Different kinds of system evaluation/research

- Analytic/Empirical
 - ‘Analytic’ means reasoning and working by *analysis*
 - ‘Empirical’ means making *observations* or *measurements*
- Formative/Summative
 - Formative research (earlier in a project) evaluates & refines *ideas*
 - Summative research (later in a project) tests & evaluates *systems*
- Qualitative/Quantitative
 - Qualitative data involves *words* (or pictures), and can provides broad / detailed information about a small number of users and their context.
 - Quantitative data involves *numbers*, and can be used to compare data from larger numbers of users, or measure some specific aspect of their behaviour.
From cognitive theory of exploratory learning

- User sets a **goal** to be accomplished, in terms of the expected system capabilities.
- User searches interface for currently available **actions**.
- User **selects** the action that seems likely to make progress toward the goal.
- User **performs** the selected action and **evaluates** the feedback given by the system, looking for evidence that progress has been made.
 - The user learns what to do in future by observing what the system does
Evaluation procedure

• Manually simulate an *imaginary* user carrying out the stages of the model.
 – relies on knowing enough about this person to anticipate their prior knowledge / mental model.
• Evaluators move through task, telling a *story* about why user would choose each action.
• Evaluate the story according to:
 – user’s current *goal*.
 – *accessibility* of correct control.
 – quality of *match* between label and goal.
 – *feedback* after the action.

GOMS

Formative Analytic Quantitative

- Can be used with partial implementation
- No measurement or observation
- Provides numerical data
GOMS: Goals, Operators, Methods, Selection

- **Goals:** what is the user trying to do?
- **Operators:** what actions must they take?
 - Home hands on keyboard or mouse
 - Key press & release (tapping keyboard or mouse button)
 - Point using mouse/lightpen etc
- **Methods:** what have they learned in the past?
- **Selection:** how will they choose what to do?
 - Mental preparation

Interviews and Ethnographic Studies

Formative Empirical Qualitative

- Can be used from start of project
- Involves observation
- Descriptive, not numerical
Structured interviews

- Additional to requirements definition meetings.
- Encourage participation from a range of users.
- *Structured* in order to:
 - collect data into common framework
 - ensure all important aspects covered
- Newman & Lamming’s proposed structure:
 - *activities, methods and connections*
 - *measures, exceptions and domain knowledge*
- Semi-structured interviews:
 - Ask further questions to probe topics of interest

Observational task analysis

- Less intrusive than interviews
- Potentially more objective
- Inspired huge debate between cognitive and sociological views of HCI: see Lucy Suchman
- Harder work:
 - transcription from video protocol
 - relative duration of sub-tasks
 - transitions between sub-tasks
 - interruptions of tasks
 - alternatively, transcription from audio recording
Ethnographic field studies

- Field observation to understand users and context
- Division of labour and its coordination
- Plans and procedures
 - When do they succeed and fail?
- Where paperwork meets computer work
- Local knowledge and everyday skills
- Spatial and temporal organisation
- Organisational memory
 - How do people learn to do their work?
 - Do formal methods match reality?
- See Beyer & Holtzblatt, *Contextual Design*

Controlled Experiments

Summative Empirical Quantitative

- Suitable for end of project
- Involves measurements
- Provides numerical data
Controlled experiments

• Based on a number of observations:
 – How long did Fred take to order a CD from Amazon?
 – How many errors did he make?
• But every observation is different.
• So we compare averages:
 – over a number of trials
 – over a range of people (experimental participants)
• Results often have a normal distribution

(statistics: histograms & distributions)
Experimental treatments

- A treatment is some modification that we expect to have an effect on usability:
 - How long does Fred take to order a CD using this great new interface, compared to the crummy old one?
 - Expected answer: usually faster, but not always

![Graph showing new and old interfaces with time taken to order CD](image)

Hypothesis testing

- Null hypothesis:
 - What is the probability that this amount of difference in means could be random variation between samples?
 - Hopefully very low ($p < 0.01$, or 1%)
 - Use a statistical significance test, such as the t-test.

![Graph showing only random variation, observed effect, and very significant effect of treatment](image)
Sources of variation

• People differ, so quantitative approaches to HCI must be statistical.

• We must distinguish sources of variation:
 – The effect of the treatment - what we want to measure.
 – Individual differences between subjects (e.g. IQ).
 – Distractions during the trial (e.g. sneezing).
 – Motivation of the subject (e.g. Mondays).
 – Accidental intervention by experimenter (e.g. hints).
 – Other random factors.

• Good experimental design and analysis isolates these.

