
 

Appendix D  

What Every Computer Scientist 
Should Know About Floating-
Point Arithmetic  

Note – This appendix is an edited reprint of the paper What Every 
Computer Scientist Should Know About Floating-Point Arithmetic, by 
David Goldberg, published in the March, 1991 issue of Computing 
Surveys. Copyright 1991, Association for Computing Machinery, Inc., 
reprinted by permission. 

Abstract  

Floating-point arithmetic is considered an esoteric subject by many 
people. This is rather surprising because floating-point is ubiquitous in 
computer systems. Almost every language has a floating-point datatype; 
computers from PCs to supercomputers have floating-point accelerators; 
most compilers will be called upon to compile floating-point algorithms 
from time to time; and virtually every operating system must respond to 
floating-point exceptions such as overflow. This paper presents a tutorial 
on those aspects of floating-point that have a direct impact on designers 
of computer systems. It begins with background on floating-point 
representation and rounding error, continues with a discussion of the 
IEEE floating-point standard, and concludes with numerous examples of 
how computer builders can better support floating-point.  

Categories and Subject Descriptors: (Primary) C.0 [Computer Systems 
Organization]: General -- instruction set design; D.3.4 [Programming 
Languages]: Processors -- compilers, optimization; G.1.0 [Numerical 
Analysis]: General -- computer arithmetic, error analysis, numerical 
algorithms (Secondary)  

D.2.1 [Software Engineering]: Requirements/Specifications -- 
languages; D.3.4 Programming Languages]: Formal Definitions and 
Theory -- semantics; D.4.1 Operating Systems]: Process Management -- 

  Numerical Computation Guide 
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synchronization .  

General Terms: Algorithms, Design, Languages  

Additional Key Words and Phrases: Denormalized number, exception, 
floating-point, floating-point standard, gradual underflow, guard digit, 
NaN, overflow, relative error, rounding error, rounding mode, ulp, 
underflow.  

Introduction  

Builders of computer systems often need information about floating-
point arithmetic. There are, however, remarkably few sources of detailed 
information about it. One of the few books on the subject, Floating-Point 
Computation  by Pat Sterbenz, is long out of print. This paper is a tutorial 
on those aspects of floating-point arithmetic (floating-point hereafter) 
that have a direct connection to systems building. It consists of three 
loosely connected parts. The first section, Rounding Error, discusses the 
implications of using different rounding strategies for the basic 
operations of addition, subtraction, multiplication and division. It also 
contains background information on the two methods of measuring 
rounding error, ulps and relative error. The second part discusses the 
IEEE floating-point standard, which is becoming rapidly accepted by 
commercial hardware manufacturers. Included in the IEEE standard is 
the rounding method for basic operations. The discussion of the standard 
draws on the material in the section Rounding Error. The third part 
discusses the connections between floating-point and the design of 
various aspects of computer systems. Topics include instruction set 
design, optimizing compilers and exception handling.  

I have tried to avoid making statements about floating-point without 
also giving reasons why the statements are true, especially since the 
justifications involve nothing more complicated than elementary 
calculus. Those explanations that are not central to the main argument 
have been grouped into a section called "The Details," so that they can 
be skipped if desired. In particular, the proofs of many of the theorems 
appear in this section. The end of each proof is marked with the z 
symbol. When a proof is not included, the z appears immediately 
following the statement of the theorem.  

Rounding Error  

Squeezing infinitely many real numbers into a finite number of bits 
requires an approximate representation. Although there are infinitely 
many integers, in most programs the result of integer computations can 
be stored in 32 bits. In contrast, given any fixed number of bits, most 
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calculations with real numbers will produce quantities that cannot be 
exactly represented using that many bits. Therefore the result of a 
floating-point calculation must often be rounded in order to fit back into 
its finite representation. This rounding error is the characteristic feature 
of floating-point computation. The section Relative Error and Ulps 
describes how it is measured.  

Since most floating-point calculations have rounding error anyway, does 
it matter if the basic arithmetic operations introduce a little bit more 
rounding error than necessary? That question is a main theme 
throughout this section. The section Guard Digits discusses guard digits, 
a means of reducing the error when subtracting two nearby numbers. 
Guard digits were considered sufficiently important by IBM that in 1968 
it added a guard digit to the double precision format in the System/360 
architecture (single precision already had a guard digit), and retrofitted 
all existing machines in the field. Two examples are given to illustrate 
the utility of guard digits.  

The IEEE standard goes further than just requiring the use of a guard 
digit. It gives an algorithm for addition, subtraction, multiplication, 
division and square root, and requires that implementations produce the 
same result as that algorithm. Thus, when a program is moved from one 
machine to another, the results of the basic operations will be the same 
in every bit if both machines support the IEEE standard. This greatly 
simplifies the porting of programs. Other uses of this precise 
specification are given in Exactly Rounded Operations.  

Floating-point Formats  

Several different representations of real numbers have been proposed, 
but by far the most widely used is the floating-point representation.1 
Floating-point representations have a base  (which is always assumed 
to be even) and a precision p. If  = 10 and p = 3, then the number 0.1 
is represented as 1.00 × 10-1. If  = 2 and p = 24, then the decimal 
number 0.1 cannot be represented exactly, but is approximately 
1.10011001100110011001101 × 2-4.  

In general, a floating-point number will be represented as ± d.dd... d  × 
e, where d.dd... d  is called the significand2 and has p digits. More 

precisely ± d0 . d1 d2 ... dp-1 × e represents the number  

(1)  . 

The term floating-point number will be used to mean a real number that 
can be exactly represented in the format under discussion. Two other 
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parameters associated with floating-point representations are the largest 
and smallest allowable exponents, emax and emin. Since there are p 

possible significands, and emax
 - emin

 + 1 possible exponents, a floating-

point number can be encoded in  

  

bits, where the final +1 is for the sign bit. The precise encoding is not 
important for now.  

There are two reasons why a real number might not be exactly 
representable as a floating-point number. The most common situation is 
illustrated by the decimal number 0.1. Although it has a finite decimal 
representation, in binary it has an infinite repeating representation. Thus 
when  = 2, the number 0.1 lies strictly between two floating-point 
numbers and is exactly representable by neither of them. A less common 
situation is that a real number is out of range, that is, its absolute value 
is larger than  ×  or smaller than 1.0 ×  . Most of this paper 
discusses issues due to the first reason. However, numbers that are out 
of range will be discussed in the sections Infinity and Denormalized 
Numbers.  

Floating-point representations are not necessarily unique. For example, 
both 0.01 × 101 and 1.00 × 10-1 represent 0.1. If the leading digit is 
nonzero (d0  0 in equation (1) above), then the representation is said 

to be normalized. The floating-point number 1.00 × 10-1 is normalized, 
while 0.01 × 101 is not. When  = 2, p = 3, emin

 = -1 and emax
 = 2 

there are 16 normalized floating-point numbers, as shown in FIGURE D-
1. The bold hash marks correspond to numbers whose significand is 
1.00. Requiring that a floating-point representation be normalized makes 
the representation unique. Unfortunately, this restriction makes it 
impossible to represent zero! A natural way to represent 0 is with 1.0 × 

 , since this preserves the fact that the numerical ordering of 
nonnegative real numbers corresponds to the lexicographic ordering of 
their floating-point representations.3 When the exponent is stored in a k 
bit field, that means that only 2k - 1 values are available for use as 
exponents, since one must be reserved to represent 0.  

Note that the × in a floating-point number is part of the notation, and 
different from a floating-point multiply operation. The meaning of the × 
symbol should be clear from the context. For example, the expression 
(2.5 × 10-3) × (4.0 × 102) involves only a single floating-point 
multiplication.  
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FIGURE D-1 Normalized numbers when  = 2, p = 3, emin = -1, emax = 2 

Relative Error and Ulps  

Since rounding error is inherent in floating-point computation, it is 
important to have a way to measure this error. Consider the floating-
point format with  = 10 and p = 3, which will be used throughout this 
section. If the result of a floating-point computation is 3.12 × 10-2, and 
the answer when computed to infinite precision is .0314, it is clear that 
this is in error by 2 units in the last place. Similarly, if the real 
number .0314159 is represented as 3.14 × 10-2, then it is in error 
by .159 units in the last place. In general, if the floating-point number 

d.d...d × e is used to represent z, then it is in error by d.d...d - (z/ e)
p-1 units in the last place.4, 5 The term ulps will be used as shorthand 

for "units in the last place." If the result of a calculation is the floating-
point number nearest to the correct result, it still might be in error by as 
much as .5 ulp. Another way to measure the difference between a 
floating-point number and the real number it is approximating is relative 
error, which is simply the difference between the two numbers divided 
by the real number. For example the relative error committed when 
approximating 3.14159 by 3.14 × 100 is .00159/3.14159   .0005.  

To compute the relative error that corresponds to .5 ulp, observe that 
when a real number is approximated by the closest possible floating-
point number d.dd...dd × e, the error can be as large as 0.00...00 ' × 

e, where ' is the digit /2, there are p units in the significand of the 
floating-point number, and p units of 0 in the significand of the error. 
This error is (( /2) -p) × e. Since numbers of the form d.dd...dd × e 
all have the same absolute error, but have values that range between e 
and  × e, the relative error ranges between (( /2) -p) × e/ e and ((
/2) -p) × e/ e+1. That is,  

(2)   

In particular, the relative error corresponding to .5 ulp can vary by a 
factor of . This factor is called the wobble. Setting  = ( /2) -p to the 
largest of the bounds in (2) above, we can say that when a real number 
is rounded to the closest floating-point number, the relative error is 
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always bounded by e, which is referred to as machine epsilon.  

In the example above, the relative error was .00159/3.14159  .0005. 
In order to avoid such small numbers, the relative error is normally 
written as a factor times , which in this case is  = ( /2) -p = 5(10)-3 
= .005. Thus the relative error would be expressed as 
(.00159/3.14159)/.005)   0.1 .  

To illustrate the difference between ulps and relative error, consider the 
real number x = 12.35. It is approximated by  = 1.24 × 101. The error 
is 0.5 ulps, the relative error is 0.8 . Next consider the computation 8  . 
The exact value is 8x = 98.8, while the computed value is 8  = 9.92 × 
101. The error is now 4.0 ulps, but the relative error is still 0.8 . The 
error measured in ulps is 8 times larger, even though the relative error 
is the same. In general, when the base is , a fixed relative error 
expressed in ulps can wobble by a factor of up to . And conversely, as 
equation (2) above shows, a fixed error of .5 ulps results in a relative 
error that can wobble by .  

The most natural way to measure rounding error is in ulps. For example 
rounding to the nearest floating-point number corresponds to an error of 
less than or equal to .5 ulp. However, when analyzing the rounding error 
caused by various formulas, relative error is a better measure. A good 
illustration of this is the analysis in the section Theorem 9. Since  can 
overestimate the effect of rounding to the nearest floating-point number 
by the wobble factor of , error estimates of formulas will be tighter on 
machines with a small .  

When only the order of magnitude of rounding error is of interest, ulps 
and  may be used interchangeably, since they differ by at most a factor 
of . For example, when a floating-point number is in error by n ulps, 
that means that the number of contaminated digits is log  n. If the 
relative error in a computation is n , then  

(3) contaminated digits  log  n.

 

Guard Digits  

One method of computing the difference between two floating-point 
numbers is to compute the difference exactly and then round it to the 
nearest floating-point number. This is very expensive if the operands 
differ greatly in size. Assuming p = 3, 2.15 × 1012 - 1.25 × 10-5 would 
be calculated as  

x = 2.15 × 1012 
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y = .0000000000000000125 × 1012 

x - y = 2.1499999999999999875 × 1012  

which rounds to 2.15 × 1012. Rather than using all these digits, floating-
point hardware normally operates on a fixed number of digits. Suppose 
that the number of digits kept is p, and that when the smaller operand is 
shifted right, digits are simply discarded (as opposed to rounding). Then 
2.15 × 1012 - 1.25 × 10-5 becomes  

x = 2.15 × 1012 
 

y = 0.00 × 1012 

x - y = 2.15 × 1012  

The answer is exactly the same as if the difference had been computed 
exactly and then rounded. Take another example: 10.1 - 9.93. This 
becomes  

x = 1.01 × 101 
 

y = 0.99 × 101 

x - y = .02 × 101  

The correct answer is .17, so the computed difference is off by 30 ulps 
and is wrong in every digit! How bad can the error be?  

Theorem 1  

Using a floating-point format with parameters  and p, and computing 
differences using p digits, the relative error of the result can be as large 
as  - 1.  

Proof  

A relative error of  - 1 in the expression x - y occurs when x = 1.00...0 
and y = . ... , where  =  - 1. Here y has p digits (all equal to ). 
The exact difference is x - y = -p. However, when computing the 
answer using only p digits, the rightmost digit of y gets shifted off, and 
so the computed difference is -p+1. Thus the error is -p - -p+1 = -p (
 - 1), and the relative error is -p(  - 1)/ -p =  - 1. z  

When =2, the relative error can be as large as the result, and when 
=10, it can be 9 times larger. Or to put it another way, when =2, 

equation (3) shows that the number of contaminated digits is log2(1/ ) 

= log2(2
p) = p. That is, all of the p digits in the result are wrong! 
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Suppose that one extra digit is added to guard against this situation (a 
guard digit). That is, the smaller number is truncated to p + 1 digits, and 
then the result of the subtraction is rounded to p digits. With a guard 
digit, the previous example becomes  

x = 1.010 × 101
 

y = 0.993 × 101 

x - y = .017 × 101  

and the answer is exact. With a single guard digit, the relative error of 
the result may be greater than , as in 110 - 8.59.  

x = 1.10 × 102 
 

y = .085 × 102 

x - y = 1.015 × 102  

This rounds to 102, compared with the correct answer of 101.41, for a 
relative error of .006, which is greater than  = .005. In general, the 
relative error of the result can be only slightly larger than . More 
precisely,  

Theorem 2  

If x and y are floating-point numbers in a format with parameters  and 
p, and if subtraction is done with p + 1 digits (i.e. one guard digit), then 
the relative rounding error in the result is less than 2 .  

This theorem will be proven in Rounding Error. Addition is included in the 
above theorem since x and y can be positive or negative.  

Cancellation   

The last section can be summarized by saying that without a guard digit, 
the relative error committed when subtracting two nearby quantities can 
be very large. In other words, the evaluation of any expression 
containing a subtraction (or an addition of quantities with opposite signs) 
could result in a relative error so large that all the digits are meaningless 
(Theorem 1). When subtracting nearby quantities, the most significant 
digits in the operands match and cancel each other. There are two kinds 
of cancellation: catastrophic and benign.  

Catastrophic cancellation occurs when the operands are subject to 
rounding errors. For example in the quadratic formula, the expression b2 
- 4ac occurs. The quantities b2 and 4ac are subject to rounding errors 
since they are the results of floating-point multiplications. Suppose that 
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they are rounded to the nearest floating-point number, and so are 
accurate to within .5 ulp. When they are subtracted, cancellation can 
cause many of the accurate digits to disappear, leaving behind mainly 
digits contaminated by rounding error. Hence the difference might have 
an error of many ulps. For example, consider b = 3.34, a = 1.22, and c 
= 2.28. The exact value of b2 - 4ac is .0292. But b2 rounds to 11.2 and 
4ac rounds to 11.1, hence the final answer is .1 which is an error by 70 
ulps, even though 11.2 - 11.1 is exactly equal to .16. The subtraction did 
not introduce any error, but rather exposed the error introduced in the 
earlier multiplications.  

Benign cancellation occurs when subtracting exactly known quantities. If 
x and y have no rounding error, then by Theorem 2 if the subtraction is 
done with a guard digit, the difference x-y has a very small relative error 
(less than 2 ).  

A formula that exhibits catastrophic cancellation can sometimes be 
rearranged to eliminate the problem. Again consider the quadratic 
formula  

(4)   

When  , then  does not involve a cancellation and  

 .  

But the other addition (subtraction) in one of the formulas will have a 
catastrophic cancellation. To avoid this, multiply the numerator and 
denominator of r1 by  

  

(and similarly for r2) to obtain 
 

(5)   

If  and  , then computing r1 using formula (4) will involve a 

cancellation. Therefore, use formula (5) for computing r1 and (4) for r2. 

On the other hand, if b < 0, use (4) for computing r1 and (5) for r2.  

The expression x2 - y2 is another formula that exhibits catastrophic 
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cancellation. It is more accurate to evaluate it as (x - y)(x + y).7 Unlike 
the quadratic formula, this improved form still has a subtraction, but it is 
a benign cancellation of quantities without rounding error, not a 
catastrophic one. By Theorem 2, the relative error in x - y is at most 2 . 
The same is true of x + y. Multiplying two quantities with a small relative 
error results in a product with a small relative error (see the section 
Rounding Error).  

In order to avoid confusion between exact and computed values, the 
following notation is used. Whereas x - y denotes the exact difference of 
x and y, x  y denotes the computed difference (i.e., with rounding 
error). Similarly , , and  denote computed addition, multiplication, 
and division, respectively. All caps indicate the computed value of a 
function, as in LN(x) or SQRT(x). Lowercase functions and traditional 
mathematical notation denote their exact values as in ln(x) and  .  

Although (x  y)  (x  y) is an excellent approximation to x2 - y2, the 
floating-point numbers x and y might themselves be approximations to 
some true quantities  and  . For example,  and  might be exactly 
known decimal numbers that cannot be expressed exactly in binary. In 
this case, even though x    y is a good approximation to x - y, it can 
have a huge relative error compared to the true expression  , and so 
the advantage of (x + y)(x - y) over x2 - y2 is not as dramatic. Since 
computing (x + y)(x - y) is about the same amount of work as computing 
x2 - y2, it is clearly the preferred form in this case. In general, however, 
replacing a catastrophic cancellation by a benign one is not worthwhile if 
the expense is large, because the input is often (but not always) an 
approximation. But eliminating a cancellation entirely (as in the 
quadratic formula) is worthwhile even if the data are not exact. 
Throughout this paper, it will be assumed that the floating-point inputs 
to an algorithm are exact and that the results are computed as 
accurately as possible.  

The expression x2 - y2 is more accurate when rewritten as (x - y)(x + y) 
because a catastrophic cancellation is replaced with a benign one. We 
next present more interesting examples of formulas exhibiting 
catastrophic cancellation that can be rewritten to exhibit only benign 
cancellation.  

The area of a triangle can be expressed directly in terms of the lengths 
of its sides a, b, and c as  

(6)   

(Suppose the triangle is very flat; that is, a  b + c. Then s  a, and the 
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term (s - a) in formula (6) subtracts two nearby numbers, one of which 
may have rounding error. For example, if a = 9.0, b = c = 4.53, the 
correct value of s is 9.03 and A is 2.342.... Even though the computed 
value of s (9.05) is in error by only 2 ulps, the computed value of A is 
3.04, an error of 70 ulps.  

There is a way to rewrite formula (6) so that it will return accurate 
results even for flat triangles [Kahan 1986]. It is  

(7)   

If a, b, and c do not satisfy a  b  c, rename them before applying (7). 
It is straightforward to check that the right-hand sides of (6) and (7) are 
algebraically identical. Using the values of a, b, and c above gives a 
computed area of 2.35, which is 1 ulp in error and much more accurate 
than the first formula.  

Although formula (7) is much more accurate than (6) for this example, it 
would be nice to know how well (7) performs in general.  

Theorem 3  

The rounding error incurred when using (7) to compute the area of a 
triangle is at most 11 , provided that subtraction is performed with a 
guard digit, e   .005, and that square roots are computed to within 1/2 
ulp.  

The condition that e < .005 is met in virtually every actual floating-point 
system. For example when  = 2, p  8 ensures that e < .005, and 
when  = 10, p   3 is enough.  

In statements like Theorem 3 that discuss the relative error of an 
expression, it is understood that the expression is computed using 
floating-point arithmetic. In particular, the relative error is actually of 
the expression  

(8) SQRT((a  (b  c))  (c  (a  b))  (c  (a  b))  (a  (b  c)))  4 

Because of the cumbersome nature of (8), in the statement of theorems 
we will usually say the computed value of E rather than writing out E 
with circle notation.  

Error bounds are usually too pessimistic. In the numerical example given 
above, the computed value of (7) is 2.35, compared with a true value of 
2.34216 for a relative error of 0.7 , which is much less than 11 . The 
main reason for computing error bounds is not to get precise bounds but 
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rather to verify that the formula does not contain numerical problems.  

A final example of an expression that can be rewritten to use benign 
cancellation is (1 + x)n, where  . This expression arises in financial 
calculations. Consider depositing $100 every day into a bank account 
that earns an annual interest rate of 6%, compounded daily. If n = 365 
and i = .06, the amount of money accumulated at the end of one year is  

100   

dollars. If this is computed using  = 2 and p = 24, the result is 
$37615.45 compared to the exact answer of $37614.05, a discrepancy 
of $1.40. The reason for the problem is easy to see. The expression 1 + 
i/n involves adding 1 to .0001643836, so the low order bits of i/n are 
lost. This rounding error is amplified when 1 + i/n is raised to the nth 
power.  

