Why study IR?

- Many reasons, but if you want a one-word answer:
Why study IR?

• Many reasons, but if you want a one-word answer:

 Google

 • ... examines billions of web pages
 • ... returns results in less than half a second
 • ... valued at gazillions of dollars by the public market
How does Google work?

• Only Google know, but . . .
• Uses hundreds of thousands of machines
• Uses some sophisticated computer science (efficient storage and searching of large datasets)
• Uses an innovative ranking algorithm (based on the hypertext structure of the web)

How does Google work?

• Underlying Google is basic IR technology
• The Web is indexed
 – an index links terms with pages
• A user’s information need is represented as a query
• Queries are matched against web pages
 – Google attempts to return pages which are relevant to the information need
IR is more than Web search

• IR is much older than the Web (1950s –)
• The Web has some unique characteristics which make it a special case
• IR deals with tasks other than searching
 – categorising documents
 – summarising documents
 – answering questions
 – ...

Motivation for IR

• Searching literature databases
• Web search
• Volume of information stored electronically is growing at ever faster rates
 – need to search it
 – categorise it
 – filter it
 – translate it
 – summarise it
 – draw conclusions from it
 – ...
• Biomedical literature is growing at a startling rate
 – Around 1,000,000 new articles are added to Medline each year

• Tasks:
 – literature search
 – creation and maintenance of biological databases
 – knowledge discovery from text mining

Document Retrieval

• IR is often used to mean Document Retrieval

• Primary task of an IR system:
 retrieve documents with content that is relevant to a user’s information need

• How do we represent content?
• How do we represent information need?
• How do we decide on relevance?
• Representation/Indexing
 – Representation of documents and requests:
 * bag of words?
 * stop words, upper/lower case, ...
 * query language

<table>
<thead>
<tr>
<th>Query: “Laws of thought”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amongst the matches:</td>
</tr>
<tr>
<td>“And you thought law enforcement was boring?”</td>
</tr>
<tr>
<td>“Savannah NOW: Local News - Mother-in-law thought mechanic was a ...”</td>
</tr>
</tbody>
</table>

– Storing the documents, building the index

• Searching
 – Is a document relevant to the query?
 * models of IR: Boolean, vector-space, probabilistic
 – Efficient algorithms for searching large datasets

What IR is not

• An IR system is not a Database Management System
• A DBMS stores and processes well-defined data
• A search in a DBMS is exact / deterministic
• Search in an IR system is probabilistic
 – inherent uncertainty exists at all stages of IR: information need, formulating query, searching
“The normal presumption in document retrieval is that the user wishes to find out about a topic or subject and is thus, while interested in data or facts, not yet in a position to specify precisely what data or facts are required.” (Sparck Jones and Willett, eds., p.85)

A Simple Retrieval Model

- **Bag of Words** approach
 - A document is represented as a bag of words
 - Word order is ignored
 - Syntactic structure is ignored
 - ...
- Relevance is determined by comparing the words in the document with the words in a query
- Simple approach has been very effective
Vector Space Model

- Provides a **ranking** of documents with respect to a query
- Documents and queries are vectors in a **multi-dimensional information space**

Key questions:
- What forms the dimensions of the space?
 - terms, concepts, . . .
- How is magnitude along a dimension measured?
- How are document and query vectors compared?

Coordinate Matching

- Document relevance measured by the number of query terms appearing in a document
- Terms provide the dimensions
 - Large vocabulary ⇒ high dimensional space
- Length along a dimension is either 0 or 1
- Similarity measure is the dot-product of the query and document vectors
Simple Example

- Term vocabulary: (England, Australia, Pietersen, Hoggard, run, wicket, catch, century, collapse)

- Documents:
 - d1: Australia collapse as Hoggard takes 6 wickets
 - d2: Pietersen’s century puts Australia on back foot

- Queries:
 - q1: {Hoggard, Australia, wickets}

- Query, document similarity
 - q1 · d1 = (0,1,0,1,0,1,0,0,0) · (0,1,0,1,0,1,0,0,1) = 3
 - q1 · d2 = (0,1,0,1,0,1,0,0,0) · (0,1,1,0,0,0,0,1,0) = 1

Term Frequency (TF)

- Coordinate matching does not consider the frequency of query terms in documents

- Term vocabulary: (England, Australia, Pietersen, Hoggard, run, wicket, catch, century, collapse)

- d1: Australia collapsed as Hoggard took 6 wickets. Flintoff praised Hoggard for his excellent line and length.

