MPhil in Advanced Computer Science
Statistical Machine Translation

Leaders: Dr. Stephen Clark and Dr Adrià de Gispert
Timing: Lent
Prerequisites: Introduction to Statistical Speech and Language Processing core module or Equivalent Background
Structure: 10 Lectures plus 2 practicals over 6 sessions

AIMS
This module provides an in-depth introduction to Statistical Machine Translation, the dominant approach to providing large-scale, robust translation applicable to many language pairs (and the approach currently used by Google). Topics covered will include:

SYLLABUS
1. Overview: (2L)
 - Translation as an economic, political, and cultural activity
 - Machine translation as a problem in natural language processing
 - Syntax and morphology in translation
 - Translation memories; example and rule-based based MT
 - Interlingua

2. Alignment: automatic translations in text (2L)
 - Parallel texts and their role in building translation systems and measuring translation quality
 - Document and sentence alignment: models and algorithms
 - Word and phrase alignment: models and algorithms
 - Techniques for automatic measurement of alignment quality
 - Webcrawling for parallel text

3. Weighted finite state transducers: algorithms for natural language processing and MT: (2L)

4. SMT Systems (4L)
 - Extraction of translation rules from parallel text
 - Phrase-based, Hiero, syntax-based MT
 - Techniques for automatic measurement of translation quality
 - Minimum error rate training
• Language models for SMT: simple back-off, MapReduce
• MT system combination
• Practical issues in SMT: true casing; source text pre-processing; handling morphology; system building procedure

All lectures will be given by Dr. Clark or Dr de Gispert.

OBJECTIVES

On completion of this module students should understand:

• the role of parallel text in MT
• how alignment models can be estimated from parallel text
• how alignment models capture divergent language properties such as word order
• the use of WFSTs in translation and some other basic NLP tasks
• the extraction of translation rules from parallel text
• various phrase-based translation architectures, including Hiero
• parameter optimization procedures for SMT
• the role of language models in SMT
• the evaluation of SMT systems using automatic metrics
• system combination techniques for SMT

PRACTICAL WORK

The will be two substantial practical exercises associated with this module.

• Practical 1: 2 sessions. Parallel text, alignment models and WFSTs
• Practical 2: 4 sessions. SMT system construction and evaluation

ASSESSMENT

• Written report covering the practical worth 35% of the marks.
• One final take-home exam covering all the material. Final take-home exam will contribute 65% to the final mark. Questions set and marked by Dr. Clark and Dr de Gispert.
RECOMMENDED READING

• SPEECH and LANGUAGE PROCESSING, Jurafsky and Martin, 2nd edition, Chapter 25 on Machine Translation

• The mathematics of statistical machine translation: Parameter estimation, PF Brown, VJ Della Pietra, SA Della Pietra, Computational linguistics, 1993

Last updated: October 2009