The troublesome expression (1 + i/n)n can be rewritten as enln(1 + i/n), 
where now the problem is to compute ln(1 + x) for small x. One 
approach is to use the approximation ln(1 + x)  x, in which case the 
payment becomes $37617.26, which is off by $3.21 and even less 
accurate than the obvious formula. But there is a way to compute ln(1 + 
x) very accurately, as Theorem 4 shows [Hewlett-Packard 1982]. This 
formula yields $37614.07, accurate to within two cents!  

Theorem 4 assumes that LN(x) approximates ln(x) to within 1/2 ulp. The 
problem it solves is that when x is small, LN(1  x) is not close to ln(1 + 
x) because 1  x has lost the information in the low order bits of x. That 
is, the computed value of ln(1 + x) is not close to its actual value when 

 .  

Theorem 4  

If ln(1 + x) is computed using the formula 

  

the relative error is at most 5  when 0  x < 3/4, provided subtraction 
is performed with a guard digit, e < 0.1, and ln is computed to within 
1/2 ulp.  

This formula will work for any value of x but is only interesting for  , 
which is where catastrophic cancellation occurs in the naive formula ln(1 
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+ x). Although the formula may seem mysterious, there is a simple 
explanation for why it works. Write ln(1 + x) as  

 .  

The left hand factor can be computed exactly, but the right hand factor µ
(x) = ln(1 + x)/x will suffer a large rounding error when adding 1 to x. 
However, µ is almost constant, since ln(1 + x)  x. So changing x 
slightly will not introduce much error. In other words, if  , computing 

 will be a good approximation to xµ(x) = ln(1 + x). Is there a value 
for  for which  and  can be computed accurately? There is; namely 
 = (1  x)  1, because then 1 +  is exactly equal to 1  x.  

The results of this section can be summarized by saying that a guard 
digit guarantees accuracy when nearby precisely known quantities are 
subtracted (benign cancellation). Sometimes a formula that gives 
inaccurate results can be rewritten to have much higher numerical 
accuracy by using benign cancellation; however, the procedure only 
works if subtraction is performed using a guard digit. The price of a 
guard digit is not high, because it merely requires making the adder one 
bit wider. For a 54 bit double precision adder, the additional cost is less 
than 2%. For this price, you gain the ability to run many algorithms such 
as formula (6) for computing the area of a triangle and the expression ln
(1 + x). Although most modern computers have a guard digit, there are 
a few (such as Cray systems) that do not.  

Exactly Rounded Operations  

When floating-point operations are done with a guard digit, they are not 
as accurate as if they were computed exactly then rounded to the 
nearest floating-point number. Operations performed in this manner will 
be called exactly rounded.8 The example immediately preceding 
Theorem 2 shows that a single guard digit will not always give exactly 
rounded results. The previous section gave several examples of 
algorithms that require a guard digit in order to work properly. This 
section gives examples of algorithms that require exact rounding.  

So far, the definition of rounding has not been given. Rounding is 
straightforward, with the exception of how to round halfway cases; for 
example, should 12.5 round to 12 or 13? One school of thought divides 
the 10 digits in half, letting {0, 1, 2, 3, 4} round down, and {5, 6, 7, 8, 
9} round up; thus 12.5 would round to 13. This is how rounding works 
on Digital Equipment Corporation's VAX computers. Another school of 
thought says that since numbers ending in 5 are halfway between two 
possible roundings, they should round down half the time and round up 
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the other half. One way of obtaining this 50% behavior to require that 
the rounded result have its least significant digit be even. Thus 12.5 
rounds to 12 rather than 13 because 2 is even. Which of these methods 
is best, round up or round to even? Reiser and Knuth [1975] offer the 
following reason for preferring round to even.  

Theorem 5  

Let x and y be floating-point numbers, and define x0 = x, x1 = (x0  y) 

 y, ..., x
n
 = (x

n-1
    y)  y. If  and  are exactly rounded using 

round to even, then either xn = x for all n or xn = x1 for all n  1. z  

To clarify this result, consider  = 10, p = 3 and let x = 1.00, y = -.555. 
When rounding up, the sequence becomes  

x0  y = 1.56, x1 = 1.56  .555 = 1.01, x1    y = 1.01  .555 = 1.57,

 

and each successive value of xn increases by .01, until xn = 9.45 (n  

845)9. Under round to even, xn is always 1.00. This example suggests 

that when using the round up rule, computations can gradually drift 
upward, whereas when using round to even the theorem says this 
cannot happen. Throughout the rest of this paper, round to even will be 
used.  

One application of exact rounding occurs in multiple precision arithmetic. 
There are two basic approaches to higher precision. One approach 
represents floating-point numbers using a very large significand, which 
is stored in an array of words, and codes the routines for manipulating 
these numbers in assembly language. The second approach represents 
higher precision floating-point numbers as an array of ordinary floating-
point numbers, where adding the elements of the array in infinite 
precision recovers the high precision floating-point number. It is this 
second approach that will be discussed here. The advantage of using an 
array of floating-point numbers is that it can be coded portably in a high 
level language, but it requires exactly rounded arithmetic.  

The key to multiplication in this system is representing a product xy as a 
sum, where each summand has the same precision as x and y. This can 
be done by splitting x and y. Writing x = xh + xl and y = yh + yl, the 

exact product is  

xy = xh yh + xh yl + xl yh + xl yl. 

 

If x and y have p bit significands, the summands will also have p bit 
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significands provided that xl, xh, yh, yl can be represented using [p/2] 

bits. When p is even, it is easy to find a splitting. The number x0.x1 ... xp 

- 1
 can be written as the sum of x

0
.x1

 ... xp/2 - 1
 and 0.0 ... 0xp/2

 ... xp -

 1. When p is odd, this simple splitting method will not work. An extra bit 

can, however, be gained by using negative numbers. For example, if  = 
2, p = 5, and x = .10111, x can be split as x

h
 = .11 and x

l
 = -.00001. 

There is more than one way to split a number. A splitting method that is 
easy to compute is due to Dekker [1971], but it requires more than a 
single guard digit.  

Theorem 6  

Let p be the floating-point precision, with the restriction that p is even 
when  > 2, and assume that floating-point operations are exactly 
rounded. Then if k = [p/2] is half the precision (rounded up) and m = k 
+ 1, x can be split as x = x

h
 + x

l
, where  

xh = (m  x)    (m  x  x), xl = x  xh, 

 

and each xi is representable using [p/2] bits of precision. 
 

To see how this theorem works in an example, let  = 10, p = 4, b = 
3.476, a = 3.463, and c = 3.479. Then b2 - ac rounded to the nearest 
floating-point number is .03480, while b  b = 12.08, a  c = 12.05, 
and so the computed value of b2 - ac is .03. This is an error of 480 ulps. 
Using Theorem 6 to write b = 3.5 - .024, a = 3.5 - .037, and c = 3.5 - 
.021, b2 becomes 3.52 - 2 × 3.5 × .024 + .0242. Each summand is 
exact, so b2 = 12.25 - .168 + .000576, where the sum is left 
unevaluated at this point. Similarly, ac = 3.52 - (3.5 × .037 + 3.5 
× .021) + .037 × .021 = 12.25 - .2030 +.000777. Finally, subtracting 
these two series term by term gives an estimate for b2 - ac of 0 

 .0350    .000201 = .03480, which is identical to the exactly rounded 
result. To show that Theorem 6 really requires exact rounding, consider 
p = 3,  = 2, and x = 7. Then m = 5, mx = 35, and m   x = 32. If 
subtraction is performed with a single guard digit, then (m   x)   x = 
28. Therefore, x

h
 = 4 and x

l
 = 3, hence x

l
 is not representable with [p/2] 

= 1 bit.  

As a final example of exact rounding, consider dividing m by 10. The 
result is a floating-point number that will in general not be equal to 
m/10. When  = 2, multiplying m/10 by 10 will restore m, provided exact 
rounding is being used. Actually, a more general fact (due to Kahan) is 
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true. The proof is ingenious, but readers not interested in such details 
can skip ahead to section The IEEE Standard.  

Theorem 7  

When  = 2, if m and n are integers with |m| < 2p - 1 and n has the 
special form n = 2i + 2j, then (m  n)  n = m, provided floating-point 
operations are exactly rounded.  

Proof  

Scaling by a power of two is harmless, since it changes only the 
exponent, not the significand. If q = m/n, then scale n so that 2p - 1   n 
< 2p and scale m so that 1/2 < q < 1. Thus, 2p - 2 < m < 2p. Since m has 
p significant bits, it has at most one bit to the right of the binary point. 
Changing the sign of m is harmless, so assume that q > 0.  
If  = m  n, to prove the theorem requires showing that  

(9)   

That is because m has at most 1 bit right of the binary point, so n  will 
round to m. To deal with the halfway case when |n  - m| = 1/4, note 
that since the initial unscaled m had |m| < 2p - 1, its low-order bit was 0, 
so the low-order bit of the scaled m is also 0. Thus, halfway cases will 
round to m.  
Suppose that q = .q1q2

 ..., and let  = .q1q2
 ... qp

1. To estimate |n  - 

m|, first compute   

|  - q| = |N/2p + 1 - m/n|, 

 

where N is an odd integer. Since n = 2i + 2j and 2p - 1   n < 2p, it must 
be that n = 2p - 1 + 2k for some k  p - 2, and thus 

 . 

The numerator is an integer, and since N is odd, it is in fact an odd 
integer. Thus,  

|  - q|  1/(n2p + 1 - k). 

 

Assume q <  (the case q >  is similar).10 Then n  < m, and 
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|m-n  |= m-n  = n(q-  ) = n(q-(  -2-p-1))   

 

=(2p-1+2k)2-p-1-2-p-1+k =  
 

This establishes (9) and proves the theorem.11 z 

 

The theorem holds true for any base , as long as 2i + 2j is replaced by 
i + j. As  gets larger, however, denominators of the form i + j are 

farther and farther apart.  

We are now in a position to answer the question, Does it matter if the 
basic arithmetic operations introduce a little more rounding error than 
necessary? The answer is that it does matter, because accurate basic 
operations enable us to prove that formulas are "correct" in the sense 
they have a small relative error. The section Cancellation discussed 
several algorithms that require guard digits to produce correct results in 
this sense. If the input to those formulas are numbers representing 
imprecise measurements, however, the bounds of Theorems 3 and 4 
become less interesting. The reason is that the benign cancellation x - y 
can become catastrophic if x and y are only approximations to some 
measured quantity. But accurate operations are useful even in the face 
of inexact data, because they enable us to establish exact relationships 
like those discussed in Theorems 6 and 7. These are useful even if every 
floating-point variable is only an approximation to some actual value.  

The IEEE Standard  

There are two different IEEE standards for floating-point computation. 
IEEE 754 is a binary standard that requires  = 2, p = 24 for single 
precision and p = 53 for double precision [IEEE 1987]. It also specifies 
the precise layout of bits in a single and double precision. IEEE 854 
allows either  = 2 or  = 10 and unlike 754, does not specify how 
floating-point numbers are encoded into bits [Cody et al. 1984]. It does 
not require a particular value for p, but instead it specifies constraints on 
the allowable values of p for single and double precision. The term IEEE 
Standard will be used when discussing properties common to both 
standards.  

This section provides a tour of the IEEE standard. Each subsection 
discusses one aspect of the standard and why it was included. It is not 
the purpose of this paper to argue that the IEEE standard is the best 
possible floating-point standard but rather to accept the standard as 
given and provide an introduction to its use. For full details consult the 
standards themselves [IEEE 1987; Cody et al. 1984].  

Page 17 of 87What Every Computer Scientist Should Know About Floating-Point Arithmetic

1/23/2002file://L:\Technical%20Reference\Floating%20point%20arithmetic\What%20Every%20Computer%20Scientist%20Should%20Know%20About%20Floating...



Formats and Operations  

Base  

It is clear why IEEE 854 allows  = 10. Base ten is how humans 
exchange and think about numbers. Using  = 10 is especially 
appropriate for calculators, where the result of each operation is 
displayed by the calculator in decimal.  

There are several reasons why IEEE 854 requires that if the base is not 
10, it must be 2. The section Relative Error and Ulps mentioned one 
reason: the results of error analyses are much tighter when  is 2 
because a rounding error of .5 ulp wobbles by a factor of  when 
computed as a relative error, and error analyses are almost always 
simpler when based on relative error. A related reason has to do with 
the effective precision for large bases. Consider  = 16, p = 1 compared 
to  = 2, p = 4. Both systems have 4 bits of significand. Consider the 
computation of 15/8. When  = 2, 15 is represented as 1.111 × 23, and 
15/8 as 1.111 × 20. So 15/8 is exact. However, when  = 16, 15 is 
represented as F × 160, where F is the hexadecimal digit for 15. But 
15/8 is represented as 1 × 160, which has only one bit correct. In 
general, base 16 can lose up to 3 bits, so that a precision of p 
hexadecimal digits can have an effective precision as low as 4p - 3 
rather than 4p binary bits. Since large values of  have these problems, 
why did IBM choose  = 16 for its system/370? Only IBM knows for 
sure, but there are two possible reasons. The first is increased exponent 
range. Single precision on the system/370 has  = 16, p = 6. Hence the 
significand requires 24 bits. Since this must fit into 32 bits, this leaves 7 
bits for the exponent and one for the sign bit. Thus the magnitude of 
representable numbers ranges from about  to about  =  . To 
get a similar exponent range when  = 2 would require 9 bits of 
exponent, leaving only 22 bits for the significand. However, it was just 
pointed out that when  = 16, the effective precision can be as low as 4p 
- 3 = 21 bits. Even worse, when  = 2 it is possible to gain an extra bit 
of precision (as explained later in this section), so the  = 2 machine 
has 23 bits of precision to compare with a range of 21 - 24 bits for the  
= 16 machine.  

Another possible explanation for choosing  = 16 has to do with shifting. 
When adding two floating-point numbers, if their exponents are 
different, one of the significands will have to be shifted to make the 
radix points line up, slowing down the operation. In the  = 16, p = 1 
system, all the numbers between 1 and 15 have the same exponent, 

and so no shifting is required when adding any of the (  ) = 105 
possible pairs of distinct numbers from this set. However, in the  = 2, p 

Page 18 of 87What Every Computer Scientist Should Know About Floating-Point Arithmetic

1/23/2002file://L:\Technical%20Reference\Floating%20point%20arithmetic\What%20Every%20Computer%20Scientist%20Should%20Know%20About%20Floating...



= 4 system, these numbers have exponents ranging from 0 to 3, and 
shifting is required for 70 of the 105 pairs.  

In most modern hardware, the performance gained by avoiding a shift 
for a subset of operands is negligible, and so the small wobble of  = 2 
makes it the preferable base. Another advantage of using  = 2 is that 
there is a way to gain an extra bit of significance.12 Since floating-point 
numbers are always normalized, the most significant bit of the 
significand is always 1, and there is no reason to waste a bit of storage 
representing it. Formats that use this trick are said to have a hidden bit. 
It was already pointed out in Floating-point Formats that this requires a 
special convention for 0. The method given there was that an exponent 
of emin - 1 and a significand of all zeros represents not  , but 

rather 0.  

IEEE 754 single precision is encoded in 32 bits using 1 bit for the sign, 8 
bits for the exponent, and 23 bits for the significand. However, it uses a 
hidden bit, so the significand is 24 bits (p = 24), even though it is 
encoded using only 23 bits.  

Precision  

The IEEE standard defines four different precisions: single, double, 
single-extended, and double-extended. In IEEE 754, single and double 
precision correspond roughly to what most floating-point hardware 
provides. Single precision occupies a single 32 bit word, double precision 
two consecutive 32 bit words. Extended precision is a format that offers 
at least a little extra precision and exponent range (TABLE D-1).  

TABLE D-1   IEEE 754 Format Parameters

Parameter

Format

Single Single-
Extended

Double Double-
Extended

p 24  32 53  64 

emax +127  1023 +1023 > 16383 

emin -126  -1022 -1022  -16382 

Exponent width in 
bits 

8  11 11  15 

Format width in 
bits 

32  43 64  79 
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The IEEE standard only specifies a lower bound on how many extra bits 
extended precision provides. The minimum allowable double-extended 
format is sometimes referred to as 80-bit format, even though the table 
shows it using 79 bits. The reason is that hardware implementations of 
extended precision normally do not use a hidden bit, and so would use 
80 rather than 79 bits.13  

The standard puts the most emphasis on extended precision, making no 
recommendation concerning double precision, but strongly 
recommending that Implementations should support the extended 
format corresponding to the widest basic format supported, ...  

One motivation for extended precision comes from calculators, which will 
often display 10 digits, but use 13 digits internally. By displaying only 10 
of the 13 digits, the calculator appears to the user as a "black box" that 
computes exponentials, cosines, etc. to 10 digits of accuracy. For the 
calculator to compute functions like exp, log and cos to within 10 digits 
with reasonable efficiency, it needs a few extra digits to work with. It is 
not hard to find a simple rational expression that approximates log with 
an error of 500 units in the last place. Thus computing with 13 digits 
gives an answer correct to 10 digits. By keeping these extra 3 digits 
hidden, the calculator presents a simple model to the operator.  

Extended precision in the IEEE standard serves a similar function. It 
enables libraries to efficiently compute quantities to within about .5 ulp 
in single (or double) precision, giving the user of those libraries a simple 
model, namely that each primitive operation, be it a simple multiply or 
an invocation of log, returns a value accurate to within about .5 ulp. 
However, when using extended precision, it is important to make sure 
that its use is transparent to the user. For example, on a calculator, if 
the internal representation of a displayed value is not rounded to the 
same precision as the display, then the result of further operations will 
depend on the hidden digits and appear unpredictable to the user.  

To illustrate extended precision further, consider the problem of 
converting between IEEE 754 single precision and decimal. Ideally, 
single precision numbers will be printed with enough digits so that when 
the decimal number is read back in, the single precision number can be 
recovered. It turns out that 9 decimal digits are enough to recover a 
single precision binary number (see the section Binary to Decimal 
Conversion). When converting a decimal number back to its unique 
binary representation, a rounding error as small as 1 ulp is fatal, 
because it will give the wrong answer. Here is a situation where 
extended precision is vital for an efficient algorithm. When single-
extended is available, a very straightforward method exists for 
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converting a decimal number to a single precision binary one. First read 
in the 9 decimal digits as an integer N, ignoring the decimal point. From 
TABLE D-1, p   32, and since 109 < 232  4.3 × 109, N can be 
represented exactly in single-extended. Next find the appropriate power 
10P necessary to scale N. This will be a combination of the exponent of 
the decimal number, together with the position of the (up until now) 
ignored decimal point. Compute 10|P|. If |P|   13, then this is also 
represented exactly, because 1013 = 213513, and 513 < 232. Finally 
multiply (or divide if p < 0) N and 10|P|. If this last operation is done 
exactly, then the closest binary number is recovered. The section Binary 
to Decimal Conversion shows how to do the last multiply (or divide) 
exactly. Thus for |P|  13, the use of the single-extended format 
enables 9-digit decimal numbers to be converted to the closest binary 
number (i.e. exactly rounded). If |P| > 13, then single-extended is not 
enough for the above algorithm to always compute the exactly rounded 
binary equivalent, but Coonen [1984] shows that it is enough to 
guarantee that the conversion of binary to decimal and back will recover 
the original binary number.  

If double precision is supported, then the algorithm above would be run 
in double precision rather than single-extended, but to convert double 
precision to a 17-digit decimal number and back would require the 
double-extended format.  

Exponent  

Since the exponent can be positive or negative, some method must be 
chosen to represent its sign. Two common methods of representing 
signed numbers are sign/magnitude and two's complement. 
Sign/magnitude is the system used for the sign of the significand in the 
IEEE formats: one bit is used to hold the sign, the rest of the bits 
represent the magnitude of the number. The two's complement 
representation is often used in integer arithmetic. In this scheme, a 
number in the range [-2p-1, 2p-1 - 1] is represented by the smallest 
nonnegative number that is congruent to it modulo 2p.  

The IEEE binary standard does not use either of these methods to 
represent the exponent, but instead uses a biased representation. In the 
case of single precision, where the exponent is stored in 8 bits, the bias 
is 127 (for double precision it is 1023). What this means is that if  is 
the value of the exponent bits interpreted as an unsigned integer, then 
the exponent of the floating-point number is  - 127. This is often called 
the unbiased exponent to distinguish from the biased exponent  .  
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Referring to TABLE D-1, single precision has emax = 127 and emin = -

126. The reason for having |emin| < emax is so that the reciprocal of the 

smallest number  will not overflow. Although it is true that the 
reciprocal of the largest number will underflow, underflow is usually less 
serious than overflow. The section Base explained that e

min
 - 1 is used 

for representing 0, and Special Quantities will introduce a use for emax + 

1. In IEEE single precision, this means that the biased exponents range 
between emin - 1 = -127 and emax + 1 = 128, whereas the unbiased 

exponents range between 0 and 255, which are exactly the nonnegative 
numbers that can be represented using 8 bits.  