- q1: {Hoggard, Australia, wickets}

- q1 · d1 = (0,1,0,1,0,1,0,0,0) · (0,1,0,2,0,1,0,0,1) = 4
Inverse Document Frequency (IDF)

• Coordinate matching does not consider the number of documents query terms appear in
• Term vocabulary: (England, Australia, Pietersen, Hoggard, run, wicket, catch, century, collapse)
• d2: Flintoff took the wicket of Australia’s Ponting, to give him 2 wickets for the innings and 5 wickets for the match.
• q1: \{Hoggard, Australia, wickets\}
• \(q_1 \cdot d_2 = (0,1,0,1,0,0,0,0,0) \cdot (0,1,0,0,0,3,0,0,0) = 4\)

Inverse Document Frequency

• Assume wicket appears in 100 documents in total, Hoggard appears in 5, and Australia in 10 (ignoring IDF of other terms)
• d1: Australia collapsed as Hoggard took 6 wickets. Flintoff praised Hoggard for his excellent line and length.
• d2: Flintoff took the wicket of Australia’s Ponting, to give him 2 wickets for the innings and 5 wickets for the match.
• q1: \{Hoggard, Australia, wickets\}
• \(q_1 \cdot d_1 = (0,1,0,1,0,0,0,0,0) \cdot (0,1/10,0,2/5,0,1/100,0,0,1) = 0.411\)
• \(q_1 \cdot d_2 = (0,1,0,1,0,1,0,0,0) \cdot (0,1/10,0,0,5,0,3/100,0,0,0) = 0.13\)
• Terms in documents can have high term frequencies simply because the document is long

• Normalise similarity measure, M, by Euclidean length:

$$M(Q, D) = \frac{Q \cdot D}{|Q||D|}$$

Vector Space Similarity

• The terms in the query vector and document vector are weighted:

$$Q \cdot D = \sum_t w_{Q,t} \cdot w_{D,t}$$

• $w_{D,t} = TF \times IDF$

• Vector of weights determines position of document in the information space
Vector Space Similarity

\[M(Q, D) = \frac{Q \cdot D}{|Q||D|} = \frac{1}{|Q||D|} \sum_t w_{Q,t} \cdot w_{D,t} \]

where \(|D| = \sqrt{\sum_t w_{D,t}^2} = \text{cosine}(Q, D) \)

- Similarity measure is the cosine of the angle between the query and document vectors

Remarks

- TF is typically some monotonically increasing function of term frequency (similarly for IDF)
- TF-IDF scheme determines units of each dimension in the information space
- Many variants for calculating TF \(\cdot \) IDF exist (Salton and Buckley, 1988, in Sparck-Jones and Willett, eds.)
- Alternative similarity measures to Cosine exist
- Vector Space models perform extremely well for general document collections
• Want a system which “understands” documents and query and matches them?
 – use semantic representation and logical inference
• Until recently such technology was not robust / did not scale to large unrestricted text collections
• But:
 – useful for restricted domains
 – now used for some large-scale tasks (QA, IE)
• Is a “deep” approach appropriate for document retrieval?
 – Powerset (Natural Language Search) think so (see www.powerset.com)

Tasks in IR (broadly conceived)

• Document Retrieval (ad-hoc retrieval)
• Document Filtering or Routing
• Document Categorisation
• Document Summarising
• Information Extraction
• Question Answering
Other Topics

- Multimedia IR (images, sound, . . .)
 - but text can be of different types
 (web pages, e-mails, . . .)
- User-system interaction (HCI)
- Browsing

Evaluation

- IR has largely been treated as an empirical, or engineering, task
- Evaluation has played an important role in the development of IR
- DARPA/NIST Text Retrieval Conference (TREC)
 - began in 1992
 - has many participants
 - uses large text databases
 - considers many tasks in addition to document retrieval
“Indexing, retrieving and organizing text by probabilistic or statistical techniques that reflect semantics without actually understanding”

(James Allan, Umass)

Brief History of IR

• 1960s
 – development of basic techniques in automated indexing and searching
• 1970s
 – Development of statistical methods / vector space models
 – Split from NLP/AI
 – Operational Boolean systems
• 1980s
 – Increased computing power
 – Spread of operational systems
• 1990s and 2000s
 – Large-scale full text IR systems for retrieval and filtering
 – Dominance of statistical ranking approaches
 – Web search
 – Multimedia and multilingual applications
 – Question Answering
 – TREC evaluations

Reading List

• Course book
 – Introduction to Information Retrieval
 Manning, Raghavan, Schütze

• Supplementary books (not required reading)
 – Modern Information Retrieval, Baeza-Yates & Ribeiro-Neto
 – Readings in Information Retrieval, Sparck Jones & Willett eds.
 – Managing Gigabytes, Witten, Moffat & Bell
 – Information Retrieval, van Rijsbergen
 available online: http://www.dcs.gla.ac.uk/Keith/Preface.html