Graphical Models

Mark Gales

Lent 2011

Machine Learning for Language Processing: Lecture 3

MPhil in Advanced Computer Science

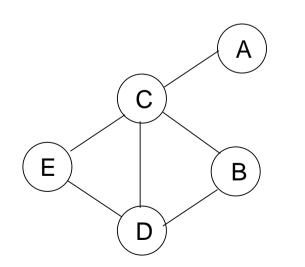
MPhil in Advanced Computer Science

Graphical Models

- Graphical models have their origin in several areas of research
 - a union of graph theory and probability theory
 - framework for representing, reasoning with, and learning complex problems.
- Used for for multivariate (multiple variable) probabilistic systems, encompass:
 - language models (Markov Chains);
 - mixture models;
 - factor analysis;
 - hidden Markov models;
 - Kalman filters
- 4 lectures will examine forms, training and inference with these systems

Basic Notation

- A graph consists of a collection of nodes and edges.
 - Nodes, or vertices, are usually associated with the variables distinction between discrete and continuous ignored in this initial discussion
 - Edges connect nodes to one another.
- For undirected graphs absence of an edge between nodes indicates conditional independence
 - graph can be considered as representing dependencies in the system



- 5 nodes, $\{A, B, C, D, E\}$, 6 edges
- Various operations on sets of these:

-
$$C_1 = \{A, C\}; C_2 = \{B, C, D\}; C_3 = \{C, D, E\}$$

- union: $S = C_1 \cup C_2 = \{A, B, C, D\}$ - intersection: $S = C_1 \cap C_2 = \{C\}$

– removal:
$$\mathcal{C}_1 \setminus \mathcal{S} = \{A\}$$

Conditional Independence

- A fundamental concept in graphical models is the conditional independence.
 - consider three variables, $A,\,B$ and C. We can write

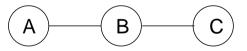
P(A, B, C) = P(A)P(B|A)P(C|B, A)

– if C is conditionally independent of A given B, then we can write

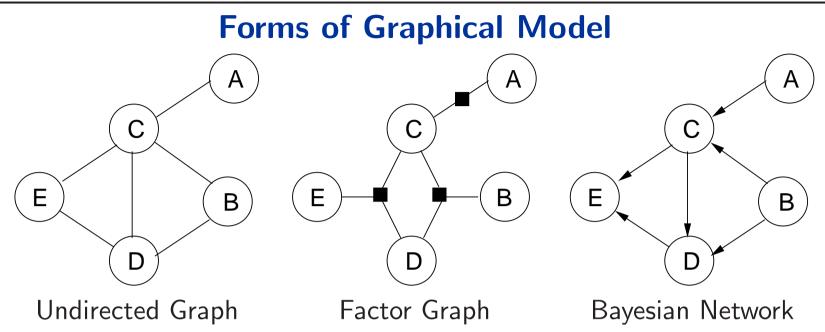
P(A, B, C) = P(A)P(B|A)P(C|B)

– the value of A does not affect the distribution of C if B is known.

• Graphically this can be described as



• Conditional independence is important when modelling highly complex systems.



• For the undirected graph probability calculation based on

$$P(A, B, C, D, E) = \frac{1}{Z} P(A, C) P(B, C, D) P(C, D, E)$$

where \boldsymbol{Z} is the appropriate normalisation term

- this is the same as the product of the three factors in the factor graph

• This course will concentrate on Bayesian Networks

Bayesian Networks

- A specific form of graphical model are Bayesian networks:
 - directed acyclic graphs (DAGs)
 - directed: all connections have arrows associated with them;
 - acyclic: following the arrows around it is not possible to complete a loop
- The main problems that need to be addressed are:
 - inference (from observation it's cloudy infer probability of wet grass).
 - training the models;
 - determining the structure of the network (i.e. what is connected to what)
- The first two issues will be addressed in these lectures.
 - the final problem of is an area of on-going research.