Operations  

The IEEE standard requires that the result of addition, subtraction, 
multiplication and division be exactly rounded. That is, the result must 
be computed exactly and then rounded to the nearest floating-point 
number (using round to even). The section Guard Digits pointed out that 
computing the exact difference or sum of two floating-point numbers can 
be very expensive when their exponents are substantially different. That 
section introduced guard digits, which provide a practical way of 
computing differences while guaranteeing that the relative error is small. 
However, computing with a single guard digit will not always give the 
same answer as computing the exact result and then rounding. By 
introducing a second guard digit and a third sticky  bit, differences can be 
computed at only a little more cost than with a single guard digit, but 
the result is the same as if the difference were computed exactly and 
then rounded [Goldberg 1990]. Thus the standard can be implemented 
efficiently.  

One reason for completely specifying the results of arithmetic operations 
is to improve the portability of software. When a program is moved 
between two machines and both support IEEE arithmetic, then if any 
intermediate result differs, it must be because of software bugs, not 
from differences in arithmetic. Another advantage of precise specification 
is that it makes it easier to reason about floating-point. Proofs about 
floating-point are hard enough, without having to deal with multiple 
cases arising from multiple kinds of arithmetic. Just as integer programs 
can be proven to be correct, so can floating-point programs, although 
what is proven in that case is that the rounding error of the result 
satisfies certain bounds. Theorem 4 is an example of such a proof. These 
proofs are made much easier when the operations being reasoned about 
are precisely specified. Once an algorithm is proven to be correct for 
IEEE arithmetic, it will work correctly on any machine supporting the 
IEEE standard.  
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Brown [1981] has proposed axioms for floating-point that include most 
of the existing floating-point hardware. However, proofs in this system 
cannot verify the algorithms of sections Cancellation and Exactly 
Rounded Operations, which require features not present on all hardware. 
Furthermore, Brown's axioms are more complex than simply defining 
operations to be performed exactly and then rounded. Thus proving 
theorems from Brown's axioms is usually more difficult than proving 
them assuming operations are exactly rounded.  

There is not complete agreement on what operations a floating-point 
standard should cover. In addition to the basic operations +, -, × and /, 
the IEEE standard also specifies that square root, remainder, and 
conversion between integer and floating-point be correctly rounded. It 
also requires that conversion between internal formats and decimal be 
correctly rounded (except for very large numbers). Kulisch and Miranker 
[1986] have proposed adding inner product to the list of operations that 
are precisely specified. They note that when inner products are 
computed in IEEE arithmetic, the final answer can be quite wrong. For 
example sums are a special case of inner products, and the sum ((2 × 
10-30 + 1030) - 1030) - 10-30 is exactly equal to 10-30, but on a machine 
with IEEE arithmetic the computed result will be -10-30. It is possible to 
compute inner products to within 1 ulp with less hardware than it takes 
to implement a fast multiplier [Kirchner and Kulish 1987].14 15  

All the operations mentioned in the standard are required to be exactly 
rounded except conversion between decimal and binary. The reason is 
that efficient algorithms for exactly rounding all the operations are 
known, except conversion. For conversion, the best known efficient 
algorithms produce results that are slightly worse than exactly rounded 
ones [Coonen 1984].  

The IEEE standard does not require transcendental functions to be 
exactly rounded because of the table maker's dilemma. To illustrate, 
suppose you are making a table of the exponential function to 4 places. 
Then exp(1.626) = 5.0835. Should this be rounded to 5.083 or 5.084? If 
exp(1.626) is computed more carefully, it becomes 5.08350. And then 
5.083500. And then 5.0835000. Since exp is transcendental, this could 
go on arbitrarily long before distinguishing whether exp(1.626) is 
5.083500...0ddd or 5.0834999...9ddd. Thus it is not practical to specify 
that the precision of transcendental functions be the same as if they 
were computed to infinite precision and then rounded. Another approach 
would be to specify transcendental functions algorithmically. But there 
does not appear to be a single algorithm that works well across all 
hardware architectures. Rational approximation, CORDIC,16 and large 
tables are three different techniques that are used for computing 
transcendentals on contemporary machines. Each is appropriate for a 

Page 23 of 87What Every Computer Scientist Should Know About Floating-Point Arithmetic

1/23/2002file://L:\Technical%20Reference\Floating%20point%20arithmetic\What%20Every%20Computer%20Scientist%20Should%20Know%20About%20Floating...



different class of hardware, and at present no single algorithm works 
acceptably over the wide range of current hardware.  

Special Quantities  

On some floating-point hardware every bit pattern represents a valid 
floating-point number. The IBM System/370 is an example of this. On 
the other hand, the VAXTM reserves some bit patterns to represent 
special numbers called reserved operands. This idea goes back to the CDC 
6600, which had bit patterns for the special quantities INDEFINITE and 
INFINITY.  

The IEEE standard continues in this tradition and has NaNs (Not a 
Number) and infinities. Without any special quantities, there is no good 
way to handle exceptional situations like taking the square root of a 
negative number, other than aborting computation. Under IBM 
System/370 FORTRAN, the default action in response to computing the 
square root of a negative number like -4 results in the printing of an 
error message. Since every bit pattern represents a valid number, the 
return value of square root must be some floating-point number. In the 
case of System/370 FORTRAN,  is returned. In IEEE arithmetic, a 
NaN is returned in this situation.  

The IEEE standard specifies the following special values (see TABLE D-
2): ± 0, denormalized numbers, ±  and NaNs (there is more than one 
NaN, as explained in the next section). These special values are all 
encoded with exponents of either emax + 1 or emin - 1 (it was already 

pointed out that 0 has an exponent of e
min

 - 1).  

 
NaNs  

TABLE D-2   IEEE 754 Special Values

Exponent Fraction Represents

e = emin - 1 f = 0 ±0 

e = e
min

 - 1 f  0  

e
min

  e  e
max -- 1.f × 2e 

e = emax + 1 f = 0 ±  

e = e
max

 + 1 f  0 NaN 

Page 24 of 87What Every Computer Scientist Should Know About Floating-Point Arithmetic

1/23/2002file://L:\Technical%20Reference\Floating%20point%20arithmetic\What%20Every%20Computer%20Scientist%20Should%20Know%20About%20Floating...



Traditionally, the computation of 0/0 or  has been treated as an 
unrecoverable error which causes a computation to halt. However, there 
are examples where it makes sense for a computation to continue in 
such a situation. Consider a subroutine that finds the zeros of a function 
f, say zero(f). Traditionally, zero finders require the user to input an 
interval [a, b] on which the function is defined and over which the zero 
finder will search. That is, the subroutine is called as zero(f, a, b). A 
more useful zero finder would not require the user to input this extra 
information. This more general zero finder is especially appropriate for 
calculators, where it is natural to simply key in a function, and awkward 
to then have to specify the domain. However, it is easy to see why most 
zero finders require a domain. The zero finder does its work by probing 
the function f at various values. If it probed for a value outside the 
domain of f, the code for f might well compute 0/0 or  , and the 
computation would halt, unnecessarily aborting the zero finding process.  

This problem can be avoided by introducing a special value called NaN, 
and specifying that the computation of expressions like 0/0 and  
produce NaN, rather than halting. A list of some of the situations that 
can cause a NaN are given in TABLE D-3. Then when zero(f) probes 
outside the domain of f, the code for f will return NaN, and the zero 
finder can continue. That is, zero(f) is not "punished" for making an 
incorrect guess. With this example in mind, it is easy to see what the 
result of combining a NaN with an ordinary floating-point number should 
be. Suppose that the final statement of f is return(-b + sqrt(d))/(2*a). If 
d < 0, then f should return a NaN. Since d < 0, sqrt(d) is a NaN, and -
b + sqrt(d) will be a NaN, if the sum of a NaN and any other number is a 
NaN. Similarly if one operand of a division operation is a NaN, the 
quotient should be a NaN. In general, whenever a NaN participates in a 
floating-point operation, the result is another NaN.  

 

TABLE D-3   Operations That 
Produce a NaN

Operation NaN Produced By

+  + (- ) 

× 0 ×  

/ 0/0, /  

REM x REM 0,  REM y 

  (when x < 0) 

Page 25 of 87What Every Computer Scientist Should Know About Floating-Point Arithmetic

1/23/2002file://L:\Technical%20Reference\Floating%20point%20arithmetic\What%20Every%20Computer%20Scientist%20Should%20Know%20About%20Floating...



Another approach to writing a zero solver that doesn't require the user 
to input a domain is to use signals. The zero-finder could install a signal 
handler for floating-point exceptions. Then if f was evaluated outside its 
domain and raised an exception, control would be returned to the zero 
solver. The problem with this approach is that every language has a 
different method of handling signals (if it has a method at all), and so it 
has no hope of portability.  

In IEEE 754, NaNs are often represented as floating-point numbers with 
the exponent e

max
 + 1 and nonzero significands. Implementations are 

free to put system-dependent information into the significand. Thus 
there is not a unique NaN, but rather a whole family of NaNs. When a 
NaN and an ordinary floating-point number are combined, the result 
should be the same as the NaN operand. Thus if the result of a long 
computation is a NaN, the system-dependent information in the 
significand will be the information that was generated when the first NaN 
in the computation was generated. Actually, there is a caveat to the last 
statement. If both operands are NaNs, then the result will be one of 
those NaNs, but it might not be the NaN that was generated first.  

Infinity  

Just as NaNs provide a way to continue a computation when expressions 
like 0/0 or  are encountered, infinities provide a way to continue 
when an overflow occurs. This is much safer than simply returning the 

largest representable number. As an example, consider computing  
, when  = 10, p = 3, and e

max
 = 98. If x = 3 × 1070 and y = 4 × 1070, 

then x2 will overflow, and be replaced by 9.99 × 1098. Similarly y2, and 
x2 + y2 will each overflow in turn, and be replaced by 9.99 × 1098. So 

the final result will be  , which is drastically wrong: the 
correct answer is 5 × 1070. In IEEE arithmetic, the result of x2 is , as 

is y2, x2 + y2 and  . So the final result is , which is safer than 
returning an ordinary floating-point number that is nowhere near the 
correct answer.17  

The division of 0 by 0 results in a NaN. A nonzero number divided by 0, 
however, returns infinity: 1/0 = , -1/0 = - . The reason for the 
distinction is this: if f(x)  0 and g(x)  0 as x approaches some limit, 
then f(x)/g(x) could have any value. For example, when f(x) = sin x and g
(x) = x, then f(x)/g(x)  1 as x  0. But when f(x) = 1 - cos x, f(x)/g(x) 

 0. When thinking of 0/0 as the limiting situation of a quotient of two 
very small numbers, 0/0 could represent anything. Thus in the IEEE 
standard, 0/0 results in a NaN. But when c > 0, f(x)  c, and g(x) 0, 
then f(x)/g(x)   ± , for any analytic functions f and g. If g(x) < 0 for 
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small x, then f(x)/g(x)  - , otherwise the limit is + . So the IEEE 
standard defines c/0 = ± , as long as c  0. The sign of  depends on 
the signs of c and 0 in the usual way, so that -10/0 = - , and -10/-
0 = + . You can distinguish between getting  because of overflow and 
getting  because of division by zero by checking the status flags (which 
will be discussed in detail in section Flags). The overflow flag will be set 
in the first case, the division by zero flag in the second.  

The rule for determining the result of an operation that has infinity as an 
operand is simple: replace infinity with a finite number x and take the 
limit as x  . Thus 3/  = 0, because  

 .  

Similarly, 4 -  = - , and   =  . When the limit doesn't exist, the 
result is a NaN, so /  will be a NaN (TABLE D-3 has additional 
examples). This agrees with the reasoning used to conclude that 0/0 
should be a NaN.  

When a subexpression evaluates to a NaN, the value of the entire 
expression is also a NaN. In the case of ±  however, the value of the 
expression might be an ordinary floating-point number because of rules 
like 1/  = 0. Here is a practical example that makes use of the rules for 
infinity arithmetic. Consider computing the function x/(x2 + 1). This is a 
bad formula, because not only will it overflow when x is larger than 

 , but infinity arithmetic will give the wrong answer because it will 
yield 0, rather than a number near 1/x. However, x/(x2 + 1) can be 
rewritten as 1/(x + x-1). This improved expression will not overflow 
prematurely and because of infinity arithmetic will have the correct value 
when x = 0: 1/(0 + 0-1) = 1/(0 + ) = 1/  = 0. Without infinity 
arithmetic, the expression 1/(x + x-1) requires a test for x = 0, which 
not only adds extra instructions, but may also disrupt a pipeline. This 
example illustrates a general fact, namely that infinity arithmetic often 
avoids the need for special case checking; however, formulas need to be 
carefully inspected to make sure they do not have spurious behavior at 
infinity (as x/(x2 + 1) did).  

Signed Zero  

Zero is represented by the exponent e
min

 - 1 and a zero significand. 

Since the sign bit can take on two different values, there are two zeros, 
+0 and -0. If a distinction were made when comparing +0 and -0, 
simple tests like if (x = 0) would have very unpredictable behavior, 
depending on the sign of x. Thus the IEEE standard defines comparison 
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so that +0 = -0, rather than -0 < +0. Although it would be possible 
always to ignore the sign of zero, the IEEE standard does not do so. 
When a multiplication or division involves a signed zero, the usual sign 
rules apply in computing the sign of the answer. Thus 3·(+0) = +0, and 
+0/-3 = -0. If zero did not have a sign, then the relation 1/(1/x) = x 
would fail to hold when x = ± . The reason is that 1/-  and 1/+  both 
result in 0, and 1/0 results in + , the sign information having been lost. 
One way to restore the identity 1/(1/x) = x is to only have one kind of 
infinity, however that would result in the disastrous consequence of 
losing the sign of an overflowed quantity.  

Another example of the use of signed zero concerns underflow and 
functions that have a discontinuity at 0, such as log. In IEEE arithmetic, 
it is natural to define log 0 = -  and log x to be a NaN when x < 0. 
Suppose that x represents a small negative number that has 
underflowed to zero. Thanks to signed zero, x will be negative, so log 
can return a NaN. However, if there were no signed zero, the log 
function could not distinguish an underflowed negative number from 0, 
and would therefore have to return - . Another example of a function 
with a discontinuity at zero is the signum function, which returns the 
sign of a number.  

Probably the most interesting use of signed zero occurs in complex 
arithmetic. To take a simple example, consider the equation  
. This is certainly true when z  0. If z = -1, the obvious computation 
gives  and  . Thus,  ! The problem 
can be traced to the fact that square root is multi-valued, and there is 
no way to select the values so that it is continuous in the entire complex 
plane. However, square root is continuous if a branch cut consisting of 
all negative real numbers is excluded from consideration. This leaves the 
problem of what to do for the negative real numbers, which are of the 
form -x + i0, where x > 0. Signed zero provides a perfect way to resolve 
this problem. Numbers of the form x + i(+0) have one sign  and 
numbers of the form x + i(-0) on the other side of the branch cut have 
the other sign  . In fact, the natural formulas for computing  will 
give these results.  

Back to  . If z =1 = -1 + i0, then  

1/z = 1/(-1 + i0) = [(-1- i0)]/[(-1 + i0)(-1 - i0)] = ( -1 -- i0)/((-1)2 - 02) = -1 + i(-0),

 

and so  , while  . Thus IEEE arithmetic 
preserves this identity for all z. Some more sophisticated examples are 
given by Kahan [1987]. Although distinguishing between +0 and -0 has 
advantages, it can occasionally be confusing. For example, signed zero 
destroys the relation x = y   1/x = 1/y, which is false when x = +0 and 
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y = -0. However, the IEEE committee decided that the advantages of 
utilizing the sign of zero outweighed the disadvantages.  

Denormalized Numbers  

Consider normalized floating-point numbers with  = 10, p = 3, and 
emin = -98. The numbers x = 6.87 × 10-97 and y = 6.81 × 10-97 appear 

to be perfectly ordinary floating-point numbers, which are more than a 
factor of 10 larger than the smallest floating-point number 1.00 × 10-98. 
They have a strange property, however: x  y = 0 even though x  y! 
The reason is that x - y = .06 × 10 -97  = 6.0 × 10-99 is too small to be 
represented as a normalized number, and so must be flushed to zero. 
How important is it to preserve the property  

(10) x = y  x - y = 0 ? 

It's very easy to imagine writing the code fragment, if (x   y) then z = 1/
(x-y), and much later having a program fail due to a spurious division by 
zero. Tracking down bugs like this is frustrating and time consuming. On 
a more philosophical level, computer science textbooks often point out 
that even though it is currently impractical to prove large programs 
correct, designing programs with the idea of proving them often results 
in better code. For example, introducing invariants is quite useful, even 
if they aren't going to be used as part of a proof. Floating-point code is 
just like any other code: it helps to have provable facts on which to 
depend. For example, when analyzing formula (6), it was very helpful to 
know that x/2 < y < 2x   x   y = x - y. Similarly, knowing that (10) is 
true makes writing reliable floating-point code easier. If it is only true for 
most numbers, it cannot be used to prove anything.  

The IEEE standard uses denormalized18 numbers, which guarantee (10), 
as well as other useful relations. They are the most controversial part of 
the standard and probably accounted for the long delay in getting 754 
approved. Most high performance hardware that claims to be IEEE 
compatible does not support denormalized numbers directly, but rather 
traps when consuming or producing denormals, and leaves it to software 
to simulate the IEEE standard.19 The idea behind denormalized numbers 
goes back to Goldberg [1967] and is very simple. When the exponent is 
e

min
, the significand does not have to be normalized, so that when  = 

10, p = 3 and emin = -98, 1.00 × 10-98 is no longer the smallest 

floating-point number, because 0.98 × 10-98 is also a floating-point 
number.  

There is a small snag when  = 2 and a hidden bit is being used, since a 
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number with an exponent of emin will always have a significand greater 

than or equal to 1.0 because of the implicit leading bit. The solution is 
similar to that used to represent 0, and is summarized in TABLE D-2. 
The exponent emin is used to represent denormals. More formally, if the 

bits in the significand field are b1
, b2

, ..., bp -1
, and the value of the 

exponent is e, then when e > emin - 1, the number being represented is 

1.b1b2...bp - 1 × 2e whereas when e = emin - 1, the number being 

represented is 0.b1b2
...bp - 1

 × 2e + 1. The +1 in the exponent is needed 

because denormals have an exponent of emin, not emin - 1.  

Recall the example of  = 10, p = 3, emin = -98, x = 6.87 × 10-97 and 

y = 6.81 × 10-97 presented at the beginning of this section. With 
denormals, x - y does not flush to zero but is instead represented by the 
denormalized number .6 × 10-98. This behavior is called gradual 
underflow. It is easy to verify that (10) always holds when using gradual 
underflow.  

 
FIGURE D-2 Flush To Zero Compared With Gradual Underflow 

FIGURE D-2 illustrates denormalized numbers. The top number line in 
the figure shows normalized floating-point numbers. Notice the gap 
between 0 and the smallest normalized number  . If the result of 
a floating-point calculation falls into this gulf, it is flushed to zero. The 
bottom number line shows what happens when denormals are added to 
the set of floating-point numbers. The "gulf" is filled in, and when the 
result of a calculation is less than  , it is represented by the 
nearest denormal. When denormalized numbers are added to the 
number line, the spacing between adjacent floating-point numbers varies 
in a regular way: adjacent spacings are either the same length or differ 
by a factor of . Without denormals, the  
spacing abruptly changes from  to  , which is a factor of  , 
rather than the orderly change by a factor of . Because of this, many 
algorithms that can have large relative error for normalized numbers 
close to the underflow threshold are well-behaved in this range when 
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gradual underflow is used.  

Without gradual underflow, the simple expression x - y can have a very 
large relative error for normalized inputs, as was seen above for x = 
6.87 × 10-97 and y = 6.81 × 10-97. Large relative errors can happen 
even without cancellation, as the following example shows [Demmel 
1984]. Consider dividing two complex numbers, a + ib and c + id. The 
obvious formula  

 · i 

suffers from the problem that if either component of the denominator c 
+ id is larger than  , the formula will overflow, even though the 
final result may be well within range. A better method of computing the 
quotients is to use Smith's formula:  

(11)   

Applying Smith's formula to (2 · 10-98 + i10-98)/(4 · 10-98 + i(2 · 10-98)) 
gives the correct answer of 0.5 with gradual underflow. It yields 0.4 with 
flush to zero, an error of 100 ulps. It is typical for denormalized numbers 
to guarantee error bounds for arguments all the way down to 1.0 x  .  

Exceptions, Flags and Trap Handlers  

When an exceptional condition like division by zero or overflow occurs in 
IEEE arithmetic, the default is to deliver a result and continue. Typical of 
the default results are NaN for 0/0 and  , and  for 1/0 and overflow. 
The preceding sections gave examples where proceeding from an 
exception with these default values was the reasonable thing to do. 
When any exception occurs, a status flag is also set. Implementations of 
the IEEE standard are required to provide users with a way to read and 
write the status flags. The flags are "sticky" in that once set, they 
remain set until explicitly cleared. Testing the flags is the only way to 
distinguish 1/0, which is a genuine infinity from an overflow.  