Effect size – means and error bars

• Difference of two means may be statistically significant (if sample has low variance), without being very interesting.
 – But mean differences must *always* be reported with a confidence interval, or plotted with ‘error bars’

![Graph showing means and error bars for two experiments.](image)

Experiment A: ‘significant’ but boring
Experiment B: interesting, but treat with caution
Problems with controlled experiments

- Huge variation between people (~200%)
- Mistakes mean huge variation in accuracy (~1000%)
- Improvements are often small (~20%)
- ... or even negative (because new & unfamiliar)
- Most people give up using a new product at learning time anyway, so quantitative measures of ‘expert’ speed and accuracy performance may not be of great commercial interest
 - We don’t care if it’s slow, so long as users like it
 - (and user’s perception of speed is inaccurate anyway)

Surveys and Questionnaires

Self-report measures
Surveys and questionnaires

- Standardised *psychometric instruments* can be used
 - To evaluate mental states such as fatigue, stress, confusion
 - To assess individual differences (IQ, introversion ...)
- Alternatively, questionnaires can be used to collect *subjective* or *self-report* evaluation from users
 - as in market research / opinion polls
 - ‘I like this system’ (and my friend who made it)
 - ‘I found it intuitive’ (and I like my friend)
- This kind of data can be of limited value
 - Can be biased, and self-report is often inaccurate anyway
 - It’s hard to design questionnaires to avoid these problems

Questionnaire design

- *Open questions* ...
 - Capture richer qualitative information
 - But require a *coding frame* to structure & compare data
- *Closed questions* ...
 - Yes/No or Likert scale (opinion from 1 to 5)
 - Quantitative data easier to compare, but limited insight
- Collecting survey data via interviews gives more insight but questionnaires are faster
 - Can collect data from a larger sample
 - Remember to test questionnaires with a pilot study, as it’s easier to get them wrong than with interviews
Product Field Testing

Summative Empirical Qualitative

- Suitable for end of project
- Involves observation
- Descriptive, not numerical

Product field testing

- Brings advantages of task analysis/ethnography to assessment and testing phases of product cycle.
- Case study: Intuit Inc.’s Quicken product
 - originally based on interviews and observation
 - follow-me-home programme after product release:
 - random selection of shrink-wrap buyers;
 - observation while reading manuals, installing, using.
 - Quicken success was attributed to the programme:
 - survived predatory competition from Microsoft Money
 - later valued at $15 billion.
Non-Evaluation

Bad evaluation techniques

- Purely *affective reports*: 20 subjects answered the question “Do you like this nice new user interface more than that ugly old one?”
 - Apparently empirical/quantitative
- No testing at all: “It was decided that more colours should be used in order to increase usability.”
 - Apparently formative/analytic
- Introspective reports made by a single subject (often the programmer or project manager): “I find it far more intuitive to do it this way, and the users will too.”
 - Apparently analytic/qualitative
Evaluation in Part II projects

Summary of analytic options (analysing your design)

• Cognitive Walkthrough
 – Normally used in formative contexts – if you do have a working system, then why aren’t you observing a real user (far more informative than simulating/imagining one)?
 – But Cognitive Walkthrough can be a valuable time-saving precaution before user studies start, to fix blatant usability bugs

• GOMS
 – unlikely you’ll have alternative detailed UI designs in advance
 – If you have a working system, a controlled observation is superior

• Cognitive Dimensions
 – better suited to less structured tasks than CW & GOMS, which rely on predefined user goal & task structure
Summary of empirical options (collecting data)

- Interviews/ethnography
 - could be useful in formative/preparation phase
- Think-aloud / Wizard of Oz
 - valuable for both paper prototypes and working systems
 - can uncover usability bugs if analysed rigorously
- Controlled experiments
 - appears more ‘scientific’, but only:
 - If you can measure the important attributes in a meaningful way
 - If you test significance and report confidence interval of observed means
- Questionnaires
 - be clear what you are measuring – is self-report accurate?
- Field Testing
 - controlled release (and data collection?) may be possible
- See human participants guidance for empirical methods

Evaluation options for non-interactive systems

- Should your evaluation be analytic or empirical?
 - How consistent / well-structured is your analytic framework?
 - What are you measuring & why? Are the measurements compatible with your claims (validity)?
- Should your evaluation be formative or summative in nature?
 - If formative – couldn’t you finish your project?
 - If summative – are the criteria internal or external?
- Is your data quantitative or qualitative?
 - Descriptive aspects of the system, or engineering performance data?
 - If qualitative, how will you establish objectivity (i.e. that this is not simply your own opinion)?