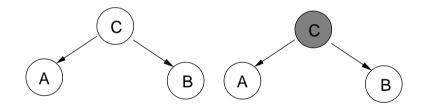
Notation

- In general the variables (nodes) may be split into two groups:
 - observed (shaded) variables are the ones we have knowledge about.
 - unobserved (unshaded) variables are ones we don't know about and therefore have to infer the probability.
- The observed/unobserved variables may differ between training and testing
 - e.g. for supervised training know the class of interest
- We need to find efficient algorithms that allow rapid inference to be made
 - preferably a general scheme that allows inference over any Bayesian network
- First, three basic structures are described in the next slides
 - detail effects of observing one of the variables on the probability

Standard Structures

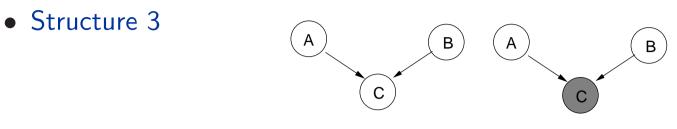
• Structure 1

- C not observed: $P(A, B) = \sum_{C} P(A, B, C) = P(A) \sum_{C} P(C|A)P(B|C)$ then A and B are dependent on each other.
- C = T observed: P(A, B|C = T) = P(A)P(B|C = T)
 - ${\cal A}$ and ${\cal B}$ are then independent. The path is sometimes called blocked.
- Structure 2



- C not observed: $P(A, B) = \sum_{C} P(A, B, C) = \sum_{C} P(C)P(A|C)P(B|C)$ then A and B are dependent on each other.
- C = T observed: P(A, B|C = T) = P(A|C = T)P(B|C = T)
 - \boldsymbol{A} and \boldsymbol{B} are then independent.

Standard Structures (cont)



– C not observed:

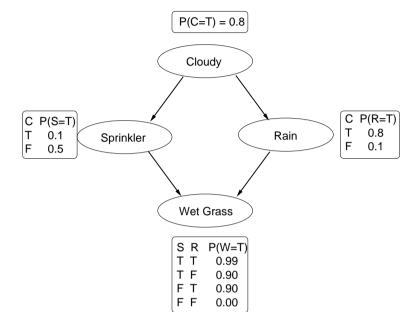
$$P(A, B) = \sum_{C} P(A, B, C) = P(A)P(B)\sum_{C} P(C|A, B) = P(A)P(B)$$

A and B are independent of each other. - C = T observed:

$$P(A, B|C = \mathsf{T}) = \frac{P(A, B, C = \mathsf{T})}{P(C = \mathsf{T})} = \frac{P(C = \mathsf{T}|A, B)P(A)P(B)}{P(C = \mathsf{T})}$$

A and B are not independent of each other if C is observed.

• Two variables are dependent if a common child is observed - explaining away



- Consider the Bayesian network to left
 - whether the grass is wet, \boldsymbol{W}
 - whether the sprinkler has been used, ${\boldsymbol{S}}$
 - whether it has rained, \boldsymbol{R}
 - whether the it is cloudy ${\boldsymbol C}$
- Associated with each node
 - conditional probability table (CPT)
- Yields a set of conditional independence assumptions so that:

P(C, S, R, W) = P(C)P(S|C)P(R|C)P(W|S, R)

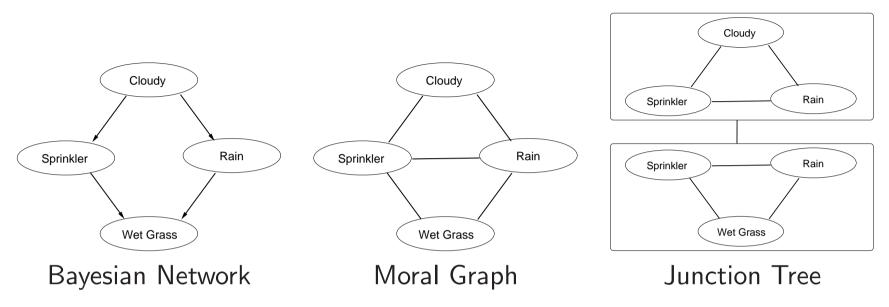
• Possible to use CPTs for inference: Given C = T what is