Sometimes continuing execution in the face of exception conditions is 
not appropriate. The section Infinity gave the example of x/(x2 + 1). 
When x >  , the denominator is infinite, resulting in a final answer 
of 0, which is totally wrong. Although for this formula the problem can 
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be solved by rewriting it as 1/(x + x-1), rewriting may not always solve 
the problem. The IEEE standard strongly recommends that 
implementations allow trap handlers to be installed. Then when an 
exception occurs, the trap handler is called instead of setting the flag. 
The value returned by the trap handler will be used as the result of the 
operation. It is the responsibility of the trap handler to either clear or set 
the status flag; otherwise, the value of the flag is allowed to be 
undefined.  

The IEEE standard divides exceptions into 5 classes: overflow, 
underflow, division by zero, invalid operation and inexact. There is a 
separate status flag for each class of exception. The meaning of the first 
three exceptions is self-evident. Invalid operation covers the situations 
listed in TABLE D-3, and any comparison that involves a NaN. The 
default result of an operation that causes an invalid exception is to 
return a NaN, but the converse is not true. When one of the operands to 
an operation is a NaN, the result is a NaN but no invalid exception is 
raised unless the operation also satisfies one of the conditions in 
TABLE D-3.20  

 
*x is the exact result of the operation,  = 192 for single precision, 
1536 for double, and xmax

 = 1.11 ...11 ×  .  

The inexact exception is raised when the result of a floating-point 
operation is not exact. In the  = 10, p = 3 system, 3.5  4.2 = 14.7 is 
exact, but 3.5   4.3 = 15.0 is not exact (since 3.5 · 4.3 = 15.05), and 
raises an inexact exception. Binary to Decimal Conversion discusses an 
algorithm that uses the inexact exception. A summary of the behavior of 
all five exceptions is given in TABLE D-4.  

TABLE D-4   Exceptions in IEEE 754*

Exception Result when traps 
disabled

Argument to trap 
handler

overflow ±  or ±xmax round(x2- ) 

underflow 0,  or denormal round(x2 ) 

divide by 
zero 

±  operands 

invalid NaN operands 

inexact round(x) round(x) 
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There is an implementation issue connected with the fact that the 
inexact exception is raised so often. If floating-point hardware does not 
have flags of its own, but instead interrupts the operating system to 
signal a floating-point exception, the cost of inexact exceptions could be 
prohibitive. This cost can be avoided by having the status flags 
maintained by software. The first time an exception is raised, set the 
software flag for the appropriate class, and tell the floating-point 
hardware to mask off that class of exceptions. Then all further 
exceptions will run without interrupting the operating system. When a 
user resets that status flag, the hardware mask is re-enabled.  

Trap Handlers  

One obvious use for trap handlers is for backward compatibility. Old 
codes that expect to be aborted when exceptions occur can install a trap 
handler that aborts the process. This is especially useful for codes with a 
loop like do S until (x >= 100). Since comparing a NaN to a number with 
<, , >, , or = (but not ) always returns false, this code will go into 
an infinite loop if x ever becomes a NaN.  

There is a more interesting use for trap handlers that comes up when 
computing products such as  that could potentially overflow. One 
solution is to use logarithms, and compute exp  instead. The 
problem with this approach is that it is less accurate, and that it costs 

more than the simple expression  , even if there is no overflow. There 
is another solution using trap handlers called over/underflow counting 
that avoids both of these problems [Sterbenz 1974].  

The idea is as follows. There is a global counter initialized to zero. 
Whenever the partial product  overflows for some k, the trap 
handler increments the counter by one and returns the overflowed 
quantity with the exponent wrapped around. In IEEE 754 single 
precision, e

max
 = 127, so if p

k
 = 1.45 × 2130, it will overflow and cause 

the trap handler to be called, which will wrap the exponent back into 
range, changing pk to 1.45 × 2-62 (see below). Similarly, if pk 

underflows, the counter would be decremented, and negative exponent 
would get wrapped around into a positive one. When all the 
multiplications are done, if the counter is zero then the final product is 
pn. If the counter is positive, the product overflowed, if the counter is 

negative, it underflowed. If none of the partial products are out of range, 
the trap handler is never called and the computation incurs no extra 
cost. Even if there are over/underflows, the calculation is more accurate 
than if it had been computed with logarithms, because each pk was 

Page 33 of 87What Every Computer Scientist Should Know About Floating-Point Arithmetic

1/23/2002file://L:\Technical%20Reference\Floating%20point%20arithmetic\What%20Every%20Computer%20Scientist%20Should%20Know%20About%20Floating...



computed from pk - 1 using a full precision multiply. Barnett [1987] 

discusses a formula where the full accuracy of over/underflow counting 
turned up an error in earlier tables of that formula.  

IEEE 754 specifies that when an overflow or underflow trap handler is 
called, it is passed the wrapped-around result as an argument. The 
definition of wrapped-around for overflow is that the result is computed 
as if to infinite precision, then divided by 2 , and then rounded to the 
relevant precision. For underflow, the result is multiplied by 2 . The 
exponent  is 192 for single precision and 1536 for double precision. 
This is why 1.45 x 2130  was transformed into 1.45 × 2-62 in the example 
above.  

Rounding Modes  

In the IEEE standard, rounding occurs whenever an operation has a 
result that is not exact, since (with the exception of binary decimal 
conversion) each operation is computed exactly and then rounded. By 
default, rounding means round toward nearest. The standard requires 
that three other rounding modes be provided, namely round toward 0, 
round toward + , and round toward - . When used with the convert to 
integer operation, round toward -  causes the convert to become the 
floor function, while round toward +  is ceiling. The rounding mode 
affects overflow, because when round toward 0 or round toward -  is in 
effect, an overflow of positive magnitude causes the default result to be 
the largest representable number, not + . Similarly, overflows of 
negative magnitude will produce the largest negative number when 
round toward +  or round toward 0 is in effect.  

One application of rounding modes occurs in interval arithmetic (another 
is mentioned in Binary to Decimal Conversion). When using interval 
arithmetic, the sum of two numbers x and y is an interval  , where  
is x  y rounded toward - , and  is x  y rounded toward + . The 
exact result of the addition is contained within the interval  . Without 
rounding modes, interval arithmetic is usually implemented by 
computing  and  , where  is machine epsilon.21 
This results in overestimates for the size of the intervals. Since the result 
of an operation in interval arithmetic is an interval, in general the input 
to an operation will also be an interval. If two intervals  , and  , 
are added, the result is  , where  is  with the rounding mode set 
to round toward - , and  is  with the rounding mode set to round 
toward + .  

When a floating-point calculation is performed using interval arithmetic, 
the final answer is an interval that contains the exact result of the 
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calculation. This is not very helpful if the interval turns out to be large 
(as it often does), since the correct answer could be anywhere in that 
interval. Interval arithmetic makes more sense when used in conjunction 
with a multiple precision floating-point package. The calculation is first 
performed with some precision p. If interval arithmetic suggests that the 
final answer may be inaccurate, the computation is redone with higher 
and higher precisions until the final interval is a reasonable size.  

Flags  

The IEEE standard has a number of flags and modes. As discussed 
above, there is one status flag for each of the five exceptions: 
underflow, overflow, division by zero, invalid operation and inexact. 
There are four rounding modes: round toward nearest, round toward +

, round toward 0, and round toward - . It is strongly recommended 
that there be an enable mode bit for each of the five exceptions. This 
section gives some simple examples of how these modes and flags can 
be put to good use. A more sophisticated example is discussed in the 
section Binary to Decimal Conversion.  

Consider writing a subroutine to compute xn, where n is an integer. 
When n > 0, a simple routine like  

 

PositivePower(x,n) {  

 while (n is even) {  

     x = x*x 

     n = n/2 

 }  

 u = x 

 while (true) {  

     n = n/2 

     if (n==0) return u 

     x = x*x 

     if (n is odd) u = u*x 

 }  
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If n < 0, then a more accurate way to compute xn is not to call 
PositivePower(1/x, -n) but rather 1/PositivePower(x, -n), because the first 
expression multiplies n quantities each of which have a rounding error 
from the division (i.e., 1/x). In the second expression these are exact 
(i.e., x), and the final division commits just one additional rounding 
error. Unfortunately, these is a slight snag in this strategy. If 
PositivePower(x, -n) underflows, then either the underflow trap handler 
will be called, or else the underflow status flag will be set. This is 
incorrect, because if x-n underflows, then xn will either overflow or be in 
range.22 But since the IEEE standard gives the user access to all the 
flags, the subroutine can easily correct for this. It simply turns off the 
overflow and underflow trap enable bits and saves the overflow and 
underflow status bits. It then computes 1/PositivePower(x, -n). If neither 
the overflow nor underflow status bit is set, it restores them together 
with the trap enable bits. If one of the status bits is set, it restores the 
flags and redoes the calculation using PositivePower(1/x, -n), which 
causes the correct exceptions to occur.  

Another example of the use of flags occurs when computing arccos via 
the formula  

arccos x = 2 arctan  .  

If arctan( ) evaluates to /2, then arccos(-1) will correctly evaluate to 
2·arctan( ) = , because of infinity arithmetic. However, there is a small 
snag, because the computation of (1 - x)/(1 + x) will cause the divide by 
zero exception flag to be set, even though arccos(-1) is not exceptional. 
The solution to this problem is straightforward. Simply save the value of 
the divide by zero flag before computing arccos, and then restore its old 
value after the computation.  

Systems Aspects  

The design of almost every aspect of a computer system requires 
knowledge about floating-point. Computer architectures usually have 
floating-point instructions, compilers must generate those floating-point 
instructions, and the operating system must decide what to do when 
exception conditions are raised for those floating-point instructions. 
Computer system designers rarely get guidance from numerical analysis 
texts, which are typically aimed at users and writers of software, not at 
computer designers. As an example of how plausible design decisions 
can lead to unexpected behavior, consider the following BASIC program.  

q = 3.0/7.0 
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When compiled and run using Borland's Turbo Basic on an IBM PC, the 
program prints Not Equal! This example will be analyzed in the next 
section  

Incidentally, some people think that the solution to such anomalies is 
never to compare floating-point numbers for equality, but instead to 
consider them equal if they are within some error bound E. This is hardly 
a cure-all because it raises as many questions as it answers. What 
should the value of E be? If x < 0 and y > 0 are within E, should they 
really be considered to be equal, even though they have different signs? 
Furthermore, the relation defined by this rule, a ~ b   |a - b| < E, is 
not an equivalence relation because a ~ b and b ~ c does not imply that 
a ~ c.  

Instruction Sets  

It is quite common for an algorithm to require a short burst of higher 
precision in order to produce accurate results. One example occurs in 

the quadratic formula (  )/2a. As discussed in the section Proof 
of Theorem 4, when b2  4ac, rounding error can contaminate up to half 
the digits in the roots computed with the quadratic formula. By 
performing the subcalculation of b2 - 4ac in double precision, half the 
double precision bits of the root are lost, which means that all the single 
precision bits are preserved.  

The computation of b2 - 4ac in double precision when each of the 
quantities a, b, and c are in single precision is easy if there is a 
multiplication instruction that takes two single precision numbers and 
produces a double precision result. In order to produce the exactly 
rounded product of two p-digit numbers, a multiplier needs to generate 
the entire 2p bits of product, although it may throw bits away as it 
proceeds. Thus, hardware to compute a double precision product from 
single precision operands will normally be only a little more expensive 
than a single precision multiplier, and much cheaper than a double 
precision multiplier. Despite this, modern instruction sets tend to provide 
only instructions that produce a result of the same precision as the 
operands.23  

If an instruction that combines two single precision operands to produce 
a double precision product was only useful for the quadratic formula, it 

if q = 3.0/7.0 then print "Equal": 

    else print "Not Equal" 
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wouldn't be worth adding to an instruction set. However, this instruction 
has many other uses. Consider the problem of solving a system of linear 
equations,  

a11x1 + a12x2 + · · · + a1nxn= b1

 

a21x1 + a22x2 + · · · + a2nxn= b2 

· · · 
an1x1 + an2x2 + · · ·+ annxn= bn 

which can be written in matrix form as Ax = b, where  

 
 

Suppose that a solution x(1) is computed by some method, perhaps 
Gaussian elimination. There is a simple way to improve the accuracy of 
the result called iterative improvement. First compute  

(12)  = Ax (1) - b 

 

and then solve the system  

(13) Ay =  

Note that if x(1) is an exact solution, then  is the zero vector, as is y. 
In general, the computation of  and y will incur rounding error, so Ay 

     Ax(1) - b = A(x(1) - x), where x is the (unknown) true solution. 
Then y   x(1) - x, so an improved estimate for the solution is  

(14) x(2)  = x(1) - y 

 

The three steps (12), (13), and (14) can be repeated, replacing x(1) with 
x(2), and x(2) with x(3). This argument that x(i + 1) is more accurate than 
x( i) is only informal. For more information, see [Golub and Van Loan 
1989].  

When performing iterative improvement,  is a vector whose elements 
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are the difference of nearby inexact floating-point numbers, and so can 
suffer from catastrophic cancellation. Thus iterative improvement is not 
very useful unless = Ax(1) - b is computed in double precision. Once 
again, this is a case of computing the product of two single precision 
numbers (A and x(1)), where the full double precision result is needed.  

To summarize, instructions that multiply two floating-point numbers and 
return a product with twice the precision of the operands make a useful 
addition to a floating-point instruction set. Some of the implications of 
this for compilers are discussed in the next section.  

Languages and Compilers  

The interaction of compilers and floating-point is discussed in Farnum 
[1988], and much of the discussion in this section is taken from that 
paper.   

Ambiguity  

Ideally, a language definition should define the semantics of the 
language precisely enough to prove statements about programs. While 
this is usually true for the integer part of a language, language 
definitions often have a large grey area when it comes to floating-point. 
Perhaps this is due to the fact that many language designers believe that 
nothing can be proven about floating-point, since it entails rounding 
error. If so, the previous sections have demonstrated the fallacy in this 
reasoning. This section discusses some common grey areas in language 
definitions, including suggestions about how to deal with them.  

Remarkably enough, some languages don't clearly specify that if x is a 
floating-point variable (with say a value of 3.0/10.0), then every 
occurrence of (say) 10.0*x must have the same value. For example Ada, 
which is based on Brown's model, seems to imply that floating-point 
arithmetic only has to satisfy Brown's axioms, and thus expressions can 
have one of many possible values. Thinking about floating-point in this 
fuzzy way stands in sharp contrast to the IEEE model, where the result 
of each floating-point operation is precisely defined. In the IEEE model, 
we can prove that (3.0/10.0)*10.0 evaluates to 3 (Theorem 7). In 
Brown's model, we cannot.  

Another ambiguity in most language definitions concerns what happens 
on overflow, underflow and other exceptions. The IEEE standard 
precisely specifies the behavior of exceptions, and so languages that use 
the standard as a model can avoid any ambiguity on this point.  

Another grey area concerns the interpretation of parentheses. Due to 
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roundoff errors, the associative laws of algebra do not necessarily hold 
for floating-point numbers. For example, the expression (x+y)+z has a 

totally different answer than x+(y+z) when x = 1030, y = -1030 and z = 1 
(it is 1 in the former case, 0 in the latter). The importance of preserving 
parentheses cannot be overemphasized. The algorithms presented in 
theorems 3, 4 and 6 all depend on it. For example, in Theorem 6, the 
formula x

h
 = mx - (mx - x) would reduce to x

h
 = x if it weren't for 

parentheses, thereby destroying the entire algorithm. A language 
definition that does not require parentheses to be honored is useless for 
floating-point calculations.  

Subexpression evaluation is imprecisely defined in many languages. 
Suppose that ds is double precision, but x and y are single precision. 
Then in the expression ds + x*y is the product performed in single or 
double precision? Another example: in x + m/n where m and n are 
integers, is the division an integer operation or a floating-point one? 
There are two ways to deal with this problem, neither of which is 
completely satisfactory. The first is to require that all variables in an 
expression have the same type. This is the simplest solution, but has 
some drawbacks. First of all, languages like Pascal that have subrange 
types allow mixing subrange variables with integer variables, so it is 
somewhat bizarre to prohibit mixing single and double precision 
variables. Another problem concerns constants. In the expression 0.1*x, 
most languages interpret 0.1 to be a single precision constant. Now 
suppose the programmer decides to change the declaration of all the 
floating-point variables from single to double precision. If 0.1 is still 
treated as a single precision constant, then there will be a compile time 
error. The programmer will have to hunt down and change every 
floating-point constant.  

The second approach is to allow mixed expressions, in which case rules 
for subexpression evaluation must be provided. There are a number of 
guiding examples. The original definition of C required that every 
floating-point expression be computed in double precision [Kernighan 
and Ritchie 1978]. This leads to anomalies like the example at the 
beginning of this section. The expression 3.0/7.0 is computed in double 
precision, but if q is a single-precision variable, the quotient is rounded 
to single precision for storage. Since 3/7 is a repeating binary fraction, 
its computed value in double precision is different from its stored value 
in single precision. Thus the comparison q = 3/7 fails. This suggests that 
computing every expression in the highest precision available is not a 
good rule.  

Another guiding example is inner products. If the inner product has 
thousands of terms, the rounding error in the sum can become 
substantial. One way to reduce this rounding error is to accumulate the 
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sums in double precision (this will be discussed in more detail in the 
section Optimizers). If d is a double precision variable, and x[] and y[] 
are single precision arrays, then the inner product loop will look like d = d 
+ x[i]*y[i]. If the multiplication is done in single precision, than much of 
the advantage of double precision accumulation is lost, because the 
product is truncated to single precision just before being added to a 
double precision variable.  

A rule that covers both of the previous two examples is to compute an 
expression in the highest precision of any variable that occurs in that 
expression. Then q = 3.0/7.0 will be computed entirely in single 
precision24 and will have the boolean value true, whereas d = d + x[i]*y
[i] will be computed in double precision, gaining the full advantage of 
double precision accumulation. However, this rule is too simplistic to 
cover all cases cleanly. If dx and dy are double precision variables, the 
expression y = x + single(dx-dy) contains a double precision variable, but 
performing the sum in double precision would be pointless, because both 
operands are single precision, as is the result.  

A more sophisticated subexpression evaluation rule is as follows. First 
assign each operation a tentative precision, which is the maximum of the 
precisions of its operands. This assignment has to be carried out from 
the leaves to the root of the expression tree. Then perform a second 
pass from the root to the leaves. In this pass, assign to each 
operation the maximum of the tentative precision and the precision 
expected by the parent. In the case of q = 3.0/7.0, every leaf is single 
precision, so all the operations are done in single precision. In the case 
of d = d + x[i]*y[i], the tentative precision of the multiply operation is 
single precision, but in the second pass it gets promoted to double 
precision, because its parent operation expects a double precision 
operand. And in y = x + single(dx-dy), the addition is done in single 
precision. Farnum [1988] presents evidence that this algorithm in not 
difficult to implement.  

The disadvantage of this rule is that the evaluation of a subexpression 
depends on the expression in which it is embedded. This can have some 
annoying consequences. For example, suppose you are debugging a 
program and want to know the value of a subexpression. You cannot 
simply type the subexpression to the debugger and ask it to be 
evaluated, because the value of the subexpression in the program 
depends on the expression it is embedded in. A final comment on 
subexpressions: since converting decimal constants to binary is an 
operation, the evaluation rule also affects the interpretation of decimal 
constants. This is especially important for constants like 0.1 which are 
not exactly representable in binary.  
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Another potential grey area occurs when a language includes 
exponentiation as one of its built-in operations. Unlike the basic 
arithmetic operations, the value of exponentiation is not always obvious 
[Kahan and Coonen 1982]. If ** is the exponentiation operator, then (-
3)**3 certainly has the value -27. However, (-3.0)**3.0 is problematical. 
If the ** operator checks for integer powers, it would compute (-3.0)
**3.0 as -3.03 = -27. On the other hand, if the formula xy = eylogx is 
used to define ** for real arguments, then depending on the log function, 
the result could be a NaN (using the natural definition of log(x) = NaN 
when x < 0). If the FORTRAN CLOG function is used however, then the 
answer will be -27, because the ANSI FORTRAN standard defines CLOG(-
3.0) to be i  + log 3 [ANSI 1978]. The programming language Ada 
avoids this problem by only defining exponentiation for integer powers, 
while ANSI FORTRAN prohibits raising a negative number to a real 
power.  

In fact, the FORTRAN standard says that  

Any arithmetic operation whose result is not mathematically defined 
is prohibited...  

Unfortunately, with the introduction of ±  by the IEEE standard, the 
meaning of not mathematically defined  is no longer totally clear cut. One 
definition might be to use the method shown in section Infinity. For 
example, to determine the value of ab, consider non-constant analytic 
functions f and g with the property that f(x)  a and g(x)  b as x  0. 
If f(x)g(x) always approaches the same limit, then this should be the 

value of ab. This definition would set 2  =   which seems quite 

reasonable. In the case of 1.0 , when f(x) = 1 and g(x) = 1/x the limit 
approaches 1, but when f(x) = 1 - x and g(x) = 1/x the limit is e-1. So 

1.0 , should be a NaN. In the case of 00, f(x)g(x) = eg(x)log f(x). Since f 
and g are analytic and take on the value 0 at 0, f(x) = a1x1 + a2x2 + ... 

and g(x) = b1x1 + b2x2 + .... Thus lim
x  0g(x) log f(x) = lim

x   0x log(x

(a1 + a2x + ...)) = limx  0x log(a1x) = 0. So f(x)g(x)  e0 = 1 for all f 

and g, which means that 00 = 1.25 26 Using this definition would 
unambiguously define the exponential function for all arguments, and in 
particular would define (-3.0)**3.0 to be -27.  

