Challenges of Web Search

- Distributed data
 - data is stored on millions of machines with varying network characteristics
- Volatile data
 - new computers and data can be added and removed easily
 - dangling links and relocation problems
- Large volume
- Unstructured and redundant data
 - not all HTML pages are well structured
 - much of the Web is repeated (mirrored or copied)
Challenges of Web Search

- Quality of data
 - data can be false, invalid (e.g. out of date), SPAM
 - poorly written, can contain grammatical errors

- Heterogeneous data
 - multiple media types, multiple formats, different languages

- Unsophisticated users
 - information need may be unclear
 - may have difficulty formulating a useful query

Web Challenges – Size of Vocabulary

- Heap’s law: $V = Kn^\beta$
 - β is typically between 0.4 and 0.6, so vocabulary size V grows roughly with the square root of the text size n

- 99% of distinct words in the VLC2 collection are not dictionary head-words (Hawking, Very Large Scale Information Retrieval)
• A characteristic of the Web is its hyperlink structure
• Web search engines exploit properties of the structure to try and overcome some of the web-specific challenges
• Basic idea: hyperlink structure can be used to infer the validity / popularity / importance of a page
 – similar to citation analysis in academic publishing
 – number of links to a page correspond with page’s importance
 – links coming from an important page are indicators of other important pages
 – Anchor text describes the page
 ∗ can be a useful source of text in addition to the text on the page itself, eg Big Blue → IBM

PageRank

• PageRank is query-independent and provides a global importance score for every page on the web
 – can be calculated once for all queries
 – but can’t be tuned for any one particular query
• PageRank has a simple intuitive interpretation:
 – PageRank score for a page is the probability a random surfer would visit that page
• PageRank is/was used by Google
 – PageRank is combined with other measures such as TF×IDF
• Pages with many backlinks are typically more important than pages with few backlinks
• But pages with few backlinks can also be important
 – some links, e.g. from Yahoo, are more important than other links

PageRank Scoring

• Consider a browser doing a random walk on the Web
 – start at a random page
 – at each step go to another page along one of the out-links, each link having equal probability
• Each page has a long-term visit rate (the “steady state”)
 – use the visit rate as the score
Simplified PageRank

\[R(u) = d \sum_{v : v \rightarrow u} \frac{R(v)}{N_v} \]

- \(u \) is a web page
- \(N_v \) is the number of links from \(v \)

Teleporting

- Web is full of dead-ends
 - “long-term visit rate” doesn’t make sense
- A page may have no in-links
- Teleporting: jump to any page on the Web at random (with equal probability \(1/N \))
 - when there are no out-links use teleporting
 - otherwise use teleporting with probability \(\alpha \), or follow a link chosen at random with probability \(1 - \alpha \)
\[R(u) = (1 - \alpha) \sum_{v: v \rightarrow u} \frac{R(v)}{N_v} + \alpha E(u) \]

- \(E(u) \) is a prior distribution over web pages
- Typical value of \(\alpha \) is 0.1
- \(R(u) \) can be calculated using an iterative algorithm

Probabilistic Interpretation of PageRank

- PageRank models the behaviour of a "random surfer"
- Surfer randomly clicks on links, sometimes jumping to any page at random based on \(E \)
- Probability of a random jump is \(\alpha \)
- PageRank for a page is the probability that the random surfer finds himself on that page
A Markov chain consists of \(n \) states plus an \(n \times n \) transition probability matrix \(P \).

At each step, we are in exactly one of the states.

For \(1 \leq i, j \leq n \), the matrix entry \(P_{ij} \) tells us the probability of \(j \) being the next state given the current state is \(i \).

For all \(i \), \(\sum_{j=1}^{n} P_{ij} = 1 \).

Markov chains are abstractions of random walks – crucial property is that the distribution over next states only depends on the current state, and not how the state was arrived at.

Random Surfer as a Markov Chain

Each state represents a web page; each transition probability represents the probability of moving from one page to another – transition probabilities include teleportation.

Let \(\bar{x}^t \) be the probability vector for time \(t \).

\(x_i^t \) is the probability of being in state \(i \) at time \(t \).

We can compute the surfer’s distribution over the web pages at any time given only the initial distribution and the transition probability matrix \(P \).

\[
\bar{x}^t = \bar{x}^0 P^t
\]
A Markov chain is *ergodic* if the following two conditions hold:

- For any two states i, j, there is an integer $k \geq 2$ such that there is a sequence of k states $s_1 = i, s_2, \ldots, s_k = j$ such that $\forall l, 1 \leq l \leq k - 1$, the transition probability $P_{s_l,s_{l+1}} > 0$

- There exists a time T_0 such that for all states j, and for all choices of start state i in the Markov chain, and for all $t > T_0$, the probability of being in state j at time t is > 0

Theorem: For any ergodic Markov chain, there is a unique steady-state probability distribution over the states, π, such that if $N(i, t)$ is the number of visits to state i in t steps, then

$$\lim_{t \to \infty} \frac{N(i, t)}{t} = \pi(i),$$

where $\pi(i) > 0$ is the steady-state probability for state i.