$$P(W = \mathsf{T} | C = \mathsf{T}) = \sum_{S = \{\mathsf{T},\mathsf{F}\}} \sum_{R = \{\mathsf{T},\mathsf{F}\}} \frac{P(C = \mathsf{T}, S, R, W = \mathsf{T})}{P(C = \mathsf{T})} = 0.7452$$

General Inference

- A general approach for inference with BNs is message passing
 - no time in this course for detailed analysis of general case
 - very brief overview here
- Process involves identifying:
 - Cliques C: fully connected (every node is connected to every other node) subset of all the nodes.
 - Separators S: the subset of the nodes of a clique that are connected to nodes outside the clique.
 - Neighbours \mathcal{N} : the set of neighbours for a particular clique.
- Thus given the value of the separators for a clique it is conditionally independent of all other variables.

Simple Inference Example



- Two cliques: $C_1 = \{C, S, R\}$, $C_2 = \{S, R, W\}$, one separator: $S_{12} = \{S, R\}$
 - pass message between cliques: $\phi_{12}(S_{12}) = \sum_C P(C_1)$ - message is: $\phi_{12}(S_{12}) = P(S|C = T)P(R|C = T)$ F T 0.02 F T 0.72
 - CPT associated with message to the right

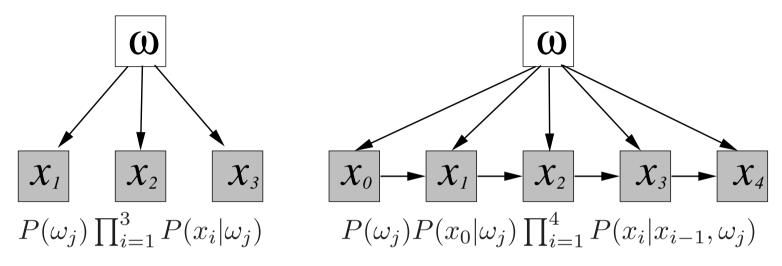
0.18

F

F

Beyond Naive Bayes' Classifier

• Consider classifiers for the class given sequence: x_1, x_2, x_3



- Consider the simple generative classifiers above (with joint distribution)
 - naive-Bayes' classifier on left (conditional independent features given class)
 - for the classifier on the right a bigram model
 - * addition of sequence start feature x_0 (note $P(x_0|\omega_j) = 1$)
 - * addition of sequence end feature x_{d+1} (variable length sequence)
- Decision now based on a more complex model

- this is the approach used for generating (class-specific) language models

Language Modelling

- In order to use Bayes' decision rule need to be able to have the prior of a class
 - many speech and language processing this is the sentence probability $P({\bm w})$
 - examples include speech recognition, machine translation

$$P(\boldsymbol{w}) = P(w_0, w_1, \dots, w_k, w_{K+1}) = \prod_{k=1}^{K+1} P(w_k | w_0, \dots, w_{k-2}, w_{k-1})$$

- K words in sentence w_1, \ldots, w_k
- w_0 is the sentence start marker and w_{K+1} is sentence end marker.
- require word by word probabilities of partial strings given a history
- Can be class-specific topic classification (select topic au given text $m{w}$)

$$\hat{\tau} = \operatorname*{argmax}_{\tau} \left\{ P(\tau | \boldsymbol{w}) \right\} = \operatorname*{argmax}_{\tau} \left\{ P(\boldsymbol{w} | \tau) P(\tau) \right\}$$

N-Gram Language Models

- Consider a task with a vocabulary of V words (LVCSR 65K+)
 - 10-word sentences yield (in theory) V^{10} probabilities to compute
 - not every sequence is valid but number still vast for LVCSR systems