The IEEE Standard  

The section The IEEE Standard," discussed many of the features of the 
IEEE standard. However, the IEEE standard says nothing about how 
these features are to be accessed from a programming language. Thus, 
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there is usually a mismatch between floating-point hardware that 
supports the standard and programming languages like C, Pascal or 
FORTRAN. Some of the IEEE capabilities can be accessed through a 
library of subroutine calls. For example the IEEE standard requires that 
square root be exactly rounded, and the square root function is often 
implemented directly in hardware. This functionality is easily accessed 
via a library square root routine. However, other aspects of the standard 
are not so easily implemented as subroutines. For example, most 
computer languages specify at most two floating-point types, while the 
IEEE standard has four different precisions (although the recommended 
configurations are single plus single-extended or single, double, and 
double-extended). Infinity provides another example. Constants to 
represent ±  could be supplied by a subroutine. But that might make 
them unusable in places that require constant expressions, such as the 
initializer of a constant variable.  

A more subtle situation is manipulating the state associated with a 
computation, where the state consists of the rounding modes, trap 
enable bits, trap handlers and exception flags. One approach is to 
provide subroutines for reading and writing the state. In addition, a 
single call that can atomically set a new value and return the old value is 
often useful. As the examples in the section Flags show, a very common 
pattern of modifying IEEE state is to change it only within the scope of a 
block or subroutine. Thus the burden is on the programmer to find each 
exit from the block, and make sure the state is restored. Language 
support for setting the state precisely in the scope of a block would be 
very useful here. Modula-3 is one language that implements this idea for 
trap handlers [Nelson 1991].  

There are a number of minor points that need to be considered when 
implementing the IEEE standard in a language. Since x - x = +0 for all 
x,27 (+0) - (+0) = +0. However, -(+0) = -0, thus -x should not be 
defined as 0 - x. The introduction of NaNs can be confusing, because a 
NaN is never equal to any other number (including another NaN), so x = 
x is no longer always true. In fact, the expression x  x is the simplest 
way to test for a NaN if the IEEE recommended function Isnan is not 
provided. Furthermore, NaNs are unordered with respect to all other 
numbers, so x  y cannot be defined as not x > y. Since the introduction 
of NaNs causes floating-point numbers to become partially ordered, a 
compare function that returns one of <, =, >, or unordered can make it 
easier for the programmer to deal with comparisons.  

Although the IEEE standard defines the basic floating-point operations to 
return a NaN if any operand is a NaN, this might not always be the best 
definition for compound operations. For example when computing the 
appropriate scale factor to use in plotting a graph, the maximum of a set 
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of values must be computed. In this case it makes sense for the max 
operation to simply ignore NaNs.  

Finally, rounding can be a problem. The IEEE standard defines rounding 
very precisely, and it depends on the current value of the rounding 
modes. This sometimes conflicts with the definition of implicit rounding 
in type conversions or the explicit round function in languages. This 
means that programs which wish to use IEEE rounding can't use the 
natural language primitives, and conversely the language primitives will 
be inefficient to implement on the ever increasing number of IEEE 
machines.  

Optimizers  

Compiler texts tend to ignore the subject of floating-point. For example 
Aho et al. [1986] mentions replacing x/2.0 with x*0.5, leading the reader 
to assume that x/10.0 should be replaced by 0.1*x. However, these two 
expressions do not have the same semantics on a binary machine, 
because 0.1 cannot be represented exactly in binary. This textbook also 
suggests replacing x*y-x*z by x*(y-z), even though we have seen that 
these two expressions can have quite different values when y  z. 
Although it does qualify the statement that any algebraic identity can be 
used when optimizing code by noting that optimizers should not violate 
the language definition, it leaves the impression that floating-point 
semantics are not very important. Whether or not the language standard 
specifies that parenthesis must be honored, (x+y)+z can have a totally 
different answer than x+(y+z), as discussed above. There is a problem 
closely related to preserving parentheses that is illustrated by the 
following code  

 
: 

This is designed to give an estimate for machine epsilon. If an optimizing 
compiler notices that eps + 1 > 1  eps > 0, the program will be 
changed completely. Instead of computing the smallest number x such 
that 1  x is still greater than x (x  e   ), it will compute the 
largest number x for which x/2 is rounded to 0 (x   ). Avoiding this 
kind of "optimization" is so important that it is worth presenting one 
more very useful algorithm that is totally ruined by it.  

Many problems, such as numerical integration and the numerical 

eps = 1; 

do eps = 0.5*eps; while (eps + 1 > 1); 
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solution of differential equations involve computing sums with many 
terms. Because each addition can potentially introduce an error as large 
as .5 ulp, a sum involving thousands of terms can have quite a bit of 
rounding error. A simple way to correct for this is to store the partial 
summand in a double precision variable and to perform each addition 
using double precision. If the calculation is being done in single 
precision, performing the sum in double precision is easy on most 
computer systems. However, if the calculation is already being done in 
double precision, doubling the precision is not so simple. One method 
that is sometimes advocated is to sort the numbers and add them from 
smallest to largest. However, there is a much more efficient method 
which dramatically improves the accuracy of sums, namely  

Theorem 8 (Kahan Summation Formula)  

Suppose that  is computed using the following algorithm 

 

Then the computed sum S is equal to   where  .  

Using the naive formula  , the computed sum is equal to  
where |

j
| < (n - j)e. Comparing this with the error in the Kahan 

summation formula shows a dramatic improvement. Each summand is 
perturbed by only 2e, instead of perturbations as large as ne in the 
simple formula. Details are in, Errors In Summation.  

An optimizer that believed floating-point arithmetic obeyed the laws of 
algebra would conclude that C = [T-S] - Y = [(S+Y)-S] - Y = 0, 
rendering the algorithm completely useless. These examples can be 
summarized by saying that optimizers should be extremely cautious 
when applying algebraic identities that hold for the mathematical real 

S = X[1]; 

C = 0; 

for j = 2 to N {  

    Y = X[j] - C; 

    T = S + Y; 

    C = (T - S) - Y; 

    S = T; 

}  
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numbers to expressions involving floating-point variables.  

Another way that optimizers can change the semantics of floating-point 
code involves constants. In the expression 1.0E-40*x, there is an implicit 
decimal to binary conversion operation that converts the decimal 
number to a binary constant. Because this constant cannot be 
represented exactly in binary, the inexact exception should be raised. In 
addition, the underflow flag should to be set if the expression is 
evaluated in single precision. Since the constant is inexact, its exact 
conversion to binary depends on the current value of the IEEE rounding 
modes. Thus an optimizer that converts 1.0E-40 to binary at compile time 
would be changing the semantics of the program. However, constants 
like 27.5 which are exactly representable in the smallest available 
precision can be safely converted at compile time, since they are always 
exact, cannot raise any exception, and are unaffected by the rounding 
modes. Constants that are intended to be converted at compile time 
should be done with a constant declaration, such as const pi = 3.14159265.  

Common subexpression elimination is another example of an 
optimization that can change floating-point semantics, as illustrated by 
the following code  

 
Although A*B can appear to be a common subexpression, it is not 
because the rounding mode is different at the two evaluation sites. 
Three final examples: x = x cannot be replaced by the boolean constant 
true, because it fails when x is a NaN; -x = 0 - x fails for x = +0; and x 
< y is not the opposite of x  y, because NaNs are neither greater than 
nor less than ordinary floating-point numbers.  

Despite these examples, there are useful optimizations that can be done 
on floating-point code. First of all, there are algebraic identities that are 
valid for floating-point numbers. Some examples in IEEE arithmetic are x 
+ y = y + x, 2 ×  x = x + x, 1 × x = x, and 0.5× x = x/2. However, even 
these simple identities can fail on a few machines such as CDC and Cray 
supercomputers. Instruction scheduling and in-line procedure 
substitution are two other potentially useful optimizations.28  

As a final example, consider the expression dx = x*y, where x and y are 
single precision variables, and dx is double precision. On machines that 

C = A*B; 

RndMode = Up 

D = A*B; 
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have an instruction that multiplies two single precision numbers to 
produce a double precision number, dx = x*y can get mapped to that 
instruction, rather than compiled to a series of instructions that convert 
the operands to double and then perform a double to double precision 
multiply.  

Some compiler writers view restrictions which prohibit converting (x + y) 
+ z to x + (y + z) as irrelevant, of interest only to programmers who use 
unportable tricks. Perhaps they have in mind that floating-point numbers 
model real numbers and should obey the same laws that real numbers 
do. The problem with real number semantics is that they are extremely 
expensive to implement. Every time two n bit numbers are multiplied, 
the product will have 2n bits. Every time two n bit numbers with widely 
spaced exponents are added, the number of bits in the sum is n + the 
space between the exponents. The sum could have up to (emax - emin) + 
n bits, or roughly 2·emax + n bits. An algorithm that involves thousands 
of operations (such as solving a linear system) will soon be operating on 
numbers with many significant bits, and be hopelessly slow. The 
implementation of library functions such as sin and cos is even more 
difficult, because the value of these transcendental functions aren't 
rational numbers. Exact integer arithmetic is often provided by lisp 
systems and is handy for some problems. However, exact floating-point 
arithmetic is rarely useful.  

The fact is that there are useful algorithms (like the Kahan summation 
formula) that exploit the fact that (x + y) + z  x + (y + z), and work 
whenever the bound  

a  b = (a + b)(1 + ) 

holds (as well as similar bounds for -, × and /). Since these bounds hold 
for almost all commercial hardware, it would be foolish for numerical 
programmers to ignore such algorithms, and it would be irresponsible for 
compiler writers to destroy these algorithms by pretending that floating-
point variables have real number semantics.  

Exception Handling  

The topics discussed up to now have primarily concerned systems 
implications of accuracy and precision. Trap handlers also raise some 
interesting systems issues. The IEEE standard strongly recommends that 
users be able to specify a trap handler for each of the five classes of 
exceptions, and the section Trap Handlers, gave some applications of 
user defined trap handlers. In the case of invalid operation and division 
by zero exceptions, the handler should be provided with the operands, 
otherwise, with the exactly rounded result. Depending on the 
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programming language being used, the trap handler might be able to 
access other variables in the program as well. For all exceptions, the 
trap handler must be able to identify what operation was being 
performed and the precision of its destination.  

The IEEE standard assumes that operations are conceptually serial and 
that when an interrupt occurs, it is possible to identify the operation and 
its operands. On machines which have pipelining or multiple arithmetic 
units, when an exception occurs, it may not be enough to simply have 
the trap handler examine the program counter. Hardware support for 
identifying exactly which operation trapped may be necessary.  

Another problem is illustrated by the following program fragment.  

 
Suppose the second multiply raises an exception, and the trap handler 
wants to use the value of a. On hardware that can do an add and 
multiply in parallel, an optimizer would probably move the addition 
operation ahead of the second multiply, so that the add can proceed in 
parallel with the first multiply. Thus when the second multiply traps, 
a = b + c has already been executed, potentially changing the result of a. 
It would not be reasonable for a compiler to avoid this kind of 
optimization, because every floating-point operation can potentially trap, 
and thus virtually all instruction scheduling optimizations would be 
eliminated. This problem can be avoided by prohibiting trap handlers 
from accessing any variables of the program directly. Instead, the 
handler can be given the operands or result as an argument.  

But there are still problems. In the fragment  

 
the two instructions might well be executed in parallel. If the multiply 
traps, its argument z could already have been overwritten by the 
addition, especially since addition is usually faster than multiply. 

x = y*z; 

z = x*w; 

a = b + c; 

d = a/x; 

x = y*z; 

z = a + b; 

Page 48 of 87What Every Computer Scientist Should Know About Floating-Point Arithmetic

1/23/2002file://L:\Technical%20Reference\Floating%20point%20arithmetic\What%20Every%20Computer%20Scientist%20Should%20Know%20About%20Floating...



Computer systems that support the IEEE standard must provide some 
way to save the value of z, either in hardware or by having the compiler 
avoid such a situation in the first place.  

W. Kahan has proposed using presubstitution instead of trap handlers to 
avoid these problems. In this method, the user specifies an exception 
and the value he wants to be used as the result when the exception 
occurs. As an example, suppose that in code for computing (sin x)/x, the 
user decides that x = 0 is so rare that it would improve performance to 
avoid a test for x = 0, and instead handle this case when a 0/0 trap 
occurs. Using IEEE trap handlers, the user would write a handler that 
returns a value of 1 and install it before computing sin x/x. Using 
presubstitution, the user would specify that when an invalid operation 
occurs, the value 1 should be used. Kahan calls this presubstitution, 
because the value to be used must be specified before the exception 
occurs. When using trap handlers, the value to be returned can be 
computed when the trap occurs.  

The advantage of presubstitution is that it has a straightforward 
hardware implementation.29 As soon as the type of exception has been 
determined, it can be used to index a table which contains the desired 
result of the operation. Although presubstitution has some attractive 
attributes, the widespread acceptance of the IEEE standard makes it 
unlikely to be widely implemented by hardware manufacturers.  

The Details  

A number of claims have been made in this paper concerning properties 
of floating-point arithmetic. We now proceed to show that floating-point 
is not black magic, but rather is a straightforward subject whose claims 
can be verified mathematically. This section is divided into three parts. 
The first part presents an introduction to error analysis, and provides the 
details for the section Rounding Error. The second part explores binary 
to decimal conversion, filling in some gaps from the section The IEEE 
Standard. The third part discusses the Kahan summation formula, which 
was used as an example in the section Systems Aspects.  

Rounding Error  

In the discussion of rounding error, it was stated that a single guard 
digit is enough to guarantee that addition and subtraction will always be 
accurate (Theorem 2). We now proceed to verify this fact. Theorem 2 
has two parts, one for subtraction and one for addition. The part for 
subtraction is  

Theorem 9  
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If x and y are positive floating-point numbers in a format with 
parameters  and p, and if subtraction is done with p + 1 digits (i.e. one 
guard digit), then the relative rounding error in the result is less than  

 e  2e. 

Proof  

Interchange x and y if necessary so that x > y. It is also harmless to 
scale x and y so that x is represented by x

0
.x1

 ... xp - 1
 × 0. If y is 

represented as y0.y1 ... yp-1, then the difference is exact. If y is 

represented as 0.y1 ... yp, then the guard digit ensures that the 

computed difference will be the exact difference rounded to a floating-
point number, so the rounding error is at most e. In general, let y = 
0.0 ... 0yk + 1

 ... yk + p
 and  be y truncated to p + 1 digits. Then  

(15) y -  < (  - 1)( -p - 1 + -p - 2 + ... + -p - k).

 

From the definition of guard digit, the computed value of x - y is x -  
rounded to be a floating-point number, that is, (x -  ) + , where the 
rounding error  satisfies  

(16) | |  ( /2) -p.

 

The exact difference is x - y, so the error is (x - y) - (x -  + ) =  - y + 
. There are three cases. If x - y  1 then the relative error is bounded 

by  

(17)   -p [(  - 1)( -1 + ... + -k) + /2] < -p(1 + /2) .

 

Secondly, if x -  < 1, then  = 0. Since the smallest that x - y can be is  

 > ( - 1)( -1 + ... + -k), where  =  - 1, 

 

in this case the relative error is bounded by  

(18)  . 

The final case is when x - y < 1 but x -   1. The only way this could 
happen is if x -   = 1, in which case  = 0. But if  = 0, then (18) 
applies, so that again the relative error is bounded by -p < -p(1 + 
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/2). z  

When  = 2, the bound is exactly 2e, and this bound is achieved for x= 
1 + 22 - p and y = 21 - p - 21 - 2p in the limit as p  . When adding 
numbers of the same sign, a guard digit is not necessary to achieve 
good accuracy, as the following result shows.  

Theorem 10  

If x  0 and y  0, then the relative error in computing x + y is at most 
2 , even if no guard digits are used.  

Proof  

The algorithm for addition with k guard digits is similar to that for 
subtraction. If x   y, shift y right until the radix points of x and y are 
aligned. Discard any digits shifted past the p + k position. Compute the 
sum of these two p + k digit numbers exactly. Then round to p digits.  
We will verify the theorem when no guard digits are used; the general 
case is similar. There is no loss of generality in assuming that x  y  0 
and that x is scaled to be of the form d.dd...d × 0. First, assume there is 
no carry out. Then the digits shifted off the end of y have a value less 
than -p + 1, and the sum is at least 1, so the relative error is less than 

-p+1/1 = 2e. If there is a carry out, then the error from shifting must 
be added to the rounding error of   

 .  

The sum is at least , so the relative error is less than  

  2 . z  

It is obvious that combining these two theorems gives Theorem 2. 
Theorem 2 gives the relative error for performing one operation. 
Comparing the rounding error of x2 - y2 and (x + y) (x - y) requires 
knowing the relative error of multiple operations. The relative error of x 

 y is 
1
 = [(x  y) - (x - y)] / (x - y), which satisfies |

1
|   2e. Or to 

write it another way  

(19) x  y = (x - y) (1 + 1), | 1|  2e

 

Similarly  
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(20) x  y = (x + y) (1 + 2), | 2|  2e 

Assuming that multiplication is performed by computing the exact 
product and then rounding, the relative error is at most .5 ulp, so  

(21) u  v = uv (1 + 3), | 3|  e

 

for any floating-point numbers u and v. Putting these three equations 
together (letting u = x  y and v = x  y) gives  

(22) ( x  y)  (x  y) = (x - y) (1 + 1) (x + y) (1 + 2) (1 + 3)

 

So the relative error incurred when computing (x - y) (x + y) is  

(23)   

This relative error is equal to 1 + 2 + 3 + 1 2 + 1 3 + 2 3 + 1

2 3, which is bounded by 5  + 8 2. In other words, the maximum 

relative error is about 5 rounding errors (since e is a small number, e2 is 
almost negligible).  

A similar analysis of (x  x)  (y  y) cannot result in a small value for 
the relative error, because when two nearby values of x and y are 
plugged into x2 - y2, the relative error will usually be quite large. 
Another way to see this is to try and duplicate the analysis that worked 
on (x  y)  (x  y), yielding  

(x  x)  (y  y) = [ x2(1 + 1) - y2(1 + 2)] (1 + 3)

 

= ((x2 - y2) (1 + 1) + ( 1 - 2)y
2) (1 + 3) 

When x and y are nearby, the error term ( 1 - 2)y2 can be as large as 

the result x2 - y2. These computations formally justify our claim that (x - 

y) (x + y) is more accurate than x2 - y2.  

We next turn to an analysis of the formula for the area of a triangle. In 
order to estimate the maximum error that can occur when computing 
with (7), the following fact will be needed.  

Theorem 11  

If subtraction is performed with a guard digit, and y/2  x  2y, then x 
- y is computed exactly.  
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Proof  

Note that if x and y have the same exponent, then certainly x  y is 
exact. Otherwise, from the condition of the theorem, the exponents can 
differ by at most 1. Scale and interchange x and y if necessary so that 0 

 y  x, and x is represented as x0.x1 ... xp - 1  and y as 0.y1 ... yp. Then 

the algorithm for computing x  y will compute x - y exactly and round 
to a floating-point number. If the difference is of the form 0.d1

 ... dp
, the 

difference will already be p digits long, and no rounding is necessary. 
Since x  2y, x - y  y, and since y is of the form 0.d1

 ... dp
, so is x - y. 

z  

When  > 2, the hypothesis of Theorem 11 cannot be replaced by y/
x   y; the stronger condition y/2  x  2y is still necessary. The 

analysis of the error in (x - y) (x + y), immediately following the proof of 
Theorem 10, used the fact that the relative error in the basic operations 
of addition and subtraction is small (namely equations (19) and (20)). 
This is the most common kind of error analysis. However, analyzing 
formula (7) requires something more, namely Theorem 11, as the 
following proof will show.  

Theorem 12  

If subtraction uses a guard digit, and if a,b and c are the sides of a 
triangle (a   b  c), then the relative error in computing (a + (b + c))
(c - (a - b))(c + (a - b))(a +(b - c)) is at most 16 , provided e < .005.  

Proof  

Let's examine the factors one by one. From Theorem 10, b 
 c = (b + c) (1 + 

1
), where 

1
 is the relative error, and |

1
|  2 . 

