
ACS Syntax and Semantics of Natural Language

Lecture 8: Statistical Parsing Models for CCG

Stephen Clark

Natural Language and Information Processing (NLIP) Group

sc609@cam.ac.uk



Parsing Models for CCG 2

• The parsing models that have been developed for CCG are not CCG-
specific, but general models for structural prediction problems

• Generative models can be applied to CCG derivations, generating the
tree top-down using a similar process to the Collins model (Hocken-
maier, 2003)

• Feature-based models have been successfully applied to CCG, includ-
ing log-linear models and the generalized perceptron



Feature-Based Models for CCG 3

d maxΦ,Λ(S) = arg max
d

Score(Φ(d, S), Λ)

• d max is the highest scoring derivation for sentence S, according to a
feature representation function Φ and a model (set of weights) Λ

• The algorithm which implements the arg max is the decoder - let’s worry
about that later, but bearing in mind that how we choose to define Φ is
likely to impact on the efficiency of the decoder

• Φ(d, S) takes a derivation d for sentence S and returns the features for
that derivation - how we choose to break d into features will be crucial
for accuracy

• Λ is the set of weights corresponding to the complete set of features -
Λ will be learned from annotated data (CCGbank)

• The Score function relates Φ and Λ and assigns a real-valued score to
a derivation - we’ll be using log-linear and linear formulations



The Feature Representation 4

• Features will be defined locally in terms of rule instantiations

– by rule instantiation I just mean the subtree consisting of a parent
and children (one or two children in CCG’s case)

• We could extend the feature range, and this may increase the discrimi-
natory power of the model, but the efficiency of the decoding and esti-
mation algorithms will decrease

• Mathematically, features are functions from derivations onto integers
(i.e. counts)

– so extensions of the binary indicator functions we saw for tagging



The Features 5

Feature type Example
LexCat + Word (S/S )/NP + Before
LexCat + POS (S/S )/NP + IN
RootCat S [dcl ]

RootCat + Word S [dcl ] + was
RootCat + POS S [dcl ] + VBD
Rule S [dcl ]→NP S [dcl ]\NP

Rule + Word S [dcl ]→NP S [dcl ]\NP + bought
Rule + POS S [dcl ]→NP S [dcl ]\NP + VBD
Word-Word 〈company, S [dcl ]→NP S [dcl ]\NP , bought〉
Word-POS 〈company, S [dcl ]→NP S [dcl ]\NP , VBD〉
POS-Word 〈NN, S [dcl ]→NP S [dcl ]\NP , bought〉
POS-POS 〈NN, S [dcl ]→NP S [dcl ]\NP , VBD〉

Word + Distance(words) 〈bought, S [dcl ]→NP S [dcl ]\NP〉 + > 2
Word + Distance(punct) 〈bought, S [dcl ]→NP S [dcl ]\NP〉 + 2
Word + Distance(verbs) 〈bought, S [dcl ]→NP S [dcl ]\NP〉 + 0
POS + Distance(words) 〈VBD, S [dcl ]→NP S [dcl ]\NP〉 + > 2

POS + Distance(punct) 〈VBD, S [dcl ]→NP S [dcl ]\NP〉 + 2
POS + Distance(verbs) 〈VBD, S [dcl ]→NP S [dcl ]\NP〉 + 0

• This basic feature set results in a few hundred thousand features and
leads to good parsing performance



Log-Linear Model 6

P (d|S) = exp(
∑

i
λifi(d, S))/Z(S)

where d is a derivation for sentence S and Z(S) is a normalisation constant

• Note that this is a global model, assigning a probability to the complete
parse tree

• Can also be thought of as a maximum entropy model, as for the local
maxent models we used for tagging

• To esimate the model parameters (weights, λ’s), we need to calculate
feature expectations, as before

• Calculating feature expectations requires a sum over all derivations for
each sentence in the training data

– sum can be performed efficiently using a dynamic programming al-
gorithm (the inside-outside algorithm) over a packed chart



Decoding 7

• We can build a packed chart for CCG as we did for a PCFG in the Intro
to NLP module

• Categories with the same CCG type, same span in the sentence, and
same headword, are grouped together into an equivalence class

– definition of equivalence depends on the feature range

• The Viterbi algorithm runs recursively top-down over the chart, choos-
ing the highest scoring category in each equivalence class

• The Viterbi algorithm is optimal and operates in polynomial time (with
respect to sentence length)



Linear Model with Perceptron Training 8

Score(d, S) =
∑

i
λifi(d, S)

• An alternative to the log-linear model which is trained using a simple pa-
rameter update which aims to maximise accruacy on the training data

• Performs surprisingly well given simple nature of the update

• Also has some theoretical guarantees

• See Collins (2002) for application to tagging



Perceptron Training 9

Score(d, s) =
∑

i
λi.fi(d, s) = λ · f (d)

Inputs: training examples (sj, dj)
Initialisation: set λ = 0
Algorithm:
for t = 1..T , j = 1..N
calculate dmax = arg maxd λ · f (d)
if dmax 6= dj

λ = λ + f (dj) − f (dmax)
Outputs: λ

[see JHU tutorial slides for animated description of online update]



References 10

• Stephen Clark and James R. Curran. Perceptron Training for a Wide-
Coverage Lexicalized-Grammar Parser. Proceedings of the ACL-07
Workshop on Deep Linguistic Processing, Prague, Czech Republic,
2007

• Julia Hockenmaier. Data and models for statistical parsing with Combi-
natory Categorial Grammar. Edinburgh PhD thesis. 2003

• Michael Collins. Discriminative Training Methods for Hidden Markov
Models: Theory and Experiments with Perceptron Algorithms. EMNLP
2002.