Need to partition histories into appropriate equivalence classes

• Assume words conditionally independent given previous N-1 words: N=2

 $P(\text{bank}|\text{I}, \text{robbed}, \text{the}) \approx P(\text{bank}|\text{I}, \text{fished}, \text{from}, \text{the}) \approx P(\text{bank}|\text{the})$

- simple form of equivalence mappings - a bigram language model

$$P(\boldsymbol{w}) = \prod_{k=1}^{K+1} P(w_k | w_0, \dots, w_{k-2}, w_{k-1}) \approx \prod_{k=1}^{K+1} P(w_k | w_{k-1})$$

N-Gram Language Models

 $\bullet\,$ The simple bigram can be extended to general $N\text{-}{\rm grams}$

$$P(\boldsymbol{w}) = \prod_{k=1}^{K+1} P(w_k | w_0, \dots, w_{k-2}, w_{k-1}) \approx \prod_{k=1}^{K+1} P(w_k | w_{k-N+1}, \dots, w_{k-1})$$

- Number of model parameters scales with the size if N (consider V = 65K):
 - unigram (N=1): $65K^1 = 6.5 \times 10^4$
 - bigram (N=2): $65K^2 = 4.225 \times 10^9$
 - trigram (N=3): $65K^3 = 2.746 \times 10^{14}$
 - 4-gram (N=4): $65K^4 = 1.785 \times 10^{19}$

Web comprises about 20 billion pages - not enough data!

• Long-span models should be more accurate, but large numbers of parameters

A central problem is how to get robust estimates and long-spans?

Modelling Shakespeare

• Jurafsky & Martin: N-gram trained on the complete works of Shakespeare

Unigram

- Every enter now severally so, let
- Will rash been and by I the me loves gentle me not slavish page, the and hour; ill let

Bigram

- What means, sir. I confess she? then all sorts, he is trim, captain.
- The world shall- my lord!

Trigram

- Indeed the duke; and had a very good friend.
- Sweet prince, Fallstaff shall die. Harry of Monmouth's grave.

4-gram

- It cannot be but so.
- Enter Leonato's brother Antonio, and the rest, but seek the weary beds of people sick.

Assessing Language Models

• Often use entropy, H, or perplexity, PP, to assess the LM

$$H = -\sum_{w \in \mathcal{V}} P(w) \log_2(P(w)), \quad PP = 2^H; \ \mathcal{V} \text{ is the set of all possible events}$$

- difficult when incorporating word history into LMs
- not useful to assess how well specific text is modelled with a given LM
- Quality of a LM is usually measures by the test-set perplexity
 - compute the average value of the sentence log-probability (LP)

$$LP = \lim_{K \to \infty} -\frac{1}{K+1} \sum_{k=1}^{K+1} \log_2 P(w_k | w_0 \dots w_{k-2} w_{k-1})$$

- In practice LP must be estimated from a (finite-sized) portion of test text
 - this is a (finite-set) estimate for the entropy
 - the test-set perplexity, PP, can be found as $PP = 2^{LP}$

Language Model Estimation

• Simplest approach to estimating $N\mbox{-}{\rm grams}$ is to count occurrences

$$\hat{P}(w_k|w_i, w_j) = \frac{f(w_i, w_j, w_k)}{\sum_{k=1}^{V} f(w_i, w_j, w_k)} = \frac{f(w_i, w_j, w_k)}{f(w_i, w_j)}$$

f(a, b, c, ...) = number of times that the word sequence (*event*) "a b c ..." occurs in the training data

- This is the maximum likelihood estimate
 - excellent model of the training \dots
 - many possible events will not be seen, zero counts zero probability
 - rare events, $f(w_i, w_j)$ is small, estimates unreliable
- Two solutions discussed here:
 - discounting allocating some "counts" to unseen events
 - backing-off for rare events reduce the size of ${\cal N}$

Maximum Likelihood Training - Example

- As an example take University telephone numbers. Let's assume that
 - 1. All telephone numbers are 6 digits long
 - 2. All numbers start (equally likely) with "33", "74" or "76"
 - 3. All other digits are equally likely

What is the resultant perplexity rates for various N-grams?