Then the value of the first factor is  

(a  (b  c)) = (a + (b  c)) (1 + 2) = (a + (b + c) (1 + 1))(1 + 2), 

 

and thus  

(a + b + c) (1 - 2 )2  [a + (b + c) (1 - 2 )] · (1-2 ) 

 

 a  (b  c) 
 [a + (b + c) (1 + 2 )] (1 + 2 ) 
 (a + b + c) (1 + 2 )2  

This means that there is an 1 so that 
 

(24) (a  (b  c)) = (a + b + c) (1 + 1)
2, | 1|  2 . 
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The next term involves the potentially catastrophic subtraction of c and 
a    b, because a  b may have rounding error. Because a, b and c are 
the sides of a triangle, a  b+ c, and combining this with the ordering c 

 b  a gives a  b + c  2b  2a. So a - b satisfies the conditions of 
Theorem 11. This means that a - b = a  b is exact, hence c  (a - b) is 
a harmless subtraction which can be estimated from Theorem 9 to be  

(25) ( c  (a  b)) = (c - (a - b)) (1 + 2), | 2|  2  

 

The third term is the sum of two exact positive quantities, so  

(26) ( c  (a  b)) = (c + ( a - b)) (1 + 3), | 3|  2

 

Finally, the last term is  

(27) (a  (b  c)) = (a + (b - c)) (1 + 4)
2, | 4|  2 , 

 

using both Theorem 9 and Theorem 10. If multiplication is assumed to 
be exactly rounded, so that x  y = xy(1 + ) with | |  , then 
combining (24), (25), (26) and (27) gives  

(a  (b  c)) (c  (a  b)) (c  (a  b)) ( a  (b  c)) 
(a + (b + c)) (c - (a - b)) (c + (a - b)) (a + (b - c)) E  

where  

E = (1 + 1)
2 (1 + 2) (1 + 3) (1 + 4)

2 (1 + 1)(1 + 2) (1 + 3) 

 

An upper bound for E is (1 + 2 )6(1 + )3, which expands out to 1 + 15
 + O( 2). Some writers simply ignore the O(e2) term, but it is easy to 

account for it. Writing (1 + 2 )6(1 + )3 = 1 + 15  + R( ), R( ) is a 
polynomial in e with positive coefficients, so it is an increasing function 
of . Since R(.005) = .505, R( ) < 1 for all  < .005, and hence E 

 (1 + 2 )6(1 +  )3 < 1 + 16 . To get a lower bound on E, note that 
1 - 15  -  R( ) < E, and so when  < .005, 1 - 16  < (1 - 2 )6(1 - )3. 
Combining these two bounds yields 1 - 16  < E < 1 + 16 . Thus the 
relative error is at most 16 . z  

Theorem 12 certainly shows that there is no catastrophic cancellation in 
formula (7). So although it is not necessary to show formula (7) is 
numerically stable, it is satisfying to have a bound for the entire formula, 
which is what Theorem 3 of Cancellation gives.  

Proof of Theorem 3  
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Let  

q = (a + (b + c)) (c - (a - b)) (c + (a - b)) (a + (b - c))  

and  

Q = (a  (b  c))  (c  (a  b))  (c  (a  b))  (a  (b  c)).  

Then, Theorem 12 shows that Q = q(1 + ), with   16 . It is easy to 
check that  

(28)   

provided   .04/(.52)2  .15, and since | |  16   16(.005) = .08, 
 does satisfy the condition. Thus  

 ,  

with | 1|  .52| |  8.5 . If square roots are computed to within .5 ulp, 

then the error when computing  is (1 + 
1
)(1 + 

2
), with |

2
|  . If 

 = 2, then there is no further error committed when dividing by 4. 
Otherwise, one more factor 1 + 

3
 with |

3
|     is necessary for the 

division, and using the method in the proof of Theorem 12, the final 
error bound of (1 + 1) (1 + 2) (1 + 3) is dominated by 1 + 4, with |

4
|  11 . z  

To make the heuristic explanation immediately following the statement 
of Theorem 4 precise, the next theorem describes just how closely µ(x) 
approximates a constant.  

Theorem 13  

If µ(x) = ln(1 + x)/x, then for 0  x   ,   µ(x)  1 and the 

derivative satisfies |µ'(x)|     .  

Proof  

Note that µ(x) = 1 - x/2 + x2/3 - ... is an alternating series with 
decreasing terms, so for x  1, µ(x)  1 - x/2  1/2. It is even easier to 
see that because the series for µ is alternating, µ(x)  1. The Taylor 

series of µ'(x) is also alternating, and if x   has decreasing terms, so - 

  µ'(x)  -  + 2x/3, or -   µ'(x)  0, thus |µ'(x)|   . z  
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Proof of Theorem 4  

Since the Taylor series for ln  

  

is an alternating series, 0 < x - ln(1 + x) < x2/2, the relative error 
incurred when approximating ln(1 + x) by x is bounded by x/2. If 1  x 
= 1, then |x| <  , so the relative error is bounded by /2.  
When 1  x  1, define  via 1  x = 1 +  . Then since 0  x < 1, (1  

x)  1 =  . If division and logarithms are computed to within  ulp, then 
the computed value of the expression ln(1 + x)/((1 + x) - 1) is  

(29)  (1 + 1) (1 + 2) =  (1 + 1) (1 + 2) = µ(  ) (1 + 1) (1 + 

2) 

 

where |
1
|   and |

2
|  . To estimate µ(  ), use the mean value 

theorem, which says that  

(30) µ(  ) - µ(x) = (  - x)µ'( ) 

for some  between x and  . From the definition of  , it follows that |  
- x|  , and combining this with Theorem 13 gives |µ(  ) - µ(x)|  
/2, or |µ(  )/µ(x) - 1|  /(2|µ(x)|)   which means that µ(  ) = µ(x) 
(1 + 3), with | 3|  . Finally, multiplying by x introduces a final 4, 

so the computed value of  

x·ln(1   x)/((1  x)  1) 

is  

  

It is easy to check that if  < 0.1, then  

(1 + 1) (1 + 2) (1 + 3) (1 + 4) = 1 +  , 

 

with | |   5 . z  

An interesting example of error analysis using formulas (19), (20), and 

(21) occurs in the quadratic formula  . The section 
Cancellation, explained how rewriting the equation will eliminate the 
potential cancellation caused by the ± operation. But there is another 
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potential cancellation that can occur when computing d = b2 - 4ac. This 

one cannot be eliminated by a simple rearrangement of the formula. 
Roughly speaking, when b2  4ac, rounding error can contaminate up to 
half the digits in the roots computed with the quadratic formula. Here is 
an informal proof (another approach to estimating the error in the 
quadratic formula appears in Kahan [1972]).  

If b2  4ac, rounding error can contaminate up to half the digits in the 

roots computed with the quadratic formula  .  

Proof: Write (b  b)  (4a  c) = (b2(1 + 
1
) - 4ac(1 + 

2
)) (1 + 

3
), 

where | i|   . 30 Using d = b2 - 4ac, this can be rewritten as (d(1 + 1) 

- 4ac( 2 - 1)) (1 + 3). To get an estimate for the size of this error, 

ignore second order terms in 
i
, in which case the absolute error is d(

1
 

+ 3) - 4ac 4, where | 4| = | 1 -  2|  2 . Since  , the first term 

d( 1 + 3) can be ignored. To estimate the second term, use the fact 

that ax2 + bx + c = a(x - r1) (x - r2), so ar1r2 = c. Since b2  4ac, then r1 

 r2, so the second error term is  . Thus the computed value 

of  is  

 .  

The inequality  

  

shows that  

 , 

where  

 ,  

so the absolute error in  a is about  . Since 4  -p,  , 

and thus the absolute error of  destroys the bottom half of the bits 
of the roots r1  r2. In other words, since the calculation of the roots 

involves computing with  , and this expression does not have 
meaningful bits in the position corresponding to the lower order half of ri, 

Page 57 of 87What Every Computer Scientist Should Know About Floating-Point Arithmetic

1/23/2002file://L:\Technical%20Reference\Floating%20point%20arithmetic\What%20Every%20Computer%20Scientist%20Should%20Know%20About%20Floating...



then the lower order bits of ri cannot be meaningful. z  

Finally, we turn to the proof of Theorem 6. It is based on the following 
fact, which is proven in the section Theorem 14 and Theorem 8.  

Theorem 14  

Let 0 < k < p, and set m = k + 1, and assume that floating-point 
operations are exactly rounded. Then (m  x)  (m  x  x) is exactly 
equal to x rounded to p - k significant digits. More precisely, x is 
rounded by taking the significand of x, imagining a radix point just left of 
the k least significant digits and rounding to an integer.  

Proof of Theorem 6  

By Theorem 14, xh is x rounded to p - k =  places. If there is no 

carry out, then certainly xh can be represented with  significant 

digits. Suppose there is a carry-out. If x = x0
.x1

 ... xp - 1
 × e, then 

rounding adds 1 to xp - k - 1, and the only way there can be a carry-out is 

if xp - k - 1 =  - 1, but then the low order digit of xh is 1 + xp - k- 1 = 0, 

and so again x
h
 is representable in  digits.  

To deal with x
l
, scale x to be an integer satisfying p - 1  x  p - 1. 

Let  where  is the p - k high order digits of x, and  is the k low 
order digits. There are three cases to consider. If  , then 
rounding x to p - k places is the same as chopping and  , and  
. Since  has at most k digits, if p is even, then  has at most k =  
=  digits. Otherwise,  = 2 and  is representable with k - 1  

 significant bits. The second case is when  , and then 
computing x

h
 involves rounding up, so x

h
 =  + k, and x

l
 = x - xh

 = x -

   - k =  - k. Once again,  has at most k digits, so is representable 
with p/2  digits. Finally, if  = ( /2) k - 1, then xh =  or   +  k 

depending on whether there is a round up. So x
l
 is either ( /2) k - 1 or (

/2) k - 1 -  k = - k/2, both of which are represented with 1 digit. z  

Theorem 6 gives a way to express the product of two working precision 
numbers exactly as a sum. There is a companion formula for expressing 
a sum exactly. If |x|  |y| then x + y = (x  y) + (x  (x  y))  y 
[Dekker 1971; Knuth 1981, Theorem C in section 4.2.2]. However, when 
using exactly rounded operations, this formula is only true for  = 2, and 
not for  = 10 as the example x = .99998, y = .99997 shows.  
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Binary to Decimal Conversion  

Since single precision has p = 24, and 224 < 108, you might expect that 
converting a binary number to 8 decimal digits would be sufficient to 
recover the original binary number. However, this is not the case.  

Theorem 15  

When a binary IEEE single precision number is converted to the closest 
eight digit decimal number, it is not always possible to uniquely recover 
the binary number from the decimal one. However, if nine decimal digits 
are used, then converting the decimal number to the closest binary 
number will recover the original floating-point number.  

Proof  

Binary single precision numbers lying in the half open interval [103, 210) 
= [1000, 1024) have 10 bits to the left of the binary point, and 14 bits 
to the right of the binary point. Thus there are (210 - 103)214 = 393,216 
different binary numbers in that interval. If decimal numbers are 
represented with 8 digits, then there are (210 - 103)104 = 240,000 
decimal numbers in the same interval. There is no way that 240,000 
decimal numbers could represent 393,216 different binary numbers. So 
8 decimal digits are not enough to uniquely represent each single 
precision binary number.  
To show that 9 digits are sufficient, it is enough to show that the spacing 
between binary numbers is always greater than the spacing between 
decimal numbers. This will ensure that for each decimal number N, the 
interval  

[N -  ulp, N +  ulp]  

contains at most one binary number. Thus each binary number rounds 
to a unique decimal number which in turn rounds to a unique binary 
number.  
To show that the spacing between binary numbers is always greater 
than the spacing between decimal numbers, consider an interval [10n, 
10n + 1]. On this interval, the spacing between consecutive decimal 
numbers is 10(n + 1) - 9. On [10n, 2m], where m is the smallest integer 
so that 10n < 2m, the spacing of binary numbers is 2m - 24, and the 
spacing gets larger further on in the interval. Thus it is enough to check 
that 10(n + 1) - 9 < 2m - 24. But in fact, since 10n < 2m, then 10(n + 1) - 9 
= 10n10-8 < 2m10-8 < 2m2-24. z  
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The same argument applied to double precision shows that 17 decimal 
digits are required to recover a double precision number.  

Binary-decimal conversion also provides another example of the use of 
flags. Recall from the section Precision, that to recover a binary number 
from its decimal expansion, the decimal to binary conversion must be 
computed exactly. That conversion is performed by multiplying the 
quantities N and 10|P| (which are both exact if p < 13) in single-
extended precision and then rounding this to single precision (or dividing 
if p < 0; both cases are similar). Of course the computation of N · 10|P| 
cannot be exact; it is the combined operation round(N · 10|P|) that must 
be exact, where the rounding is from single-extended to single precision. 
To see why it might fail to be exact, take the simple case of  = 10, p = 
2 for single, and p = 3 for single-extended. If the product is to be 12.51, 
then this would be rounded to 12.5 as part of the single-extended 
multiply operation. Rounding to single precision would give 12. But that 
answer is not correct, because rounding the product to single precision 
should give 13. The error is due to double rounding.  

By using the IEEE flags, double rounding can be avoided as follows. Save 
the current value of the inexact flag, and then reset it. Set the rounding 
mode to round-to-zero. Then perform the multiplication N · 10|P|. Store 
the new value of the inexact flag in ixflag, and restore the rounding 
mode and inexact flag. If ixflag is 0, then N · 10|P| is exact, so round(N · 
10|P|) will be correct down to the last bit. If ixflag is 1, then some digits 
were truncated, since round-to-zero always truncates. The significand of 
the product will look like 1.b1...b22b23...b31. A double rounding error may 

occur if b23
 ...b31

 = 10...0. A simple way to account for both cases is to 

perform a logical OR of ixflag with b31. Then round(N · 10|P|) will be 

computed correctly in all cases.  

Errors In Summation  

The section Optimizers, mentioned the problem of accurately computing 
very long sums. The simplest approach to improving accuracy is to 
double the precision. To get a rough estimate of how much doubling the 
precision improves the accuracy of a sum, let s1

 = x1
, s2

 = s1
   x2

..., si
 

= si - 1  xi. Then si = (1 +  i) (si - 1 + xi), where i   , and 

ignoring second order terms in i gives  

(31)   
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The first equality of (31) shows that the computed value of  is the 
same as if an exact summation was performed on perturbed values of x

j
. 

The first term x1 is perturbed by n , the last term xn by only . The 

second equality in (31) shows that error term is bounded by  . 
Doubling the precision has the effect of squaring . If the sum is being 
done in an IEEE double precision format, 1/   1016, so that  for 
any reasonable value of n. Thus, doubling the precision takes the 
maximum perturbation of n  and changes it to  . Thus the 2  error 
bound for the Kahan summation formula (Theorem 8) is not as good as 
using double precision, even though it is much better than single 
precision.  

For an intuitive explanation of why the Kahan summation formula works, 
consider the following diagram of the procedure.  

 

Each time a summand is added, there is a correction factor C which will 
be applied on the next loop. So first subtract the correction C computed 
in the previous loop from Xj, giving the corrected summand Y. Then add 

this summand to the running sum S. The low order bits of Y (namely Yl) 

are lost in the sum. Next compute the high order bits of Y by computing 
T - S. When Y is subtracted from this, the low order bits of Y will be 
recovered. These are the bits that were lost in the first sum in the 
diagram. They become the correction factor for the next loop. A formal 
proof of Theorem 8, taken from Knuth [1981] page 572, appears in the 
section Theorem 14 and Theorem 8."  

Summary  
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It is not uncommon for computer system designers to neglect the parts 
of a system related to floating-point. This is probably due to the fact that 
floating-point is given very little (if any) attention in the computer 
science curriculum. This in turn has caused the apparently widespread 
belief that floating-point is not a quantifiable subject, and so there is 
little point in fussing over the details of hardware and software that deal 
with it.  

This paper has demonstrated that it is possible to reason rigorously 
about floating-point. For example, floating-point algorithms involving 
cancellation can be proven to have small relative errors if the underlying 
hardware has a guard digit, and there is an efficient algorithm for 
binary-decimal conversion that can be proven to be invertible, provided 
that extended precision is supported. The task of constructing reliable 
floating-point software is made much easier when the underlying 
computer system is supportive of floating-point. In addition to the two 
examples just mentioned (guard digits and extended precision), the 
section Systems Aspects of this paper has examples ranging from 
instruction set design to compiler optimization illustrating how to better 
support floating-point.  

The increasing acceptance of the IEEE floating-point standard means 
that codes that utilize features of the standard are becoming ever more 
portable. The section The IEEE Standard, gave numerous examples 
illustrating how the features of the IEEE standard can be used in writing 
practical floating-point codes.  
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Theorem 14 and Theorem 8  

This section contains two of the more technical proofs that were omitted 
from the text.  

Theorem 14  

Let 0 < k < p, and set m = k + 1, and assume that floating-point 
operations are exactly rounded. Then (m  x)  (m  x  x) is exactly 
equal to x rounded to p - k significant digits. More precisely, x is 
rounded by taking the significand of x, imagining a radix point just left of 
the k least significant digits, and rounding to an integer.  

Proof  

The proof breaks up into two cases, depending on whether or not the 
computation of mx = kx + x has a carry-out or not.  
Assume there is no carry out. It is harmless to scale x so that it is an 
integer. Then the computation of mx = x + kx looks like this: 

aa...aabb...bb 
+ aa...aabb...bb 
zz...zzbb...bb  

where x has been partitioned into two parts. The low order k digits are 
marked b and the high order p - k digits are marked a. To compute m  x 
from mx involves rounding off the low order k digits (the ones marked 
with b) so  

(32) m  x = mx - x mod( k) + r k

 

The value of r is 1 if .bb...b is greater than  and 0 otherwise. More 
precisely  
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(33) r = 1 if a.bb...b rounds to a + 1, r = 0 otherwise.  

Next compute m  x - x = mx - x mod( k) + r k - x = k(x + r) - x mod(
k). The picture below shows the computation of m  x - x rounded, that 

is, (m   x)  x. The top line is k(x + r), where B is the digit that results 
from adding r to the lowest order digit b. 

aa...aabb...bB00...00 
- bb...bb  
zz... zzZ00...00  

If .bb...b <  then r = 0, subtracting causes a borrow from the digit 
marked B, but the difference is rounded up, and so the net effect is that 

the rounded difference equals the top line, which is kx. If .bb...b >  
then r = 1, and 1 is subtracted from B because of the borrow, so the 

result is kx. Finally consider the case .bb...b =  . If r = 0 then B is 
even, Z is odd, and the difference is rounded up, giving kx. Similarly 
when r = 1, B is odd, Z is even, the difference is rounded down, so again 
the difference is kx. To summarize  

(34) (m  x)  x = kx 

 

Combining equations (32) and (34) gives (m  x) - (m  x  x) = x - x 
mod( k) + · k. The result of performing this computation is 

r00...00 
+ aa...aabb...bb 
- bb...bb 
aa...aA00...00  

The rule for computing r, equation (33), is the same as the rule for 
rounding a... ab...b to p - k places. Thus computing mx - (mx - x) in 
floating-point arithmetic precision is exactly equal to rounding x to p - k 
places, in the case when x + kx does not carry out.  

When x + kx does carry out, then mx = kx + x looks like this: 
aa...aabb...bb 
+ aa...aabb...bb 
zz...zZbb...bb  

Thus, m  x = mx - x mod( k) + w k, where w = -Z if Z < /2, but the 
exact value of w is unimportant. Next, m  x - x = kx - x mod( k) + w

k. In a picture 
aa...aabb...bb00...00 
- bb... bb 
+ w  
zz ... zZbb ...bb31  

Rounding gives (m  x)  x = kx + w k - r k, where r = 1 if .bb...b >   

or if .bb...b =  and b0 = 1.32 Finally,  
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(m  x) - (m  x  x) = mx - x mod( k) + w k - ( kx + w k - r k) 

= x - x mod( k) + r k. 

And once again, r = 1 exactly when rounding a...ab...b to p - k places 
involves rounding up. Thus Theorem 14 is proven in all cases. z  

Theorem 8 (Kahan Summation Formula)  

Suppose that  is computed using the following algorithm 

 
Then the computed sum S is equal to S =  x

j
 (1 + 

j
) + O(N 2)  |xj

|, 

where | j|  2 .  

Proof  

First recall how the error estimate for the simple formula  xi
 went. 

Introduce s1 = x1, si = (1 + i) (si - 1 + xi). Then the computed sum is 

sn
, which is a sum of terms, each of which is an xi

 multiplied by an 

expression involving j's. The exact coefficient of x1 is (1 + 2)(1 + 

3) ... (1 + n), and so by renumbering, the coefficient of x2 must be 

(1 + 
3
)(1 + 

4
) ... (1 + 

n
), and so on. The proof of Theorem 8 runs 

along exactly the same lines, only the coefficient of x1 is more 

complicated. In detail s0 = c0 = 0 and 

yk = xk  ck - 1 = (xk - ck - 1
) (1 + k

)  

sk = sk - 1  yk = (sk-1 + yk) (1 + k)  

ck = (sk  sk - 1)  yk= [(sk - sk - 1) (1 + k) - yk] (1 + k)  

where all the Greek letters are bounded by . Although the coefficient of 
x1 in sk is the ultimate expression of interest, in turns out to be easier to 

S = X [1]; 

C = 0; 

for j = 2 to N { 

Y = X [j] - C; 

   T = S + Y; 

   C = (T - S) - Y; 

   S = T; 

} 
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compute the coefficient of x1 in sk - ck and ck.  

