1, c1〉 ∈ X

〈a2, ?〉 ∈ X ? × ?

〈a2,×〉 ∈ X × × ×
〈a2, c2〉 ∈ X ? × c1 op c2
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Example Program for Constant Propagation

n1 read (e); n1

n2
a = 7; b = 2; f = e;

if (f > 0) n2

n3
a = 2;

if (f ≥ e + 2) n3

n4
b = c + 1;
if (b ≥ 7) n4

n6 if (f ≥ e + 1) n6

n5 f = f + 1; n5

n7 c = d ∗ a; n7n8 d = a + b; n8

n9
d = a + 1;
f = f + 1 n9n10 e = a + b; n10

false

true
false

false
true false

true

true
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Result of Constant Propagation

Iteration #1
Changes in Changes in Changes in
iteration #2 iteration #3 iteration #4

Inn1 ⊤̂, ⊤̂, ⊤̂, ⊤̂, ⊤̂, ⊤̂
Outn1 ⊤̂, ⊤̂, ⊤̂, ⊤̂, ⊥̂, ⊤̂
Inn2 ⊤̂, ⊤̂, ⊤̂, ⊤̂, ⊥̂, ⊤̂
Outn2 7, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂
Inn3 7, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂ ⊥̂, 2, ⊤̂, 3, ⊥̂, ⊥̂ ⊥̂, 2, 6, 3, ⊥̂, ⊥̂ ⊥̂, ⊥̂, 6, 3, ⊥̂, ⊥̂
Outn3 2, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂ 2, 2, ⊤̂, 3, ⊥̂, ⊥̂ 2, 2, 6, 3, ⊥̂, ⊥̂ 2, ⊥̂, 6, 3, ⊥̂, ⊥̂
Inn4 2, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂ 2, 2, ⊤̂, 3, ⊥̂, ⊥̂ 2, 2, 6, 3, ⊥̂, ⊥̂ 2, ⊥̂, 6, 3, ⊥̂, ⊥̂
Outn4 2, ⊤̂, ⊤̂, ⊤̂, ⊥̂, ⊥̂ 2, ⊤̂, ⊤̂, 3, ⊥̂, ⊥̂ 2, 7, 6, 3, ⊥̂, ⊥̂
Inn5 2, ⊤̂, ⊤̂, ⊤̂, ⊥̂, ⊥̂ 2, ⊤̂, ⊤̂, 3, ⊥̂, ⊥̂ 2, 7, 6, 3, ⊥̂, ⊥̂
Outn5 2, ⊤̂, ⊤̂, ⊤̂, ⊥̂, ⊥̂ 2, ⊤̂, ⊤̂, 3, ⊥̂, ⊥̂ 2, 7, 6, 3, ⊥̂, ⊥̂
Inn6 2, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂ 2, 2, ⊤̂, 3, ⊥̂, ⊥̂ 2, 2, 6, 3, ⊥̂, ⊥̂ 2, ⊥̂, 6, 3, ⊥̂, ⊥̂
Outn6 2, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂ 2, 2, ⊤̂, 3, ⊥̂, ⊥̂ 2, 2, 6, 3, ⊥̂, ⊥̂ 2, ⊥̂, 6, 3, ⊥̂, ⊥̂
Inn7 2, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂ 2, 2, ⊤̂, 3, ⊥̂, ⊥̂ 2, ⊥̂, 6, 3, ⊥̂, ⊥̂
Outn7 2, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂ 2, 2, 6, 3, ⊥̂, ⊥̂ 2, ⊥̂, 6, 3, ⊥̂, ⊥̂
Inn8 2, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂ 2, 2, ⊤̂, 3, ⊥̂, ⊥̂ 2, 2, 6, 3, ⊥̂, ⊥̂ 2, ⊥̂, 6, 3, ⊥̂, ⊥̂
Outn8 2, 2, ⊤̂, 4, ⊥̂, ⊥̂ 2, 2, ⊤̂, 4, ⊥̂, ⊥̂ 2, 2, 6, 4, ⊥̂, ⊥̂ 2, ⊥̂, 6, ⊥̂, ⊥̂, ⊥̂
Inn9 2, 2, ⊤̂, 4, ⊥̂, ⊥̂ 2, 2, 6, ⊥̂, ⊥̂, ⊥̂ 2, ⊥̂, 6, ⊥̂, ⊥̂, ⊥̂
Outn9 2, 2, ⊤̂, 3, ⊥̂, ⊥̂ 2, 2, 6, 3, ⊥̂, ⊥̂ 2, ⊥̂, 6, 3, ⊥̂, ⊥̂
Inn10 ⊥̂, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂ ⊥̂, 2, ⊤̂, 3, ⊥̂, ⊥̂ ⊥̂, ⊥̂, 6, 3, ⊥̂, ⊥̂
Outn10 ⊥̂, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂ ⊥̂, 2, ⊤̂, 3, ⊥̂, ⊥̂ ⊥̂, ⊥̂, 6, 3, ⊥̂, ⊥̂
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Monotonicity of Constant Propagation

• Flow function fn(X ) = (X − Killn(X )) ∪ Genn(X ) where

Genn(X ) = ConstGenn ∪ DepGenn(X )

Killn(X ) = ConstKilln ∪ DepKilln(X )

• ConstGenn and ConstKilln are trivially monotonic

• To show X1 ⊑ X2 ⇒ DepGenn(X1) ⊑ DepGenn(X2)
we need to show that X1 ⊑ X2 ⇒ eval(e,X1) ⊑ eval(e,X2).
This follows from definition of eval(e,X ).

• To show X1 ⊑ X2 ⇒ (X1 − DepKilln(X1)) ⊑ (X2 − DepKilln(X2))
observe that DepKilln removes the pair corresponding to the
variable modified in statement n. Data flow values of other
variables remain unaffected.
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