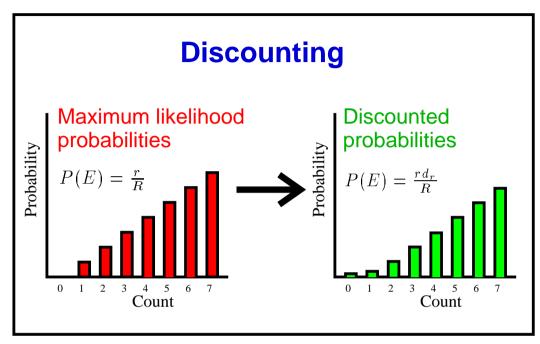
- Experiment using 10,000 or 100 numbers to train (ML), 1000 to test.
 - Perplexity numbers are given below (11 tokens including sentence end):

Language	10000		100	
Model	Train	Test	Train	Test
equal	11.00	11.00	11.00	11.00
unigram	10.04	10.01	10.04	10.04
bigram	7.12	7.13	6.56	∞

Discounting

- Need to reallocate some counts to unseen events
- Must satisfy (valid PMF)

$$\sum_{k=1}^{V} \hat{P}(w_k | w_i, w_j) = 1$$



• General form of discounting

$$\hat{P}(\omega_k | \omega_i, \omega_j) = d(f(\omega_i, \omega_j, \omega_k)) \frac{f(\omega_i, \omega_j, \omega_k)}{f(\omega_i, \omega_j)}$$

- need to decide form of $d(f(\omega_i, \omega_j, \omega_k))$ (and ensure sum-to-one constraint)

Forms of Discounting

- Notation: r=count for an event, $n_r=$ number of N-grams with count r
- Various forms of discounting (Knesser-Ney also popular)
 - Absolute discounting: subtract constant from each count

$$d(r) = (r-b)/r$$

Typically $b = n_1/(n_1 + 2n_2)$ - often applied to all counts

- Linear discounting:

$$d(r) = 1 - (n_1/T_c)$$

where T_c is the total number of events - often applied to all counts.

- Good-Turing discounting: ("mass" observed once $= n_1$, observed $r = rn_r$)

 $r^* = (r+1)n_{r+1}/n_r$; probability estimates based on r^*

unobserved same "mass" as observed once; once same "mass" as twice etc

Backing-Off

- An alternative to using discounting is to use lower N-grams for rare events
 - lower-order $N\operatorname{-gram}$ will yield more reliable estimates
 - for the example of a bigram

$$\hat{P}(w_j|w_i) = \begin{cases} d(f(w_i, w_j)) \frac{f(w_i, w_j)}{f(w_i)} & f(w_i, w_j) > C\\ \alpha(w_i) \hat{P}(w_j) & \text{otherwise} \end{cases}$$

 $\alpha(w_i)$ is the back-off weight, it is chosen to ensure that $\sum_{j=1}^{V} \hat{P}(w_j|w_i) = 1$

• C is the N-gram cut-off point (can be set for each value of N)

– value of ${\boldsymbol{C}}$ also controls the size of the resulting language model

• Note that the back-off weight is computed separately for each history and uses the N-1'th order N-gram count.

Graphical Model Lectures

- The remaining lectures to do with graphical models will cover
- Latent Variable Models and Hidden Markov Models
 - mixture models, hidden Markov models, Viterbi algorithm
- Expectation Maximisation and Variational Approaches
 - EM for mixture models and HMMs, extension to variational approaches
- Condition Random Fields
 - discriminative sequence models, form of features, parameter estimation