When k = 1, 
c1

 = (s1
(1 + 

1
) - y1

) (1 + d1
)  

= y1((1 + s1) (1 + 1) - 1) (1 + d1)  

= x1
(s1

 +
1
 + s1g1

) (1 + d1
) (1 + h1

)  

s1
 - c1

 = x1
[(1 + s1

) - (s1
 + g1

 + s1g1
) (1 + d1

)](1 + h1
)  

= x1[1 - g1 - s1d1 - s1g1 - d1g1 - s1g1d1](1 + h1)  

Calling the coefficients of x
1
 in these expressions C

k
 and Sk

 respectively, 

then  

C1 = 2  + O( 2) 

 

S1 = + 1 - 1 + 4 2 + O( 3)  

To get the general formula for Sk and Ck, expand the definitions of sk 

and ck
, ignoring all terms involving x

i
 with i > 1 to get 

sk = (sk - 1 + yk)(1 + k)  

= [sk - 1
 + (xk

 - ck - 1
) (1 + 

k
)](1 + 

k
)  

= [(sk - 1
 - ck - 1

) - 
kck - 1

](1+
k
)  

ck = [{sk - sk - 1}(1 + k) - yk](1 + k)  

= [{((sk - 1
 - ck - 1

) - 
kck - 1

)(1 + 
k
) - sk - 1

}(1 + 
k
) + ck - 1

(1 + 

k
)](1 + 

k
)  

= [{(sk - 1 - ck - 1) k - kck-1(1 + k) - ck - 1}(1 + k) + ck - 1(1 + 

k
)](1 + 

k
)  

= [(sk - 1
 - ck - 1

)
k
(1 + 

k
) - ck - 1

(
k
 + 

k
(

k
 + 

k
 + 

k k
))](1 + 

k),  

s
k
 - c

k 
= ((sk - 1

 - ck - 1
) - 

kck - 1
) (1 + 

k
)  

- [(sk - 1
 - ck - 1

)
k
(1 + 

k
) - ck - 1

(
k
 + 

k
(

k
 + 

k
 + 

k k
)](1 + 

k)  

= (sk- 1
 - ck - 1

)((1 + 
k
) - 

k
(1 + 

k
)(1 + 

k
))  

+ ck - 1(- k(1 + k) + ( k + k( k + k + k k)) (1 + k))  

= (s- 1 - ck - 1) (1 - k( k + k + k k))  

+ ck - 1
 - [

k
 + 

k
 + 

k
(

k
 + 

k k
) + (

k
 + 

k
(

k
 + 

k
 + 

k k
))

k]  

Since Sk and Ck are only being computed up to order 2, these formulas 

can be simplified to 

Ck= ( k + O( 2))Sk - 1 + (- k + O( 2))Ck - 1  
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Sk
= ((1 + 2 2 + O( 3))Sk - 1

 + (2  + ( 2))Ck - 1
  

Using these formulas gives  

C2 = 2 + O( 2) 

 

S2 = 1 + 1 - 1 + 10 2 + O( 3)  

and in general it is easy to check by induction that  

Ck = k + O( 2) 

 

Sk = 1 + 1 - 1 + (4k+2) 2 + O( 3)  

Finally, what is wanted is the coefficient of x
1
 in sk

. To get this value, let 

xn + 1  = 0, let all the Greek letters with subscripts of n + 1 equal 0, and 

compute sn + 1. Then sn + 1 = sn - cn, and the coefficient of x1 in sn is 

less than the coefficient in sn + 1
, which is Sn

 = 1 + 
1
 - 

1
 + (4n + 2) 2 

= (1 + 2  + (n 2)). z  

Differences Among IEEE 754 
Implementations  

Note – This section is not part of the published paper. It has been 
added to clarify certain points and correct possible misconceptions about 
the IEEE standard that the reader might infer from the paper. This 
material was not written by David Goldberg, but it appears here with his 
permission. 

The preceding paper has shown that floating-point arithmetic must be 
implemented carefully, since programmers may depend on its properties 
for the correctness and accuracy of their programs. In particular, the 
IEEE standard requires a careful implementation, and it is possible to 
write useful programs that work correctly and deliver accurate results 
only on systems that conform to the standard. The reader might be 
tempted to conclude that such programs should be portable to all IEEE 
systems. Indeed, portable software would be easier to write if the 
remark "When a program is moved between two machines and both 
support IEEE arithmetic, then if any intermediate result differs, it must 
be because of software bugs, not from differences in arithmetic," were 
true.   

Unfortunately, the IEEE standard does not guarantee that the same 
program will deliver identical results on all conforming systems. Most 
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programs will actually produce different results on different systems for 
a variety of reasons. For one, most programs involve the conversion of 
numbers between decimal and binary formats, and the IEEE standard 
does not completely specify the accuracy with which such conversions 
must be performed. For another, many programs use elementary 
functions supplied by a system library, and the standard doesn't specify 
these functions at all. Of course, most programmers know that these 
features lie beyond the scope of the IEEE standard.  

Many programmers may not realize that even a program that uses only 
the numeric formats and operations prescribed by the IEEE standard can 
compute different results on different systems. In fact, the authors of 
the standard intended to allow different implementations to obtain 
different results. Their intent is evident in the definition of the term 
destination in the IEEE 754 standard: "A destination may be either 
explicitly designated by the user or implicitly supplied by the system (for 
example, intermediate results in subexpressions or arguments for 
procedures). Some languages place the results of intermediate 
calculations in destinations beyond the user's control. Nonetheless, this 
standard defines the result of an operation in terms of that destination's 
format and the operands' values." (IEEE 754-1985, p. 7) In other words, 
the IEEE standard requires that each result be rounded correctly to the 
precision of the destination into which it will be placed, but the standard 
does not require that the precision of that destination be determined by 
a user's program. Thus, different systems may deliver their results to 
destinations with different precisions, causing the same program to 
produce different results (sometimes dramatically so), even though 
those systems all conform to the standard.  

Several of the examples in the preceding paper depend on some 
knowledge of the way floating-point arithmetic is rounded. In order to 
rely on examples such as these, a programmer must be able to predict 
how a program will be interpreted, and in particular, on an IEEE system, 
what the precision of the destination of each arithmetic operation may 
be. Alas, the loophole in the IEEE standard's definition of destination 
undermines the programmer's ability to know how a program will be 
interpreted. Consequently, several of the examples given above, when 
implemented as apparently portable programs in a high-level language, 
may not work correctly on IEEE systems that normally deliver results to 
destinations with a different precision than the programmer expects. 
Other examples may work, but proving that they work may lie beyond 
the average programmer's ability.   

In this section, we classify existing implementations of IEEE 754 
arithmetic based on the precisions of the destination formats they 
normally use. We then review some examples from the paper to show 
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that delivering results in a wider precision than a program expects can 
cause it to compute wrong results even though it is provably correct 
when the expected precision is used. We also revisit one of the proofs in 
the paper to illustrate the intellectual effort required to cope with 
unexpected precision even when it doesn't invalidate our programs. 
These examples show that despite all that the IEEE standard prescribes, 
the differences it allows among different implementations can prevent us 
from writing portable, efficient numerical software whose behavior we 
can accurately predict. To develop such software, then, we must first 
create programming languages and environments that limit the 
variability the IEEE standard permits and allow programmers to express 
the floating-point semantics upon which their programs depend.  

Current IEEE 754 Implementations  

Current implementations of IEEE 754 arithmetic can be divided into two 
groups distinguished by the degree to which they support different 
floating-point formats in hardware. Extended-based systems, 
exemplified by the Intel x86 family of processors, provide full support for 
an extended double precision format but only partial support for single 
and double precision: they provide instructions to load or store data in 
single and double precision, converting it on-the-fly to or from the 
extended double format, and they provide special modes (not the 
default) in which the results of arithmetic operations are rounded to 
single or double precision even though they are kept in registers in 
extended double format. (Motorola 68000 series processors round 
results to both the precision and range of the single or double formats in 
these modes. Intel x86 and compatible processors round results to the 
precision of the single or double formats but retain the same range as 
the extended double format.) Single/double  systems, including most 
RISC processors, provide full support for single and double precision 
formats but no support for an IEEE-compliant extended double precision 
format. (The IBM POWER architecture provides only partial support for 
single precision, but for the purpose of this section, we classify it as a 
single/double system.)  

To see how a computation might behave differently on an extended-
based system than on a single/double system, consider a C version of 
the example from the section Systems Aspects:  

int main() { 

    double  q; 

    q = 3.0/7.0; 

    if (q == 3.0/7.0) printf("Equal\n"); 
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Here the constants 3.0 and 7.0 are interpreted as double precision 
floating-point numbers, and the expression 3.0/7.0 inherits the double 
data type. On a single/double system, the expression will be evaluated 
in double precision since that is the most efficient format to use. Thus, q 
will be assigned the value 3.0/7.0 rounded correctly to double precision. 
In the next line, the expression 3.0/7.0 will again be evaluated in double 
precision, and of course the result will be equal to the value just 
assigned to q, so the program will print "Equal" as expected.  

On an extended-based system, even though the expression 3.0/7.0 has 
type double, the quotient will be computed in a register in extended 
double format, and thus in the default mode, it will be rounded to 
extended double precision. When the resulting value is assigned to the 
variable q, however, it may then be stored in memory, and since q is 
declared double, the value will be rounded to double precision. In the 
next line, the expression 3.0/7.0 may again be evaluated in extended 
precision yielding a result that differs from the double precision value 
stored in q, causing the program to print "Not equal". Of course, other 
outcomes are possible, too: the compiler could decide to store and thus 
round the value of the expression 3.0/7.0 in the second line before 
comparing it with q, or it could keep q in a register in extended precision 
without storing it. An optimizing compiler might evaluate the expression 
3.0/7.0 at compile time, perhaps in double precision or perhaps in 
extended double precision. (With one x86 compiler, the program prints 
"Equal" when compiled with optimization and "Not Equal" when compiled 
for debugging.) Finally, some compilers for extended-based systems 
automatically change the rounding precision mode to cause operations 
producing results in registers to round those results to single or double 
precision, albeit possibly with a wider range. Thus, on these systems, we 
can't predict the behavior of the program simply by reading its source 
code and applying a basic understanding of IEEE 754 arithmetic. Neither 
can we accuse the hardware or the compiler of failing to provide an IEEE 
754 compliant environment; the hardware has delivered a correctly 
rounded result to each destination, as it is required to do, and the 
compiler has assigned some intermediate results to destinations that are 
beyond the user's control, as it is allowed to do.   

Pitfalls in Computations on Extended-Based Systems  

    else printf("Not Equal\n"); 

    return 0; 

} 
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Conventional wisdom maintains that extended-based systems must 
produce results that are at least as accurate, if not more accurate than 
those delivered on single/double systems, since the former always 
provide at least as much precision and often more than the latter. Trivial 
examples such as the C program above as well as more subtle programs 
based on the examples discussed below show that this wisdom is naive 
at best: some apparently portable programs, which are indeed portable 
across single/double systems, deliver incorrect results on extended-
based systems precisely because the compiler and hardware conspire to 
occasionally provide more precision than the program expects.  

Current programming languages make it difficult for a program to 
specify the precision it expects. As the section Languages and Compilers 
mentions, many programming languages don't specify that each 
occurrence of an expression like 10.0*x in the same context should 
evaluate to the same value. Some languages, such as Ada, were 
influenced in this respect by variations among different arithmetics prior 
to the IEEE standard. More recently, languages like ANSI C have been 
influenced by standard-conforming extended-based systems. In fact, the 
ANSI C standard explicitly allows a compiler to evaluate a floating-point 
expression to a precision wider than that normally associated with its 
type. As a result, the value of the expression 10.0*x may vary in ways 
that depend on a variety of factors: whether the expression is 
immediately assigned to a variable or appears as a subexpression in a 
larger expression; whether the expression participates in a comparison; 
whether the expression is passed as an argument to a function, and if 
so, whether the argument is passed by value or by reference; the 
current precision mode; the level of optimization at which the program 
was compiled; the precision mode and expression evaluation method 
used by the compiler when the program was compiled; and so on.  

Language standards are not entirely to blame for the vagaries of 
expression evaluation. Extended-based systems run most efficiently 
when expressions are evaluated in extended precision registers 
whenever possible, yet values that must be stored are stored in the 
narrowest precision required. Constraining a language to require that 
10.0*x evaluate to the same value everywhere would impose a 
performance penalty on those systems. Unfortunately, allowing those 
systems to evaluate 10.0*x differently in syntactically equivalent contexts 
imposes a penalty of its own on programmers of accurate numerical 
software by preventing them from relying on the syntax of their 
programs to express their intended semantics.  

Do real programs depend on the assumption that a given expression 
always evaluates to the same value? Recall the algorithm presented in 
Theorem 4 for computing ln(1 + x), written here in Fortran:  
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On an extended-based system, a compiler may evaluate the expression 
1.0 + x in the third line in extended precision and compare the result with 
1.0. When the same expression is passed to the log function in the sixth 
line, however, the compiler may store its value in memory, rounding it 
to single precision. Thus, if x is not so small that 1.0 + x rounds to 1.0 in 
extended precision but small enough that 1.0 + x rounds to 1.0 in single 
precision, then the value returned by log1p(x) will be zero instead of x, 
and the relative error will be one--rather larger than 5 . Similarly, 
suppose the rest of the expression in the sixth line, including the 
reoccurrence of the subexpression 1.0 + x, is evaluated in extended 
precision. In that case, if x is small but not quite small enough that 
1.0 + x rounds to 1.0 in single precision, then the value returned by log1p
(x) can exceed the correct value by nearly as much as x, and again the 

relative error can approach one. For a concrete example, take x to be 2-

24 + 2-47, so x is the smallest single precision number such that 1.0 + x 
rounds up to the next larger number, 1 + 2-23. Then log(1.0 + x) is 
approximately 2-23. Because the denominator in the expression in the 
sixth line is evaluated in extended precision, it is computed exactly and 
delivers x, so log1p(x) returns approximately 2-23, which is nearly twice 
as large as the exact value. (This actually happens with at least one 
compiler. When the preceding code is compiled by the Sun WorkShop 
Compilers 4.2.1 Fortran 77 compiler for x86 systems using the -O 
optimization flag, the generated code computes 1.0 + x exactly as 
described. As a result, the function delivers zero for log1p(1.0e-10) and 
1.19209E-07 for log1p(5.97e-8).)  

For the algorithm of Theorem 4 to work correctly, the expression 1.0 + x 
must be evaluated the same way each time it appears; the algorithm 
can fail on extended-based systems only when 1.0 + x is evaluated to 
extended double precision in one instance and to single or double 

real function log1p(x) 

real x 

if (1.0 + x .eq. 1.0) then 

   log1p = x 

else 

   log1p = log(1.0 + x) * x / ((1.0 + x) - 1.0) 

endif 

return 
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precision in another. Of course, since log is a generic intrinsic function in 
Fortran, a compiler could evaluate the expression 1.0 + x in extended 
precision throughout, computing its logarithm in the same precision, but 
evidently we cannot assume that the compiler will do so. (One can also 
imagine a similar example involving a user-defined function. In that 
case, a compiler could still keep the argument in extended precision 
even though the function returns a single precision result, but few if any 
existing Fortran compilers do this, either.) We might therefore attempt 
to ensure that 1.0 + x is evaluated consistently by assigning it to a 
variable. Unfortunately, if we declare that variable real, we may still be 
foiled by a compiler that substitutes a value kept in a register in 
extended precision for one appearance of the variable and a value stored 
in memory in single precision for another. Instead, we would need to 
declare the variable with a type that corresponds to the extended 
precision format. Standard FORTRAN 77 does not provide a way to do 
this, and while Fortran 95 offers the SELECTED_REAL_KIND mechanism for 
describing various formats, it does not explicitly require implementations 
that evaluate expressions in extended precision to allow variables to be 
declared with that precision. In short, there is no portable way to write 
this program in standard Fortran that is guaranteed to prevent the 
expression 1.0 + x from being evaluated in a way that invalidates our 
proof.   

There are other examples that can malfunction on extended-based 
systems even when each subexpression is stored and thus rounded to 
the same precision. The cause is double-rounding. In the default 
precision mode, an extended-based system will initially round each 
result to extended double precision. If that result is then stored to 
double precision, it is rounded again. The combination of these two 
roundings can yield a value that is different than what would have been 
obtained by rounding the first result correctly to double precision. This 
can happen when the result as rounded to extended double precision is a 
"halfway case", i.e., it lies exactly halfway between two double precision 
numbers, so the second rounding is determined by the round-ties-to-
even rule. If this second rounding rounds in the same direction as the 
first, the net rounding error will exceed half a unit in the last place. 
(Note, though, that double-rounding only affects double precision 
computations. One can prove that the sum, difference, product, or 
quotient of two p-bit numbers, or the square root of a p-bit number, 
rounded first to q bits and then to p bits gives the same value as if the 
result were rounded just once to p bits provided q  2p + 2. Thus, 
extended double precision is wide enough that single precision 
computations don't suffer double-rounding.)  

Some algorithms that depend on correct rounding can fail with double-
rounding. In fact, even some algorithms that don't require correct 
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rounding and work correctly on a variety of machines that don't conform 
to IEEE 754 can fail with double-rounding. The most useful of these are 
the portable algorithms for performing simulated multiple precision 
arithmetic mentioned in the section Exactly Rounded Operations. For 
example, the procedure described in Theorem 6 for splitting a floating-
point number into high and low parts doesn't work correctly in double-
rounding arithmetic: try to split the double precision number 252 + 
3 × 226 - 1 into two parts each with at most 26 bits. When each 
operation is rounded correctly to double precision, the high order part is 
252 + 227 and the low order part is 226 - 1, but when each operation is 
rounded first to extended double precision and then to double precision, 
the procedure produces a high order part of 252 + 228 and a low order 
part of -226 - 1. The latter number occupies 27 bits, so its square can't 
be computed exactly in double precision. Of course, it would still be 
possible to compute the square of this number in extended double 
precision, but the resulting algorithm would no longer be portable to 
single/double systems. Also, later steps in the multiple precision 
multiplication algorithm assume that all partial products have been 
computed in double precision. Handling a mixture of double and 
extended double variables correctly would make the implementation 
significantly more expensive.   

Likewise, portable algorithms for adding multiple precision numbers 
represented as arrays of double precision numbers can fail in double-
rounding arithmetic. These algorithms typically rely on a technique 
similar to Kahan's summation formula. As the informal explanation of 
the summation formula given on Errors In Summation suggests, if s and 
y are floating-point variables with |s|  |y| and we compute:  

then in most arithmetics, e recovers exactly the roundoff error that 
occurred in computing t. This technique doesn't work in double-rounded 
arithmetic, however: if s = 252 + 1 and y = 1/2 - 2-54, then s + y rounds 
first to 252 + 3/2 in extended double precision, and this value rounds to 
252 + 2 in double precision by the round-ties-to-even rule; thus the net 
rounding error in computing t is 1/2 + 2-54, which is not representable 
exactly in double precision and so can't be computed exactly by the 
expression shown above. Here again, it would be possible to recover the 
roundoff error by computing the sum in extended double precision, but 
then a program would have to do extra work to reduce the final outputs 
back to double precision, and double-rounding could afflict this process, 

t = s + y; 

e = (s - t) + y; 
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too. For this reason, although portable programs for simulating multiple 
precision arithmetic by these methods work correctly and efficiently on a 
wide variety of machines, they do not work as advertised on extended-
based systems.   

Finally, some algorithms that at first sight appear to depend on correct 
rounding may in fact work correctly with double-rounding. In these 
cases, the cost of coping with double-rounding lies not in the 
implementation but in the verification that the algorithm works as 
advertised. To illustrate, we prove the following variant of Theorem 7:  

Theorem 7'  

If m and n are integers representable in IEEE 754 double precision with 
|m| < 252 and n has the special form n = 2i + 2j, then (m  n)  n = m, 
provided both floating-point operations are either rounded correctly to 
double precision or rounded first to extended double precision and then 
to double precision.  

Proof  

Assume without loss that m > 0. Let q = m  n. Scaling by powers of 
two, we can consider an equivalent setting in which 252  m < 253 and 
likewise for q, so that both m and q are integers whose least significant 
bits occupy the units place (i.e., ulp(m) = ulp(q) = 1). Before scaling, 
we assumed m < 252, so after scaling, m is an even integer. Also, 
because the scaled values of m and q satisfy m/2 < q < 2m, the 
corresponding value of n must have one of two forms depending on 
which of m or q is larger: if q < m, then evidently 1 < n < 2, and since n 
is a sum of two powers of two, n = 1 + 2-k for some k; similarly, if q > 
m, then 1/2 < n < 1, so n = 1/2 + 2-(k + 1). (As n is the sum of two 
powers of two, the closest possible value of n to one is n = 1 + 2-52. 
Because m/(1 + 2-52) is no larger than the next smaller double precision 
number less than m, we can't have q = m.)  