(Introduction to IR, ch.21)

- $\pi(i)$ is the PageRank for state/web page i
• The *left eigenvectors* of the transition probability matrix P are N-vectors π such that

$$\pi P = \lambda \pi$$

• We want the eigenvector with eigenvalue 1 (this is known as the *principal* left eigenvector of the matrix P, and it has the largest eigenvalue)

• This makes π the steady-state distribution we’re looking for

PageRank Computation

• There are many ways to calculate the principal left eigenvector of the transition matrix

• One simple way:
 – Start with any distribution, eg $x = (1, 0, \ldots, 0)$
 – After one step, distribution is $x P$
 – After two steps, distribution is $x P^2$
 – For large k, $x P^k = a$, where a is the steady state
 – Algorithm: keep multiplying x by P until the product looks stable
• Putting all the probability mass from E onto a single page produces a personalised importance ranking relative to that page.

• E gives the probabilities of jumping to pages via a random jump.

• Putting all the mass on one page emphasises pages "close to" that page.

HITS

• Hypertext Induced Topic Search (Kleinberg)
 – “Hyperlinks encode a considerable amount of latent human judgement”
 – “The creator of page p, by including a link to page q, has in some measure conferred authority on q”

• Example: consider the query "Harvard"
 – www.harvard.edu may not use Harvard most often
 – but many pages containing the term Harvard will point at www.harvard.edu

• But some links are created for reasons other than conferral of authority, e.g. navigational purposes, advertisements.

• Need also to balance criteria of relevance and popularity
 – e.g. lots of pages point at www.google.com
Hubs and Authorities (for a given query)

- An **authority** is a page which has many relevant pages pointing at it
 - authorities are likely to be relevant (precision)
 - there should be overlap between the sets of pages which point at authorities
- A **hub** is a page which links to many authorities
 - hubs help find relevant pages (recall)
 - hubs ”pull-together” authorities on a common topic
 - hubs allow us to ignore non-relevant pages with a high in-degree
- Relationship between hubs and authorities is mutually reinforcing:
 - a good hub points to many good authorities
 - a good authority is pointed at by many good hubs

Finding Hubs and Authorities

- Suppose we are given some query σ
- We wish to find authoritative pages with respect to σ, restricting computation to a relatively small set of pages:
 - recover top-n pages using some search engine: the *root set*
 - add pages which link to the root set and pages which the root set link: the *base set*
- Base set might contain a few thousand documents, with many authorities
 - how do we find the authorities?
• Each page p has a hub weight h_p and authority weight a_p
• Initially set all weights to 1
• Update weights iteratively:

$$h_p \leftarrow \sum_{q:p \rightarrow q} a_q$$

$$a_p \leftarrow \sum_{q:q \rightarrow p} h_q$$

– $p \rightarrow q$ means p points at q
– weights are normalised after each iteration
– can prove this algorithm converges

• Pages for a given query can then be weighted by their hub and authority weights

Calculating Hub and Authority Weights

Loop(G, k):
G: a collection of n linked pages
K: a natural number
Let z denote the vector $(1,1,1,...,1) \in \mathbb{R}^n$
Set $a_0 := z$
Set $h_0 := z$
For $i = 1,2,...,k$
Update α_{i-1} obtaining new weights α'_i
Update \bar{h}_{i-1} obtaining new weights \bar{h}'_i
Normalise α'_i obtaining α_i
Normalise \bar{h}'_i obtaining \bar{h}_i
Return (α_k, \bar{h}_k)
Example Results for HITS

<table>
<thead>
<tr>
<th>Query</th>
<th>Top Authorities</th>
</tr>
</thead>
<tbody>
<tr>
<td>censorship</td>
<td>.378 http://www.eff.org/ The Electronic Frontier Foundation</td>
</tr>
<tr>
<td></td>
<td>.344 http://www.eff.org/blueribbon.html Campaign for online free speech</td>
</tr>
<tr>
<td></td>
<td>.238 http://www.cdt.org/ Center for democracy & technology</td>
</tr>
<tr>
<td></td>
<td>.235 http://www.vtw.org/ Voters telecommunications watch</td>
</tr>
<tr>
<td>"search engines"</td>
<td>.346 http://www.yahoo.com/ Yahoo</td>
</tr>
<tr>
<td></td>
<td>.291 http://www.excite.com/ Excite</td>
</tr>
<tr>
<td></td>
<td>.239 http://www.mckinley.com/ Welcome to Magellan</td>
</tr>
<tr>
<td></td>
<td>.231 http://www.lycos.com/ Lycos home page</td>
</tr>
<tr>
<td></td>
<td>.231 http://www.altavista.digital.com AltaVista</td>
</tr>
<tr>
<td>Gates</td>
<td>.643 http://www.roadahead.com/ Bill Gates: The Road Ahead</td>
</tr>
<tr>
<td></td>
<td>.458 http://www.microsoft.com/ Welcome to Microsoft</td>
</tr>
<tr>
<td></td>
<td>.440 http://www.microsoft.com/corpinfo</td>
</tr>
</tbody>
</table>

References

- Introduction to Information Retrieval (online), ch. 21, book material and accompanying slides
- Authoritative Sources in a Hyperlinked Environment (1999), Jon Kleinberg, Journal of the ACM
- The PageRank Citation Ranking: Bringing Order to the Web (1998), Lawrence Page et al.
- The Anatomy of a Large-Scale Hypertextual Web Search Engine, Sergey Brin and Lawrence Page

available online