Let e denote the rounding error in computing q, so that q = m/n + e, 
and the computed value q  n will be the (once or twice) rounded value 
of m + ne. Consider first the case in which each floating-point operation 
is rounded correctly to double precision. In this case, |e| < 1/2. If n has 
the form 1/2 + 2-(k + 1), then ne = nq - m is an integer multiple of 2-(k + 

1) and |ne| < 1/4 + 2-(k + 2). This implies that |ne|  1/4. Recall that 
the difference between m and the next larger representable number is 1 
and the difference between m and the next smaller representable 
number is either 1 if m > 252 or 1/2 if m = 252. Thus, as |ne|  1/4, m 
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+ ne will round to m. (Even if m = 252 and ne = -1/4, the product will 
round to m by the round-ties-to-even rule.) Similarly, if n has the form 1 
+ 2-k, then ne is an integer multiple of 2-k and |ne| < 1/2 + 2-(k + 1); 
this implies |ne|  1/2. We can't have m = 252 in this case because m is 
strictly greater than q, so m differs from its nearest representable 
neighbors by ±1. Thus, as |ne|  1/2, again m + ne will round to m. 
(Even if |ne| = 1/2, the product will round to m by the round-ties-to-
even rule because m is even.) This completes the proof for correctly 
rounded arithmetic.  

In double-rounding arithmetic, it may still happen that q is the correctly 
rounded quotient (even though it was actually rounded twice), so |e| < 
1/2 as above. In this case, we can appeal to the arguments of the 
previous paragraph provided we consider the fact that q  n will be 
rounded twice. To account for this, note that the IEEE standard requires 
that an extended double format carry at least 64 significant bits, so that 
the numbers m ± 1/2 and m ± 1/4 are exactly representable in 
extended double precision. Thus, if n has the form 1/2 + 2-(k + 1), so 
that |ne|  1/4, then rounding m + ne to extended double precision 
must produce a result that differs from m by at most 1/4, and as noted 
above, this value will round to m in double precision. Similarly, if n has 
the form 1 + 2-k, so that |ne|  1/2, then rounding m + ne to extended 
double precision must produce a result that differs from m by at most 
1/2, and this value will round to m in double precision. (Recall that m > 
252 in this case.)  

Finally, we are left to consider cases in which q is not the correctly 
rounded quotient due to double-rounding. In these cases, we have |e| < 
1/2 + 2-(d + 1) in the worst case, where d is the number of extra bits in 
the extended double format. (All existing extended-based systems 
support an extended double format with exactly 64 significant bits; for 
this format, d = 64 - 53 = 11.) Because double-rounding only produces 
an incorrectly rounded result when the second rounding is determined 
by the round-ties-to-even rule, q must be an even integer. Thus if n has 
the form 1/2 + 2-(k + 1), then ne = nq - m is an integer multiple of 2-k, 
and  

|ne| < (1/2 + 2 -(k + 1))(1/2 + 2-(d + 1)) = 1/4 + 2-(k + 2) + 2-(d + 2) + 2-(k + d + 2). 

 

If k  d, this implies |ne|  1/4. If k > d, we have |ne|  1/4 + 2-(d + 

2). In either case, the first rounding of the product will deliver a result 
that differs from m by at most 1/4, and by previous arguments, the 
second rounding will round to m. Similarly, if n has the form 1 + 2-k, 
then ne is an integer multiple of 2-(k - 1), and  
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|ne| < 1/2 + 2-(k + 1) + 2-(d + 1) + 2-(k + d + 1).  

If k  d, this implies |ne|  1/2. If k > d, we have |ne|  1/2 + 2-(d + 

1). In either case, the first rounding of the product will deliver a result 
that differs from m by at most 1/2, and again by previous arguments, 
the second rounding will round to m. z  

The preceding proof shows that the product can incur double-rounding 
only if the quotient does, and even then, it rounds to the correct result. 
The proof also shows that extending our reasoning to include the 
possibility of double-rounding can be challenging even for a program 
with only two floating-point operations. For a more complicated 
program, it may be impossible to systematically account for the effects 
of double-rounding, not to mention more general combinations of double 
and extended double precision computations.  

Programming Language Support for Extended Precision  

The preceding examples should not be taken to suggest that extended 
precision per se is harmful. Many programs can benefit from extended 
precision when the programmer is able to use it selectively. 
Unfortunately, current programming languages do not provide sufficient 
means for a programmer to specify when and how extended precision 
should be used. To indicate what support is needed, we consider the 
ways in which we might want to manage the use of extended precision.  

In a portable program that uses double precision as its nominal working 
precision, there are five ways we might want to control the use of a 
wider precision:  

1. Compile to produce the fastest code, using extended precision 
where possible on extended-based systems. Clearly most numerical 
software does not require more of the arithmetic than that the 
relative error in each operation is bounded by the "machine 
epsilon". When data in memory are stored in double precision, the 
machine epsilon is usually taken to be the largest relative roundoff 
error in that precision, since the input data are (rightly or wrongly) 
assumed to have been rounded when they were entered and the 
results will likewise be rounded when they are stored. Thus, while 
computing some of the intermediate results in extended precision 
may yield a more accurate result, extended precision is not 
essential. In this case, we might prefer that the compiler use 
extended precision only when it will not appreciably slow the 
program and use double precision otherwise. 

2. Use a format wider than double if it is reasonably fast and wide 
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enough, otherwise resort to something else. Some computations 
can be performed more easily when extended precision is available, 
but they can also be carried out in double precision with only 
somewhat greater effort. Consider computing the Euclidean norm of 
a vector of double precision numbers. By computing the squares of 
the elements and accumulating their sum in an IEEE 754 extended 
double format with its wider exponent range, we can trivially avoid 
premature underflow or overflow for vectors of practical lengths. On 
extended-based systems, this is the fastest way to compute the 
norm. On single/double systems, an extended double format would 
have to be emulated in software (if one were supported at all), and 
such emulation would be much slower than simply using double 
precision, testing the exception flags to determine whether 
underflow or overflow occurred, and if so, repeating the 
computation with explicit scaling. Note that to support this use of 
extended precision, a language must provide both an indication of 
the widest available format that is reasonably fast, so that a 
program can choose which method to use, and environmental 
parameters that indicate the precision and range of each format, so 
that the program can verify that the widest fast format is wide 
enough (e.g., that it has wider range than double). 

3. Use a format wider than double even if it has to be emulated in 
software. For more complicated programs than the Euclidean norm 
example, the programmer may simply wish to avoid the need to 
write two versions of the program and instead rely on extended 
precision even if it is slow. Again, the language must provide 
environmental parameters so that the program can determine the 
range and precision of the widest available format. 

4. Don't use a wider precision; round results correctly to the precision 
of the double format, albeit possibly with extended range. For 
programs that are most easily written to depend on correctly 
rounded double precision arithmetic, including some of the 
examples mentioned above, a language must provide a way for the 
programmer to indicate that extended precision must not be used, 
even though intermediate results may be computed in registers 
with a wider exponent range than double. (Intermediate results 
computed in this way can still incur double-rounding if they 
underflow when stored to memory: if the result of an arithmetic 
operation is rounded first to 53 significant bits, then rounded again 
to fewer significant bits when it must be denormalized, the final 
result may differ from what would have been obtained by rounding 
just once to a denormalized number. Of course, this form of double-
rounding is highly unlikely to affect any practical program 
adversely.)  
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5. Round results correctly to both the precision and range of the 
double format. This strict enforcement of double precision would be 
most useful for programs that test either numerical software or the 
arithmetic itself near the limits of both the range and precision of 
the double format. Such careful test programs tend to be difficult to 
write in a portable way; they become even more difficult (and error 
prone) when they must employ dummy subroutines and other tricks 
to force results to be rounded to a particular format. Thus, a 
programmer using an extended-based system to develop robust 
software that must be portable to all IEEE 754 implementations 
would quickly come to appreciate being able to emulate the 
arithmetic of single/double systems without extraordinary effort. 

No current language supports all five of these options. In fact, few 
languages have attempted to give the programmer the ability to control 
the use of extended precision at all. One notable exception is the 
ISO/IEC 9899:1999 Programming Languages - C standard, the latest 
revision to the C language, which is now in the final stages of 
standardization.  

The C99 standard allows an implementation to evaluate expressions in a 
format wider than that normally associated with their type, but the C99 
standard recommends using one of only three expression evaluation 
methods. The three recommended methods are characterized by the 
extent to which expressions are "promoted" to wider formats, and the 
implementation is encouraged to identify which method it uses by 
defining the preprocessor macro FLT_EVAL_METHOD: if FLT_EVAL_METHOD is 0, 
each expression is evaluated in a format that corresponds to its type; if 
FLT_EVAL_METHOD is 1, float expressions are promoted to the format that 
corresponds to double; and if FLT_EVAL_METHOD is 2, float and double 
expressions are promoted to the format that corresponds to long double. 
(An implementation is allowed to set FLT_EVAL_METHOD to -1 to indicate 
that the expression evaluation method is indeterminable.) The C99 
standard also requires that the <math.h> header file define the types 
float_t and double_t, which are at least as wide as float and double, 
respectively, and are intended to match the types used to evaluate float 
and double expressions. For example, if FLT_EVAL_METHOD is 2, both float_t 
and double_t are long double. Finally, the C99 standard requires that the 
<float.h> header file define preprocessor macros that specify the range 
and precision of the formats corresponding to each floating-point type.  

The combination of features required or recommended by the C99 
standard supports some of the five options listed above but not all. For 
example, if an implementation maps the long double type to an extended 
double format and defines FLT_EVAL_METHOD to be 2, the programmer can 
reasonably assume that extended precision is relatively fast, so 
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programs like the Euclidean norm example can simply use intermediate 
variables of type long double (or double_t). On the other hand, the same 
implementation must keep anonymous expressions in extended precision 
even when they are stored in memory (e.g., when the compiler must 
spill floating-point registers), and it must store the results of expressions 
assigned to variables declared double to convert them to double precision 
even if they could have been kept in registers. Thus, neither the double 
nor the double_t type can be compiled to produce the fastest code on 
current extended-based hardware.   

Likewise, the C99 standard provides solutions to some of the problems 
illustrated by the examples in this section but not all. A C99 standard 
version of the log1p function is guaranteed to work correctly if the 
expression 1.0 + x is assigned to a variable (of any type) and that 
variable used throughout. A portable, efficient C99 standard program for 
splitting a double precision number into high and low parts, however, is 
more difficult: how can we split at the correct position and avoid double-
rounding if we cannot guarantee that double expressions are rounded 
correctly to double precision? One solution is to use the double_t type to 
perform the splitting in double precision on single/double systems and in 
extended precision on extended-based systems, so that in either case 
the arithmetic will be correctly rounded. Theorem 14 says that we can 
split at any bit position provided we know the precision of the underlying 
arithmetic, and the FLT_EVAL_METHOD and environmental parameter macros 
should give us this information.  

The following fragment shows one possible implementation:  

#include <math.h> 

#include <float.h> 

#if (FLT_EVAL_METHOD==2) 

#define PWR2  LDBL_MANT_DIG - (DBL_MANT_DIG/2) 

#elif ((FLT_EVAL_METHOD==1) || (FLT_EVAL_METHOD==0)) 

#define PWR2  DBL_MANT_DIG - (DBL_MANT_DIG/2) 

#else 

#error FLT_EVAL_METHOD unknown! 

#endif 

... 
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Of course, to find this solution, the programmer must know that double 
expressions may be evaluated in extended precision, that the ensuing 
double-rounding problem can cause the algorithm to malfunction, and 
that extended precision may be used instead according to Theorem 14. 
A more obvious solution is simply to specify that each expression be 
rounded correctly to double precision. On extended-based systems, this 
merely requires changing the rounding precision mode, but 
unfortunately, the C99 standard does not provide a portable way to do 
this. (Early drafts of the Floating-Point C Edits, the working document 
that specified the changes to be made to the C90 standard to support 
floating-point, recommended that implementations on systems with 
rounding precision modes provide fegetprec and fesetprec functions to 
get and set the rounding precision, analogous to the fegetround and 
fesetround functions that get and set the rounding direction. This 
recommendation was removed before the changes were made to the 
C99 standard.)  

Coincidentally, the C99 standard's approach to supporting portability 
among systems with different integer arithmetic capabilities suggests a 
better way to support different floating-point architectures. Each C99 
standard implementation supplies an <stdint.h> header file that defines 
those integer types the implementation supports, named according to 
their sizes and efficiency: for example, int32_t is an integer type exactly 
32 bits wide, int_fast16_t is the implementation's fastest integer type at 
least 16 bits wide, and intmax_t is the widest integer type supported. 
One can imagine a similar scheme for floating-point types: for example, 
float53_t could name a floating-point type with exactly 53 bit precision 
but possibly wider range, float_fast24_t could name the 
implementation's fastest type with at least 24 bit precision, and 
floatmax_t could name the widest reasonably fast type supported. The 
fast types could allow compilers on extended-based systems to generate 
the fastest possible code subject only to the constraint that the values of 
named variables must not appear to change as a result of register 
spilling. The exact width types would cause compilers on extended-based 
systems to set the rounding precision mode to round to the specified 
precision, allowing wider range subject to the same constraint. Finally, 
double_t could name a type with both the precision and range of the IEEE 

    double   x, xh, xl; 

    double_t m; 

    m = scalbn(1.0, PWR2) + 1.0;  // 2**PWR2 + 1 

    xh = (m * x) - ((m * x) - x); 

    xl = x - xh; 
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754 double format, providing strict double evaluation. Together with 
environmental parameter macros named accordingly, such a scheme 
would readily support all five options described above and allow 
programmers to indicate easily and unambiguously the floating-point 
semantics their programs require.  

Must language support for extended precision be so complicated? On 
single/double systems, four of the five options listed above coincide, and 
there is no need to differentiate fast and exact width types. Extended-
based systems, however, pose difficult choices: they support neither 
pure double precision nor pure extended precision computation as 
efficiently as a mixture of the two, and different programs call for 
different mixtures. Moreover, the choice of when to use extended 
precision should not be left to compiler writers, who are often tempted 
by benchmarks (and sometimes told outright by numerical analysts) to 
regard floating-point arithmetic as "inherently inexact" and therefore 
neither deserving nor capable of the predictability of integer arithmetic. 
Instead, the choice must be presented to programmers, and they will 
require languages capable of expressing their selection.  

Conclusion  

The foregoing remarks are not intended to disparage extended-based 
systems but to expose several fallacies, the first being that all IEEE 754 
systems must deliver identical results for the same program. We have 
focused on differences between extended-based systems and 
single/double systems, but there are further differences among systems 
within each of these families. For example, some single/double systems 
provide a single instruction to multiply two numbers and add a third with 
just one final rounding. This operation, called a fused multiply-add, can 
cause the same program to produce different results across different 
single/double systems, and, like extended precision, it can even cause 
the same program to produce different results on the same system 
depending on whether and when it is used. (A fused multiply-add can 
also foil the splitting process of Theorem 6, although it can be used in a 
non-portable way to perform multiple precision multiplication without the 
need for splitting.) Even though the IEEE standard didn't anticipate such 
an operation, it nevertheless conforms: the intermediate product is 
delivered to a "destination" beyond the user's control that is wide 
enough to hold it exactly, and the final sum is rounded correctly to fit its 
single or double precision destination.  

The idea that IEEE 754 prescribes precisely the result a given program 
must deliver is nonetheless appealing. Many programmers like to believe 
that they can understand the behavior of a program and prove that it 
will work correctly without reference to the compiler that compiles it or 
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the computer that runs it. In many ways, supporting this belief is a 
worthwhile goal for the designers of computer systems and 
programming languages. Unfortunately, when it comes to floating-point 
arithmetic, the goal is virtually impossible to achieve. The authors of the 
IEEE standards knew that, and they didn't attempt to achieve it. As a 
result, despite nearly universal conformance to (most of) the IEEE 754 
standard throughout the computer industry, programmers of portable 
software must continue to cope with unpredictable floating-point 
arithmetic.  

If programmers are to exploit the features of IEEE 754, they will need 
programming languages that make floating-point arithmetic predictable. 
The C99 standard improves predictability to some degree at the expense 
of requiring programmers to write multiple versions of their programs, 
one for each FLT_EVAL_METHOD. Whether future languages will choose 
instead to allow programmers to write a single program with syntax that 
unambiguously expresses the extent to which it depends on IEEE 754 
semantics remains to be seen. Existing extended-based systems 
threaten that prospect by tempting us to assume that the compiler and 
the hardware can know better than the programmer how a computation 
should be performed on a given system. That assumption is the second 
fallacy: the accuracy required in a computed result depends not on the 
machine that produces it but only on the conclusions that will be drawn 
from it, and of the programmer, the compiler, and the hardware, at best 
only the programmer can know what those conclusions may be.  

1 Examples of other representations are floating slash and signed logarithm [Matula 
and Kornerup 1985; Swartzlander and Alexopoulos 1975].  

2 This term was introduced by Forsythe and Moler [1967], and has generally replaced 
the older term mantissa. 

3 This assumes the usual arrangement where the exponent is stored to the left of the 
significand. 

4 Unless the number z is larger than  +1 or smaller than  . Numbers which are 
out of range in this fashion will not be considered until further notice. 

5 Let z' be the floating-point number that approximates z. Then d.d...d - (z/ e) p-1 is 

equivalent to z'-z /ulp(z'). A more accurate formula for measuring error is z'-z /ulp
(z). - Ed. 

6 700, not 70. Since .1 - .0292 = .0708, the error in terms of ulp(0.0292) is 708 ulps. - 
Ed. 

7 Although the expression (x - y)(x + y) does not cause a catastrophic cancellation, it is 
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slightly less accurate than x2 - y2 if  or  . In this case, (x - y)(x + y) has three 
rounding errors, but x2 - y2 has only two since the rounding error committed when 
computing the smaller of x2 and y2 does not affect the final subtraction. 

8 Also commonly referred to as correctly rounded. - Ed. 

9 When n = 845, xn= 9.45, xn + 0.555 = 10.0, and 10.0 - 0.555 = 9.45. Therefore, xn 

= x845 for n > 845. 

10 Notice that in binary, q cannot equal  . - Ed. 

11 Left as an exercise to the reader: extend the proof to bases other than 2. - Ed. 

12 This appears to have first been published by Goldberg [1967], although Knuth ([1981], page 211) attributes this 
idea to Konrad Zuse. 
13 According to Kahan, extended precision has 64 bits of significand because that was the widest precision across 
which carry propagation could be done on the Intel 8087 without increasing the cycle time [Kahan 1988]. 
14 Some arguments against including inner product as one of the basic operations are 
presented by Kahan and LeBlanc [1985]. 

15 Kirchner writes: It is possible to compute inner products to within 1 ulp in hardware in one partial product per 
clock cycle. The additionally needed hardware compares to the multiplier array needed anyway for that speed.  
16 CORDIC is an acronym for Coordinate Rotation Digital Computer and is a method of computing transcendental 
functions that uses mostly shifts and adds (i.e., very few multiplications and divisions) [Walther 1971]. It is the 
method additionally needed hardware compares to the multiplier array needed anyway for that speed. d used on 
both the Intel 8087 and the Motorola 68881. 
17 Fine point: Although the default in IEEE arithmetic is to round overflowed numbers 
to , it is possible to change the default (see Rounding Modes) 

18 They are called subnormal in 854, denormal in 754.  

19 This is the cause of one of the most troublesome aspects of the standard. Programs that frequently underflow 
often run noticeably slower on hardware that uses software traps. 
20 No invalid exception is raised unless a "trapping" NaN is involved in the operation. 
See section 6.2 of IEEE Std 754-1985. - Ed. 

21  may be greater than  if both x and y are negative. - Ed. 

22 It can be in range because if x < 1, n < 0 and x-n is just a tiny bit smaller than the 

underflow threshold  , then  , and so may not overflow, since in all 
IEEE precisions, -emin < emax. 

23 This is probably because designers like "orthogonal" instruction sets, where the 
precisions of a floating-point instruction are independent of the actual operation. 
Making a special case for multiplication destroys this orthogonality. 

24 This assumes the common convention that 3.0 is a single -precision constant, while 
3.0D0 is a double precision constant. 
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25 The conclusion that 00 = 1 depends on the restriction that f be nonconstant. If this 
restriction is removed, then letting f be the identically 0 function gives 0 as a possible 
value for lim x  0 f(x)g(x), and so 00 would have to be defined to be a NaN.  

26 In the case of 00, plausibility arguments can be made, but the convincing argument is found in "Concrete 

Mathematics" by Graham, Knuth and Patashnik, and argues that 00 = 1 for the binomial theorem to work. - Ed.  
27 Unless the rounding mode is round toward - , in which case x - x = -0.  

28 The VMS math libraries on the VAX use a weak form of in-line procedure 
substitution, in that they use the inexpensive jump to subroutine call rather than the 
slower CALLS and CALLG instructions. 

29 The difficulty with presubstitution is that it requires either direct hardware 
implementation, or continuable floating-point traps if implemented in software. - Ed. 

30 In this informal proof, assume that  = 2 so that multiplication by 4 is exact and 
doesn't require a i.  

31 This is the sum if adding w does not generate carry out. Additional argument is 
needed for the special case where adding w does generate carry out. - Ed. 

32 Rounding gives kx + w k - r k only if ( kx + w k) keeps the form of kx. - Ed. 
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